
Analyzing Nonblocking Switching Networks using
Linear Programming (Duality)

Hung Q. Ngo, Atri Rudra, Thanh-Nhan Nguyen, Anh Le
Computer Science and Engineering

The State University of New York at Buffalo
Email: {hungngo, atri, nguyen9, anhle}@buffalo.edu

Abstract—The main task in analyzing a switching network
design (including circuit-, multirate-, and photonic-switching) is
to derive a formula for the minimum number of some switching
components so that the design is non-blocking in some sense (e.g.,
strict-sense or wide-sense). We show that, in many cases, this task
can be accomplished with a very simple and effective two-step
strategy: (1) formulate a linear program whose optimum value is
a bound for the minimum value we are seeking, and (2) specify
a solution to the dual program, whose objective value by weak
duality immediately yields a sufficient condition for the design
to be non-blocking.

We illustrate this technique through a variety of examples,
ranging from circuit to multirate to photonic switching, from
unicast to f -cast and multicast, and from strict-sense to wide-
sense non-blocking. The switching architectures in the examples
are of Clos-type and Banyan-type, which are the two most pop-
ular architectural choices for designing non-blocking switching
networks.

To prove the result in the multirate Clos network case,
we formulate a new problem called DYNAMIC WEIGHTED EDGE
COLORING which generalizes the DYNAMIC BIN PACKING problem.
We then design an algorithm with competitive ratio 5.6355
for the problem. The algorithm is analyzed using the linear
programming technique. We also show that no algorithm can
have competitive ratio better than 4 − O(log n/n) for this
problem. New lower- and upper-bounds for multirate wide-sense
non-blocking Clos networks follow.

Keywords: Nonblocking, multirate, switching, linear program-
ming, duality, dynamic weighted edge coloring.

I. INTRODUCTION

The two most important architectures for designing non-
blocking switching networks are Clos-type [1] and Banyan-
type [2]. The Clos networks not only played a central role
in classical circuit-switching theory [3], [4], but also were
the bedrock of multirate switching [5]–[10] (e.g., in time-
divisioned switching environments where connections are
of varying bandwidth requirements), and photonic-swtiching
[11]–[15]. The Banyan network is equivalent to various other
“bit-permutation” networks such as Omega, baseline, etc.,
they are called Banyan-type networks and have been used
extensively in designing electronic and optical switches, as
well as parallel processor architectures [16]. In particular,
the multilog design which involves the vertical stacking of a
number of inverse Banyan planes has been the architecture
of choice in circuit- and photonic-switching environments
because they have small depth (log N), self-routing capability,
and absolute signal loss uniformity [17]–[21].

In analyzing Clos networks, the most basic task is to
determine the minimum number of middle-stage switches so
that the network satisfies some nonblocking conditions. This
holds true in space-, multirate-, and photonic-switching, in
unicast, f -cast and multicast, and broadcast traffic patterns,
and in all nonblocking types (strict-sense, wide-sense, and
rearrangeable). Similarly, the basic task in analyzing multilog
networks is to determine the minimum number of inverse
Banyan planes so that the network satisfies some requirements.

This paper shows that a simple and effective linear program-
ming (LP) based strategy can be used to accomplish the task.
The strategy involves two steps:

• First, the minimum value we are seeking (e.g., the num-
ber of middle-stage switches in a Clos network or the
minimum number of inverse Banyan planes in a multilog
network) can be formulated so that it is upper-bounded
by the optimum value of a linear program (LP) of the
form max{cT x | Ax ≤ b,x ≥ 0}. The maximization
objective is often due to the fact that we are considering
the worst case scenarios. For example, at the maximum
how many middle-stage switches in a Clos network is
insufficient to carry a new request. The constraints of the
LP are used to express the fact that no input or output
can generate or receive connections totaling more than its
capacity.

• Second, by specifying any feasible solution, say y∗, to
the dual program min{bT y | AT y ≥ c}, applying weak
duality we can use the dual-objective value bT y∗ as an
upper bound for the minimum value being sought.

In a few cases, we may not need the dual program since
the primal program is small with only a few variables. In most
cases, however, the LP and its dual are very general, dependent
on various parameters of the switch design (number of inputs
and switching elements’ dimensions, for example). Thus, we
cannot hope to derive a formula for a primal-optimal solution
and have to rely on a dual-feasible solution to quickly “certify”
the bound. In fact, as we shall see later in this paper, we might
need to specify a family of dual-feasible solutions and choose
the best one (i.e. the one giving the smallest objective value)
in accordance with the parameters of the problem at hand.

The LP-duality technique was first used in our recent paper
[22] to analyze the (unicast) strictly nonblocking multilog
architecture in the photonic-switching case, subject to general

2

crosstalk constraits. This paper demonstrates that the technique
can be applied to a much wider range of switching network
design problems. Due to their pervasiveness, we use the Clos
and multilog networks as canonical examples to illustrate our
analysis technique.

Our main contributions are as follows. First, we formulate
a new problem called DYNAMIC WEIGHTED EDGE COLORING
(DWEC) of graphs, which generalizes the classic DYNAMIC
BIN PACKING problem [23] and the routing problem for
multirate widesense nonblocking Clos networks. Using the
LP-technique, we design an algorithm with competitive ratio
5.6355. We also show that no algorithm can have competitive
ratio better than 4 − O(log n/n). New lower and upper
bounds for the multirate Clos network problem follow trivially,
improving upon a couple of 10-year old bounds. Since BIN
PACKING and its variations are extremely useful in both theory
and practice, we believe that DWEC and our results on it are
of independent interest. Second, we use the LP-technique to
prove a general theorem for the multilog network to be f -cast
nonblocking with respect to the so-called window algorithm.
To the best of our knowledge, this is the first f -cast result
for the multilog design. Many known results are immediate
consequences of our theorem.

The rest of this paper is organized as follows. Section II
fixes notations and terminologies. Section III illustrates the
strength of the LP-duality technique on analyzing several prob-
lems on the Clos networks. The DWEC problem is also defined
and analyzed. Section IV addresses the multilog architectures.
Section V concludes the paper with a few remarks.

II. PRELIMINARIES

Throughout this paper, for any positive integers k, d, let [k]
denote the set {1, . . . , k}, Zd denote the set {0, . . . , d − 1}
which can be thought of as d-ary “symbols”, Zk

d denote the
set of all d-ary strings of length k, |s| the length of any d-ary
string s (e.g., |31| = 2), si..j the substring si · · · sj of a string
s = s1 . . . sl ∈ Zl

d (if i > j then si..j is the empty string).
There are three nonblockingness-degrees of a switching

network: rearrangeably nonblocking (RNB), widesense non-
blocking (WSNB), and strictly nonblocking (SNB). The reader
is referred to [4] for their precise definitions.

A. Switching environments
Consider an N × N switching network, i.e. a switching

network with N inputs and N outputs. In circuit switching,
a request is a pair (a,b) where a is an unused input and b
is an unused output. A route R(a,b) realizes the request if it
does not share any internal link with existing routes.

In the multirate case, each link has a capacity (e.g., band-
width). All inputs and outputs have the same capacity nor-
malized to 1. An input cannot request more than its capacity,
so do outputs. A request is of the form (a,b, w) where a is
an input, b is an output, and w ≤ 1 is the requested rate. If
existing requests have used up to x and y units of a’s and b’s
capacity, respectively, then the new requested rate w can only
be at most min{1 − x, 1 − y}. An internal link cannot carry
requests with total rate more than 1.

B. The 3-stage Clos networks

The Clos network C(n1, r1,m, n2, r2) is a 3-stage in-
terconnection network, where the first stage consists of r1

crossbars of size n1 × m, the last stage has r2 crossbars of
dimension m × n2, and the middle stage has m crossbars
of dimension r1 × r2 (see Figure 1). Each input crossbar

n2

I1

M1

Mm

O1

Ir1 Or2n1

n1 m

m

r1

r1

r2

r2

n2

Fig. 1. The 3-stage Clos network C(n1, r1, m, n2, r2)

Ii (i = 1, . . . , r1) is connected to each middle crossbar Mj

(j = 1, . . . ,m). Similarly, the middle stage and the last stage
are fully connected. When n1 = n2 = n and r1 = r2 = r, the
network is called the symmetric 3-stage Clos network, denoted
by C(n, m, r).

C. The d-ary multilog networks

Let N = dn. We consider the logd(N, 0,m) network, which
denotes the stacking of m copies of the d-ary inverse Banyan
network BY−1(n) with N inputs and N outputs. (See Fig.
2 and 3.) Label the inputs and outputs of BY−1(n) and the
d × d switching elements (SE) of each stage of BY−1(n) as
illustrated in Fig. 2. Specifically, each input u ∈ Zn

d and output
v ∈ Zn

d have the form u = u1 · · ·un, v = v1 · · · vn, where
ui, vi ∈ Zd, ∀i ∈ [n]. Similarly, the d× d SEs in each of the
n stages of BY−1(n) are labeled with d-ary strings of length
n− 1.

For any two d-ary strings u,v ∈ Zl
d, let PRE(u,v) denote

the longest common prefix, and SUF(u,v) denote the longest
common suffix of u and v, respectively. The following propo-
sition is immediate (for more details, see [24], e.g.).

Proposition II.1. Let (a,b) and (u,v) be two unicast re-
quests. Then their corresponding routes R(a,b) and R(u,v)
in a BY−1(n)-plane share at least a common link if and only
if

|SUF(a1..n−1,u1..n−1)|+ |PRE(b1..n−1,v1..n−1)| ≥ n. (1)

III. RESULTS ON THE CLOS NETWORKS

A. A classic example in circuit switching

This example is a classic result by Benes [3]. Consider the
C(n, m, 2) network. The routing algorithm is to reuse a busy
middle switch if possible. For any i, j ∈ {1, 2}, let Mij be the
set of middle switches carrying an Ii, Oj-request. The sets Mij

certainly change over time as requests come and go. However,
it is easy to show by induction that the routing rule ensures

3

000

001

010

011

100

101

110

111

00

11

10

01

00

11

10

01

000

001

010

011

100

101

110

111

00

11

10

01

Fig. 2. The inverse Banyan network BY−1(3)

Plane # 3

000

000 000

000

000

000 000

000

Inverse Banyan Network

Inverse Banyan Network

Inverse Banyan Network

Plane # 1

Plane # 2

Fig. 3. A multi-log network with 3 inverse Banyan planes

|M11 ∪M22| ≤ n and |M12 ∪M21| ≤ n at all times. Without
loss of generality, consider a new request from I1 to O1. If
M22 \M11 6= ∅, then we have a busy switch to reuse. Other-
wise, the number of unavailable middle-switches for this new
request is precisely |M11∪M12∪M21| = |M11|+|M12∪M21|.
Just before the arrival of this new request, the number of
existing requests from I1 or to O1 is at most n − 1, i.e.
|M11 ∪M12| = |M11|+ |M12| ≤ n− 1, and |M11 ∪M21| =
|M11| + |M21| ≤ n − 1. The number of unavailable middle
switches is thus bounded by the optimal value of the following
LP (think of set cardinalities as variables):

max |M11|+ |M12 ∪M21|
s.t. |M11|+ |M12| ≤ n− 1

|M11|+ |M21| ≤ n− 1
|M12|+ |M21| ≤ n

|M12 ∪M21| − |M21| − |M21| ≤ 0

The last inequality is the straightforward union bound. Obvi-
ously, all cardinalities are non-negative. The dual LP is

min (n− 1)(y1 + y2) + ny3

s.t. y1 + y2 ≥ 1
y2 + y3 − y4 ≥ 0
y1 + y3 − y4 ≥ 0

y4 ≥ 1, y1, y2, y3 ≥ 0

Setting y1 = y2 = y3 = 1/2 and y4 = 1 is certainly
feasible with objective value 3n/2 − 1. Hence, the number

of unavailable middle-switches for a new request is at most
b3n/2c − 1, which means m ≥ b3n/2c is sufficient for
C(n, m, 2) to be WSNB. It’s known that m ≥ b3n/2c is
necessary, too.

B. Multirate switching and the DWEC problem

It has been known for more than 12 years that C(n, m, r)
is multirate WSNB if m ≥ 5.75n [10]. This section uses
the LP technique to improve this bound via solving a much
more general problem called DYNAMIC WEIGHTED EDGE
COLORING DWEC.

Definition III.1 (The DWEC problem). Let G = (V,E) be
a fixed simple graph called the base graph. Let G0 = (V, ∅)
be an empty graph with the same vertex set. At time t, either
an arbitrary edge is removed from Gt−1 or a copy of some
edge e ∈ E “arrives” along with a weight we ∈ (0, 1]. Define
Gt = Gt−1∪{e} and note that Gt in general is a multi-graph
as many copies of the same edge may arrive over time. The
arriving edge is to be colored so that, in Gt, the total weight
of same-color edges incident to the same vertex is at most 1.

The objective is to design a coloring algorithm so that
the number of colors used is minimized, compared to an
off-line algorithm which colors edges of Gt subject to the
same constraint. Formally, let OPT(t) denote the number of
colors used by an optimal off-line algorithm on Gt. Let
OPT(t) = maxi≤t OPT(i). For any online coloring algorithm
A, let Ā(t) be the number of colors ever used by A up to time
t. Algorithm A has competitive ratio ρ if, for any sequence
of edge arrivals/departures with arbitrary weights, we always
have Ā(t) ≤ ρ · OPT(t),∀t.

The DYNAMIC BIN PACKING problem is exactly the DWEC
problem when the base graph G = K2, where each color is
a bin. The best competitive ratio for DYNAMIC BINPACKING
is known to be between 2.5 and 2.788 [23]. We will show
that the DWEC’s best competitive ratio is somewhere between
4 and 5.6355.

Theorem III.2. There is an algorithm for DWEC with com-
petitive ratio 5.3655.

Proof: For the sake of presentation clarity, we will prove
a slightly weaker ratio of 5.675, and then indicate how to
obtain the better ratio 5.6355. The two proofs are identical,
but the one we present is cleaner.

At any time t, let Wu(t) denote the total weight of edges
incident to u in Gt, and let du(t) denote the number of edges
of weight > 1/2 incident to u. Let W (t) = maxt maxu Wu(t)
and ∆(t) = maxt maxu du(t). Then, it is easy to see that
dW (t)e ≤ OPT(t) and ∆(t) ≤ OPT(t).

Refer to an edge a type-0, type-1, type-2, or type-3, if its
weight belongs to the interval (1

2 , 1], (2
5 , 1

2], (1
3 , 2

5], (0, 1
3],

respectively. Our coloring algorithm is as follows. Maintain 4
disjoint sets of colors Ci(t), 0 ≤ i ≤ 3. Let x0, x1, x2, x3 be
constants to be determined. For each i = 0..3, we will maintain
the following time-invariant conditions: |Ci(t)| = dxiW (t)e
for 1 ≤ i ≤ 3 and |C0(t)| = dx0∆(t)e.

4

If W (t) or ∆(t) is increased at some time t then we
are allowed to add colors to the Ci(t) to to maintain the
above invariant conditions. Note that W (t) is a non-decreasing
function in t; hence, colors will never be removed from the
Ci(t). The colors in C0(t) are used exclusively for edges of
type-0. The coloring for edges of types i, 1 ≤ i ≤ 3 is done
as follows. If a type-i edge arrives at time t, find a color in
Ci(t) to color it. If Ci(t) cannot accommodate this edge, try
Ci+1(t), and so on until C3(t).

We next show that if the constants xi are feasible solutions
to some certain LP, then it is always possible to find a color
for an arriving edge.

Suppose a type-0 edge e = (u, v) arrives at time t. If we
cannot find a color in C0(t) for e, then |C0(t)| ≤ du(t− 1)+
dv(t − 1) = (du(t) − 1) + (dv(t) − 1) < 2∆(t). Hence, as
long as x0 ≥ 2 we can color e.

Next, suppose e = (u, v) of type 1 is arriving at time t
and we cannot find a color in C1(t) ∪ C2(t) ∪ C3(t) to color
e. For a color c ∈ C1(t) to be unavailable for e, there must
be at least two type-1 color-c edges incident to either u or v.
Thus, the total type-1 weight at u and v is at least 4

5 |C1(t)| =
4
5dx1W (t)e. Similarly, for each color c in C2(t), the total c-
weight incident to u and v must be > 1/2, which means this
color c “carries” either at least two type-1 edges, or one type-1
edge and one type 2 edge, or at least two type-2 edges. Thus,
the total color-c weight incident to u and v must be at least
2
3dx2W (t)e. Lastly, for each color c in C3(t), the total color-
c weight incident to u and v must be > 1/2dx3W (t)e. Note
that the total weight at u and v is < 2W (t). Consequently,
we will be able to find a color for e if

4
5
|C1(t)|+

2
3
|C2(t)|+

1
2
|C3(t)| ≥ 2W (t),

which would hold if 4
5x1 + 2

3x2 + 1
2x3 ≥ 2. Similarly, a newly

arriving type-2 edge is colorable if 2
3x2 + 3

5x3 ≥ 2, and a new
type-3 edge is colorable if 2

3x3 ≥ 2.
Consequently, our coloring algorithm works if the xi are

feasible for the following LP:

min x0 +x1 +x2 +x3

s.t. x0 ≥ 2
4
5x1 + 2

3x2 + 1
2x3 ≥ 2

2
3x2 + 3

5x3 ≥ 2
2
3x3 ≥ 2

x0, x1, x2, x3 ≥ 0.

The solution x0 = 2, x1 = 3/8, x2 = 3/10, x3 = 3 is certainly
feasible. The total number of colors used is

dx0∆(t)e+
3∑

i=1

dxiW (t)e

≤ (x0 + x1 + x2 + x3)OPT(t) + 4 = 5.675OPT(t) + 4.

As is customary in online/dynamic algorithm analysis, we
ignore the constant term of 4, as we let OPT(t) →∞.

To prove the better ratio 5.6355, we divide
the rates into 5 types belonging to the intervals

(1/2, 1], (2/5, 1/2], (1/3, 2/5], (11/43, 1/3], and (0, 11/43].
The proof is pretty much identical.

Corollary III.3. The Clos network C(n, m, r) is multirate
WSNB if m ≥ 5.6355n.

Proof: Consider the multirate WSNB problem on the Clos
network C(n, m, r). The base graph is the complete bipartite
graph G = I ×O, where I is the set of input switches and B
is the set of output switches. When a new request (a,b) with
rate w arrives at time t, add an edge e = (I, O) to Gt−1 where
I is the input switch that a belongs and O is the output switch
that b belongs. The weight we of the new edge is simply w.
Think of each middle-stage switch as a color. Obviously, the
maximum number of colors ever used by an algorithm A is
also the number of middle switches needed for C(n, m, r) to
be non-blocking.

In the above algorithm, ∆(t) ≤ n because the number
of requests with rate > 1/2 coming out of the same input
switch or into the same output switch is at most n (one per
input/output). Moreover, W (t) ≤ n because the total rate of
requests from/to and input/output is at most n. Hence, the
number of middle-stage switches (i.e. colors) needed is at most
5.6355n + 4.

Remark III.4. Our strategy can also give a better sufficient
condition than the best known in [10] for the case when there’s
internal speed up in the Clos network. However, the keep the
exposition clean and thus easier to follow, we refrain from
stating the most general result we can prove.

Theorem III.5. For every large enough n ≥ 1, there exists
a base graph G such that every algorithm for DWEC has
competitive ratio at least 4 − O(log n/n). This lower bound
holds even if there are only two distinct edge weights.

Proof: We present an adversarial strategy that forces any
algorithm to use at least 4n − 2dlog ne − 8 colors while
the optimal solution uses at most n colors. For the ease of
exposition, we will not specify the base graph G upfront but
it can be deduced from the adversarial strategy below. Further,
G = (V,E) will be a bipartite graph. For the rest of the proof
fix an arbitrary algorithm A. For simplicity, we will assume
that n is a power of two.

The proof has two phases. In the first phase there are only
edges of weight 1/n (light edges), and if necessary in the
second phase we introduce edges of weight 1 (heavy edges).
Let ∆l(t) be the maximum light degree at time t and ∆h(t)
be the maximum heavy degree at time t. Since the base graph
is bipartite, by König theorem the heavy edges can be colored
with ∆h(t) colors. The light edges can be colored with ∆l(t)
colors so that edges incident to the same vertex are colored
differently. However, since light edges have a weight of 1/n,
we can combine n light colors into one. Hence, OPT(t) ≤
∆h(t)+d∆l(t)/ne. This fact is implicit throughout the proof.

First, we claim that there exists a sequence of light edge
arrivals/departures and a time t such that OPT(t) ≤ n and ei-
ther (i) A(t) ≥ 4n or (ii) Gt contains the following subgraph:

5

there exists m pairs of distinct vertices (u1, v1), . . . , (um, vm)
(m to be determined) such that for every 1 ≤ i ≤ m, every
edge incident to ui (vi resp.) is assigned a unique color by
A from the same set Su (Sv resp.) where Sv ∩ Su = ∅ and
|Su| = |Sv| = n− log n− 1. Assuming this claim, we finish
the rest of the proof.

If (i) is true then we are done. So now assume that (ii) holds
and we move onto the second phase which has a sequence of
heavy edge arrivals and departures such that at some time
t′ > t, OPT(t′) ≤ n but A(t′) ≥ 4n − 2 log n − 8. For every
1 ≤ i ≤ m, pick a “fresh” vertex wi ∈ V such that none of
the previous edges were incident on wi and add n/2−3 copies
of the edge (ui, wi) and n/2− 3 copies of the edge (vi, wi).
Let t′′ be the time when the last such edge arrives for i = m.
Note that by our choice of edge arrivals, we will maintain the
invariant that OPT(t′′) ≤ n. Further, each of these new edges
cannot use any color from Su ∪ Sv .

Now if A(t′′) ≥ 4n, then we are done. Otherwise,
we claim that there exists at least n/2 distinct pairs
(ui1 , vi1), . . . , (uin/2 , vin/2) (ij ∈ [m],∀j ∈ [n/2]) such that
the edges incident on any pair (uij , vij) contain the same set T
of 3n−2 log n−8 colors. Let’s finish the proof before proving
the claim. Let w∗ ∈ V be such that no edge seen till now has
been incident on it. Now the adversary adds one copy each of
the edges (uij , w

∗) and (vij , w
∗) for every 1 ≤ j ≤ n/2. Let

t′ be the time when the last such edge is added for j = n/2.
Note that by construction, OPT(t′) ≤ n and n new edges are
added. Further, each of these n edges have to be assigned a
brand new color. Thus, we have A(t′) ≥ 4n− 2 log n− 8.

Next, we argue the existence of the pairs
(ui1 , vi1), . . . (uin/2 , vin/2). Recall A(t′′) < 4n. Further,
every pair (ui, vi) (1 ≤ i ≤ m) is assigned a set of color Ti

of size exactly 3n− 2 log n− 8. Now the number of possible
distinct Ti’s is upper bounded by

(
4n

3n−2 log n−8

)
< 26n

(for large enough n). Thus, the existence of the pairs
(ui1 , vi1), . . . , (uin/2 , vin/2) will follow by the pigeon-hole
principle if we choose m = n · 26n−1.

To complete the proof, we now show the existence of
the pairs (u1, v1), . . . , (um, vm) with the required property.
Towards this end we give an inductive proof to show that
for every 1 ≤ ` ≤ log n, we have m` pairs of vertices
(u(`)

1 , v
(`)
1), . . . , (u(`)

m` , v
(`)
m`) at the end of time t` such that

(i) Either A(t`) uses at least 4n colors; or
(ii) There exists disjoint sets Cu

` and Cv
` of colors with the

following properties for every 1 ≤ j ≤ m`:
(a) Every edge incident on u

(`)
j (v(`)

j resp.) uses a color
from Cu

` (Cv
` resp.).

(b) Every color c ∈ Cu
` ∪ Cv

` is used n`
c times for the

pair (u(`)
j , v

(`)
j). That is, every u

(`)
(·) (and every v

(`)
(·))

has the same “spectrum.”
(c) Cu

`−1 ⊂ Cu
` and Cv

`−1 ⊂ Cv
` . Further, for w ∈

{u, v}:

∑̀
k=1

n

2k
− ` ≤ 1

n
·

∑
c∈Cw

`

n`
c ≤

∑̀
k=1

n

2k
. (2)

Finally, the total weight of edges at u
(`)
j and v

(`)
j

are at most n.
As we will see later m` < m`+1 and we will set mlog n =

m. If for any 1 ≤ ` ≤ log n, (i) is satisfied then we
set t = t` and stop. Otherwise, we output the remaining
m pairs (u(log n)

1 , v
(log n)
1), . . . (u(log n)

m , v
(log n)
m). By property

(ii)(c), we have |Cu
log n|, |Cv

log n| = n − log n − 1 (the sizes
could be larger in which case we drop the “extra” colors). For
every color c ∈ Su

` ∪ Sv
` retain exactly one edge of color c.

Thus, the m pairs have the required property.
We are done except for demonstrating a sequence of light

edge arrivals and departures such that the adversary can
maintain the required m` pairs. For the rest of the proof, we
will assume that property (i) is never satisfied (as otherwise
we are done).

We begin with the base case of ` = 1. For a parameter
N (to be determined soon), let {x1, . . . , x2N} ⊂ V and
{y1, . . . , y2N} ⊂ V be disjoint subsets of vertices. The
adversary adds n2 copies of the edges (xk, yk) (for every
1 ≤ k ≤ 2N), each with weight 1/n. Now if we pick
N = n4n · m1, then by the pigeonhole principle there exists
2m1 pairs (xi1 , yi1), . . . , (xi2m1

, yi2m1
) such that they have

the same “spectrum” (i.e. all the pairs have the same color set
C1 and each color is used the same number of times). It is
easy to see that C1 can be divided into two disjoint subsets
Cu

1 and Cv
1 such that every pair (xij , yij) (for 1 ≤ j ≤ 2m1),

the number of edges colored with a color in Cu
1 or Cv

1 is
in the range (n2/2 − n, n2/2]. For every odd (even resp.) j,
throw away edges (xij

, yij
) that are colored with a color from

Cv
1 (Cu

1 resp.) and define u
(1)
(j+1)/2 = xij (v(1)

j/2 = yij
resp.).

It can be verified that the pairs constructed above satisfy the
properties (ii)(a)-(ii)(c).

The argument for the inductive step is similar to the
` = 1 case. Define m` = 2n4nm`+1. Given m` pairs
(u(`)

1 , v
(`)
1), . . . , (u(`)

m` , v
(`)
m`), add n2/2` edges between the u

vertices of the odd pair and the v vertices of the (immediate
next) even pair. Using similar argument as with the ` = 1 on
these new edges, we can argue the existence of the required
pairs (u(`+1)

j , v
(`+1)
j) for 1 ≤ j ≤ m`+1.

A similar proof gives us the following improved bound. The
previous best known bound was 3n− 3 [25].

Corollary III.6. The Clos network C(n, m, r) is not multirate
WSNB if m < 4n−O(log n/n) and r is sufficiently large.

IV. RESULTS ON THE d-ARY MULTILOG NETWORKS

Let f, t be a given integers with 0 ≤ t ≤ n, and
1 ≤ f ≤ N = dn. In this subsection we analyze f -cast
WSNB logd(N, 0,m) networks under the window algorithm
with window size dt. The algorithm was proposed and ana-
lyzed for one window size dbn/2c in [26], and later analyzed
more carefully for varying window sizes in [27]. Both papers
considered the broadcast case. We will derive a more general
theorem for the f -cast case.

• The Window Algorithm with window size dt: Given
any integer t, 0 ≤ t ≤ n, divide the outputs into

6

“windows” of size dt each. Each window consists of all
outputs sharing a prefix of length n−t, for a total of dn−t

windows. Denote the windows as Ww, 0 ≤ w ≤ dn−t−1.
Given a new multicast request (a, B), where a is an input
and B is a subset of outputs, the routing rule is, for
every 0 ≤ w ≤ dn−t − 1, the subrequest (a, B ∩Ww) is
routed entirely on one single BY−1(n) plane. (Different
sub-requests can be routed through the same or different
BY−1(n)-planes.)

Remark IV.1. there is a subtle point about the window
algorithm due to which the original authors in [26] thought
their multilog network was SNB instead of WSNB. Basically,
for some specific values of the parameters the algorithm is no
algorithm at all. In those cases, any sufficient condition for
the network to be nonblocking under the window algorithm
is in fact an SNB condition, not a WSNB condition. Obvious
examples include the unicast (f = 1) case and the t = 0 case.
Yet another example is when t = n. Here, the routing rule is
for each request to be routed entirely on some plane. If the
1×m-SE stage of the multilog network has fanout capability,
then the rule does restrict how we route requests, and thus
we indeed have a WSNB situation. However, if the 1 × m-
SE stage is implemented with 1×m-demultiplexors, then we
have to route each request entirely on some plane. Thus, any
sufficient condition is an SNB condition.

A. Setting up the linear program and its dual

Let (a, B) be an arbitrary f -cast request to be routed using
the window algorithm with window size dt. Following the
window algorithm, due to symmetry without loss of generality
we can assume that B = {b(1), . . . ,b(k)} where all the
outputs b(l) (l ∈ [k]) belong to the same window W0, and
k ≤ min{f, dt}. The b(l) thus share a common prefix of
length n− t.

Define

Ai := {u ∈ Zn
d − {a} | SUF(u1..n−1,a1..n−1) = i} ,

and

Bj :=
{
v ∈ Zn

d −B | ∃l ∈ [k], PRE(v1..n−1,b
(l)
1..n−1) = j

}
.

Note that |Ai| = dn−i − dn−1−i, for all 0 ≤ i ≤ n − 1, and
|Bj | = dn−j − dn−1−j for all 0 ≤ j ≤ n − t − 1. Note that⋃n−1

j=n−t Bj ⊆ W0. Define A =
⋃n−1

i=0 Ai, B =
⋃n−t−1

j=0 Bj .
For every input u ∈ A, let i(u) denote the index i such that
u ∈ Ai.

For each j ≤ n− t−1, Bj is the disjoint union of precisely
dn−j−t−dn−1−j−t windows of size dt each. In fact, it is easy
to see that

⋃n−t−1
j=0 Bj =

⋃dn−t−1
w=1 Ww, and

⋃n−1
j=n−t Bj ⊆

W0. For every w ∈ [dn−t], let j(w) be the index j such that
Ww ⊆ Bj .

Lemma IV.2. For each input u ∈ A and each w ∈
{0, . . . , dn−t−1} such that i(u)+j(w) ≥ n, define a variable
xu,w. Also, for each input u ∈ A and each output v ∈ W0−B
where there exists a j ≥ n − t such that v ∈ Bj and

i(u) + j ≥ n, define a variable xu,v. Then, the number of
planes blocking (a, B) is upperbounded by the optimal value
of the following LP:

max
∑
u,w

xu,w +
∑
u,v

xu,v

s.t.
∑

u xu,w ≤ dt w ∈ {0, . . . , dn−t − 1}
xu,w ≤ 1 ∀u, w∑
v xu,v ≤ 1 ∀u ∈ A∑
u xu,v ≤ 1 ∀v ∈ W0 −B∑

w xu,w +
∑

v xu,v ≤ f ∀u ∈ A
xu,w, xu,v ≥ 0 ∀u, w,v

(3)
Obviously, the sums and the constraints only range over values
for which the variables are defined.

Proof: Suppose the network logd(N, 0,m) already had
some routes established. Consider a BY−1(n)-plane which
blocks the new request (a, B). There must be one route
R(u,v) on this plane for which R(u,v) and R(a,b(l)) share
a link, for some l ∈ [k]. Note that the branch R(u,v) could
be part of a multicast tree from input u, but we only need
an arbitrary blocking branch (u,v) of this tree. Assemble one
blocking branch (u,v) per blocking plane into a set S. Then,
the number of blocking planes is |S|.

Fact 1: if (u,v) and (u,v′) are both in S then v and v′

must belong to different windows; because, if they belong to
the same window, the window algorithm would have routed
them through the same plane, and S only contains one branch
per blocking plane.

Fact 2: each output v can only appear once in S, because
each output can only be part of at most one existing request.

Fact 3: if (u,v) ∈ S, then (u,v) ∈ Ai × Bj for some
i + j ≥ n, thanks to Proposition II.1.

Straightforwardly, we will show that S defines a feasible
solution to the LP with objective value precisely |S|. Set
xu,w = 1 if there is some (u,v) ∈ S such that v ∈ Ww; and
xu,v = 1 if there is some (u,v) ∈ S such that v ∈ W0 −B.
All other variables are set to 0. Due to Fact 3, the procedure
does not set value for an undefined variable. Certainly |S| is
equal to the objective value of this solution.

We next verify that the solution satisfies all the constraints.
The first constraint expresses the fact that each output in a
window Ww of size dt only appears at most once in S (Fact
2). The second and third constraints are a restatement of Fact
1. The forth constraint says that each output v ∈ W0 − B
appear at most once in S (Fact 2 again). The fifth constraint
says that each input can only be part of at most f members
of S, due to the f -cast nature of the network.

The dual LP can be written as follows.

min
∑
w

dtαw +
∑
u,w

βu,w +
∑
u

γu +
∑
v

δv +
∑
u

fεu

s.t. αw + βu,w + εu ≥ 1, xu,w defined (DC-1)
γu + δv + εu ≥ 1, xu,v defined (DC-2)

αw, βu,w, γu, δv, εu ≥ 0 ∀u,v, w
(4)

7

Note that the dual-constraints only exist over all u,v, w for
which xu,w and xu,v are defined.

B. Specifying a family of dual-feasible solutions

To illustrate the technique, let us first derive a known result
“for free.”

Corollary IV.3 (Theorem III.3 in [24]). Suppose the demux-
stage of the logd(N, 0,m) network stage does not have fanout
capability, then it is SNB iff m ≥ f

(
dd

n−r−2
2 e − 1

)
+

dn−dn−r
2 e, where r = blogd fc.

Proof: Routing using the window algorithm with window
size t = n is the same as routing arbitrarily in the network
when the demux stage does not have fanout capability. That is
why any sufficient condition for the window algorithm to work
is an SNB (rather than a WSNB) condition. Consider a solu-
tion to the dual LP as follows. Define q =

⌈
n−r

2

⌉
. Set γu = 1

for all u with i(u) ≥ q and δv = 1 for all v ∈
⋃n−1

j=n−q+1 Bj .
All other dual variables are 0. The solution is dual feasible with
objective value f

(
dd

n−r−2
2 e − 1

)
+dn−dn−r

2 e−1. Hence, one
more plane is sufficient to route the new (arbitrary) request.

The above corollary solves the t = n case. We will consider
0 ≤ t < n henceforth. We next specify a family of dual-
feasible solution to the dual-LP (4). The main remaining task
will be simple calculus as we pick the best dual-feasible
solution depending on the parameters f, n, d, t of the problem.

The family of dual-feasible solution is specified with two
integral parameters where 0 ≤ p ≤ n−t−1 and n−t ≤ q ≤ n.
The parameter p is used to set the variables εu, αw and βu,w,
and the parameter q is used to set the variables γu and δv. As
we set the variables, we will also verify the feasibility of the
constraints (DC-1) and (DC-2), and the contributions of those
variables to the final objective value.
Specifying the εu variables. Set εu = 1 if i(u) ≥ n− p and
0 otherwise. The contribution of the εu to the dual objective
is ∑

u

fεu =
n−1∑

i=n−p

f
∑

u:i(u)=i

1 =
n−1∑

i=n−p

f |Ai| = f(dp − 1).

Specifying the αw and βu,w variables. Next, we define the
αw and βu,w. They are set differently based on three cases as
follows.

Case 1. If t ≥
⌊

n
2

⌋
, then set βu,w = 1 whenever p + 1 ≤

j(w) ≤ n − t − 1, and set all other αw and βu,w to be 0.
It can be verified straightforwardly that all constraints (DC-1)
are satisfied. Their contribution to the dual objective value is∑

u,w
p<j(w)<n−t

βu,w = (n−t−1−p)(dn−t−dn−t−1)−dn−t−1+dp.

Case 2. When p + 1 ≤ t ≤
⌊

n
2

⌋
− 1, set βu,w = 1 for

p + 1 ≤ j(w) ≤ t, αw = 1 for t + 1 ≤ j(w) ≤ n− t− 1, and

all other αw and βu,w to be 0. All constraints (DC-1) are thus
satisfied. The αw and βu,w contribution to the objective is

n−t−1∑
j=t+1

(dn−j − dn−j−1) +
∑
u,w

p+1≤j(w)≤t

βu,w

= (t− p)(dn−t − dn−t−1) + dn+p−2t−1 − dt.

Case 3. When t ≤ p (which is ≤ n − t − 1), set αw = 1
for p + 1 ≤ j(w) ≤ n− t− 1 and all the other αw and βu,w

to be zero. Again, the feasibility of the constraints (DC-1) is
easy to verify. The contribution to the objective value is

n−t−1∑
j=p+1

(dn−j − dn−j−1) = dn−p−1 − dt.

Specifying the γu and δv variables. When q = n − t, set
βv = 1 for all v ∈

⋃n−1
j=n−t Bj and all γu = 0. The dual-

objective contribution in this case is∑
v∈

Sn−1
j=n−t Bj

δv = |
n−1⋃

j=n−t

Bj | = dt − k.

When n− t− 1 ≤ q ≤ n, define δv = 1 for all v ∈
⋃n−1

j=q Bj ,
γu = 1 for all u such that n− q + 1 ≤ i(u) ≤ n− p− 1, and
all other δv and γu are set to be zero. Note that∑

v∈
Sn−1

j=q Bj

δv =

∣∣∣∣∣∣
n−1⋃
j=q

Bj

∣∣∣∣∣∣ ≤ min{dt − k, k(dn−q − 1)}.

To see the last inequality, note that
∣∣∣⋃n−1

j=q Bj

∣∣∣ counts the
number of strings in W0−B which share a prefix of length at
least q with some string b(l), l ∈ [k]. As |W0| = dt, the upper-
bound dt − k for the number of such strings is trivial. On the
other hand, the number of strings sharing a prefix of length at
least q with a fixed string b(l) is at most dn−q−1 (discounting
b(l) itself). Hence, we get the upper-bound k(dn−q − 1) via a
simple application of the union bound.

Consequently, the total contribution of the γu and δv to the
dual-objective is at most

n−p−1∑
i=n−q+1

|Ai|+ min{dt − k, k(dn−q − 1)}

= dq−1 − dp + min{dt − k, k(dn−q − 1)}.

The feasibility of all the constraints (DC-2) are easy to verify.
Define the “cost” c(k, p, q) to be the total contribution of
all variables to the dual-objective value. For convenience, we
summarize the values of c(k, p, q) in Figure 4.

Theorem IV.4. The above family of solutions is feasible
for the dual LP (4) with objective value equal to c(k, p, q).
Consequently, for the network logd(N, 0,m) to be WSNB
under the window algorithm with window size dt, it is sufficient
that

m ≥ 1 + max
1≤k≤min(f,dt)

min
p,q

c(k, p, q). (5)

8

The objective value c(k, p, q)

For t ≥
¨

n
2

˝
and q = n− t,

c(k, p, q) = f(dp − 1) + (n− t− 1− p)(dn−t − dn−t−1)− dn−t−1 + dp + dt − k.

For t ≥
¨

n
2

˝
and q > n− t,

c(k, p, q) = f(dp − 1) + (n− t− 1− p)(dn−t − dn−t−1)− dn−t−1 + dq−1 + min{dt − k, k(dn−q − 1)}.

For p + 1 ≤ t ≤
¨

n
2

˝
− 1 and q = n− t

c(k, p, q) = f(dp − 1) + (t− p)(dn−t − dn−t−1) + dn+p−2t−1 − k.

For p + 1 ≤ t ≤
¨

n
2

˝
− 1 and q > n− t

c(k, p, q) = f(dp − 1) + (t− p)(dn−t − dn−t−1) + dn+p−2t−1 − dt + dq−1 − dp + min{dt − k, k(dn−q − 1)}.

For t ≤ p and q = n− t,
c(k, p, q) = f(dp − 1) + dn−p−1 − k.

For t ≤ p and q > n− t,

c(k, p, q) = f(dp − 1) + dn−p−1 − dt + dq−1 − dp + min{dt − k, k(dn−q − 1)}.

Fig. 4. The dual objective value of the family of dual-feasible solutions.

C. Selecting the best dual-feasible solution

It is a very straightforward though somewhat analytically
tedious task to derive the best possible sufficient condition
using Theorem IV.4. The idea is, for a given k ≤ min(f, dt),
we first choose p = pk, q = qk so that c(k, pk, qk) is as
small as possible. Then, derive an upperbound C(t, f) ≥
maxk c(k, pk, qk). The sufficient condition is m ≥ C + 1.

Theorem IV.5. The logd(N, 0,m) network is nonblocking
under the window algorithm with window size dt if m ≥
1 + C(t, f) where C(t, f) is defined in Figure 5.

Proof: Consider 5 cases in the definition of C(t, f). Due
to space limitation, we will only specify for each k how pk and
qk are chosen. The straightforward calculus task of checking
that c(k, pk, qk) ≤ C(t, f) is omitted.
Case 1: t <

⌊
n
2

⌋
, r ≤ n − 2t − 1. For any k, choose pk =⌈

n−r
2 − 1

⌉
and qk = n− t.

Case 2: t <
⌊

n
2

⌋
, r ≥ n − 2t. For any k, set pk = 0 and

qk = n− t.
Case 3: t ≥

⌊
n
2

⌋
, r ≥ n − t. This case is a little trickier

analytically. Define x = blogd kc. We set pk and qk differ-
ently depending on how large x is, so that the inequality
c(k, pk, qk) ≤ C(t, f) always holds.

If 0 ≤ x ≤ 2t−n− 2, which can only hold when t ≥ n+1
2 ,

then set qk =
⌊

n+x
2

⌋
+ 1 and pk = 0. If x = 2t− n− 1 and

k ≤ dx+1 − dx, then set qk =
⌊

n+x
2

⌋
+ 1 = t and pk = 0. If

x = 2t−n−1 and k ≥ dx+1−dx +1, then set set qk = n− t
and and pk = 0. Finally, when x ≥ 2t − n, we again set
qk = n− t and pk = 0.
Case 4: t ≥

⌊
n
2

⌋
, r ≤ min(2t − n − 2, n − t − 1). Set pk =

n− t− r − 1 and qk =
⌊

n+x
2

⌋
+ 1.

Case 5: t ≥
⌊

n
2

⌋
, 2t − n − 2 < r ≤ n − t − 1. Set pk =

n− t− r − 1 and qk =
⌊

n+x
2

⌋
+ 1.

D. Some quick consequences of Theorem IV.5

All we have to do is to plug in the parameters t and f and
compute 1 + C(t, f) to get the following results.

Corollary IV.6 (Theorem 4 in [28]). Let r = blogd fc. The
network logd(N, 0,m) is f -cast strictly non-blocking if

m ≥ f
(
dd

n−r
2 e−1 − 1

)
+ dn−dn−r

2 e.

Proof: This corresponds to the t = 0 case of the window
algorithm, which becomes an SNB condition as noted earlier.

C(0, f) = f
(
dd

n−r
2 e−1 − 1

)
+ dn−dn−r

2 e − 1.

The following corollary took about 6 pages in [27] to be
proved (in two theorems), using complicated combinatorial
reasoning. The result is on the general multicast case, without
the fanout restriction f . In our setting, we can simply set f =
N = dn. In fact, even though the corollary states exactly the
same results as in [27], the statement is quite a bit simpler.

Corollary IV.7 (Theorems 1 and 2 in [27]). The d-ary multi-
log network logd(N, 0,m) is WSNB with respect to the window
algorithm with window size dt if m is at least

dn−2t−1 + tdn−t−1(d− 1), when t ≤
⌊

n
2

⌋
− 1,

dn−t−1[(d− 1)(n− t− 1)− 1] + dt − d2t−n−1(d− 1) + 1,

when t ≥
⌊

n
2

⌋
.

Proof: Note that r = n and C(t, dn) = dn−2t−1 +
tdn−t−1(d − 1) − 1 when t ≤

⌊
n
2

⌋
− 1, and C(t, dn) =

dn−t−1[(d−1)(n−t−1)−1]+dt−d2t−n−1(d−1) otherwise.

9

The upper-bound C(t, f)

To shorten the notations, let r = blogd fc.

C(t, f) =

8>>>>>><>>>>>>:

f
“
dd

n−r
2 e−1 − 1

”
+ dn−dn−r

2 e − 1 t <
¨

n
2

˝
, r ≤ n− 2t− 1

t(d− 1)dn−t−1 + dn−2t−1 − 1 t <
¨

n
2

˝
, r ≥ n− 2t

[(n− t− 1)(d− 1)− 1]dn−t−1 + dt − (d− 1)d2t−n−1 t ≥
¨

n
2

˝
, r ≥ n− t

f
`
dn−t−r−1 − 1

´
+ [r(d− 1)− 1]dn−t−1 + db

n+r
2 c + f

“
dn−bn+r

2 c−1 − 1
”

t ≥
¨

n
2

˝
, r ≤ min(2t− n− 2, n− t− 1)

f
`
dn−t−r−1 − 1

´
+ [r(d− 1)− 1]dn−t−1 + dt − (d− 1)d2t−n−1 t ≥

¨
n
2

˝
, 2t− n− 2 < r ≤ n− t− 1

Fig. 5. We show in Theorem IV.5 that C(t, f) ≥ maxk minp,q c(k, p, q)

V. CONCLUDING REMARKS

In the photonic-switching case, a common requirement is
that of crosstalk-free as crosstalk between interfering channels
is one of the major obstacles in designing cost-effective
photonic-switches [20], [29]. We can prove the crosstalk free
version of Theorem IV.5 using exactly the same method.
We will not state the theorem due to space limitation. Just
like in the case of IV.5, many known results are immediate
consequences of the crosstalk free version.

REFERENCES

[1] C. Clos, “A study of non-blocking switching networks,” Bell System
Tech. J., vol. 32, pp. 406–424, 1953.

[2] R. R. Goke and G. J. Lipovski, “Banyan networks for partitioning
multiprocessor systems,” in Proceedings of the 1st Annual Symposium
on Computer Architecture (ISCA’73), Dec 1973, pp. 21–28.

[3] V. E. Beneš, Mathematical theory of connecting networks and telephone
traffic. New York: Academic Press, 1965, mathematics in Science and
Engineering, Vol. 17.

[4] F. K. Hwang, The mathematical theory of nonblocking switching net-
works. River Edge, NJ: World Scientific Publishing Co. Inc., 1998.

[5] J. S. Turner and R. Melen, “Multirate Clos networks,” Communications
Magazine, IEEE, vol. 41, no. 10, pp. 38–44, 2003.

[6] S.-P. Chung and K. W. Ross, “On nonblocking multirate interconnection
networks,” SIAM J. Comput., vol. 20, no. 4, pp. 726–736, 1991.

[7] S. C. Liew, M.-H. Ng, and C. W. Chan, “Blocking and nonblocking
multirate clos switching networks.” IEEE/ACM Trans. Netw., vol. 6,
no. 3, pp. 307–318, 1998.

[8] H. Q. Ngo and V. H. Vu, “Multirate rearrangeable Clos networks and
a generalized bipartite graph edge coloring problem,” SIAM Journal on
Computing, vol. 32, no. 4, pp. 1040–1049, 2003.

[9] H. Q. Ngo, “A new routing algorithm for multirate rearrangeable Clos
networks,” Theoret. Comput. Sci., vol. 290, no. 3, pp. 2157–2167, 2003.

[10] B. Gao and F. K. Hwang, “Wide-sense nonblocking for multirate 3-stage
Clos networks,” Theoret. Comput. Sci., vol. 182, no. 1-2, pp. 171–182,
1997.

[11] H. Q. Ngo, D. Pan, and C. Qiao, “Constructions and analyses of
nonblocking wdm switches based on arrayed waveguide grating and
limited wavelength conversion,” IEEE/ACM Transactions on Network-
ing, vol. 14, no. 1, pp. 205–217, 2006.

[12] G. Wilfong, B. Mikkelsen, C. Doerr, and M. Zirngibl, “WDM cross-
connect architectures with reduced complexity,” Journal of Lightwave
Technology, vol. 17, no. 10, pp. 1732–1741, Oct 1999.

[13] P. E. Haxell, A. Rasala, G. T. Wilfong, and P. Winkler, “Wide-sense
nonblocking wdm cross-connects,” in Algorithms—ESA ’03 (Rome,
Italy), ser. Lecture Notes in Comput. Sci. Berlin: Springer, 2002, vol.
2461, pp. 538–549.

[14] A. Rasala and G. Wilfong, “Strictly non-blocking WDM cross-
connects,” in Proceedings of the Eleventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’2000, San Francisco, CA). New
York: ACM, 2000, pp. 606–615.

[15] ——, “Strictly non-blocking WDM cross-connects for heterogeneous
networks,” in Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing (STOC’2000, Portland, OR). New York: ACM,
2000, pp. 513–524.

[16] J. Duato, S. Yalamanchill, and L. Ni, Interconnection Networks. Wash-
ington: IEEE Computer Society, 1997.

[17] C.-T. Lea, “Muti-log2 n networks and their applications in high speed
electronic and photonic switching systems,” IEEE Transactions on
Communications, vol. 38, no. 10, pp. 1740–1749, 1990.

[18] M. M. Vaez and C.-T. Lea, “Strictly nonblocking directional-coupler-
based switching networks under crosstalk constraint,” IEEE Trans.
Comm., vol. 48, no. 2, pp. 316–323, Feb 2000.

[19] D.-J. Shyy and C.-T. Lea, “log2(n, m, p) strictly nonblocking net-
works,” IEEE Transactions on Communications, vol. 39, no. 10, pp.
1502–1510, 1991.

[20] G. Maier and A. Pattavina, “Design of photonic rearrangeable networks
with zero first-order switching-element-crosstalk,” IEEE Trans. Comm.,
vol. 49, no. 7, pp. 1248–1279, Jul 2001.

[21] C.-T. Lea and D.-J. Shyy, “Tradeoff of horizontal decomposition versus
vertical stacking in rearrangeable nonblocking networks,” IEEE Trans-
actions on Communications, vol. 39, pp. 899–904, 1991.

[22] H. Q. Ngo, Y. Wang, and A. Le, “A linear programming duality approach
to analyzing strictly nonblocking d-ary multilog networks under general
crosstalk constraints,” in Computing and combinatorics, ser. Lecture
Notes in Comput. Sci. Berlin: Springer, 2008, vol. 5092, pp. 510–
520.

[23] E. G. Coffman, M. R. Garey, and D. S. Johnson, “Dynamic bin packing,”
SIAM J. Comput., vol. 12, no. 2, pp. 227–258, 1983.

[24] Y. Wang, H. Q. Ngo, and X. Jiang, “Strictly nonblocking f -cast
d-ary multilog networks under fanout and crosstalk constraints,” in
Proceedings of the 2008 International Conference on Communications
(ICC). Bejing, China: IEEE, 2008.

[25] K.-H. Tsai, D.-W. Wang, and F. Hwang, “Lower bounds for wide-sense
nonblocking Clos network,” Theoret. Comput. Sci., vol. 261, no. 2, pp.
323–328, 2001, computing and combinatorics (Taipei, 1998).

[26] Y. Tscha and K.-H. Lee, “Yet another result on multi-log2 n networks,”
IEEE Transactions on Communications, vol. 47, no. 9, pp. 1425–1431,
Sep 1999.

[27] G. Danilewicz, “Wide-sense nonblocking logd(n, 0, p) multicast switch-
ing networks,” IEEE Transactions on Communications, vol. 55, no. 11,
pp. 2193–2200, 2007.

[28] F. K. Hwang, Y. Wang, and J. Tan, “Strictly nonblocking f-cast
logd(n, m, p) networks,” IEEE Transactions on Communications,
vol. 55, no. 5, pp. 981–986, May 2007.

[29] M. Vaez and C.-T. Lea, “Wide-sense nonblocking Banyan-type switching
systems based on directional couplers,” IEEE J. Select. Areas Commun.,
vol. 16, no. 7, pp. 1327–1332, Sep 1998.

