Error Correcting Codes: Combinatorics, Algorithms and Applications (Spring 2010)

Lecture 40: Hot Items Problem
April 21, 2010
Lecturer: Atri Rudra Scribe: Shujie Liu

Last lecture we talked about solving the problem of list recovery with Guruswami-Sudan algo-
rithm and looked at the requirements of data stream algorithms via the example of the hot items
problem. In today’s lecture, we will explore the connection between hot items problem and group
testing. In particular, the existing strongly explicit construction of d-disjunct matrix based on
Reed-Solomon codes will be used to solve this problem.

1 Data Stream Algorithms

We start with the requirements imposed by data stream algorithms and the definition of the hot
items problem. After this, we will look into possible solutions for this problem.

Definition 1.1. A data stream algorithm has four requirements listed below:
1. The algorithm should make one pass over the input.
2. The algorithm should use poly-log space. (In particular, it cannot store the entire input.)
3. The algorithm should have poly-log update time.
4. The algorithm should have poly-log reporting time.

Definition 1.2. (Hot Items Problem) Given n different items, for m input pairs of data (i, us)(1 <
¢ < m), where iy € [n| indicates the item index and v, indicates corresponding count. The prob-
lem requires update the count f,(1 < ¢ < m) for each item, and output all item indices j such that

DY
f]> Zdl Z.

In this lecture, we will think of d as O(logn). Hot items problem is also called heavy hitters
problems. We state the result below without proof:

Theorem 1.3. Computing hot items exactly by a deterministic one pass algorithm needs Q(n)
space (even with exponential time).

This theorem means that, we cannot solve the hot items problem in poly-log space as we want.
However, we could try to find solutions for problems around this. The first one is to output an
approximate solution, which will output a set that contains all hot items and some non-hot items.

For this solution, we want to make sure that the size of the output set is not too large (e.g. outputing
[n] is not a sensible solution).

Another solution is to make some assumptions on the input. For example, we can assume
Zipf-like distribution of the input data, which means only a few items appear frequently. More
specifically, we can assume heavy-tail distribution on the input data, as:

> fe<= (1)

£:non-hot

This is true for lots applications, such as hot stock finding, where only a few of them have large
frequency. Next, we will explore the connection between group testing and hot items problem
based on this assumption.

2 Connection to Group Testing

In this part, we will look into the connection between group testing and hot items problem estab-
lished by [1]].

For the hot items problem defined in Definition let us first consider a ¢t x n d-disjunct
matrix M, where n is the number of items and t = O(d? log® n), as shown in the following.

[Myy Mg Mz -+ My,]
Moy My Moz -+ My,
My My Mz -+ My,

[My M My - My,

Note that we have a strongly explicit construction of M with ¢ = O(d? log® n). Define S; such
that 7 € S; if and only if M;; = 1. Let C; be the total count of all j € S;. What we want to do is to
update C;(1 < ¢ < t) for each input and report hot items based on C; and the matrix M. Besides
this, we also need to maintain total number of input pairs m. The initialization and update process
as well as reporting problem are shown as following:

Initialization:
m < 0,C; + 0,for1 <i<t.

Update:
For each input pair (j, u) with j € [n],u € Z:
m < m + 1, C; <= C; +wif and only if M;; = 1.

Reporting hot items:

Given current C;(1 < i < t) and m, output all hot items indices j.

The problem of reporting hot items turns out to be the decoding problem of group testing.
Consider the following two observations:

Observation 2.1. If f; > ™ and My; = 1, then C; > ™.
That is because C; = 3y, fx > fi.

Observation 2.2. Forany 1 <1 < t, if all j with M;; = 1 are not hot items, then we have C; < *7.
This is based on the heavy tail distribution assumption and Ci = knry—1 I

Therefore, if we define x = (21, 22,...,2,) € {0,1}" with z; = 1iff j is a hot item, and
r=(ry,r,...,1) € {0, 1}t with r; = 1iff C; > %2, we will have r; = Vjes, ;. The latter claim
follows from Observation 2.1l and 2.2] above. This means we have:

Mx=r 2)

Note that by definition, [x| < d. Thus reporting the hot items is the same as decoding x
given M and r, which successfully changes the hot items problem into group testing problem. In
the following part, we will design and analyze the algorithm above and check if the conditins in
Definition [L.I] are met.

3 Analysis of the Algorithm

In this part, we will review the requiements on data stream algorithm one by one and check if the
algorithm for the hot items problem based on group testing satisfies them. In particular, we will
need to pick M and the decoding algorithm.

1. One-pass requirement
If we use non-adaptive group testing, the algorithm for the hot items problem above can be
implemented in one pass, which means each input is visited only once. (If adaptive group
testing is used, the algorithm is no longer one pass, therefore we choose non-adaptive group
testing.)

2. Poly-log space requirement
In the algorithm, we have to maintain the counters C; and m. The maximum value for
them is mn, thus we can represent each counter in O(logn + logm)bits. This means we
need O((logn + logm)t)bits to maintain the counters. Given ¢t = O(d?log”n) and d =
O(logn), the total space we need to maintain the counters is O(d? log® n(logn + logm)) =
O(log* n(log n 4 logm).

On the other hand, if we need to store the matrix M, we will need §2(nt) space. Therefore,
poly-log space requirement can be achieved only if matrix M is not stored directly.

3. Poly-log update time
As shown in the previous part, we cannot store the matrix M directly in order to have poly-
log space. Since RS code is strongly explicit, the d-disjunct matrix M is strongly explicit. In
the following, we will briefly prove that the update time is O(t x poly logt) if M is strongly
explicit.

Recall that we use a concatenated code for constructing M: C* = C,,; o Cy,, where C,,; is
a [k, q], RS code and Cj, is an identity matrix:

Cin : [q) = {0,1}7 where j — (0,---,1,---,0) with 1 at 5" position. 3)
Recall that codewords of C* are columns of the matrix M, and we have n = ¢*, t = ¢°.

Every time we want to update the counters C; for a given input pair (j, u), what we need is
to find the corresponding column j in M and update C; if 7 € S;.

That means, the update problem is like an encoding problem, in which given an input mes-
sage m € Fqk specifying which column we want (where m is the representation of j € [n]
when thought of as an element of IFqk), the ouput is C,,;(1m) and it corresponds to the column
Mg,.

On the other hand, for the corresponding column My, in M of a given input message m,
we can partition this coloum into ¢ chunks, each chunk is of length ¢. It is noticed that
(Cout(M));, = iy if and only if the %" trunk has 1 on its i%* position and 0 on other positions
(recall the definition of Cj, in , which means Mz (i1 * ¢ + i — ¢) = 1. Therefore, we can
compute all 7 such that j € S; by computing C,,;(m), where My, is the j** column in M.
Because Cl,; is a linear code, it can be computed in O(q? x poly log q) time, which means
the update process can be done in O(q? x poly log ¢) time. Since we have ¢ = ¢2, the update
process can be finished with O(¢ x poly logt) time. ﬂ

4. Reporting time
The computation of r require O(¢) time while the decoding of x requires O(nt) time (at
least according to what we have seen so far). This means we cannot achieve the poly-log
reporting time requirement.

In the next lecture, we will look into this problem and to prove that, we can get a poly-log
decoding time without designing a new matrix.

References

[1] Graham Cormode and S. Muthukrishnan, What’s hot and what’s not: tracking most frequent
items dynamically, ACM Transactions on Database Systems, Volume 30, Issue 1, March
2005.

IThis is for the case as RS is strongly explicit. In fact even if explicitly store the generator matrix we will need
O(log q) = O(logt) extra space which is still poly-log space

4

	Data Stream Algorithms
	Connection to Group Testing
	Analysis of the Algorithm

