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In the last lecture, we introduced the Guruswami-Sudan (GS) list decoding algorithm for RS codes.
We restate the algorithm here. Recall that the input is the received word, in the form (αi, yi) ∈ F2,
for 1 ≤ i ≤ n.

GS list decoding algorithm

Inputs: (αi, yi) ∈ F2 for 1 ≤ i ≤ n, agreement parameter 0 ≤ t ≤ n

Step 1) Compute a non-zero Q(X, Y ), such that
i) (1, k) weighted degree of Q ≤ D.
ii) Q has r roots at (αi, yi), 1 ≤ i ≤ n.

Step 2) Output all degree≤ k polynomials P (X) such that
i) Y − P (X) divides Q(X, Y )
ii) P (αi) = yi for at least t positions i.

We analyzed the GS list decoding algorithm modulo two lemmas. In today’s lecture, we are going
to prove the two lemmas.

1 Proof of key lemmas
We now recall the two lemmas:

Lemma 1.1. The condition that Q(X, Y ) has r roots at (α, β) implies
(

r+1
2

)
constraints on the

coefficients of Q.

Lemma 1.2. If Q(X, Y ) is output by Step 1 and P (X) needs to be output in Step 2, then Y −P (X)
divides Q(X, Y ).

Proof of Lemma 1.1. Let
Q(X, Y ) =

∑
i,j

i+kj≤D

qi,jX
iY j

and Qα,β(X, Y ) = Q(X + α, Y + β) =
∑

i,j qα,β
i,j X iY j . We will show that
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(i) qα,β
i,j are homogeneous linear combinations of qi,j’s.

(ii) If Qα,β(X, Y ) has no monomial of degree < r, then that implies
(

r+1
2

)
constraints on qα,β

i,j ’s.

Note that (i) and (ii) prove the lemma. To prove (i), note that by the definition:

Qα,β(X, Y ) =
∑
i,j

qα,β
i,j X iY j (1)

=
∑
i′,j′

i′+kj′≤D

qi′,j′(X + α)i′(Y + β)j′
(2)

Note that, if i > i′ or j > j′, then qα,β
i,j doesn’t depend on qi′,j′ . By comparing coefficients of X iY j

from (1) and (2), we obtain

qα,β
i,j =

∑
i′>i
j′>j

qi′,j′

(
i′

i

)(
j′

j

)
αiβj,

which proves (i). To prove (ii), recall that by definition Qα,β(X, Y ) has no monomial of degree
< r. In other words, we need to have constraints qα,β

i,j = 0 if i + j ≤ r − 1. The number of such
constraints is

|{(i, j)|i + j ≤ r − 1, i, j ∈ Z≥0}| =

(
r + 1

2

)
,

where the equality follows from the argument we used to bound the dimension of Reed-Muller
codes. 2

We now re-state Lemma 1.2 more precisely and then prove it.

Lemma 1.3. Let Q(X, Y ) be computed by Step 1. Let P (X) be a polynomial of degree ≤ k, such
that P (αi) = yi for at least t > D

r
many values of i, then Y − P (X) divides Q(X, Y ).

Proof. Define
R(X)

4
= Q(X, P (X)).

As usual, to prove the lemma, we will show that R(X) ≡ 0. To do this, we will need the following
claim.

Claim 1.4. If P (αi) = yi, then (X − αi)
r divides R(X), that is αi is a root of R(X) with multi-

plicity r.

Note that by definition of Q(X, Y ) and P (X), R(X) has degree ≤ D. Assuming the above
claim is correct, R(X) has at least tr roots. Therefore, R(X) is a zero polynomial as tr > D. We
will now prove Claim 1.4. Define

Pαi,yi
(X)

4
= P (X + αi)− yi, (3)
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and

Rαi,yi
(X)

4
= R(X + αi) (4)
= Q(X + αi, P (X + αi)) (5)
= Q(X + αi, Pαi,yi

(X) + yi) (6)
= Qαi,yi

(X, Pαi,yi
(X)), (7)

where the second, third and fourth equalities follow from the definitions of R(X), Pαi,yi
(X) and

Qαi,yi
(X, Y ) respectively.

By (4) if Rαi,yi
(0) = 0, then R(αi) = 0. So if X divides Rαi,yi

(X), then X−αi divides R(X).
Similarly, if Xr divides Rαi,yi

(X), then (X − αi)
r divides R(X). Thus, to prove the lemma,

we will show that Xr divides Rαi,yi
(X). Since P (αi) = yi when αi agrees with yi, we have

Pαi,yi
(0) = 0. Therefore, X is a root of Pαi,yi

(X), that is, Pαi,yi
(X) = X · g(X) for some poly-

nomial g(X) of degree at most k − 1. We can rewrite Rαi,yi
(X) =

∑
i′,j′ q

αi,yi

i′,j′ X i′(Pαi,yi
(X))j′

=∑
i′,j′ q

αi,yi

i′,j′ X i′(Xg(X))j′ . Now for every i′, j′ such that qαi,yi

i′,j′ 6= 0 i′ + j′ ≥ r as Qαi,yi
(X, Y )

has no monomial of degree < r. Thus Rαi,yi
(x) has no non-zero monomial X`, ` < r. Thus Xr

divides Rαi,yi
(X), as desired.

From the second property of Step 1, Q(X, Y ) has r ≥ 0 roots at (αi, yi), 1 ≤ i ≤ n. However,
our analysis did not explicitly use the fact that the multiplicity is same for every i. In particu-
lar, given non-zero integer multiplicities wi ≥ 0, 1 ≤ i ≤ n, the GS algorithm can output all
polynomials P (X) of degree at most k, such that

∑
i:P (αi)=yi

wi >

√√√√kn
n∑

i=0

(
wi + 1

2

)
Note that till now we have seen the special case wi = r, 1 ≤ i ≤ n. Further, note that the αi’s need
not be distinct for the all of the previous arguments to go through. In particular, we can further
generalize the input which now has positive integer weights wi,α for every 1 ≤ i ≤ n and α ∈ F
and the GS algorithm will be able to output all P (X) of degree at most k such that

∑
i

wi,P (αi) >

√√√√kn

n∑
i=0

∑
α∈F

(
wi,α + 1

2

)
.

This will be useful to solve the following generalization of list decoding called soft decoding.

Definition 1.5. Under soft decoding problem, the decoder is given as input a set of non-negative
weights wi,d(1 ≤ i ≤ n, α ∈ Fq) and a threshold W ≥ 0. The soft decoder needs to output all
codewords (c1, c2, . . . , cn) in q-ary code of block length n that satisfy:

n∑
i=1

wi,ci
≥ W.

3



Consider the following special case of soft decoding where wi,yi
= 1 and wi,α = 0 for α ∈

F \ {yi} (1 ≤ i ≤ n). Note that this is exactly the list decoding problem with the received word
(y1, . . . , yn). Thus, list decoding is indeed a special case of soft decoding. Soft decoding has
practical application in setting where the channel is analog. In such a situation, the “quantizer”
might not be able to pinpoint a received symbol yi with 100% accuracy. Instead it can use the
weight wi,α to denote it confidence level that ith received symbol was α. Soft decoding (and its
special case list recovery, which we will study in the next lecture) also has application in designing
list decoding algorithm for concatenated codes.
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