
Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007)

Lecture 11: Group Testing Bounds
February 8, 2010

Lecturer: Atri Rudra Scribe: Andrew Hughes

In the previous lecture, we introduced the notion of Group Testing. In group testing, we are
given a pair of integers (d, n) such that d ≤ n, We need to compute an unknown vector x ∈ {0, 1}n,
where |x| ≤ d using as few number of tests t as possible. There are two kinds of tests. The first
method is called adaptive testing. For adaptive testing ta(d, n) is used to denote the minimum
numbe of adaptive tests needed for a pair (d, n). Adaptive tests are done by performing a test and
then basing the next test to perform off of the results. The second method is called non-adaptive
testing. For non-adaptive testing t(d, n) is used to denote the minimum number of non-adaptive
tests needed for a pair (d, n). Non-adaptive tests are done by fixing all tests apriori.

Group testing can be formalized as follows:

• Input: (d, n) such that d ≤ n and (unknown) x ∈ {0, 1}n

• Tests: Query/test any subset S ⊆ [n]. The answer given is
∨

i∈S xi. Note that the combination
of all tests can be represented as a matrix T , where aj,k is 1 if for test j, k ∈ S. Then T ∗x = r
where r is the result of the matrix multiplication where multiplication is logical AND and
addition is logical OR. After performing the jth test, the value rj is obtained.

• Output: x

From discussion in last lecture and the definition of adaptive and non-adaptive tests we have

1 ≤ ta(d, n) ≤ t(d, n) ≤ n

The reason for ta(d, n) ≤ t(d, n) is due to the fact that any non-adaptive test can be performed by
an adaptive test by running all of the tests in the first step of the adaptive test. Adaptive tests can
be faster than non-adaptive tests since the test can be changed after certain things are discovered.

In todays lecture, we will prove sharper bounds on ta(d.n) and t(d, n).

1 Lower Bound on ta(d, n)

Proposition 1.1. ta(d, n) ≥ d log n
d

Fix any valid group testing scheme ta(d, n) with t tests. Observe that if x 6= y ∈ {0, 1}n, with
|x|, |y| ≤ d then r(x) 6= r(y), where r(x) denotes the result vector for running the tests on x and
similarly for r(y). The reason for this is because two valid inputs cannot give the same result. If
this were the case and the results of the tests gave r(x) = r(y) = r then it would not be possible
to obtain both x and y. This fact gives us the following:

1

→ Total number of distinct test results = V ol2(d, n)

→ The number of possible distinct t-bit vectors is 2t, and since 2t ≥ V ol2(d, n) it implies
t ≥ log V ol2(d, n)

Recall that V ol2(d, n) ≥
(

n
d

)
≥ (n

d
)d so t ≥ d log V ol2(d, n). Therefore, since ta(d, n) ≤

t(d, n), no matter which scheme is used it cannot perform better (use fewer) than d log n
d

tests.

2 Upper Bound on ta(d, n)

Proposition 2.1. ta(d, n) ≤ O(d log n)

The following is an example of an O(d log n) adaptive group testing scheme. The idea of the
overall algorithm is to use a binary search and repeat until at most d values are found or no more
values remain to be found.

Toy Problem: Give a scheme that uses O(log n) adaptive tests to figure out ONE i such that
xi = 1 (otherwise report |x| = 0).

Warmup: Query [n] to check if |x| = 0 (i.e. check if
∨n

i=1 xi = 0.)

General Case: Split [n] into two equal halves. Query the first half and if the result is 1 then
recurse on that set by splitting those indices in half and repeating this process. If the query on the
first half is not 1 then query the second half (note that if the query of the entire set was performed
then querying the second half is redundant since it would be known there is a 1 here). If querying
the second half of the indices gives a result of 0 then report there is no 1 exists in this section.
Continue this process on the subset containing a 1 until either the set only contains one element
or no 1 is found. If a 1 is found and the set contains only one element report that index as being
valued 1.

This will take 2dlog ne or, provided the first test is performed querying the whole set, dlog ne+1
queries given that if one half is 0 it implies the other half 1.

General Algorithm: Let S = [n]

1. Find one i ∈ S such that xi = 1 using the algorithm described in the General Case above.

2. Let S = S \ {i} and then repeat the algorithm on S. If the first step reports there are no
values left then stop. Also stop after d iterations.

This algorithm will run for d iterations of the first algorithm, giving an overall runtime of
O(d log n). Since this is a general algorithm for an adaptive test any adaptive test is bounded by
this, so ta(n, d) ≤ O(d log n).

Note that the algorithm above is inherently adaptive and thus the arguement above does not
give an upper bound for t(d, n). It is impossible to have this as a lower bound for t(d, n) since
there is a known (not proved in class) bound t(d, n) ≥ Ω(d2 log n

log d
).

2

3 Upper Bound on t(1, n)

Proposition 3.1. t(1, n) ≤ dlog ne

The group test matrix that is the parity check matrix for [2m−1, 2m−m−1, 3]2, i.e. Hm where
the i-th column is the binary representation of i, will work for any unknown x where |x| ≤ 1.
This works because when performing Hmx = r, if |x| ≤ 1 then r will correspond to the binary
representation of i. Therefore the lower bound for t(1, n) is dlog ne. If n 6= 2m − 1 for some m,
the matrix Hm corresponding to the m such that 2m−1− 1 < n < 2m − 1 can be used by adding 0s
to the end of x. By doing this, decoding is ”trivial” for both cases since the binary representation
is given for the location. So the number of tests is dlog ne. Therefore since the number of tests is
an integer, we have t(1, n) is upper-bounded by dlog ne.

Recall the lowerbound for t(d, n) is d log n
d
, so with d = 1 we have log n ≤ t(1, n) ≤ log n,

so t(1, n) = dlog ne is an efficient code. Such tight bounds are not known for general d.

3

	Lower Bound on ta(d,n)
	Upper Bound on ta(d,n)
	Upper Bound on t(n,1)

