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1 Counting and Probability
This lecture reviews elementary combinatorics and probability theory. We begin by first reviewing
elementary results in counting theory, including standard formulas for counting permutations and
combinations. Then, the axioms of probability and basic facts concerning probability distributions
are presented.

2 Counting
Counting theory tries to answer the question ”How many?” or ”How many orderings of n distinct
elements are there?” In this section, we review the elements of counting theory. A set of items that
we wish to count can sometimes be expressed as a union of disjoint sets or as a Cartesian product
of sets. The rule of sum says that the number of ways to choose an element from one of two
disjoint sets is the sum of the cardinalities of the sets. That is, if A and B are two finite sets with no
members in common, then |A∪B| = |A|+ |B|. The rule of product says that the number of ways
to choose an ordered pair is the number of ways to choose the first element times the number of
ways to choose the second element. That is, if A and B are two finite sets, then |A×B| = |A| · |B|.

A string over a finite set S is a sequence of elements of S. We sometimes call a string of length
k a k-string. A substring s′ of a string s is an ordered sequence of consecutive elements of s. A
k-substring of a string is a substring of length k. For example, 010 is a 3-substring of 01101001
(the 3-substring that begins in position 4), but 111 is not a substring of 01101001. A k-string over
a set S can be viewed as an element of the Cartesian product Sk of k-tuples; thus, there are |S|k
strings of length k. For example, the number of binary k-strings is 2k. Intuitively, to construct
a k-string over an n-set, we have n ways to pick the first element; for each of these choices, we
have n ways to pick the second element; and so forth k times. This construction leads to the k-fold
product n · n · · ·n = nk as the number of k-strings.

A permutation of a finite set S is an ordered sequence of all the elements of S, with each
element appearing exactly once. For example, if S = {a, b, c}, there are 6 permutations of S :

abc, acb, bac, bca, cab, cba.

There are n! permutations of a set of n elements, since the first element of the sequence can be
chosen in n ways, the second in n− 1 ways, the third in n− 2 ways, and so on.
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A k-permutation of S is an ordered sequence of k elements of S, with no element appearing
more than once in the sequence. Thus, an ordinary permutation is just an n-permutation of an
n-set. The twelve 2-permutations of the set {a, b, c, d} are

ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc,

where we have used the shorthand of denoting the 2-set {a, b} by ab, and on on. The number of
k-permutations of an n-set is

n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!
, (1)

since there are n ways of choosing the first element, n − 1 ways of choosing the second element,
and so on until k elements are selected, the las being a selection from n− k + 1 elements.

A k-combination of an n-set S is simply a k-subset of S. There are six 2-combinations of the
4-set {a, b, c, d}:

ab, ac, ad, bc, bd, cd.

We can construct a k-combination of an n-set by choosing k distinct elements from the n-set. The
number of k-combinations of an n-set can be expressed in terms of the number of k-permutations
of an n-set. For every k-combination, there are exactly k! permutations of its elements, each of
which is a distinct k-permutation of the n-set. Thus the number of k-combinations of an n-set is
the number of k-permutations divided by k!; from Equation (1), this quantity is

n!

k!(n− k)!
. (2)

For k = 0, this formula tells us that the number of ways to choose 0 elements from an n-set is 1
(not 0), since 0! = 1.

We use the notation
(

n
k

)
(read ”n choose k”) to denote the number of k-combinations of an

n-set. From Equation (2), we have (
n

k

)
=

n!

k!(n− k)!
. (3)

This formula is symmetric in k and n− k:(
n

k

)
=

(
n

n− k

)
. (4)

These two numbers are known as binomial coefficients, due to their appearance in the binomial
expansion:

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k. (5)
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A special case of the binomial expansion occurs when s = y = 1:

2n =
n∑

k=0

(
n

k

)
. (6)

This formula corresponds to counting the 2n binary n-strings by the number of 1’s they contain:
there are

(
n
k

)
binary n-strings containing exactly k 1’s, since there are

(
n
k

)
ways to choose k out of

the n positions in which to place the 1’s.
We sometimes need to bound the size of a binomial coefficient. For 1 ≤ k ≤ n, we have the

lower bound (
n

k

)
=

n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1
(7)

=

(
n

k

)(
n− 1

k − 1

)
· · ·
(

n− k + 1

1

)
(8)

≥
(n

k

)k

. (9)

Taking advantage of the inequality k! ≥ (k/e)k, we obtain the upper bounds(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1
(10)

≤ nk

k!
(11)

≤
(en

k

)k

. (12)

For all 0 ≤ k ≤ n, we can use induction to prove the bound(
n

k

)
≤ nn

kk(n− k)n−k
, (13)

where for convenience we assume that 00 = 1. For k = λn, where 0 ≤ λ ≤ 1, this bound can be
rewritten as (

n

λn

)
≤ nn

(λn)λn((1− λ)n)(1−λ)n
(14)

=

((
1

λ

)λ(
1

1− λ

)1−λ
)n

(15)

= 2nH(λ), (16)

where
H(λ) = −λ lg λ− (1− λ) lg (1− λ) (17)

is the (binary) entropy function and where, for convenience, we assume that 0 · lg(0) = 0, so that
H(0) = H(1) = 0.
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3 Probability
This section reviews basic probability theory. We define probability in terms of a sample space S,
which is a set whose elements are called elementary events. Each elementary event can be viewed
as a possible outcome of an experiment. For the experiment of flipping two distinguishable coins,
we can view the sample space as consisting of the set of all possible 2-strings over {H, T}:

S = {HH,HT, TH, TT}.

An event is a subset1 of the sample space S. For example, in the experiment of flipping two coins,
the event of obtaining one head and one tail is {HT, TH}. The event S is called the certain event,
and the event ∅ is called the null event. We say that two events A and B are mutually exclusive
if A ∩ B = ∅. We sometimes treat an elementary event s ∈ S as the event {s}. By definition, all
elementary events are mutually exclusive.

A probability distribution Pr [·] on a sample space S is a mapping from events of S to real
numbers such that the following probability axioms are satisfied:

1. Pr [A] ≥ 0 for any event A.

2. Pr [S] = 1.

3. Pr [A ∪B] = Pr [A] + Pr [B] for any two mutually exclusive events A and B. More gen-
erally, for any (finite or countably infinite) sequence of events A1, A2, . . . that are pairwise
mutually exclusive,

Pr

[⋃
i

Ai

]
=
∑

i

Pr [Ai] .

We call Pr [A] probability of the event A. We note here that axiom 2 is a normalization
requirement: there is really nothing fundamental about choosing 1 as the probability of the
certain event, except that it is natural and convenient. Several results follow immediately
from these axioms and basic set theory. The null event ∅ has probability Pr [∅] = 0. If
A ⊆ B, then Pr [A] ≤ Pr [B]. Using A to denote the event S − A (the complement of A),
we have Pr

[
A
]

= 1− Pr [A]. For any two events A and B,

Pr [A ∪B] = Pr [A] + Pr [B]− Pr [A ∩B] (18)
≤ Pr [A] + Pr [B] . (19)

The generalization of Equation (18) is also known as the union bound and it is written as

Pr

[
n⋃

i=1

Ai

]
≤

n∑
i=1

Pr [Ai] .

1For a general probability distribution, there may be some subsets of the sample space S that are not considered to
be events. This situation usually arises when the sample space is uncountably infinite. The main requirement is that
the set of events of a sample space be closed under the operations of taking the complement of an event, forming the
union of a finite or countable number of events, and taking the intersection of a finite or countable number of events.
Most of the probability distributions are over finite or countable sample spaces, and in general, all subsets of a sample
space are considered to be events. With the notable exception of the continuous probability distribution.
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4. Markov’s inequality:

Theorem 3.1. For any nonnegative random variable X and any t > 0,

Pr [X ≥ t] ≤ E [X]

t
.

Proof.

E [X] =

∫ ∞

0

xfX(x)dx ≥
∫ ∞

t

xfX(x)dx ≥ t

∫ ∞

t

fX(x)dx.

5. Suppose a random variable X takes values X = i, where i = 0, 1, 2, . . . with probabilities

Pr [X = i] = PX(i).

Define

u(n− k) =

{
1 n ≥ k,

0 otherwise.

It follows, that

Pr [X ≥ k] =
∞∑

n=k

PX(n)

=
∞∑

n=0

PX(n)u(n− k)

≤
∞∑

n=0

PX(n)et(n−k) for t ≥ 0.

The last line follows from the fact that

et(n−k) ≥ u(n− k) for t ≥ 0.

Next, let θX(t) = PX(n)etn and note that
∞∑

n=0

PX(n)et(n−k) = e−tkPX(n)etn

= e−tkθX(t).

Hence, we have established the important result

Pr [X ≥ k] ≤ e−tkθX(t).

The Chernoff bound is determined by minimizing e−tkθX(t):

Pr [X ≥ k] ≤ min
t≥0

e−tkθX(t).
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Going back to the coin-flipping example, suppose that each of the four elementary events has
probability 1/4. Then the probability of getting at least one head is

Pr [HH,HT, TH] = Pr [HH] + Pr [HT ] + Pr [TH] =
3

4
.

Alternatively, since the probability of getting strictly less than one head is Pr [TT ] = 1/4, the
probability of getting at least one head is 1 − 1/4 = 3/4. A probability distribution is discrete if
it is defined over a finite or countably infinite sample space. Let S be the sample space. Then for
any event A,

Pr [A] =
∑
s∈A

Pr [s] ,

since elementary events, specifically those in A, are mutually exclusive. If S is finite and every
elementary event s ∈ S has probability

Pr [s] =
1

|S|
,

then we have the uniform probability distribution on S. In such case the experiment is often
described as ”picking an element of S at random.” As an example, consider the process of flipping a
fair coin, one for which the probability of obtaining head is the same as the probability of obtaining
a tail, that is, 1/2. If we flip the coin n times, we have the uniform probability distribution defined
on the sample space S = {H, T}n, a set of size 2n. Each elementary event in S can be represented
as a string of length n over {H, T}, and each occurs with probability 1/2n. The event

A = {exactly k heads and exactly n− k tails occur}

is a subset of S of size |A| =
(

n
k

)
, since there are

(
n
k

)
strings of length n over {H, T} that contain

exactly k H’s. The probability of event A is thus Pr [A] =
(

n
k

)
/2n.

Sometimes we have some prior partial knowledge about the outcome of an experiment. For
example, suppose that a friend has flipped two fair coins and has told you that at least one of the
coins showed a head. what is the probability that both coins are heads? The information given
eliminates the possibility of two tails. the three remaining elementary events are equally likely, so
we infer that each occurs with probability 1/3. Since only one of these elementary events shows
two heads, the answer to our question is 1/3.

Conditional probability formalizes the notion of having prior partial knowledge of the outcome
of an experiment. The conditional probability of an event A given that another event B occurs is
defined to be

Pr [A|B] =
Pr [A ∩B]

Pr [B]
(20)

whenever Pr [B] 6= 0. We read ”Pr [A|B]” as ”the probability of A given B.” Intuitively, since we
are given that event B occurs, the event that A also occurs is A ∩ B. That is, A ∩ B is the set of
outcomes in which both A and B occur. Since the outcome is one of the elementary events in B,
we normalize the probabilities of all the elementary events in B by dividing them by Pr [B], so that

6



they sum to 1. The conditional probability of A given B is, therefore, the ratio of the probability
of event A ∩ B to the probability of event B. In the example above, A is the event that both coins
are heads, and B is the event that at least one coin is a head. Thus

Pr [A|B] = (1/4)/(3/4) = 1/3.

Two events are ”independent” if

Pr [A ∩B] = Pr [A] Pr [B] ,

which is equivalent, if Pr [B] 6= 0, to the condition

Pr [A|B] = Pr [A] .

For example, suppose that two fair coins are flipped and that the outcomes are independent. Then
the probability of two heads is (1/2)(1/2) = 1/4. Now suppose that one event is that the first
coin comes up heads and the other event is that the coins come up differently. Each of these events
occurs with probability 1/2, and the probability that both events occur is 1/4; thus, according
to the definition of independence, the events are independent–even though one might think that
both events depend on the first coin. Finally, suppose that the coins are welded together so that
they both fall heads or both fall tails and that the two possibilities are equally likely. The the
probability that each coin comes up heads is 1/2, but the probability that they both come up heads
is 1/2 6= (1/2)(1/2). Consequently, the event that one comes up heads and the event that the other
comes up heads are not independent.

A collection A1, A2, . . . , An of events is said to be pairwise independent if

Pr [Ai ∩ Aj] = Pr [Ai] Pr [Aj]

for all 1 ≤ i < j ≤ n. We say that they are (mutually) independent if every k-subset Ai1 , Ai2 , . . . , Ain

of the collection, where 2 ≤ k ≤ n and 1 ≤ i1 < i2 < · · · < ik ≤ n, satisfies

Pr [Ai1 ∩ Ai2 ∩ · · · ∩ Aik ] = Pr [Aik ] Pr [Ai2 ] · · ·Pr [Aik ] .

For example, suppose we flip two fair coins. Let A1 be the event that the first coin is heads, let A2

be the event that the second coin is heads, and let A3 be the event that the two coins are different.
We have

Pr [A1] = 1/2,

P r [A2] = 1/2,

P r [A3] = 1/2,

P r [A1 ∩ A2] = 1/4,

P r [A1 ∩ A3] = 1/4,

P r [A2 ∩ A3] = 1/4,

P r [A1 ∩ A2 ∩ A3] = 0.
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Since for 1 ≤ i < j ≤ 3, we have Pr [Ai ∩ Aj] = Pr [Ai] Pr [Aj] = 1/4, the events A1, A2,
and A3 are pairwise independent. The events are not mutually independent, however, because
Pr [A1 ∩ A2 ∩ A3] = 0 and Pr [A1] Pr [A2] Pr [A3] = 1/8 6= 0. From the definition of condi-
tional probability (20), it follows that for two events A and B, each with nonzero probability,

Pr [A ∩B] = Pr [B] Pr [A|B] (21)
= Pr [A] Pr [B|A] . (22)

Solving for Pr [A|B], we obtain

Pr [A|B] =
Pr [A] Pr [B|A]

Pr [B]
, (23)

which is known as Bayes’s theorem. The denominator Pr [B] is a normalizing constant that we
can express as follows. Since B = (B∩A)∪(B∩A ) and B∩A and B∩A are mutually exclusive
events,

Pr [B] = Pr [B ∩ A] + Pr
[
B ∩ A

]
= Pr [A] Pr [B|A] + Pr

[
A
]
Pr
[
B| A

]
.

Substituting into Equation (23), we obtain an equivalent form of Bayes’s theorem:

Pr [A|B] =
Pr [A] Pr [B|A]

Pr [A] Pr [B|A] + Pr
[

A
]
Pr
[
B| A

] .
Bayes’s theorem can simplify the computing of conditional probabilities. For example, suppose
that we have a fair coin and a biased coin that always comes up heads. We run an experiment
consisting of three independent events: one of the two coins is chosen at random, the coin is
flipped once, and then it is flipped again. Suppose that the chosen coin comes up heads both times.
What is the probability that is is biased? We solve this problem using Bayes’s theorem. Let A be
the event that the biased coin is chosen, and let B be the event that the coin comes up heads both
times. We wish to determine Pr [A|B]. We have Pr [A] = 1/2, Pr [B|A] = 1, Pr

[
A
]

= 1/2,
and Pr

[
B|A

]
= 1/4; hence,

Pr [A|B] =
(1/2) · 1

(1/2) · 1 + (1/2) · (1/4)

= 4/5.

4 Discrete random variables
A (discrete) random variable X is a function from a finite or countably infinite sample space S
to the real numbers. It associates a real number with each possible outcome of an experiment,
which allows us to work with the probability distribution induced on the resulting set of numbers.
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Random variables can also be defined for uncountably infinite sample spaces. For our purposes,
we shall assume that random variables are discrete.

For a random variable X and a real number x, we define the event X = x to be {s ∈ S :
X(s) = x}; thus,

Pr [X = x] =
∑

{s∈S:X(s)=x}

Pr [s] .

The function
f(x) = Pr [X = x]

is the probability density function of the random variable X . From the probability axioms,
Pr [X = x] ≥ 0 and

∑
x
Pr [X = x] = 1. As an example, consider the experiment of rolling a

pair of ordinary 6-sided dice. There are 36 possible elementary events in the sample space. We
assume that the probability distribution is uniform, so that each elementary event s ∈ S is equally
likely: Pr [s] = 1/36. Define the random variable X to be the maximum of the two values showing
on the dice. We have Pr [X = 3] = 5/36, since X assigns a value of 3 to 5 of the 36 possible
elementary events, namely (1, 3), (2, 3), (3, 3), (3, 2), and (3, 1). It is common for several random
variables to be defined on the same sample space. If X and Y are random variables, the function

f(x, y) = Pr [X = x and Y = y]

is the joint probability density function of X and Y . For a fixed value y,

Pr [Y = y] =
∑

x

Pr [X = x and Y = y] ,

and similarly, for a fixed value x,

Pr [X = x] =
∑

y

Pr [X = x and Y = y] .

Using the definition (20) of conditional probability, we have

Pr [X = x|Y = y] =
Pr [X = x and Y = y]

Pr [Y = y]
.

We define two random variables X and Y to be independent if for all x and y, the events X = x
and Y = y are independent or, equivalently, if for all x and y, we have Pr [X = x and Y = y] =
Pr [X = x] Pr [Y = y].

Given a set of random variables defined over the same sample space, one can define new ran-
dom variables as sums, products, or other functions of the original variables. The simplest and
most useful summary of the distribution of a random variable is the ”average” of the values it takes
on. The expected value (or, synonymously, expectation or mean) of a discrete random variable X
is

E[x] =
∑

x

xPr [X = x] , (24)
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which is well defined if the sum is finite or converges absolutely. Sometimes the expectation of X
is denoted by µX or, when the random variable is apparent from context, simply by µ.

Consider a game in which you flip two fair coins. You earn $3 for each head but lose $2 for
each tail. The expected value of the random variable X representing your earnings is

E [X] = 6 · Pr [2H] + 1 · Pr [1H, 1T ]− 4 · Pr [2T ]

= 6(1/4) + 1(1/2)− 4(1/4)

= 1.

The expectation of the sum of two random variables is the sum of their expectations, that is,

E [X + Y ] = E[X] + E[Y ], (25)

whenever E[X] and E[Y ] are defined. This property extends to finite and absolutely convergent
summations of expectations, and it is called linearity of expectation:

E

[
n∑

i=1

Xi

]
= E [X1] + E [X2] + · · ·+ E [Xn] .

If X is any random variable, any function g(X) defines a new random variable g(X). If the
expectation of g(X) is defined, then

E[g(x)] =
∑

x

g(x)Pr [X = x] .

Letting g(x) = ax, we have for any constant a,

E[aX] = aE[X]. (26)

Consequently, expectations are linear: for any two random variables X and Y and any constant a,

E[aX + Y ] = aE[X] + E[Y ]. (27)

When two random variables X and Y are independent and each has a defined expectation,

E[XY ] =
∑

x

∑
y

xyPr [X = x and Y = y]

=
∑

x

∑
y

xyPr [X = x] Pr [Y = y]

=

(∑
x

xPr [X = x]

)(∑
y

yPr [Y = y]

)
= E[X]E[Y ].
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In general, when n random variables X1, X2, . . . , Xn are mutually independent,

E[X1X2 · · ·Xn] = E[X1]E[X2] · · ·E[Xn] (28)

When a random variable X takes on values from the natural numbers N = {0, 1, 2, . . .}, there is a
nice formula for its expectation:

E[X] =
∞∑
i=0

iPr [X = i] (29)

=
∞∑
i=0

i (Pr [X ≥ i]− Pr [X ≥ i + 1]) (30)

=
∞∑
i=0

Pr [X ≥ i] , (31)

since each term Pr [X ≥ i] is added in i times and subtracted out i− 1 times (except Pr [X ≥ 0],
which is added in 0 times and not subtracted out at all). The variance of a random variable X with
mean E[X] is

V ar[X] = E
[
(X − E[X])2

]
(32)

= E
[
X2 − 2XE[X] + E2[X]

]
(33)

= E
[
X2
]
− 2E[XE[X]] + E2[X] (34)

= E
[
X2
]
− E2[X]. (35)

The justification for the equalities E [E2[X]] = E2[X] and E[XE[X]] = E2[X] is that E[X] is
not a random variable but simply a real number, which means that Equation (26) applies (with
a = E[X]). Equation (32) can be rewritten to obtain an expression for the expectation of the
square of a random variable:

E
[
X2
]

= V ar[X] + E2[X]. (36)

The variance of a random variable X and the variance of aX are related:

V ar[aX] = a2V ar[X].

When X and Y are independent random variables,

V ar[X + Y ] = V ar[X] + V ar[Y ].

In general, if n random variables X1, X2, . . . , Xn are pairwise independent, then

V ar

[
n∑

i=1

Xi

]
=

n∑
i=1

V ar[Xi]. (37)

The standard deviation of a random variable X is the positive square root of the variance of X .
The standard deviation of a random variable X is sometimes denoted σX or simply σ when the
random variable X is understood from context. With this notation, the variance of X is denoted
σ2.
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5 The geometric and binomial distributions
A coin flip is an instance of a Bernoulli trial, which is defined as an experiment with only two
possible outcomes: success, which occurs with probability p, and failure, which occurs with prob-
ability q = 1 − p. When we speak of Bernoulli trials collectively, we mean that the trials are
mutually independent and, unless we specifically say otherwise, that each has the same probability
p for success. Two important distributions arise from Bernoulli trials: the geometric distribution
and the binomial distribution.

Suppose we have a sequence of Bernoulli trials, each with a probability p of success and a
probability q = 1 − p of failure. How many trials occur before we obtain a success? Let the
random variable X be the number of trials needed to obtain a success. Then X has values in the
range {1, 2, . . .}, and for k ≥ 1,

Pr [X = k] = qk−1p, (38)

since we have k − 1 failures before the one success. A probability distribution satisfying Equa-
tion (38) is said to be a geometric distribution.

Assuming p < 1, the expectation of a geometric distribution can be calculated using

E[X] =
∞∑

k=1

kqk−1p (39)

=
p

q

∞∑
k=0

kqk (40)

=
p

q
· q

(1− q)2
(41)

=
1

p
. (42)

Thus, on average, it takes 1/p trials before we obtain a success, an intuitive result. The variance,
which can be calculated similarly, is

V ar[X] = q/p2. (43)

As an example, suppose we repeatedly roll two dice until we obtain either a seven or an eleven. Of
the 36 possible outcomes, 6 yield a seven and 2 yield an eleven. Thus, the probability of success is
p = 8/36 = 2/9, and we must roll 1/p = 9/2 = 4.5 times on average to obtain a seven or eleven.
How many successes occur during n Bernoulli trials, where a success occurs with probability p and
a failure with probability q = 1− p? Define the random variable X to be the number of successes
in n trials. Then X has values in the range {0, 1, . . . , n}, and for k = 0, . . . , n,

Pr [X = k] =

(
n

k

)
pkqn−k, (44)

since there are
(

n
k

)
ways to pick which k of the n trials are successes, and the probability that

each occurs is pkqn−k. A probability distribution satisfying Equation (44) is said to be a binomial
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distribution. For convenience, we define the family of binomial distributions using the notation

b(k; n, p) =

(
n

k

)
pk(1− p)n−k. (45)

The name ”binomial” comes from the fact that Equation (45) is the kth term of the expansion of
(p + q)n. Consequently, since p + q = 1,

n∑
k=0

b(k; n, p) = 1, (46)

as is required by axiom 2 of the probability axioms. We can compute the expectation of a random
variable having a binomial distribution from Equation (46). Let X be a random variable that
follows the binomial distribution b(k; n, p), and let q = 1− p. By the definition of expectation, we
have

E[X] =
n∑

k=0

kb(k; n, p) (47)

=
n∑

k=0

k

(
n

k

)
pkqn−k (48)

= np
n∑

k=0

(
n− 1

k − 1

)
pk−1qn−k (49)

= np

n−1∑
k=0

(
n− 1

k

)
pkq(n−1)−k (50)

= np
n−1∑
k=0

b(k; n− 1, p) (51)

= np. (52)

By using the linearity of expectation, we obtain the same result with substantially less algebra.
Let Xi be the random variable describing the number of successes in the ith trial. Then E[Xi] =
p · 1 + q · 0 = p, and by linearity of expectation Equation (27), the expected number of successes
for n trials is

E[X] = E

[
n∑
i

Xi

]

=
n∑

i=1

E[Xi]

=
n∑

i=1

p

= np.
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The same approach can be used to calculate the variance of the distribution. Using Equation (32),
we have V ar[Xi] = E [X2

i ]−E2[Xi]. Since Xi only takes on the values 0 and 1, we have E [X2
i ] =

E[Xi] = p, and hence
V ar[Xi] = p− q2 = pq. (53)

To compute the variance of X , we take advantage of the independence of the n trials; thus, by
Equation (53),

V ar[X] = V ar

[
n∑

i=1

Xi

]
(54)

=
n∑

i=1

V ar[Xi] (55)

=
n∑

i=1

pq (56)

= npq. (57)

The binomial distribution b(k; n, p) increases as k runs from 0 to n until it reaches the mean np,
and then it decreases. We can prove that the distribution always behaves in this manner by looking
at the ratio of successive terms:

b(k; n, p)

b(k − 1; n, p)
=

(
n
k

)
pkqn−k(

n
k−1

)
pk−1qn−k+1

(58)

=
n!(k − 1)!(n− k + 1)!p

k!(n− k)!n!q
(59)

=
(n− k + 1)p

kq
(60)

= 1 +
(n + 1)p− k

kq
. (61)

This ratio is greater than 1 precisely when (n+1)p−k is positive. Consequently, b(k; n, p) > b(k−
1; n, p) for k < (n+1)p (the distribution increases), and b(k; n, p) < b(k−1; n, p) for k > (n+1)p
(the distribution decreases). If k = (n + 1)p is an integer, then b(k; n, p) = b(k − 1; n, p), so the
distribution has two maxima: at k = (n + 1)p and at k − 1 = (n + 1)p− 1 = np− q. Otherwise,
it attains a maximum at the unique integer k that lies in the range np − q < k < (n + 1)p. The
following lemma provides an upper bound on the binomial distribution.

Lemma 5.1. Let n ≥ 0, let 0 < p < 1, let q = 1− p, and let 0 ≤ k ≤ n. Then

b(k; n, p) ≤
(np

k

)k
(

nq

n− k

)n−k

.

14



Proof. Using Equation (13), we have

b(k; n, p) =

(
n

k

)
pkqn−k

≤
(n

k

)( n

n− k

)n−k

pkqn−k

=
(np

k

)k
(

nq

n− k

)n−k

.

6 Introduction to the Probabilistic Method
The goal of the probabilistic method is to prove that there exists a code C with property P . There-
fore define D over all possible codes Ω and prove that

Pr
C∈P

[C has property P ] > 0.

The typical approach is to define P1, . . . , Pm such that P = P1 ∧ P2 ∧ P3 . . . ∧ Pm and show that:

Pr [C doesn’t have property P ] <
1

m
.

7 Summary of Important Results
1. Linearity of Expectation:

E

[
n∑

i=1

Xi

]
= E [X1] + E [X2] + · · ·+ E [Xn] . (62)

2. Union Bound:

Pr

[
n⋃

i=1

Ai

]
≤

n∑
i=1

Pr [Ai] . (63)

3. Markov’s Inequality:

Pr [X ≥ t] ≤ E [X]

t
. (64)

4. Chernoff Bound:
Pr [X ≥ k] ≤ min

t≥0
e−tkθX(t). (65)
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