

Coding Theory

CSE 445/545

February 1, 2023

Make sure to check out the syllabus!

CSE 4/545

Syllabus

Piazza

Schedule

Homeworks

Mini Project

Autolab

Book

CSE 445/545 (Coding Theory) Syllabus

Spring 2023

Mondays, Wednesdays and Fridays, 4:00-4:50pm, Cooke 121.

Please note

It is **your responsibility** to make sure you read and understand the contents of this syllabus. If you have any questions, please contact the instructor.

Academic Integrity

Penalty for academic integrity violation

In accordance with the current departmental policy on academic integrity violations, we will follow this procedure in CSE 4/545:

1. If the violation is the student's second academic violation, then it will result in an automatic **F** letter grade in the course.
2. If the violation is the first ever academic violation, then it will result in a **minimum of a letter grade reduction** in the grade for the course **and zero in the relevant assignment**. If the violation is serious enough, then it can result in an **F in the course**. While it gives me no pleasure in failing students, I will do so since I

Let me know if you're not on piazza

piazza CSE 4/545 ▾ [Q & A](#) [Resources](#) [Statistics](#) ▾ [Manage Class](#) Atri Rudra

LIVE Q&A Drafts project exam logistics other feedback hw0 proof-reading lectures hw1 hw2 hw3 hw4 hw5 hw6 hw7 hw8 hw9 hw10

Unread Updated Unresolved Following

[New Post](#)

Show Actions

PINNED

- Instr Poll on Ben's OH Times** 1/27/23
In the poll below, please select all of the potential times for office hours that work for you, even if you can only att
- Instr Background feedback** 1/22/23
For me to get a better sense of your background, please fill in these piazza polls:
Linear Algebra: @7Abstract Algebra:
- Search for Teammates!** 1/11/23
• 2 Open Teammate Searches

YESTERDAY

- Instr Lecture 1 stuff** 10:12 PM
I won't be doing this for all the followup lectures but wanted to give y'all a headsup that lecture 1 material i
- Instr My OH is on** 11:36 AM
Just to clarify that I do have my OH from 11:30am–12:20pm today even though we have not had our first lecture yet. Feel

LAST WEEK

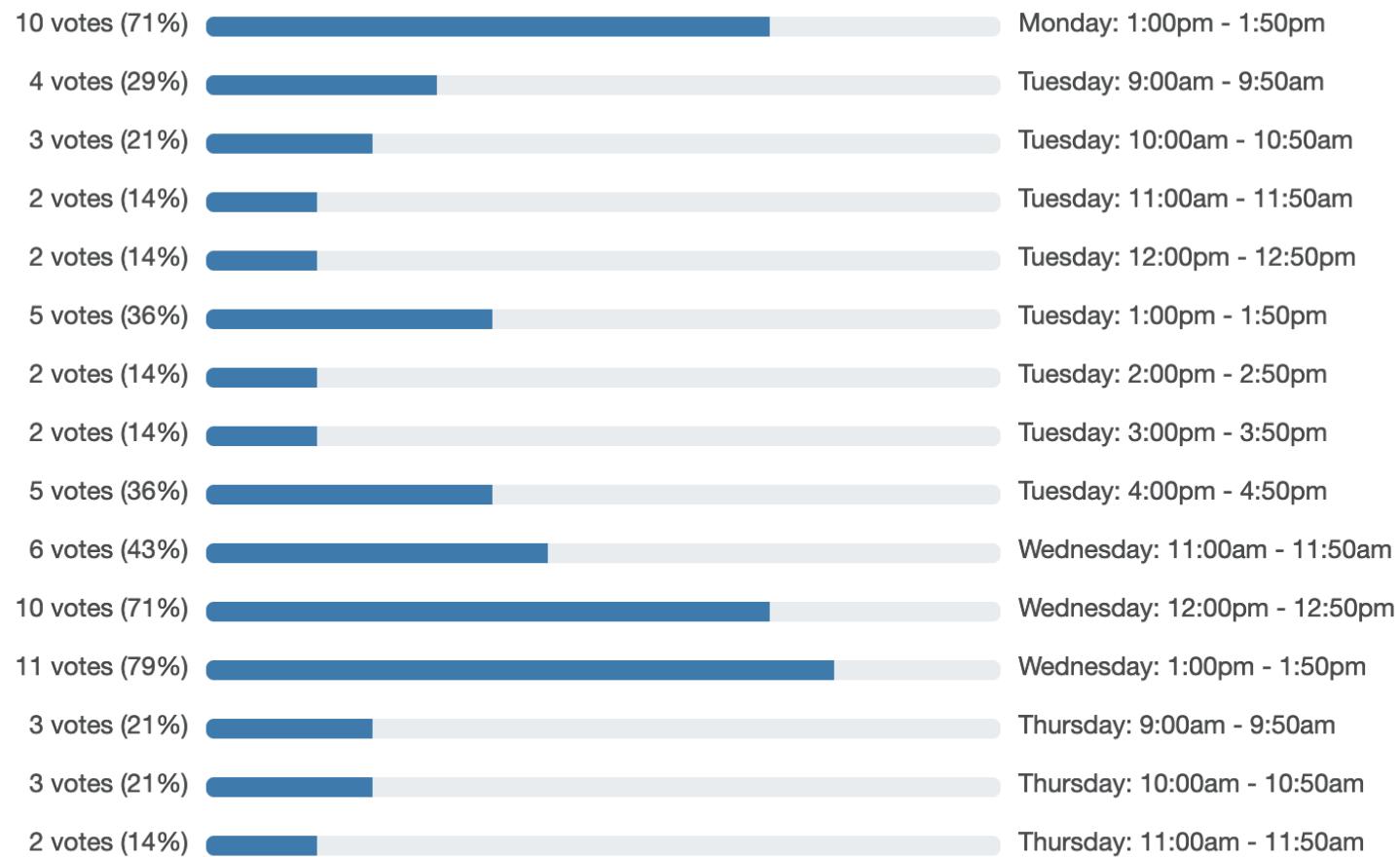
- Instr Welcome to Piazza!** Sun
Students,Welcome to Piazza! We'll be conducting all class-related discussion here this term. The quicker you begin a
- Instr Why this course?** Sun
Why are you taking this course?

Class at a Glance Updated 0 seconds ago. [Reload](#) [Go to Live Q&A](#)

 no unread posts **no unanswered questions** **no unanswered followups**

license status active instructor license
16 total posts
267 total contributions
0 instructors' responses
0 students' responses
1 sec avg. response time

Student Enrollment 60 enrolled out of 75 (estimated) [Edit](#)


Download us in the app store:

Share Your Class
Professors appreciate Piazza best when they see how it is being used.
Allow colleagues to view your class through a demo link - a restricted, read only version of your class where all students' names are anonymized and all student information hidden.
https://piazza.com/demo_login?nid=lcs7u45n33p2ar&auth=8404ff0
Opening this link in the same browser will log you out as atri@buffalo.edu

By tonight fill in poll for Ben's office hours

Poll on Ben's OH Times closes in 2 day(s)

A total of 14 voter(s) in 101 hours

Make sure you see 4/545 on Autolab

Courses

Current

CSE440/441/540:
ML and
Society (s23)

Homework

White Supremacy and Buffalo

[COURSE PAGE](#)

CSE445/545:
Coding
Theory (s23)

[COURSE PAGE](#) [GRADE](#)
[SECTION](#)

While applications are numerous...

This course (lectures and HWs) will focus ONLY on proofs

where in the above " $|E(\mathbf{m})|$ " is short for "being conditioned on $E(\mathbf{m})$ being transmitted" and the inequality follows from the union bound (Proposition 3.1.5) and the fact that D is MLD.

Noting that $\Delta(E(\mathbf{m}'), \mathbf{y}) \leq \Delta(E(\mathbf{m}), \mathbf{y}) \leq (p + \varepsilon')n$ (see Figure 6.6), by (6.9) we have

$$\begin{aligned} \mathbb{E}_E [\mathbb{1}_{D(\mathbf{y}) \neq \mathbf{m}}] &\leq \sum_{\mathbf{m}' \neq \mathbf{m}} \Pr [E(\mathbf{m}') \in B(\mathbf{y}, (p + \varepsilon')n) | E(\mathbf{m})] \\ &= \sum_{\mathbf{m}' \neq \mathbf{m}} \frac{|B(\mathbf{y}, (p + \varepsilon')n)|}{2^n} \end{aligned} \quad (6.10)$$

$$\begin{aligned} &\leq \sum_{\mathbf{m}' \neq \mathbf{m}} \frac{2^{H(p + \varepsilon')n}}{2^n} \\ &< 2^k \cdot 2^{-n(1 - H(p + \varepsilon'))} \end{aligned} \quad (6.11)$$

$$\begin{aligned} &\leq 2^{n(1 - H(p + \varepsilon)) - n(1 - H(p + \varepsilon'))} \\ &= 2^{-n(H(p + \varepsilon) - H(p + \varepsilon'))}. \end{aligned} \quad (6.12) \quad (6.13)$$

In the above, (6.10) follows from the fact that the choice for $E(\mathbf{m}')$ is independent of $E(\mathbf{m})$. (6.11) follows from the upper bound on the volume of a Hamming ball (Proposition 3.3.3), while (6.12) follows from our choice of k .

Using (6.13) in (6.8), we get

$$\begin{aligned} \mathbb{E}_E \left[\Pr_{\mathbf{e} \sim \text{BSC}_p} [D(E(\mathbf{m}) + \mathbf{e}) \neq \mathbf{m}] \right] &\leq e^{-(\varepsilon')^2 n/2} + 2^{-n(H(p + \varepsilon) - H(p + \varepsilon'))} \sum_{\mathbf{y} \in B(E(\mathbf{m}), (p + \varepsilon')n)} \Pr[\mathbf{y} | E(\mathbf{m})] \\ &\leq e^{-(\varepsilon')^2 n/2} + 2^{-n(H(p + \varepsilon) - H(p + \varepsilon'))} \leq 2^{-\delta' n}, \end{aligned} \quad (6.14)$$

where the second inequality follows from the fact that

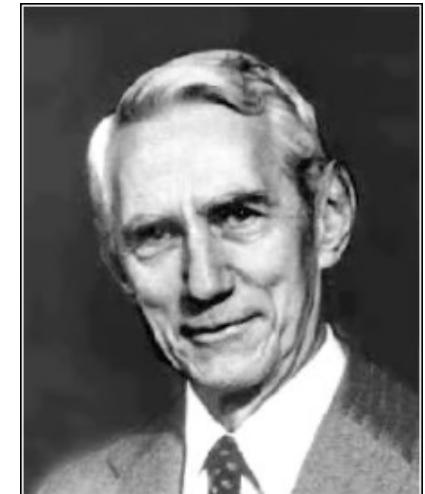
$$\sum_{\mathbf{y} \in B(E(\mathbf{m}), (p + \varepsilon')n)} \Pr[\mathbf{y} | E(\mathbf{m})] \leq \sum_{\mathbf{y} \in \{0, 1\}^n} \Pr[\mathbf{y} | E(\mathbf{m})] = 1$$

and the last inequality follows for large enough n , say $\varepsilon' = \varepsilon/2$ and by picking $\delta' > 0$ to be small enough. (See Exercise 6.3.)

Thus, we have shown that for any arbitrary \mathbf{m} the average (over the choices of E) decoding error probability is small. However, we still need to show that the decoding error probability is exponentially small for *all* messages *simultaneously*. Towards this end, as the bound holds for each \mathbf{m} , we have

$$\mathbb{E}_{\mathbf{m}} \left[\mathbb{E}_E \left[\Pr_{\mathbf{e} \sim \text{BSC}_p} [D(E(\mathbf{m}) + \mathbf{e}) \neq \mathbf{m}] \right] \right] \leq 2^{-\delta' n}.$$

Questions/Comments?


The birth of coding theory

Claude E. Shannon

“A Mathematical Theory of Communication”

1948

Gave birth to Information theory

Richard W. Hamming

“Error Detecting and Error Correcting Codes”

1950

Structure of the course

Part I: Combinatorics

What can and cannot be done with codes

Part II: Algorithms

How to use codes efficiently

Part III: Applications

Applications in (theoretical) Computer Science

Redundancy vs. Error-correction

Repetition code: Repeat every bit say 100 times

Good error correcting properties

Too much redundancy

Parity code: Add a parity bit

Minimum amount of redundancy

Bad error correcting properties

Two errors go completely undetected

1	1	1	0	0	1
---	---	---	---	---	---

Neither of these codes are satisfactory

1	0	0	0	0	1
---	---	---	---	---	---

Two main challenges in coding theory

Problem with parity example

Messages mapped to codewords which do not differ in many places

Need to pick a lot of codewords that differ a lot from each other

Efficient decoding

Naive algorithm: check received word with all codewords

The fundamental tradeoff

Correct as **many errors** as possible with as **little redundancy** as possible

Can one achieve the “optimal” tradeoff with
efficient encoding and decoding ?

Rest (of the semester) on the board...

