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1 Overview
We have previously seen in Hamming theory that for worst case errors ≥ δ/2 errors cannot be
handled. However, such bad examples are rare where the error is ≥ δ/2. So for random errors, the
list size should be small. List coding sort of achieves a trade-off between the rate and the fraction
of errors that can be corrected in a code.

2 List Decoding from Random Errors
Theorem 2.1. ((p, L)-list-decodability)
Let us fix some numbers δ (distance). ( 0 < δ < 1− 1/q). ε > 0, q ≥ 2Ω(1/ε).
Then the following is true for n ≥ Ω(1/ε)).
Let C be a q-ary code, C ⊆ {0, 1, ...q − 1}n with relative distance δ and block length n.
Let S⊆ [n] such that |S| = (1− ρ)n, where (0 < ρ ≤ δ − ε).
Then, for all c1 ∈ C and all but an exponentially small fraction (q−Ω(εn)) of error patterns, ē ∈
{0, 1...q − 1}n such that

es = 0̄

with
wt(e) = ρn.

Proof: We see that everything outside of S has errors and is non-zero. So, the transmitted code-
word c̄1 is the only codeword within hamming distance = ρn of c1 + e1.

Let us for convenience define Es to be the number of possible such error patterns e such that es = 0
and wt(e) = ρn.
|Es| = (q − 1)ρn (as every error position has(q − 1) choices and there are ρn such positions).
Call an error pattern e ∈ Es as bad if there exists another codeword c2 6= c1 such that

4(c2, c2 + e) ≤ ρn.

Now, we need to show that the number of bad error patterns

eS ≤ q−Ω(εn)|Es|.
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Figure 1:

Claim 1. The Singleton bound claims that for any (n, k, d)q code, k ≤ n − d + 1. So if we fix
(1 − δ)n + 1 positions in a codeword out of a possible n (in C), then at most one codeword can
agree with the fixed values.

Let us associate with e, c(e), which is the closest other codeword which lies within hamming
distance ρn.
Note that for every bad error pattern there is at least one other codeword within hamming distance
ρn.

Figure 2:

Definition: Let A be the set of positions where c(ē) agrees with c1 + e, A ⊆ [n] with |A| , αn
Where

α ≥ 1− ρ ≥ 1− δ + ε,

(since the c(e)andc1 + e agree in at least 1− ρ positions).

|A2| = (α− β)n ≤ ρn

2



A1 = A
⋂

S

A2 = A \ A1

|A1| = βn

A = A1

⋃
A2

(note that since A1 ⊆ A, βn is at most αn, (α− β) ≤ β ≤ α)

Figure 3:

What we’ve seen here is that every bad error pattern e corresponds to another c(e) and asso-
ciate it to the pair (A1, A2).
So, we fix (A1, A2) and then count the number of bad ē ’s that map to (A1, A2). (Later on we will
aggregate this count over all the 2n choices of (A1, A2).

Figure 4:

Towards this end, first we do the following:
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• Allow ē to have arbitrary values in [n] \ (S
⋃
A2)

(Note that the number of possible

ē[n]\(S
⋃
A2) = (q − 1)n−|S|−A2|, qn−(1−ρ)n−(α−β)n)

• Next we fix x such that
ē[n]\(S

⋃
A2) = x̄

Figure 5:

By fixing c(ē), we fix (1− δ)n+ 1 positions and hence we fix ē.
By fixing (1− δ)n+ 1− |A1| positions in A2, by our claim, then c(ē) is fixed and hence ēis fixed.
∴ The number of choices for ē2 = (q − 1)1−δn+1−βn

Thus, the number of possible bad error patterns ē that map (A1, A2) is upper bounded by

(q − 1)n−(1−ρ)n−αn+βn+(1−δ)n+1−βn

(Since −α is at most 1− δ + ε), the above is at most (q − 1)ρn−εn+1 ≤ (q − 1)−εn+1|Es| .
(Recall the last inequality |Es| = (q − 1)ρn)
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Finally, summing up over all choices of A, we get,The total number of bad

2n.(q − 1)−εn+1.|εs| ≤ q

n

log2 q
−
εn

2
+

1
2
.|εs|

(q − 1 ≤
√
q) ≤ q−Ω(εn).|Es|

For large enough n,
n+ 1/2

log2 q
< εn which implies that the fraction of bad error patterns is q−εn/4,

which is exponentially small. This completes the proof.

Remark 2.2. Theorem is not true for q = 2o(
1
ε

). See the paper by Rudra and Uurtamo for the
details

3 References
• Two Theorems in List Decoding, Atri Rudra and Steve Uurtamo, ECCC Technical Report

TR10-007, 2010

• Atri Rudra’s lecture notes for Spring 2010(http://www.cse.buffalo.edu/ atri/courses/coding-
theory/)

5


	Overview
	List Decoding from Random Errors

