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1 Vector Spaces

A vector space V' over a field ' is an abelian group under “+” such that for every o € F' and every
v € V there is an element av € V, and such that:

i) a(v) + v9) = vy + avy, fora € Fyvy, vy € V.

i) (a+ p)v=av+ pv,fora,f € F,veV.

iii) a(Bv) = (af)v fora, € F,v € V.

iv) lv = v for all v € V, where 1 is the unit element of F.

We can think of the field /" as being a set of “scalars” and the set V" as a set of “vectors”.

If the field F' is a finite field, and our alphabet > has the same number of elements as /', we
can associate strings from X" with vectors in £ in the obvious way, and we can think of codes C
as being subsets of F™.

2 Linear Subspaces

Assume that we’re dealing with a vector space of dimension n, over a finite field with q elements.
We’ll denote this as: Fy.

Linear subspaces of a vector space are simply subsets of the vector space that are closed under
vector addition and scalar multiplication:

In particular, S C [/ is a linear subspace of Fy if:

i) For all v1,v, € S,v; + vy € S.

ii) Forallo € Fy,v € S,av € S.

Note that the vector space itself is a linear subspace, and that the zero vector is always an
element of every linear subspace.

3 Properties of Linear Subspaces

We say that a set of vectors {vy, vs, ..., v,} € V is linearly independent over the field F' if there is
no way to form a scalar multiple of any one of them as a sum of nonzero scalar multiples of the
rest of them:

> izjCivi = cju; = ¢ =0forall k € {1,2,..,n}.



We define the dimension of a linear subspace as the maximum size of a linearly independent
subset of that subspace, over the scalar field. Such a maximum linearly independent set is called a
basis for the subspace, because every vector in the subspace can be written as a linear combination
of vectors from the basis.

Note that such a basis is not unique.

We define the dual subspace S+ of S to be the set of vectors all of whose standard inner
products with vectors from S are zero.

Recall that S+ is also a linear subspace, and that any basis for the whole vector space can be
decomposed into a basis for S and a basis for S+, where the two bases are disjoint, implying:

dim(S)+ dim(S*) =dim(V)

Treating linear operators over the vector space as matrices, recall that for every linear subspace
S C IFZ of dimension £, there exists a k x n matrix G over [F, (which we’ll refer to as a generator
matrix) such that S = {mG|m € F/'}. (Just take G to be any set of basis vectors of 5.)

This immediately implies that for S*, the dual subspace to S, there exists a (n — k) X n matrix
which “generates” S+. We call this matrix the generator matrix of S+ and equivalently the parity
check matrix of S.

4 Properties of Linear Codes

Define C' C F} to be a linear code if it is a linear subspace of F'.

Because the generator matrix for such a linear code is enough to generate any codeword in the
code, we note that the representation of such a code only requires O(nk) symbols from Fj,.

As an example, Cy 4/ is a linear code from {0, 1}* — {0,1}7.
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Note that encoding can be accomplished in O(nk) time. For any message vector m € ]F’;, we

can compute y = C'(m) as mG.

Error detection, similarly, can be performed in O(n(n — k)) time, as we simply check to see if
HyT = 0.

For error correction, note that we can decode any linear code over ¢ symbols in O(¢*kn) time
by simply cycling through all possible messages, encoding them, and comparing with our received
codeword.

If we assume that the number of errors is small, is there a better algorithm for decoding linear
codes?



If the number of errors is e, we can cycle through all possible error vectors of weight e or less,
checking to see if any of them represents the error vector for our received message. Because there
are (’Z) ways to choose e locations for an error, and each error can take one of ¢ — 1 values, we can
accomplish this in O((") (¢ — 1)°kn) time. If ¢ is a constant polynomial in n (namely, ¢ € n®W),
then this results in a polynomial time algorithm whose degree is O(e) (time € n°().

For future reference, we refer to Hy” as the syndrome of a received word 7.

Question for next lecture: Can you construct a linear code such that correcting < 1 error takes
O(n?) time?
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