Error Correcting Codes: Combinatorics, Algorithms and App	plications (Fall 2007)
Lecture 11: Group Testing Bounds	
February 8, 2010	
Lecturer: Atri Rudra	Scribe: Andrew Hughes

In the previous lecture, we introduced the notion of Group Testing. In group testing, we are given a pair of integers (d, n) such that $d \le n$, We need to compute an unknown vector $x \in \{0, 1\}^n$, where $|x| \le d$ using as few number of tests t as possible. There are two kinds of tests. The first method is called *adaptive* testing. For *adaptive* testing $t^a(d, n)$ is used to denote the minimum numbe of adaptive tests needed for a pair (d, n). Adaptive tests are done by performing a test and then basing the next test to perform off of the results. The second method is called *non-adaptive* testing t(d, n) is used to denote the minimum number of non-adaptive tests needed for a pair (d, n). Non-adaptive tests are done by fixing all tests apriori.

Group testing can be formalized as follows:

- *Input*: (d, n) such that $d \le n$ and (unknown) $\mathbf{x} \in \{0, 1\}^n$
- Tests: Query/test any subset S ⊆ [n]. The answer given is V_{i∈S} x_i. Note that the combination of all tests can be represented as a matrix T, where a_{j,k} is 1 if for test j, k ∈ S. Then T *x = r where r is the result of the matrix multiplication where multiplication is logical AND and addition is logical OR. After performing the jth test, the value r_j is obtained.
- *Output*: **x**

From discussion in last lecture and the definition of adaptive and non-adaptive tests we have

$$1 \le t^a(d, n) \le t(d, n) \le n$$

The reason for $t^a(d, n) \le t(d, n)$ is due to the fact that any non-adaptive test can be performed by an adaptive test by running all of the tests in the first step of the adaptive test. Adaptive tests can be faster than non-adaptive tests since the test can be changed after certain things are discovered.

In todays lecture, we will prove sharper bounds on $t^{a}(d.n)$ and t(d, n).

1 Lower Bound on $t^a(d, n)$

Proposition 1.1. $t^a(d, n) \ge d \log \frac{n}{d}$

Fix any valid group testing scheme $t^a(d, n)$ with t tests. Observe that if $\mathbf{x} \neq \mathbf{y} \in \{0, 1\}^n$, with $|\mathbf{x}|, |\mathbf{y}| \leq d$ then $\mathbf{r}(\mathbf{x}) \neq \mathbf{r}(\mathbf{y})$, where $\mathbf{r}(\mathbf{x})$ denotes the result vector for running the tests on \mathbf{x} and similarly for $\mathbf{r}(\mathbf{y})$. The reason for this is because two valid inputs cannot give the same result. If this were the case and the results of the tests gave $\mathbf{r}(\mathbf{x}) = \mathbf{r}(\mathbf{y}) = \mathbf{r}$ then it would not be possible to obtain both \mathbf{x} and \mathbf{y} . This fact gives us the following:

- \rightarrow Total number of distinct test results = $Vol_2(d, n)$
- \rightarrow The number of possible distinct *t*-bit vectors is 2^t , and since $2^t \geq Vol_2(d, n)$ it implies $t \geq \log Vol_2(d, n)$

Recall that $Vol_2(d, n) \ge {n \choose d} \ge {n \choose d}^d$ so $t \ge d \log Vol_2(d, n)$. Therefore, since $t^a(d, n) \le t(d, n)$, no matter which scheme is used it cannot perform better (use fewer) than $d \log \frac{n}{d}$ tests.

2 Upper Bound on $t^a(d, n)$

Proposition 2.1. $t^a(d, n) \leq O(d \log n)$

The following is an example of an $O(d \log n)$ adaptive group testing scheme. The idea of the overall algorithm is to use a binary search and repeat until at most d values are found or no more values remain to be found.

Toy Problem: Give a scheme that uses $O(\log n)$ adaptive tests to figure out *ONE i* such that $x_i = 1$ (otherwise report $|\mathbf{x}| = 0$).

Warmup: Query [n] to check if $|\mathbf{x}| = 0$ (i.e. check if $\bigvee_{i=1}^{n} x_i = 0$.)

General Case: Split [n] into two equal halves. Query the first half and if the result is 1 then recurse on that set by splitting those indices in half and repeating this process. If the query on the first half is not 1 then query the second half (note that if the query of the entire set was performed then querying the second half is redundant since it would be known there is a 1 here). If querying the second half of the indices gives a result of 0 then report there is no 1 exists in this section. Continue this process on the subset containing a 1 until either the set only contains one element or no 1 is found. If a 1 is found and the set contains only one element report that index as being valued 1.

This will take $2\lceil \log n \rceil$ or, provided the first test is performed querying the whole set, $\lceil \log n \rceil + 1$ queries given that if one half is 0 it implies the other half 1.

General Algorithm: Let S = [n]

- 1. Find one $i \in S$ such that $x_i = 1$ using the algorithm described in the *General Case* above.
- 2. Let $S = S \setminus \{i\}$ and then repeat the algorithm on S. If the first step reports there are no values left then stop. Also stop after d iterations.

This algorithm will run for d iterations of the first algorithm, giving an overall runtime of $O(d \log n)$. Since this is a general algorithm for an adaptive test any adaptive test is bounded by this, so $t^a(n,d) \leq O(d \log n)$.

Note that the algorithm above is inherently adaptive and thus the arguement above does not give an upper bound for t(d, n). It is impossible to have this as a lower bound for t(d, n) since there is a known (not proved in class) bound $t(d, n) \ge \Omega(\frac{d^2 \log n}{\log d})$.

3 Upper Bound on t(1, n)

Proposition 3.1. $t(1, n) \leq \lceil \log n \rceil$

The group test matrix that is the parity check matrix for $[2^m - 1, 2^m - m - 1, 3]_2$, i.e. H_m where the *i*-th column is the binary representation of *i*, will work for any unknown **x** where $|\mathbf{x}| \leq 1$. This works because when performing $H_m \mathbf{x} = \mathbf{r}$, if $|\mathbf{x}| \leq 1$ then **r** will correspond to the binary representation of *i*. Therefore the lower bound for t(1, n) is $\lceil \log n \rceil$. If $n \neq 2^m - 1$ for some *m*, the matrix H_m corresponding to the *m* such that $2^{m-1} - 1 < n < 2^m - 1$ can be used by adding 0s to the end of **x**. By doing this, decoding is "trivial" for both cases since the binary representation is given for the location. So the number of tests is $\lceil \log n \rceil$. Therefore since the number of tests is an integer, we have t(1, n) is upper-bounded by $\lceil \log n \rceil$.

Recall the lowerbound for t(d, n) is $d \log \frac{n}{d}$, so with d = 1 we have $\log n \le t(1, n) \le \log n$, so $t(1, n) = \lceil \log n \rceil$ is an efficient code. Such tight bounds are not known for general d.