Error Correcting Codes: Combinatorics, Algorithms and Applications (Spring 2010) Lecture 25: List Decoding from Random Errors

March 22, 2010

Lecturer: Atri Rudra

Scribe: Kushal Suryamohan

1 Overview

We have previously seen in Hamming theory that for worst case errors $\geq \delta/2$ errors cannot be handled. However, such bad examples are rare where the error is $\geq \delta/2$. So for random errors, the list size should be small. List coding sort of achieves a trade-off between the rate and the fraction of errors that can be corrected in a code.

2 List Decoding from Random Errors

Theorem 2.1. ((*p*, *L*)-*list-decodability*)

Let us fix some numbers δ (distance). ($0 < \delta < 1 - 1/q$). $\varepsilon > 0$, $q \ge 2^{\Omega(1/\varepsilon)}$. Then the following is true for $n \ge \Omega(1/\varepsilon)$). Let C be a q-ary code, $C \subseteq \{0, 1, ...q - 1\}^n$ with relative distance δ and block length n. Let $S \subseteq [n]$ such that $|S| = (1 - \rho)n$, where $(0 < \rho \le \delta - \varepsilon)$. Then, for all $c_1 \in C$ and all but an exponentially small fraction $(q^{-\Omega(\varepsilon n)})$ of error patterns, $\overline{e} \in \{0, 1...q - 1\}^n$ such that

$$e_s = \bar{0}$$

with

$$wt(\mathbf{e}) = \rho n.$$

Proof: We see that everything outside of S has errors and is non-zero. So, the transmitted codeword $\bar{c_1}$ is the only codeword within *hamming distance* = $\rho n \ of c_1 + e_1$.

Let us for convenience define \mathcal{E}_s to be the number of possible such error patterns \mathbf{e} such that $\mathbf{e}_s = 0$ and $wt(\mathbf{e}) = \rho n$.

 $|\mathcal{E}_s| = (q-1)^{\rho n}$ (as every error position has(q-1) choices and there are ρn such positions). Call an error pattern $\mathbf{e} \in \mathcal{E}_s$ as *bad* if there exists another codeword $\mathbf{c_2} \neq \mathbf{c_1}$ such that

$$\triangle(\mathbf{c_2}, \mathbf{c_2} + \mathbf{e}) \le \rho n$$

Now, we need to show that the number of bad error patterns

$$\mathbf{e}_{\mathbf{S}} \le q^{-\Omega(\varepsilon n)} |\mathcal{E}_s|.$$

Claim 1. The Singleton bound claims that for any $(n, k, d)_q$ code, $k \le n - d + 1$. So if we fix $(1 - \delta)n + 1$ positions in a codeword out of a possible n (in C), then at most one codeword can agree with the fixed values.

Let us associate with e, c(e), which is the closest other codeword which lies within hamming distance ρn .

Note that for every bad error pattern there is at least one other codeword within hamming distance ρn .

Definition: Let A be the set of positions where $c(\bar{e})$ agrees with $c_1 + e$, $A \subseteq [n]$ with $|A| \triangleq \alpha n$ Where

$$\alpha \ge 1 - \rho \ge 1 - \delta + \varepsilon$$

(since the $c(\mathbf{e})andc_1 + \mathbf{e}$ agree in at least $1 - \rho$ positions).

$$|A_2| = (\alpha - \beta)^n \le \rho n$$

(note that since $A_1 \subseteq A$, βn is at most αn , $(\alpha - \beta) \leq \beta \leq \alpha$)

What we've seen here is that every bad error pattern e corresponds to another c(e) and associate it to the pair (A_1, A_2) .

So, we fix (A_1, A_2) and then count the number of bad \bar{e} 's that map to (A_1, A_2) . (Later on we will aggregate this count over all the 2^n choices of (A_1, A_2) .

Towards this end, first we do the following:

 Allow *ē* to have arbitrary values in [n] \ (S ∪ A₂) (Note that the number of possible

$$\bar{\mathbf{e}}_{[n]\setminus(S\bigcup A_2)} = (q-1)^{n-|S|-A_2|}, q^{n-(1-\rho)n-(\alpha-\beta)n})$$

• Next we fix x such that

$$\bar{e}_{[n]\backslash(S\bigcup A_2)} = \bar{x}$$

By fixing $c(\bar{e})$, we fix $(1 - \delta)n + 1$ positions and hence we fix \bar{e} . By fixing $(1 - \delta)n + 1 - |A_1|$ positions in A_2 , by our claim, then $c(\bar{e})$ is fixed and hence \bar{e} is fixed. \therefore The number of choices for $\bar{e_2} = (q - 1)^{1 - \delta n + 1 - \beta n}$ Thus, the number of possible bad error patterns \bar{e} that map (A - A) is upper bounded by

Thus, the number of possible bad error patterns $\bar{\mathbf{e}}$ that map (A_1, A_2) is upper bounded by

$$(q-1)^{n-(1-\rho)n-\alpha n+\beta n+(1-\delta)n+1-\beta n}$$

(Since $-\alpha$ is at most $1 - \delta + \varepsilon$), the above is at most $(q - 1)^{\rho n - \varepsilon n + 1} \leq (q - 1)^{-\varepsilon n + 1} |\mathcal{E}_s|$. (Recall the last inequality $|\mathcal{E}_s| = (q - 1)^{\rho n}$) Finally, summing up over all choices of A, we get, The total number of bad

$$2^{n} \cdot (q-1)^{-\varepsilon n+1} \cdot |\varepsilon_{s}| \leq q^{\frac{n}{\log_{2} q} - \frac{\varepsilon n}{2} + \frac{1}{2}} \cdot |\varepsilon_{s}|$$
$$(q-1 \leq \sqrt{q}) \leq q^{-\Omega(\varepsilon n)} \cdot |\mathcal{E}_{s}|$$

For large enough n, $\frac{n+1/2}{\log_2 q} < \varepsilon n$ which implies that the fraction of bad error patterns is $q^{-\varepsilon n/4}$, which is exponentially small. This completes the proof.

Remark 2.2. Theorem is not true for $q = 2^{o(\frac{1}{\varepsilon})}$. See the paper by Rudra and Uurtamo for the details

3 References

- Two Theorems in List Decoding, Atri Rudra and Steve Uurtamo, ECCC Technical Report TR10-007, 2010
- Atri Rudra's lecture notes for Spring 2010(http://www.cse.buffalo.edu/ atri/courses/coding-theory/)