
Error Correcting Codes: Combinatorics, Algorithms and Applications (Spring 2009)

Lecture 13: Communication Complexity
February 11, 2009

Lecturer: Atri Rudra Scribe: Jesper Dybdahl Hede

In the last lecture we defined 2-party communication complexity:

f : {0, 1}n × {0, 1}n → {0, 1}

Communication Complexity CC(f) denotes the minimum number of bits that Alice and Bob
need to exchange to compute f(x, y) in the worst case.

The general protocol is simply having Alice send her entire bit string to Bob, letting Bob com-
pute f(x, y) and reply the result bit back to Alice, leading to the upper bound of CC(f) ≤ n+ 1.

In this lecture we will examine four functions and their communication complexity:

1. Parity equality: f1(x, y) = 1 iff
∑
i

xi 6=
∑
i

yi (over z2)

2. Weight equality: f2(x, y) = 1 iff wt(x) + wt(y) ≥ t

3. Set equality: f3(x, y) = 1 iff x = y

4. Set disjointness: f4(x, y) = 1 iff
∑
i

xiyi = 0

1 Communication Complexity
Let f : {0, 1}n×{0, 1}n → {0, 1} be a binary function. Further let Alice and Bob have x ∈ {0, 1}n
and y ∈ {0, 1}n respectively. Then CC(f) is the communication complexity.

1.1 ”Parity Equality”

f1(x, y) = 1 iff
∑
i

xi 6=
∑
i

yi (over z2)

Note that f1(x, y) = 1 if and only if the parity of x is different than the parity of y.
The communication between Alice and Bob can be illustrated as:

1

Alice
m1=h1(x)−→ Bob

(x)
m2=h2(y,m1)←− (y)
m3=h3(x,m2)−→

...
m2i+1=h2i+1(x,m2,m4,...,m2i)−→

We now show that:
CC(f1) ≤ 2

That is, we will present a communication protocol that computes f1 with two bits of communica-
tion. The protocol is simple: Alice computes the parity of her inputs and sends it to Bob. Then
Bob knows the value of f1(x, y) which he can send to Alice (as Bob can his own parity value and
check if it matches the one sent by Alice).
We also have the lower bound CC(f1) ≥ 1 because there must be a minimum of communication,
i.e. sending a true/false to the other party, to determine a non-constant function.

1.2 ”Weight Equality”
f2(x, y) = 1 iff wt(x) + wt(y) ≥ t
Note that f2(x, y) = 1 if and only if the Hamming weights for x and y sums to a value at least t.

Next, we consider the following natural protocols for f2:

→ Send wt(x) to Bob
Alice computes the weight of x and sends it to Bob. Since x contains n bits, Alice might
need to send O(log(n)) bits in the worst case.

→ Send wt(x) to Bob if wt(x) < t
else send t to Bob

If the weight is smaller than t, Alice sends the weight, but if the weight is larger than t Alice
sends t. The function only needs to tell if the sum of the weights is at least t, so sending t
even though the weight is larger will not change the functions resulting value. This protocol
sends a number at most t (and not at most n as before), so the amount of communication is
O(log(t)).

1.3 ”Set Equality”
f3(x, y) = 1 iff x = y
Let f3(x, y) = 1 if and only if two inputs are the same. Let us look at a typical exchange of
messages between Alice and Bob:

2

Alice m1−→ Bob
(x)

m2←− (y)
m3−→
...

mt←−

At the end of the protocol, Alice knows the value of f3(x, y). Let the transcript (m1, ...,mt) be
denoted τ(x, y).

We will prove a lower bound on CC(f3, where the main idea is to show that for any protocol
with low communication complexity, there exist (x, y) and (x, y′) such that τ(x, y) = τ(x, y′)
(where y 6= y′). Note that Alice will output the same answer for both (x, y) and (x, y′). This is
incorrect since f3(x, y) 6= f3(x, y

′).

Proposition 1. CC(f3) ≥ n

Proof. For the sake of contradiction, assume there exists a protocol that decides f3 and exchanges
at most n− 1 bits over all inputs.

J = {(x, x)|x ∈ {0, 1}n}

We claim that there exist x 6= y such that τ(x, x) = τ(y, y). Number of bits to represent a transcript
is at most n − 1 which means that there exist at most 2n−1 distinct transcripts. On the other hand
|J | = 2n. In other words, there are more distinct inputs in J than there are distinct transcripts, so
there must exist (x, x) 6= (y, y) ∈ J that lead to the same transcript under the assumed protocol.
This can be illustrated as follows:

Alice m1−→ Bob
(x)

m2←− (x)
m3−→
...

mt←−

Alice m1−→ Bob
(y)

m2←− (y)
m3−→
...

mt←−
↖ same protocol↗

We see that the protocol exchanges the same messages for (x, x) and (y, y). Now if we assume
that Alice holds the codeword x and Bob holds y, then we still get the same exchange of messages
as before:

Alice m1−→ Bob
(x)

m2←− (y)
m3−→
...

mt←−

3

In particular, the protocol accepts (x, y) yet f3(x, y) = 0. Thus, the protocol is incorrect, which
proves the desired result.

1.4 ”Set Disjointness”

f4(x, y) = 1 iff
∑
i

xiyi = 0

f4(x, y) = 0 if and only if x and y do not have 1s in the same position. Alternatively, if we think
of x and y as subsets of {1, ..., n}, f4(x, y) = 0 if and only if x and y are disjoint sets. We next
show that:

Proposition 2. CC(f4) ≥ n
2

Proof. We will reduce from the set equality function. As a notational convenience, define y to be
y with all its bits flipped.

We reduce an arbitrary input (x, y) for f3 to two inputs (x, y) and (x, y) for f4 with the follow-
ing properties:

1. If f3(x, y) = 1, then both f4(x, y) = f4(x, y) = 0,

2. If f3(x, y) = 0, then either f4(x, y) = 1 or f4(x, y) = 1.

1. is realized since f3(x, y) = 1 if and only if the sets x and y are elementwise equal. Therefore
flipping every element in one of the sets will result in two disjoint sets.

2. is realized since f3(x, y) = 0 implies that there exists a j such that xj 6= yj . Now if xj = 1,
then xj = yj = 1, and thus f4(x, y) = 1. Similarly, if xj = 0, then xj = yj = 1, and thus
f4(x, y) = 1.

Note that given the above, given a protocol for f4, one has a protocol for f3 (run on both (x, y)
and (x, y)). Now if this protocol uses < n

2
bits, then we get a protocol for f3 that uses < n bits.

This would, however, contradict the result we just proved CC(f3) ≥ n. The lower bound for
CC(f4) is thus a loose one.

To conclude, we state the following theorem without proof:

Theorem 1. CC(f4), CC(f3) ≥ n+ 1

4

	Communication Complexity
	"Parity Equality"
	"Weight Equality"
	"Set Equality"
	"Set Disjointness"

