
Error Correcting Codes: Combinatorics, Algorithms and Applications (Spring 2009)

Lecture 5: Introduction to Asymptotic Analysis and Finite Fields
January 23, 2009

Lecturer: Atri Rudra Scribe: Swapnoneel Roy

1 Asymptotic notation

In this course, we will use asymptotic notations frequently. Typically, these notations will
be used to bound the running time of an algorithm, which is defined in terms of a function
whose domain is the set of natural numbers N = {0, 1, 2, ...}. Please refer to [1] for a more
detail presentation of the subsequent definitions.

1.1 O-notation

We use O-notation as the asymptotic equivalent of “≤”. For a given function g(n), we
denote by O(g(n)) (pronounced “big-oh of g of n” or sometimes just “oh of g of n”) the set
of all functions f(n), such that there exist positive constants c and n0 such that 0 ≤ f(n) ≤
cg(n) for all n ≥ n0.

1.2 Ω-notation

Just as O-notation provides an asymptotic upper bound on a function, Ω-notation pro-
vides an asymptotic lower bound. In other words, Ω-notation is the asymptotic equiva-
lent of “≥”. For a given function g(n), we denote by Ω(g(n)) (pronounced “big omega of
g of n” or sometimes just “omega of g of n”) the set of all functions f(n), such that there
exist positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0.

1.3 o-notation

The asymptotic upper bound provided by O-notation may or may not be “tight”. The
bound 2n2 ≤ O(n2) 1 is asymptotically tight, but the bound 2n ≤ O(n2) is not. We use o
notation to denote an upper bound that is not asymptotically tight. We formally define
o(g(n)) (“little-oh of g of n”) as the set of all functions f(n) such that for every positive
constant c > 0, there exists a constant n0 > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ n0.
For example, 2n ≤ o(n2), but 2n2 6≤ o(n2). The definitions of O-notation and o-notation
are similar. The main difference is that in f(n) ∈ O(g(n)), the bound 0 ≤ f(n) ≤ cg(n)

1Technically this should be stated as 2n2 ∈ O(n2) but we will henceforth overload the notation to say
2n2 ≤ O(n2)

1

holds for some constant c > 0, but in f(n) = o(g(n)), the bound 0 ≤ f(n) < cg(n) holds
for all constants c > 0. Intuitively, in the o-notation, the function f(n) becomes insignifi-

cant relative to g(n) as n approaches infinity; that is, limn→∞

f(n)
g(n)

= 0. Some authors use

this limit as a definition of the o-notation; this definition also restricts the functions to be
asymptotically nonnegative.

1.4 ω-notation

By analogy, ω-notation is to Ω-notation as o-notation is to O-notation. We use ω-notation
to denote a lower bound that is not asymptotically tight. One way to define it is by f(n)
= ω(g(n)) if and only if g(n) = o(f(n)). Formally, we define ω(g(n)) (”little-omega of g of
n”) as the set of all functions f(n) such that for every positive constant c > 0, there exists
a constant n0 > 0 such that 0 = cg(n) < f(n) for all n ≥ n0.
For example, n2/2 ≥ ω(n), but n2/2 6≥ ω(n2). The relation f(n) ∈ ω(g(n)) implies that

limn→∞

f(n)
g(n)

= ∞. That is, f(n) becomes arbitrarily large relative to g(n) as n approaches

infinity.

2 Asymptotics of error-correcting codes

To correct t bits of error, we have seen that the distance of the code C should be at least
2t + 1. To achieve good error correction capabilities of codes, we would like to maximize
the distance of the code. However, to have a meaningful discussion about codes, we also
need to keep track of the dimension, block length, and alphabet size. Definition 2.1 gives
a compact way to represent the parameters of a code.

Definition 2.1 (q-ary code). An (n, k, d)q is a q-ary code where

• q is the alphabet size: q = |Σ|;

• n is the block length: C ⊆ Σn;

• k is the dimension or message length: |C| = |Σ|k;

• d is the distance of the code C: d = ∆(C).

Hence n − k bits are redundant in code C. We need to minimize the redundancy, hence
k needs to be maximized. The rate of a code R(C) = k

n
. Hence the goal translates to

maximizing the rate R(C).
Sometimes we will normalize the distance of a code to its block length, as we do with
rate. To do so, we define the relative distance of a code C.

Definition 2.2. The relative distance denoted δ(C), is the ratio of distance of code C to its block

length. δ(C) = d(C)
n

.

2

We want to study R(C) vs δ(C) as n → ∞. But we cannot do this for a fixed code,
since its block length n is fixed. Hence we need a family of codes to do this.

Definition 2.3 (Family of q-ary codes). A family of q-ary codes C is just an infinite collection
of codes {Ci}

∞

i=1 where each Ci is an (ni, ki, di)q code (typically ni+1 > ni). We further define
R(C) = limi→∞

ki

ni

and δ(C) = limi→∞

di

ni

.

From now on, when we say a code, we would really mean a family of codes. As an
example, the question if there is a code with positive R and δ is really the question that is
there an infinite family [ni, ki, di] q-ary codes of increasing block length ni where ki

ni

≥ R

and di

ni

≥ δ for some R, δ > 0? The rate versus distance in the context of a family of codes
is better studied as the tradeoff between R and δ.From now on, this is the form we will
study the error correction versus redundancy question.
The case of R(C) ≥ Ω(1), and δ(C) ≥ Ω(1) is an interesting special case of the general R
vs δ question. We call a code having this property an asymptotically good code.

Definition 2.4 (Asymptotically good code). A family C is called asymptotically good if R(C),
δ(C) ≥ Ω(1).

3 Fields

Informally, a field is a set F on which two binary operations, called addition and multipli-
cation are defined and which contains two distinguished elements 0 and 1 with 0 6= 1. The
results of the operations addition, subtraction, multiplication, and division performed on
the elements of F gives results contained in F. The elements 0 and 1 are called the additive
and multiplicative identities respectively of the field F.

Formally a field is defined as follows:

Definition 3.1 (Field). A field F is the 5-tuple (S, +, ×, 0, 1) with the following properties:

• Associativity: For all a, b, c ∈ S, (a + b) + c = a + (b + c) and (a×b)×c = a×(b×c).

• Commutativity: For all a, b ∈ S, a+b = b+a and a×b = b×a.

• Identities: For all a ∈ S, a+0 = a, and a×1 = a.

• Inverses: For all a ∈ S, ∃ −a ∈ S such that a+(−a) = 0 and for all b ∈ S \ {0}, ∃ b−1 ∈
S \ {0} such that b×b−1 = 1.

The set of real numbers R is a field with the operations being normal addition and multi-
plication. 0 and 1 are the additive and multiplicative identities respectively. The additive
inverse of an element is its negative, while the multiplicative inverse is its reciprocal.
However, set of integers Z is not a field since the division of two integers could result in
a real number not in Z.

3

3.1 Finite Fields

Finite fields are fields that contain only finitely many elements. As an example consider
the field Zp which is a set of integers modulo the prime integer p i.e. the elements are
{0, 1, · · · , p − 1} . Addition here is defined as + modp and multiplication as × modp.

The finite field Zp has zero element 0, and identity 1. Computing with elements of Zp

is ordinary arithmetic of integers with reduction modulo p. It can be verified that Zp is
indeed a field.

Definition 3.2. A finite field of size q is denoted by Fq.

A simple but important example is the finite field F2 = { {0, 1}, ⊕, ∧, 0, 1 }, where ⊕, and
∧ are the exclusive-or and the and operations respectively. In fact, ⊕, and ∧ are same as +
mod2 and × mod2 respectively for {0, 1}.
The next two theorems state two important properties of the finite field Fq. The first
theorem states the existance of Fq while the second one states its uniqueness. For the proofs
and more details on these, the reader is asked to refer [2].

Theorem 3.3. For all finite fields Fq, q = ps for some prime p and integer s ≥ 1.

The prime p is called the characteristic of Fq.

Theorem 3.4. There is only one finite field Fq for any prime power q.

Theorem 3.4 actually implies that any two representation of Fq for the same q are isomor-
phic. It provides a justification for speaking of the finite field with q elements, or of the
finite field of order q. Next we study polynomials which will in turn define a canonical
representation of Fq for any prime power q.

3.2 Polynomials

In elementary algebra one regards a polynomial as an expression of the form a0 + a1X +
· · · + anX

n. The a0’s are called coefficients and are usually real or complex numbers; X
is viewed as a variable: that is, substituting an arbitrary number α for X , a well defined
number a0 + a1α + · · · + anαn is obtained. The arithmetic of polynomials is governed
by familiar rules of addition, subtraction, multiplication, and division over the relevant
field.

More formally, P(X) of degree d over Fq is of the form
d∑

i=0

CiX
i where Ci ∈ Fq and Cd 6= 0.

If α ∈ Fq is a root of P(X), then P(α) = 0. The set of all polynomials over Fq is denoted
by Fq[X]. The definitions of addition and multiplication of polynomials are the natural
extension of the ones mentioned above (all the operations are over Fq). For polynomial
P (X) of degree d, if there exists Q1(X), Q2(X) ∈ Fq[X] such that 0 < deg(Q1) < d, and 0 <
deg(Q2) < d and P (X) = Q1(x).Q2(x), it implies P (X) is not irreducible.
Now we present the important concept of irreducible polynomials.

4

Definition 3.5 (Irreducible polynomial). A polynomial P(X) ∈ Fq[X] is said to be irreducible
over Fq (or irreducible in Fq, or prime in Fq) if P(X) has positive degree and P(X) = B(X)C(X)
with B(X), C(X) ∈ Fq[X] implies either B(X) or C(X) is a constant polynomial.

In other words, P(X) over Fq is irreducible if there are no non-trivial factors of P(X) in
Fq. A polynomial in Fq of positive degree that is not irreducible over Fq is called reducible
over Fq. The reducibility or irreducibility of a given polynomial depends heavily on the
field under consideration.

As for example, the polynomial x2 + 1 is not irreducible over the field F2. Since we
have
x2 + 1 = x2 + (x + x) + 1 = (x + 1)(x + 1)

Definition 3.6. If E[X] is an irreducible polynomial of degree e, Fp[X]/E[X] is a field where:

• The elements of Fp[X]/E[X] are polynomials of degree less than e

• The addition is the usual polynomial addition

• The multiplication is the usual polynomial multiplication mod E[X]

• The additive and multiplicative inverses are the same as the additive and multiplicative
inverses in Fp

It can be proved that the additive and multiplicative inverses do exists.

Theorem 3.7. Fp[X]/E[X] is a field.

since, in modulo 2 addition, x+x = 0. But the polynomial x2 + x + 1 is irreducible over F2.
This can be easily verified by checking that this polynomial has no degree 1 polynomial
as a factor. Note that all non-trivial factors of a degree 2 polynomial needs to be of degree
1. For the proof of the next theorem and more details on it, the reader is again asked to
refer to [2].

Theorem 3.8. For every finite field Fq and every positive integer e, there exists an irreducible
polynomial E(x) over Fq of degree e.

Theorems 3.4, 3.7 and, 3.8 imply a canonical representation of every finite field Fpe .
When e = 1, Fp = Zp otherwise the field Fpe is equivalent to Fp[X]/E[X], where E[X] is an
irreducible polynomial of degree e and p is a prime.

References

[1] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to Algorithms, Second Edition. McGraw-Hill Book Company, Boston Burr Ridge
, IL Dubuque , IA Madison , WI New York San Francisco St. Louis, Montral Toronto,
2001.

5

[2] Rudolf Lidl and Harald Niederreiter. Finite Fields And Its Applications. Addison-
Wesley, Reading, Massachusetts, 1983.

6

	Asymptotic notation
	O-notation
	-notation
	o-notation
	-notation

	Asymptotics of error-correcting codes
	Fields
	Finite Fields
	Polynomials

