Error Correcting Codes: Combinatorics, Algorithms and Applications (Spring 2009) Lecture 25: *l*-wise independent sources March 23, 2009

Lecturer: Atri Rudra

Scribe: Krishna Ramkumar

1 Introduction

In the last lecture, we introduced and discussed about BCH codes. In today's lecture, we digress a little bit and talk about the notion of l-wise independent sources (these are generally called k-wise independent sources, but for us k is already taken).

Definition 1.1 (*l*-wise independent random variables). $X_1, X_2, \ldots, X_n \in \{0, 1\}$ are *l*-wise independent (for $l \ge 1$) if $\forall \{i_1, \ldots, i_l\} \subseteq [n]$ and $(a_1, \ldots, a_l) \in \{0, 1\}^l$, the probability $\Pr[\wedge_{j=1}^l X_{i_j} = a_j]$ equals 2^{-l} where $(X_{i_1}, \ldots, X_{i_l}) \in \{0, 1\}^l$

2 *l*-wise independent sources

Definition 2.1 (*l*-wise independent sources). $S \subseteq \{0,1\}^n$ is an *l*-wise independent source if for a uniformly chosen random $(X_1, ..., X_n) \in S$, $X_1, ..., X_n$ are *l*-wise independent random variables. In other words, each $v \in \{0,1\}^l$ occurs $\frac{|S|}{2^l}$ times. Example of an *n*-wise independent source is $\{0,1\}^n$.

Proposition 2.2. An *n*-wise independent source is also an *l*-wise independent source. In other words, (l + 1) wise independence implies *l*-wise independence.

3 Application of *l*-wise independence

In this section, we illustrate an application of *l*-wise independence. We discuss the MAX3ESAT (or in general the MAX*l*ESAT) problem.

Definition 3.1 (MAX3(*l*)ESAT). We are given clauses C_1, \ldots, C_m such that each C_i where $1 \le i \le m$ has exactly 3(*l*) distinct literals. Example, $C_i = X_{i_1} \lor \overline{X_{i_2}} \lor X_{i_3}$. The goal is to find an assignment that satisfies as many clauses as possible. This problem is known to be NP-Hard.

Since the above problem is known to be NP-Hard we resort to approximate (in other words, the best possible) solutions to the same. This motivates the following definition

Definition 3.2 (α -approx algorithm). For any α where $0 \leq \alpha \leq 1$, an algorithm that always satisfies greater than or equal to α -fraction of the maximum number of satisfiable clauses is an α -approx algorithm for MAX3ESAT (It is to be noted that 1-approx is NP-Hard for any l greater than or equal to 2).

Question: So what is the largest α -approx that can be achieved?

A $\frac{7}{8}$ -approx algorithm for MAX3ESAT. In general, $(1 - 2^{-l})$ -approx algorithm for MAX*l*ESAT.

Observation: For each i, pick $X_i = 0$ with probability $\frac{1}{2}$ independently. For a fixed i (where $1 \le i \le m$), the probability that a clause is satisfied is given by

 $Pr[C_i \text{ is satisfied}] = \frac{7}{8}$ (for 3-wise independent random variables)

By linearity of expectation (where the expectation is over the choice of random variables), the expected number of satisfied clauses equals $\frac{7m}{8}$. This implies that there exists an assignment that satisfies greater than or equal to $\frac{7}{8}$ fraction of the clauses. Note that for a clause $C_i = X_{i_1} \vee \overline{X_{i_2}} \vee X_{i_3}$, the choices for $X_{i_1}, X_{i_2}, X_{i_3}$ need to be independent. For this, the solution is to pick a random assignment from an *l*-wise independent source.

In the next lecture, we will see that the dual of the $BCH_{2,logn,l+1}$ is an *l*-wise independent source. By the bounds on the dimension of these codes, this means that there exists an *l*-wise independent source of size $O(n^{\lfloor \frac{l}{2} \rfloor})$ (For example, O(n) size for 3-wise independence). Further, as these codes are linear codes, each codeword can be generated in time $O(n^2)$. This implies that we have an $1 - 2^{-l}$ approximation algorithm for MAX/ESAT that runs in time $O(n^{2+\lfloor \frac{l}{2} \rfloor})$.