Error Correcting Codes: Combinatorics, Algorithms and App lications (Fall 2007)

Lecture 38: Guruswami-Sudan List Decoder
November 11, 2007
Lecturer: Atri Rudra Scribe: Sandipan Kundu & Atri Rudfa

1 General Structure of RS list decoder

We recall the structure of a “generic” list decoder for RSendGiven the received woftd;, y;) €
(FZ)",

e Stepl Find a non-zerd@)(X,Y') with some restrictions such that

e Step2 FactorizeQ(X,Y') and outputP (X)) if

1. Y — P(X)isafactor ofQ(X,Y)
2. deg(P) < k
3. P(a;) = y; for at leastt values ifi.

Last lecture, we saw an instantiation of the generic algoriabove, where we placed the
following restrictions orQ(X,Y): degx(Q) < vnk, degy (Q) < \/g The algorithm was able
to work with agreement > 2v/nk. In particular, rateR Reed-Solomon codes can be list decoded
from 1 — 2v/R fraction of errors. This bound is better than the unique dempbound of% for
R < 0.07. This is still far from thel — /R fraction of errors guaranteed by the Johnson bound.

2 Algorithm 2

We now look at the list decoding algorithm in the breakthtowgprk of Sudan([2]. To motivate
the algorithm, recall that in the previous algorithm, inertb prove thaStep 2works, we defined

a polynomial R(X) 2 Q(X, P(X)). In particular, this implied thatleg(R) < degx(Q) + k -
degy (@) (and we had to set > degx(Q) + k - degy (Q)). One shortcoming of this approach is
that the maximum degree &f andY might not occur at the same term. Sudan’s insight was to
use a more “balanced” notion of degree(@fX, Y):

Definition 2.1. The (1, k) weighted degree of the monomislY” is i + kj. Further, the(1, k)-
weighted degree @ (X, Y') (or justits(1, k) degree) is the maximuf, k) weighted degree of its
monomials.

Note that a bivariate polynomi&(X,Y") of (1, k) degree at mosD can be represented as
follows:

A P
QX Y)=) g XY,

i+kj<D
i,5>0

Sudan’s algorithm is basically the same as the list decodiggrithm we saw last lecture,
except in the interpolation step, we compute a bivariatgnpwhial of bounded1, k) degree.
More precisely, the algorithm is as follows:

e Step 1: Compute a non-zero polynomié@l(X,Y") with (1, k)-weighted degree at mo&
(for some parameteb to be fixed later), such that for evety< i < n:

Q(ai,yi) = 0.
e Step2 FactorizeQ(X,Y') and outputP (X)) if

1. Y — P(X)isafactor ofQ(X,Y)
2. deg(P) < k
3. P(ay) = y;, for at leastt values ifi.

As before to prove the correctness of the algorithm we needbifowing:

e Step 1;We will need to ensure that the number of coefficient® 0k, Y) is strictly greater
thann.

e Step 2:Let R(X) 2 Q(X, P(X)). We want to show that iP(«;) > y; for at least values
of ¢, thenR(X) = 0.

To begin with we argue why we can prove the correctne&ey 2 Note that by the definition
of (1, k) degreedeg(R) < D. Thus, using the same argument as we used for the list degodin
algorithm from last lecture, we can ensukéX) = 0 if we pick¢t > D. Thus, we would like to
pick D to be as small as possible. Howevgtep 1will need D to be large enough. Towards that
end, let the number of coefficient 6f(X, Y") be

N =[{(i,5)li+kj < D,i,j € Z"}|

To boundN, we first note that in the definition abovg,< L%J (For notational convenience,

define/ = | 2].) Consider the following sequence of relationships

1

v
-

D—kj
0

1 4=

<
~

(D —kj+1)
=0

<

J j=0

:(D+1)(f+1)—@

= HTl (2D + 2 — kl)

> £+71) (D +2) 1)
D(D +2)

z (2)

In the above [{|1) follows from the fact that< % and [2) follows from the fact th# —1<0.

Thus, Step 1is fine if W > n. The choiceD = [\/anw suffices by the following
argument:

> —>— =n. (3)

Thus forStep 2to work, we need > [\/%nw , which implies the following result:

Theorem 2.2. Algorithm 2 can list decode Reed-Solomon codes of rateom up tol — v2R
fraction of errors. Further, the algorithm runs in polynaahtime.

Algorithm 2 runs in polynomial time aStep 1can be implemented using Gaussian elimination
(and the fact that the number of coefficientsisn)) while Step 2can be implemented by any
polynomial time algorithm to factorize bivariate polynats. Further, we note that— /2R beats
the unique decoding bound of — R)/2 for R < 1/3.

3 Algorithm 3

Finally, we present the list decoding algorithm for RS codae to Guruswami and Sudad [1],
which can correct — /R fraction of errors. The main new idea is to add more restrition
Q(X,Y) (in addition to its(1, k)-degree being at mog?). This change will have the following
implications:

e The number of constraints will increase but the number offments remains the same.
This seems bad as this will result in an increaseirfwhich in turn would result in an
increase irt).

e However, this change also increases the number of rodt$ %1 and this gain in the number
of roots more than compensates for the increade.in

3

In particular, the constraint will be as follows. For som&ger parameter > 1, we will insist
onQ(X,Y) havingr roots at(«;, y;),1 < i < n.

To motivate the definition of multiplicity of a root of a bivate polynomial, let us consider the
following simplified example:

Fig 1. Fig 2.

In Fig. 1 the curvel)(X,Y) = Y —aX passes through the origin once and has no term of dégree
In Fig. 2, the curvel(X,Y) = (Y —aX)(Y —bX) passes though the origin twice and has no term
of degree at most. In Fig. 3, the curveQ (X, Y) = (Y — aX)(Y — bX)(Y — cX) passes through
the origin thrice and has no term of degree at n2odtlore generally, ifr lines pass through the
origin, then note that the curve corresponding to their pobtias no term of degree at most 1.
This leads to the following more general definition:

Definition 3.1. Q(X,Y') hasr roots at(0, 0) if Q(X,Y) doesn’t have any monomial of degree at
mostr — 1.

The definition of a root with multiplicity at a more generallovs from a simple translation:

Definition 3.2. Q(X,Y’) hasr roots at(c«, 3) if Qn3(X,Y) 2 Q(z + o,y + () haver roots at
(0,0).

We are now ready to state the formal algorithm:

e Step 1: Compute a non-zero polynomié@l(X,Y") with (1, k)-weighted degree at mo&
(for some parameteb to be fixed later), such that for evety< i < n:

Q(eu, yi) = 0 with multiplicity r.

e Step2 FactorizeQ(X,Y') and outputP (X)) if

1. Y — P(X)isafactor ofQ(X,Y)
2. deg(P) < k

3. P(ay) =y, for at leastt values ifi.
To prove the correctness of the algorithm, we will need thiefiong two lemmas:
Lemma 3.3. Step Limplies("}') constraints for eacti on the coefficient o) (X,Y).
Lemma 3.4. R(X) = Q(X, P(X)) hasr roots at everyi such thatP(«;) = ;. In other words,
(X — ;)" dividesR(X).
Using arguments similar to those used for Sudan’s algorithenwill need

D@H&)>nr+1
2k 2)’

where the LHS is the number of coefficients @fX,Y) as before and the RHS follows from
Lemma[3.B. We note that the choi¢e = [knr(r — 1)} works. Thus, we have shown the

correctness oBtep 1 For Step 2 we need to show that the number of roots/§fX') (which by
Lemmd3H is at least) is strictly bigger than the degree &{ X '), which as in Sudan’s algorithm
is still D. That s,

tr > D,

which is the same as

which in turn will follow if we pick

If we pick r = 2kn, then we will need

t>{ kn—%}>[¢%ﬂ,

where the last inequality is becauset @$ an integer. Thus, we have shown

Theorem 3.5. Algorithm 3 can list decode Reed-Solomon codes of dt&om up tol — VR
fraction of errors. Further, the algorithm runs in polynaathtime.

The claim on the running time follows from the same argumbat tvas used to argue the
polynomial running time of Algorithn2.
In the next lecture, we will prove LemmBs13.3 3.4.

References

[1] V. Guruswami and M. Sudan. Improved decoding of Reed®ain and algebraic-geometry
codes.IEEE Transactions on Information Theo#5s(6):1757-1767, 1999.

[2] M. Sudan. Decoding of Reed Solomon codes beyond the-eaiwection boundJ. Complex-
ity, 13(1):180-193, 1997.

	General Structure of RS list decoder
	Algorithm 2
	Algorithm 3

