
Error Correcting Codes: Combinatorics, Algorithms and Applications (Spring 2010)

Lecture 41: Group Testing and List Recovery
April 23, 2010

Lecturer: Atri Rudra Scribe: Jiun-Jie Wang

In the last lecture, we proved that the cormode-muthukrishnan algorithm for the hot item prob-
lems can match the following data stream requirement: one-pass, poly-log space and update time.
In this lecture, we will show that reporting time of hot item problem can also be done in poly-log
time. Recall that we use the concept of concatenation code to build a d-disjunct matrix. Last
lecture, we saw that the reporting problem is the same as decoding for the group testing problem:
given r,M , when we know r = Mx, output x. The decoding time for a general d-disjunct matrix
as we have seen is O(nt). It doesn’t match our requirement. So, we need a more smart decoding
algorithm for hot items problem.

1 Naive Idea
In the last lecture, we used MC∗ as the d-disjunct matrix, when C∗ = Cout ◦ Cin, Cout: [q, k]q RS
Code. Cin : [q]→ {0, 1}q is the identity code.

Example 1: Let k = 1, q = 3, Cout(m0) = (0, 0, 0), Cout(mathbfm1) = (1, 1, 1), Cout(m2) =
(2, 2, 2), n = qk = 3, t = q × q = 9,

Cout =

Cout(m0)0 Cout(m1)0 Cout(m2)0
Cout(m0)1 Cout(m1)1 Cout(m2)1
Cout(m0)2 Cout(m1)2 Cout(m2)2

 =

0 1 2
0 1 2
0 1 2


Now, note that Cin behaves as follows: Cin(0) = 001, Cin(1) = 010, Cin(2) = 100

suppose x =

11
0

 Then,

MC∗ =



0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0



1



MC∗x =



0
0
1
0
0
1
0
0
1


= r

In the example above, given r, it is easy to figure out x. However, in general, decoding of r
will follow two step process of decoding concatenated code.

Firstly, Cout is a [q, k]q code. So, the message set of Cout has size qk. From the code construc-
tion of Cout, we know each message m of Fk

q corresponding to a column index of MC∗ . Thus,
Fk
q ≈ [n]. It implies that for each xj , we can find a message m s.t. xj = xm. Secondly, we can

also show F× F ≈ [t]. So, we can have rj′ = ri(j) where j′ ∈ [t] and i, j ∈ Fq.

How to perform decoding of Cin from r? If ri(j) = 1, then ci is possible to be j. ri(j) = 0,
then ci can not be j where ci, i and j ∈ Fq. Finally, Claim 1 leads us to find answer.

Claim 1. If xm = 1 and (c1, · · · , cq) = Cout(m), then ci ∈ Si, 1 ≤ i ≤ q where

Si = {j ∈ Fq | ri(j) = 1}.

Proof. Left exercise.

2 The Decoding Algorithm
ALGO 1:

• Input: r = (r1, r2, · · · , rq) ∈ ({0, 1}q)q.

1. (decoding Cin): For every 0 ≤ i ≤ q − 1, let

Si = {j ∈ Fq | ri(j) = 1}.

2. (decoding Cout): Run an error-less list recovery algorithm on S1, · · · , Sq to get

O = {m1, · · · ,mL}

, then x̂m = 1 if m ∈ O. x̂m = 0, otherwise.

Recall that Error-Less List Recovery for C ⊆
∑n.

2



• Input: S1, · · · , Sn s.t. Si ⊆
∑

.

• Output: All (c1, · · · , cn) ∈ C s.t. ci ∈ Si, 1 ≤ i ≤ n.

For a [n, k]q RS code, we can do error-less list-recovery in polylog time if l <????.
After running error-less list-recovery algorithm, we can get the following fact, for a x,

x̂m = 1 implies xm = 1

, however, at the same, this algorithm also produces m ∈ O to s.t. xm = 0, ie.

x̂m = 0 ; xm = 0.

Thus, for m s.t. x̂m = 1 (but xm = 0), we need to make xm = 0.
For this problem, we can run the naive decoding algorithm for a disjunct matrix, but only for

columns in O. ALGO 2:

• Input: O = {m1, · · · ,mL}.

1. For all m ∈ O, set x̂m = 1.

2. For j = 1 · · · t if rj = 0, then for all m ∈ O if Mj,m = 1, set x̂m = 0.

3. Output m ∈ O if and only if x̂m = 1.

Lemma 1. If ALGO2 is run on the output of ALGO1 , then MC∗x̂ = r.

Proof. In this proof, we want to remove some m ∈ O s.t.

MC∗x̂ = r = MC∗x̂

Let r̂ = MC∗ and j′ = pq + j. We go through this proof case by case

• Case 1: xm = 0, Cin(Cout(m)p)j = 0 and rj′ = 0.
If we set x̂m = 1, we can not change r̂j from 0 to 1.

• Case 2: xm = 0, Cin(Cout(m)p)j = 1 and rj′ = 0.
If we set x̂m = 1, we will change r̂j from 0 to 1.

So, by case 1 and case 2, we can conclude that ALGO2 output m ∈ O s.t. xm = 1.

Theorem 1. The updating step of hot item problem can be done in O(t× poly-log(tn)) time.

Proof. ALGO 1 runs O(poly-log(tn)) time and ALGO 2 runs O(t× L) time.
We know L is O(poly-log(tn)). It implies that total time is O(t× poly-log(tn)) time.

3


	Naive Idea
	The Decoding Algorithm

