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In today’s lecture we will study the notion of a null/dual space of a linear subspace and prove
some properties of the dual spaces.

1 The Inner Product
Recall that for vectors u = (u1, . . . , un),v = (v1, . . . , vn) ∈ Fn

q , 〈u,v〉 = u · vT =
∑n

i=1 ui · vi.
The following follows from the definition of the inner product:

Proposition 1.1. The following properties hold for vectors u1,u2,v ∈ Fn
q and scalar α ∈ Fq:

〈u1 + u2,v〉 = 〈u1,v〉 + 〈u2,v〉,

and
〈α · u1,u2〉 = α · 〈u1,u2〉.

2 The Null Space
We begin with the definition of a dual/null space of a linear subspace.

Definition 2.1. Let S ⊆ Fn
q be a linear subspace. The null/dual space of S, denoted by S⊥, is

defined as
S⊥ =

{
u ∈ Fn

q | 〈u,v〉 = 0 for every v ∈ S
}

.

Proposition 1.1 and Definition 2.1 imply the following:

Proposition 2.2. For every linear subspace S, S⊥ is also a linear subspace.

The following theorem requires more work and we will not prove it in this course:

Theorem 2.3. For any linear subspace S ⊆ Fn
q ,

dim(S) + dim(S⊥) = n.

Finally, Definition 2.1 implies the following fact:

Proposition 2.4. For any linear subspace S,
(
S⊥

)⊥
= S.
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3 The Parity Check Matrix
As Proposition 2.2 states that S⊥ is a linear subspace, it must have a generator matrix H . (Note
that by Theorem 2.3, H is an (n − k) × n matrix.) This matrix has a special name:

Definition 3.1. Let S be a linear subspace and let H be a generator matrix of S⊥. Then H is a
parity check matrix of S.

The parity check matrix uniquely characterizes its linear subspace. More specifically,

Proposition 3.2. Let S ⊆ Fn
q be a linear subspace with a parity check matrix H . Then

S = {u|H · uT = 0}.

Proof. We begin by proving the inclusion S ⊆ {u|H · uT = 0}. To this end, let u ∈ S. Re-
call that by definition, H has as its ith row the vector hi ∈ Fn

q such that h1, . . . ,hn−k forms a
basis for S⊥. In particular, hi ∈ S⊥. Thus, by Definition 2.1, 〈hi,u〉 = 0. Thus, H · uT =
(〈h1,u〉, . . . , 〈hn−k,u〉) = 0, as desired.

We now prove the inclusion {u|H ·uT = 0} ⊆ S. To this end, fix a u ∈ Fn
q such that H ·uT =

0. Consider an arbitrary x ∈ Fn−k
q . By the associativity of vector-matrix-vector multiplication, we

have
〈u,xH〉 = (xH) · uT = x(H · uT ) = 0,

where the last equality follows from the fact that H · uT = 0. Recall that as H is the generator
matrix of S⊥, we have

S⊥ = {xH|x ∈ Fn
q }.

The above two equalities along with Definition 2.1 implies that

u ∈
(
S⊥

)⊥
= S,

where the equality follows from Proposition 2.4. This completes the proof.
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