
Error Correcting Codes: Combinatorics, Algorithms and Applications Spring 2011

Homework 2
Due Monday March 7, 2011 in class

You can collaborate in groups of up to 3. However, the write-ups must be done individually, that
is, your group might have arrived at the solution of a problem together but everyone in the group
has to write up the solution in their own words. Further, you must state at the beginning of your
homework solution the names of your collaborators. Just to be sure that there is no confusion, the
group that you pick has to be for all problems [i.e. you cannot pick different groups for different
problems :-)]

If you are not typesetting your homework, please make sure that your handwriting is legible. Illeg-
ible handwriting will most probably lose you points.

Unless stated otherwise, for all homeworks, you are only allowed to use notes from the course: this
includes any notes that you might have taken in class or any scribed notes from Fall 07, Spring 09,
Spring 10 version or the current version of the course. Doing otherwise will be considered cheating.
Note that if your collaborator cheats and you use his solution, then you have cheated too (ignorance
is not a valid excuse).

Please use the comments section of the post on HW 2 on the blog if you have any questions and/or
you need any clarification.

For this homework, you are limited to six pages in total.

This homework has more problems and is harder than the previous one, so I encourage you to start
thinking on the problems early.

1. (Operations on Codes) (1 + 2 + 1 + 1 = 5 points) In class we have seen some examples of
how one can modify one code to get another code with interesting properties (for example,
the construction of the Hadamard code from the Simplex code and the construction of codes
with smaller block lengths in the proof of the Singleton bound). In this problem you will
need to come up with various ways of constructing new codes from existing ones.

Prove the following statements (recall that the notation (n, k, d)q code is used for general
codes with qk codewords where k need not be an integer, whereas the notation [n, k, d]q code
stands for a linear code of dimension k):

(a) If there exists an (n, k, d)q code, then there also exists an (n− 1, k, d′ ≥ d− 1)q code.

(b) If there exists an (n, k, d)2 code with d odd, then there also exists an (n + 1, k, d + 1)2
code.

(c) If there exists an (n, k, d)2m code, then there also exists an (nm, km, d′ ≥ d)2 code.

(d) If there exists an [n, k, d]2m code, then there also exists an [nm, km, d′ ≥ d]2 code.
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Note: In all the parts, the only things that you can assume about the original code are only
the parameters given by its definition– nothing else! The proofs for each part should not take
more than a few sentences.

2. (Distance of General Random Codes) (5 points) In class, we saw Varshamov’s proof that
random linear code meets the GV bound. It is natural to as the question for general random
codes. (By a random (n, k)q code, I mean the following: for each of the qk messages, pick a
random vector from [q]n. Further, the choices for each codeword is independent.) We will do
so in this problem.

(a) Prove that a random binary code with rate R > 0 with high probability has relative
distance δ ≥ H−1(1 − 2R − ε).1 Note that this is worse than the bound we proved in
class for random linear codes.
(Hint: Proceed with the proof as in the random linear case: what events do you now
need to take care of in the union bound?)

(b) (For your cognitive pleasure only; no need to turn this part in in)
Prove that with high probability the relative distance of a random code of rate R is at
most H−1(1 − 2R) + ε. In other words, general random codes are worse than random
linear codes in terms of their distance.

3. (Toeplitz Matrix) (1+10+2+2 = 15 points) In class we saw that the Gilbert construction
can compute an (n, k)q code in time qO(n). Now the Varshamov construction is a randomized
construction and it is natural to ask how quickly can we compute an [n, k]q code that meets
the GV bound. In this problem, we will see that this can also be done in qO(n) deterministic
time, though the deterministic algorithm is not that straight-forward anymore.

(a) (A warmup) Argue that Varshamov’s proof gives a qO(kn) time algorithm that constructs
an [n, k]q code on the GV bound. (Thus, the goal of this problem is to “shave” off a
factor of k from the exponent.)

(b) A k × n Toeplitz Matrix A = {Ai,j}k , n
i=1, j=1 satisfies the property that Ai,j = Ai−1,j−1.

In other words, any diagonal has the same value. For example, the following is a 4 × 6
Toeplitz matrix: 

1 2 3 4 5 6
7 1 2 3 4 5
8 7 1 2 3 4
9 8 7 1 2 3


A random k × n Toeplitz matrix T ∈ Fk×n

q is chosen by picking the entries in the first
row and column uniformly (and independently) at random.
Prove the following claim: For any non-zero m ∈ Fk

q , the vector m · T is uniformly
distributed over Fn

q , that is for every y ∈ Fn
q , Pr [m · T = y] = q−n.

(Hint: Write down the expression for the value at each of the n positions in the vector
m · T in terms of the values in the first row and column of T . Think of the values in
the first row and column as variables. Then divide these variables into two sets (this

1As I had mentioned in class generally H(·) is used to denote H2(·). Further, the “inverse” function H−1(·) is
defined as follows. For every y ∈ [0, 1], H−1(y) = x iff H(x) = y and x ∈ [0, 1/2].
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“division” will depend on m) say S and S. Then argue the following: for every fixed
y ∈ Fn

q and for every fixed assignment to variables in S, there is a unique assignment to
variables in S such that mT = y.)

(c) Briefly argue why the claim in part (b) implies that a random code defined by picking
its generator matrix as a random Toeplitz matrix with high probability lies on the GV
bound.

(d) Conclude that an [n, k]q code on the GV bound can be constructed in time qO(k+n).

Note: Even if you cannot prove part (b) you can still use its statement as given for parts (c)
and (d).
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