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In the last lecture, we saw the following ways of defining an [n, k, d]q linear code C:

• An k × n generator matrix G, so that C is the result of multiplying all vectors x of length n
with G, giving codewords C = {x ·G|x ∈ Fk

q}.

• An (n− k)× n parity check matrix H such that C = {x ∈ Fn
q |H · xT = 0}. Note that since

x is a row vector, we need to take the transpose so that multiplication is defined.

We forgot to explicitly define the following notion related to linear subspaces in the last lecture.

Definition 0.1 (Linear independence of vectors). We say that v1,v2, . . .vk are linearly indepen-
dent if for every 1 ≤ i ≤ k

vi 6= a1v1 + . . . + ai−1vi−1 + ai+1vi+1 + . . . + akvk,

for every k − 1-tuple (a1, a2, . . . , ai−1, ai+1, . . . , ak) ∈ Fk−1
q .

Note that the basis of a linear subspace must be linearly independent.
In today’s lecture, we will look at a couple more properties of linear codes and then define the

general family of (binary) Hamming codes.

1 Some More Properties of Linear Codes
We start with the following property, which we have seen for the special case of binary linear
codes.

Proposition 1.1. For a [n, k, d]q code C,

d = min
c∈C,
c 6=0

wt(c).

Proof. First, we show that d is no more than the minimum weight. We can see this by considering
∆(0, c′) where c′ is the non-zero codeword in C with minimum weight; its distance from 0 is
equal to its weight.

Now, to show that d is no less than the minimum weight, consider any c1 6= c2 ∈ C, and note
that c1 − c2 ∈ C (this is because −c2 = −1 · c2 ∈ C, where −1 is the additive inverse of 1 in
Fq and c1 − c2 = c1 + (−c2), which by the definition of linear codes is in C). Now note that the
weight of c1−c2 is ∆(c1, c2), since the non-zero symbols in c1−c2 occur exactly in the positions
where the two codewords differ.
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Next, we look at another property implied by the parity check matrix of a linear code.

Proposition 1.2. For any [n, k, d]q code C with parity check matrix H, d is the minimum number
of linearly dependent columns in H .

Proof. By Proposition 1.1, we need to show that the minimum weight of a non-zero codeword in
C is the minimum number of linearly dependent columns. Now note that, by the definition of the
parity check matrix, c ∈ C ⇒ H · cT = 0. Working through the matrix multiplication, this gives
us that

∑n
i=1 ciH

i, where Hi is the ith column of H. Note that we can skip multiplication for those
columns for which the corresponding bit ci is zero, so for this to be zero, those Hi with ci 6= 0
are linearly dependent. This means that d is at least the minimum number of linearly dependent
columns.

For the other direction, consider the minimum set of columns from H, Hi1 ,Hi2 , . . . ,Hit that
are linearly dependent. Now let c′iiH

i1 + . . . + c′itH
it = 0 and consider the vector c′ such that

c′j = 0 for j 6∈ {i1, . . . , it}. Note that c′ ∈ C and thus, d ≤ w(c′) = t (where recall t is the
minimum number of linearly independent columns in H).

2 Hamming Codes
For any r ≥ 2, there is a [2r − 1, 2r − r− 1, 3]2 Hamming code. We have seen this code for r = 3.

Consider the r × (2r − 1) matrix Hr over F2, where the ith column Hi
r, 1 ≤ i ≤ 2r, is the

binary representation of i (note that such a representation is a vector in {0, 1}r). For example, for
the case we have seen (r = 3),

H3 =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

Note that by its definition, the code that has Hr as its parity check matrix has block length 2r − 1
and dimension 2r − r − 1.

Definition 2.1. The [2r − 1, 2r − r − 1]2 Hamming code has parity check matrix Hr.

In other words, the general [2r−1, 2r−r−1]2 Hamming code is the code {c ∈ {0, 1}2r−1|Hr ·
cT = 0}.

Next we argue that the above Hamming code has distance 3 (we argued this earlier for r = 3).

Proposition 2.2. The Hamming code [2r − 1, 2r − r − 1, 3]2 has distance 3.

Proof. No two columns in Hr are linearly dependent. If they were, we would have Hi
r + Hj

r = 0,
but this is impossible since they differ in at least one bit (being binary representations of integers,
i 6= j). Thus, by Proposition 1.2, the distance is at least 3. It is at most 3, since (e.g.) H1

r + H2
r +

H3
r = 0.

Now note that under the Hamming bound for d = 3, k ≤ n− log2(n + 1), so for n = 2r − 1,
k ≤ 2r − r − 1. Hence, the Hamming code is a perfect code.
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