
Error Correcting Codes: Combinatorics, Algorithms and App lications (Fall 2007)

Lecture 38: Guruswami-Sudan List Decoder
November 11, 2007

Lecturer: Atri Rudra Scribe: Sandipan Kundu & Atri Rudra

1 General Structure of RS list decoder

We recall the structure of a “generic” list decoder for RS codes. Given the received word(αi, yi) ∈
(F2

q)
n,

• Step1: Find a non-zeroQ(X, Y) with some restrictions such that

Q(αi, yi) = 0, 1 ≤ i ≤ n

• Step2: FactorizeQ(X, Y) and outputP (X) if

1. Y − P (X) is a factor ofQ(X, Y)

2. deg(P) ≤ k

3. P (αi) = yi for at leastt values ifi.

Last lecture, we saw an instantiation of the generic algorithm above, where we placed the
following restrictions onQ(X, Y): degX(Q) ≤

√
nk, degY (Q) ≤

√

n
k
. The algorithm was able

to work with agreementt ≥ 2
√

nk. In particular, rateR Reed-Solomon codes can be list decoded
from 1 − 2

√
R fraction of errors. This bound is better than the unique decoding bound of1−R

2
for

R < 0.07. This is still far from the1 −
√

R fraction of errors guaranteed by the Johnson bound.

2 Algorithm 2

We now look at the list decoding algorithm in the breakthrough work of Sudan [2]. To motivate
the algorithm, recall that in the previous algorithm, in order to prove thatStep 2works, we defined

a polynomialR(X)
△
= Q(X, P (X)). In particular, this implied thatdeg(R) ≤ degX(Q) + k ·

degY (Q) (and we had to sett > degX(Q) + k · degY (Q)). One shortcoming of this approach is
that the maximum degree ofX andY might not occur at the same term. Sudan’s insight was to
use a more “balanced” notion of degree ofQ(X, Y):

Definition 2.1. The(1, k) weighted degree of the monomialX iY j is i + kj. Further, the(1, k)-
weighted degree ofQ(X, Y) (or just its(1, k) degree) is the maximum(1, k) weighted degree of its
monomials.

1

Note that a bivariate polynomialQ(X, Y) of (1, k) degree at mostD can be represented as
follows:

Q(X, Y)
△
=

∑

i+kj≤D
i,j≥0

qi,jX
iY j.

Sudan’s algorithm is basically the same as the list decodingalgorithm we saw last lecture,
except in the interpolation step, we compute a bivariate polynomial of bounded(1, k) degree.
More precisely, the algorithm is as follows:

• Step 1: Compute a non-zero polynomialQ(X, Y) with (1, k)-weighted degree at mostD
(for some parameterD to be fixed later), such that for every1 ≤ i ≤ n:

Q(αi, yi) = 0.

• Step2: FactorizeQ(X, Y) and outputP (X) if

1. Y − P (X) is a factor ofQ(X, Y)

2. deg(P) ≤ k

3. P (αi) = yi for at leastt values ifi.

As before to prove the correctness of the algorithm we need the following:

• Step 1;We will need to ensure that the number of coefficients ofQ(X, Y) is strictly greater
thann.

• Step 2: Let R(X)
△
= Q(X, P (X)). We want to show that ifP (αi) ≥ yi for at leastt values

of i, thenR(X) ≡ 0.

To begin with we argue why we can prove the correctness ofStep 2. Note that by the definition
of (1, k) degree,deg(R) ≤ D. Thus, using the same argument as we used for the list decoding
algorithm from last lecture, we can ensureR(X) ≡ 0 if we pick t > D. Thus, we would like to
pick D to be as small as possible. However,Step 1will needD to be large enough. Towards that
end, let the number of coefficient ofQ(X, Y) be

N = |{(i, j)|i + kj ≤ D, i, j ∈ Z
+}|

To boundN , we first note that in the definition above,j ≤
⌊

D
k

⌋

. (For notational convenience,
defineℓ =

⌊

D
k

⌋

.) Consider the following sequence of relationships

N =

ℓ
∑

j=1

D−kj
∑

i=0

1

=

ℓ
∑

j=0

(D − kj + 1)

2

=

ℓ
∑

j=0

(D + 1) − k

ℓ
∑

j=0

j

= (D + 1)(ℓ + 1) − kℓ(ℓ + 1)

2

=
ℓ + 1

2
(2D + 2 − kℓ)

≥
(

ℓ + 1

2

)

(D + 2) (1)

≥ D(D + 2)

2k
. (2)

In the above, (1) follows from the fact thatℓ ≤ D
k

and (2) follows from the fact thatD
k
− 1 ≤ ℓ.

Thus, Step 1 is fine if D(D+2)
2k

> n. The choiceD =
⌈√

2kn
⌉

suffices by the following
argument:

D(D + 2)

2k
>

D2

2k
≥ 2kn

2k
= n. (3)

Thus forStep 2to work, we needt >
⌈√

2kn
⌉

, which implies the following result:

Theorem 2.2. Algorithm2 can list decode Reed-Solomon codes of rateR from up to1 −
√

2R
fraction of errors. Further, the algorithm runs in polynomial time.

Algorithm 2 runs in polynomial time asStep 1can be implemented using Gaussian elimination
(and the fact that the number of coefficients isO(n)) while Step 2can be implemented by any
polynomial time algorithm to factorize bivariate polynomials. Further, we note that1−

√
2R beats

the unique decoding bound of(1 − R)/2 for R < 1/3.

3 Algorithm 3

Finally, we present the list decoding algorithm for RS codesdue to Guruswami and Sudan [1],
which can correct1 −

√
R fraction of errors. The main new idea is to add more restrictions on

Q(X, Y) (in addition to its(1, k)-degree being at mostD). This change will have the following
implications:

• The number of constraints will increase but the number of coefficients remains the same.
This seems bad as this will result in an increase inD (which in turn would result in an
increase int).

• However, this change also increases the number of roots ofR(X) and this gain in the number
of roots more than compensates for the increase inD.

3

In particular, the constraint will be as follows. For some integer parameterr ≥ 1, we will insist
onQ(X, Y) havingr roots at(αi, yi), 1 ≤ i ≤ n.

To motivate the definition of multiplicity of a root of a bivariate polynomial, let us consider the
following simplified example:

Y = ax

Y = ax

Y = bx

Y = bx
Y = ax

Y = cx

Fig 1. Fig 2.

Fig 3.

In Fig. 1 the curveQ(X, Y) = Y −aX passes through the origin once and has no term of degree0.
In Fig. 2, the curveQ(X, Y) = (Y −aX)(Y −bX) passes though the origin twice and has no term
of degree at most1. In Fig. 3, the curveQ(X, Y) = (Y − aX)(Y − bX)(Y − cX) passes through
the origin thrice and has no term of degree at most2. More generally, ifr lines pass through the
origin, then note that the curve corresponding to their product has no term of degree at mostr − 1.
This leads to the following more general definition:

Definition 3.1. Q(X, Y) hasr roots at(0, 0) if Q(X, Y) doesn’t have any monomial of degree at
mostr − 1.

The definition of a root with multiplicity at a more general follows from a simple translation:

Definition 3.2. Q(X, Y) hasr roots at(α, β) if Qα,β(X, Y)
△
= Q(x + α, y + β) haver roots at

(0, 0).

We are now ready to state the formal algorithm:

• Step 1: Compute a non-zero polynomialQ(X, Y) with (1, k)-weighted degree at mostD
(for some parameterD to be fixed later), such that for every1 ≤ i ≤ n:

Q(αi, yi) = 0 with multiplicity r.

• Step2: FactorizeQ(X, Y) and outputP (X) if

1. Y − P (X) is a factor ofQ(X, Y)

2. deg(P) ≤ k

4

3. P (αi) = yi for at leastt values ifi.

To prove the correctness of the algorithm, we will need the following two lemmas:

Lemma 3.3. Step 1 implies
(

r+1
2

)

constraints for eachi on the coefficient ofQ(X, Y).

Lemma 3.4. R(X)
△
= Q(X, P (X)) hasr roots at everyi such thatP (αi) = yi. In other words,

(X − αi)
r dividesR(X).

Using arguments similar to those used for Sudan’s algorithm, we will need

D(D + 2)

2k
> n

(

r + 1

2

)

,

where the LHS is the number of coefficients ofQ(X, Y) as before and the RHS follows from

Lemma 3.3. We note that the choiceD =
⌈

√

knr(r − 1)
⌉

works. Thus, we have shown the

correctness ofStep 1. For Step 2, we need to show that the number of roots ofR(X) (which by
Lemma 3.4 is at leastrt) is strictly bigger than the degree ofR(X), which as in Sudan’s algorithm
is still D. That is,

tr > D,

which is the same as

t >
D

r
,

which in turn will follow if we pick

t =

⌈
√

kn

(

1 − 1

r

)

⌉

.

If we pick r = 2kn, then we will need

t >

⌈

√

kn − 1

2

⌉

>
⌈√

kn
⌉

,

where the last inequality is because oft is an integer. Thus, we have shown

Theorem 3.5. Algorithm 3 can list decode Reed-Solomon codes of rateR from up to1 −
√

R
fraction of errors. Further, the algorithm runs in polynomial time.

The claim on the running time follows from the same argument that was used to argue the
polynomial running time of Algorithm2.

In the next lecture, we will prove Lemmas 3.3 and 3.4.

5

References

[1] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometry
codes.IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[2] M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound.J. Complex-
ity, 13(1):180–193, 1997.

6

	General Structure of RS list decoder
	Algorithm 2
	Algorithm 3

