Def (code): A code \(C \) of block length \(n \) over an alphabet \(\Sigma \) is a subset of \(\Sigma^n \).

Example: repetition/parity code \(\Sigma = \{0, 1\} \) alphabet size \(q = 1 \leq 1 \) alphabet size

Alternate view: \(C \subseteq \Sigma^n \), \(|C| = M \)

\(C : [M] \rightarrow \Sigma^n \)

Def: \(\dim(C) = \log_q |C| \) typically \(k = \dim(C) \) \(k \leq n \)

Ex: \(\Sigma = \{0, 1\} \) (binary code) \(q = 2 \)
Parity code: \(|C_0| = 2^4 \Rightarrow \dim(C_0) = 4 \), \(n = 5 \)

\(C_0 : \{0, 1\}^4 \rightarrow \{0, 1\}^5 \)

\(C_0 \oplus (x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_4, x_1 \oplus x_2 \oplus x_3 \oplus x_4) \)

Repetition: \(C_{3, \text{rep}} \) each bit is repeated 3 times

\(k = 4 \), \(n = 3 \times 4 = 12 \)

Redundancy: \(\text{Def: } n - k \)

Def (rate): Rate of a code of block length \(n \) & \(\dim k \) is \(R(C) = \frac{k}{n} \)

Q: \(R(C_0) = \frac{4}{5} \)
\(R(C_{3, \text{rep}}) = \frac{1}{3} \)

\(h = 102, k = 100 \)
\(h = 4, k = 2 \)

\(h \leq R \rightarrow 0 \) less redundancy

1 \(\leq R \rightarrow 0 \) more redundancy