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1 Recap

We recall from the last lecture that a folded Reed-Solomon code begins with a normal RS code,
which is a[n = q − 1, k]q-code with codewords of the form[f(1)], [f(γ)], [f(γ2)], . . . , [f(γn−1)]
These are then combined into groups ofm symbols which each become a new symbol, so that the
codeword becomes something of the form[f(1), f(γ), . . . , f(γm−1)], [f(γm), f(γm+1) . . . , f(γ2m−1)], . . . , [f(γn−

We assume for the moment thatm evenly dividesn, though this assumption will prove unneces-
sary.

Thus we have the new parametersK = k
m

andN = n
m

, so that the rate remains the same. We
end up with a FRS code FRSK,N,F,γ. We will present everything form = 2, but it proves to work
for anym.

2 List Decoding

In defining the list decoding problem, we will take as input(αi, yi, zi)|Ni=1 ∈ F
3 and a so-called

“agreement parameter”t ≥ 0. The output will be all degree≤ K polynomialsf(X) such that
the FRS codeword corresponding tof(X) agrees with the received word in at leastt places. The
algorithm we will use is as follows:

1. Step 1: Compute a non-zeroQ(X, Y, Z) of (1, K, R)-weighted degree at mostD such that
it hasr ≥ 0 roots atQ(αi, yi, zi) for some1 ≤ i ≤ N .

2. Step 2: Recoverf(X) from Q(X, Y, Z) such that it has the required properties.

At this point, we need a few definitions:

Definition 2.1. (1, k, k)-weighted degree of a monomial X iY jiZjl is i + kj + kjl. ATRI:Changed
the last constant from z in my notes to l to reduce confusion -N

Definition 2.2. Q(X, Y, Z) having r roots at (α, β1, β2) implies that Q(X +α, Y +β1, Z +β2 has
no monomial of degree less than r.

In Step 1, we need that the number of coefficients is greater than the number of constraints.
There areN

(

r+2

3

)

constraints, and|{(i, j1, j2)|i + kj1 + kj2 ≤ D}| ≥ D3

Gk2 coefficients.
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The range of(i, j1, j2) is a series of intervals[i, i + 1)× [j1, j1 + 1)× [j2, j2 + 1). The volume
of this cuboidC(i, j1, j2) is 1, since all its edges are of length 1. We defineN3(k) to be the volume
of the union of cuboids such thati + kj1 + kj2 ≤ D with i, j1, j2 ∈ Z

≥0.
We note that this volume is at least the volume of of the cuboid{f(i, j1, j2)|i + (j1 + j2)k ≤

D}, i, j1, j2 ∈ R
≥0, which can be shown (leaving the proof as an exercise) to be≥ D3

GR2 . The
former volume can be thought of as a union of squares, each over intervals[i, i + 1)× [j1, j1 + 1).

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.5  1  1.5  2  2.5  3

Y

X

Int
Real

Figure 1: Real vs. integer volumes

For example, see the plot above, where the area containing the reals summing to 6 is less than
that containing the integers summing to 7.

We chooseD to be⌈ 3
√

NR2r(r + 1)(r + 2)⌉+1 for m = 2. For generalm, D is⌈ m+1
√

NKmr(r + 1)(r + 2)⌉+
1.

At this point, we require a lemma.

Lemma 2.3. If tr > D, then if f(X) needs to be output then there exists a polynomial time
algorithm to extract such f(X)’s from Q(X, Y, Z).

Assuming the above lemma, we have thatt > 3

√

K2(i + 1

r
)(1 + 2

r
) + 2

r
.

Sincet >
3
√

NR2 + 1 by suitable choice ofr, we get1 − 3

√

K2

N2 + 1

N
.

This gives us that, since the number of errors isN−t, the fraction of errors is≤ 3

√

K2

N@ (1 + 1

r
)(1 + 2

r
)+

2

r
= 1 − (1 + δ)3

√

R2

N2 . By choosing a suitabler, with r = O(1

r
), we end up showing that the

bound on fraction of errors is1 − (1 + δ)3
√

4R3.
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We recall again thatN = n
2

and soR = K
N

=
k

2
n

2

= k
n
. (ATRI: This is off to the side in my

notes, ot sure where it goes -N)
For generalm, we get1 − m+1

√

(mR)m, as shown by Paravesh and Vardy in 2005.
Remarks:

1. This method is not useful forR ≥ 1.

2. ForR ≤ 1
16

, 1 − 3
√

4R2 > 1 −
√

R.

3. Choosingm appropriately, we can correct1−ε fraction of errors. We can getR = O
(

ε2

log 1

ε

)

,

recalling that at capacityR = Ω(ε2), and Reed-Solomon codes gave usR = Ω(ε2).
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Figure 2: The values in point 2 plotted against each other

GRAPH GOES HERE
To show Lemma 2.3, we need another lemma:

Lemma 2.4.There exists an irreducible polynomial E(X) of degree q−1 such that f(X)qmodE(X) ≡
f(γX) for any f of degree < q − 1.

We will show this second lemma in the next lecture.
Proof of Lemma 2.3: Let Q0(X, Y, Z) be such thatQ(X, Y, Z) = E(X)bQ0(X, Y, Z) for the
largest possible integerb. That is,E(X) doesn’t divideQ0 because not all coefficients are divisible
by it.
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We can considerQ0(X, Y, Z) = T0(X, Y, Z), thinking of the coefficients as being chosen from
Fq(X).

As an example of this sort of factorizatin, we can consider starting with something likeX2Y +
XY +Y 2Z and factor out the biggest polynomial overX, gettingY (X2+X)+Y 2Z. We know that,
sinceE(X) is irreducible,Fq[X]/E(X) ≡ Fqa−1. This means thatT (Y, Z) , T0(Y, Z)modE(X).
We note thatT (Y, Z) 6≡ 0 as E(X) doesn’t divideQ0(X, Y, Z). Also, Q(αi, yi, zi) = 0 ⇔
Q0(αi, yi, zi) = 0. Finally,R(X) = Q0(X, f(X), f(γX)) = g(X).

ConsiderT (f(X), f(γX)). If we computef(X) from this, thenf(X) ∈ Fqa−1 andf(γX) =

f(X)a mod E(X). We want allY ∈ Fqa−1 such thatT (Y, Y a) = 0 andR(Y ) , T (Y, Y a). We
will show later the reason for the former restriction onY .

We will additionally show that, iff(X) needs to be output, thenT (f(X), f(γX)) = 0 ≡
T (f(X), f(X)a) = 0.

Note that we need to find all roots ofR(Y ) overFqa−1. This can be done in polynomial time,
as shown by Berlekamp.
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