Error Correcting Codes: Combinatorics, Algorithms and Applications (Spring 2009)

Lecture 24: BCH Codes

March 20, 2009

Lecturer: Atri Rudra

Scribe: Swapnoneel Roy

1 Introduction

In this lecture we had an introduction to a new family of codes known as BCH codes named after their discoverers, R.C Bose and D.K. Ray-Chaudhuri (1960), and independently by A. Hocquenghem (1959). A lower bound for the BCH code was established in the lecture. The lower bound brings the binary case of the BCH code closer to the Hamming Bound which is $k \le n - logn + O(n)$. Thus the BCH code *beats* the Gilbert-Varshamov bound which is $k \ge n - (2t)logn$.

2 BCH Codes

Definition 2.1 (BCH Codes). [1] For prime power q, integer m, and integer d, the BCH code $BCH_{q,m,d}$ is obtained as follows: Let $n = q^m$ and let \mathbb{F}_{q^m} be an extension of \mathbb{F}_q and let C' be the (extended) $[n, n - (d - 1), d]_{q^m}$ Reed-Solomon code obtained by evaluating polynomials of degree at most n-1 over \mathbb{F}_{q^m} at all the points of \mathbb{F}_{q^m} . Then the code $BCH_{q,m,d}$ is the \mathbb{F}_q -subfield subcode of C'. In other words, $BCH_{q,m,d} = C' \cap \mathbb{F}_q^n$.

If we have q = 2 then $BCH_{2,m,d} = C \cap \mathbb{F}_2^{2^n}$ where C is given as a Reed-solomon code $C = RS[n = 2^m, n - (d-1), d]_{\mathbb{F}_{2^m}}$.

The BCH code could be constructed in the following manner: Look at the Reed-Solomon code and only pick up the codewords that are in $\mathbb{F}_2^{2^n}$. Now we argue that the BCH code has dimension at least n - m(d - 1).

Conjecture 2.2. *Dimension of BCH code is at least* n - m(d - 1)*.*

Proof. [1] We recall that every function from \mathbb{F}_{2^m} to \mathbb{F}_2 is a polynomial of over \mathbb{F}_{2^m} of degree at most n - 1. Thus the space of polynomials from \mathbb{F}_{2^m} to \mathbb{F}_2 is a \mathbb{F}_2 -linear space of dimension exactly n. We wish to know what is the dimension of the subspace of polynomials of degree at most n - d. But now note that the restriction that a polynomial $f(x) = \sum_{i=0}^{n-1} f_i x^i$ has a degree at most n - d is equivalent to saying that the coefficients f_i must equal zero, for $i \in \{n - (d - 1), \dots, n - 1\}$. Each such condition is a single linear constraint over \mathbb{F}_{2^m} , but this translates into a block of m linear constraints over \mathbb{F}_2 . Since we have d - 1 such blocks of constraints, the restriction that the functions have a degree at most n - d place at most m(d - 1) linear constraints. Thus the resulting space

has dimension at least n - m(d - 1). Hence the code $BCH_{2,m,d}$ has dimension at least $2^m - m(d - 1)$.

The general idea of a BCH code is to identify its generating polynomial by the roots (instead of in terms of the coefficients). The code $BSC_{2,m,d}$ implies the evaluation of a "special" polynomial of degree $\leq n - d$ over \mathbb{F}_{2^m} .

The term "special" means if $P(x) \in \mathbb{F}_2[x]$ is a "special" polynomial iff $\forall \alpha \in \mathbb{F}_{2^m}$, $P(\alpha) \in \mathbb{F}_2$. This definition of "special" implies that the polynomials P(x) = 0 and P(x) = 1 are "special" polynomials.

We can easily see that $BSC_{2,m,d}$ is linear. Because if polynomials P(x) and Q(x) are "special", so is P(x) + Q(x).

3 Bounding the dimension of BCH Codes

We are now ready to prove a stronger bound on the dimension of BCH codes.

Lemma 3.1. The dimension of the code $BCH_{q,m,d}$ is at least $q^m - 1 - m \left\lceil \frac{(d-2)(q-1)}{q} \right\rceil$.

Proof. [1] The idea of the proof is to consider the space of all functions from \mathbb{F}_{q^m} to \mathbb{F}_q which forms an \mathbb{F}_q -vector space of dimension n. viewing these functions as polynomials from $\mathbb{F}_{q^m}[x]$, we then restrict them to have zero as the coefficients of x^i for $i \in \{n - (d - 1), \dots, n - 1\}$.

The condition that the coefficients of x^{n-1} is zero imposes one linear constraint and reduces the dimension of the space to n - 1. The remaining conditions, corresponding to coefficients of x^i for $i \in \{n - (d - 1), \dots, n - 2\}$, lead to at most m conditions each. However, we do not need to impose all such conditions. In particular, we can skip every qth condition (starting at n - 2 and going down) since these are exponents of the form l = (n - 1) - qj, where j is a positive integer. Now by the property of a polynomial over \mathbb{F}_{q^m} mapping \mathbb{F}_{q^m} to \mathbb{F}_q , we have l = q(n - 1 - j)(mod(n - 1)). Hence the coefficient of x^{\leq} equals zero is implied by the condition that the coefficient of x^{n-1-j} equals zero. Thus the constraints corresponding to the coefficients of x^i for $i \in \{n - (d - 1), \dots, n - 2\}$, lead to at most $m \left\lceil \frac{(d-2)(q-1)}{q} \right\rceil$ linear constraints. Thus the dimension of the space is at least $q^m - 1 - m \left\lceil \frac{(d-2)(q-1)}{q} \right\rceil$.

This leads to the following theorem.

Theorem 3.2. For prime power q, integers m and d, the $BCH_{q,m,d}$ is an $\left[n, n-1-m\left\lceil \frac{(d-2)(q-1)}{q} \right\rceil, d\right]_q$ code, for $n = q^m$.

In the case of q = 2 (binary codes) we have the following corollary:

Corollary 3.3. For every integer m and t, the code $BCH_{2,m,2t}$ is an $[n, n - 1 - (t - 1)\log n, 2t]$ -code, for $n = 2^m$.

The above k is very close to the Hamming bound for constant d and so is particularly nice.

References

[1] Madhu Sudan. Lecture on bch codes. *Algorithmic Introduction to Coding Theory*, September 2001.