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Abstract

We consider the following simple algorithm for feedback
arc set problem in weighted tournaments — order the
vertices by their weighted indegrees. We show that this
algorithm has an approximation guarantee of 5 if the
weights satisfy probability constraints (for any pair of
vertices u and v, wuv + wvu = 1). Special cases of
feedback arc set problem in such weighted tournaments
include feedback arc set problem in unweighted tourna-
ments and rank aggregation. Finally, for any constant
ε > 0, we exhibit an infinite family of (unweighted)
tournaments for which the above algorithm (irrespec-
tive of how ties are broken) has an approximation ratio
of 5− ε.

1 Introduction

Consider a sports tournament where all n players play
each other and after all the

(
n
2

)
games are completed,

one would like to rank the players with as few incon-
sistencies as possible. By an inconsistency we mean
a higher ranked player actually lost to a lower ranked
player. A natural way to generate such a ranking is to
rank according to the number of wins (with ties broken
in some manner). We show that this natural heuristic
has a provably good performance guarantee.

A weighted tournament with probability constraints
is a complete directed graph T = (V,E, w) where w(·)
is the weight function such that for any u, v ∈ V with
u 6= v, wuv +wvu = 1 and wuv, wvu ≥ 0. We will use the
term tournament to refer to a weighted tournament with
probability constraints. An unweighted tournament is
a special case of weighted tournaments with probability
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constraints, where the weights of the edges are either
0 or 1. The minimum feedback arc set in T is the
smallest weight set E′ ⊆ E such that (V,E \ E′) is
acyclic. Alternatively, a minimum feedback arc set can
be described by an ordering σ : V → {0, 1, · · · , n − 1}
which minimizes the weight the of backedges induced by
σ where a backedge (u, v) ∈ E satisfies σ(u) > σ(n).

The feedback arc set problem in general directed
graphs can be approximated to within O(log n log log n)
[12, 17] and is APX-Hard [15, 10]. The complementary
problem of the maximum acyclic subgraph problem1 can
be approximated to within 2/(1 + Ω(1/

√
∆)) (where ∆

is the maximum degree) [6, 14] and is APX-Hard [16].
The feedback arc set problem in tournaments (shortened
to FAS-TOURNAMENT for the rest of the paper) was
conjectured to be NP-hard for a long time [4]. The
conjecture was very recently proved in [1, 2]2. The
work of Ailon, Charikar and Newman also describes the
following simple randomized 3-approximation algorithm
for unweighted FAS-TOURNAMENT. Their algorithm
first picks a random vertex p to be the “pivot” vertex.
All the vertices which are connected to p with an out-
edge are placed to the “left” of p and the vertices which
are connected to p through an in-edge are placed to
the “right”. Then, the algorithm recurses on the two
tournaments induced by the vertices placed on either
side of p.

Weighted FAS-TOURNAMENT is defined on a
weighted tournament T where the weights satisfy prob-
ability constraints. Ailon et al. show that running
their algorithm for FAS-TOURNAMENT on the un-
weighted tournament that is the weighted majority3

of T yields a 5 approximation for weighted FAS-

1The maximum acyclic subgraph of a directed graph G =
(V, E) is the largest cardinality subset E′ ⊆ E such that the
graph (V, E′) is acyclic.

2Ailon, Charikar and Newman showed that the problem is
NP-hard under randomized reductions [1]. Alon derandomized
their construction [2]. A simpler reduction has been obtained by
Conitzer [8].

3The weighted majority of a weighted tournament T is defined
as follows. For any pairs of vertices u and v, orient the edge
between u and v in the direction which has the larger weight
(breaking ties arbitrarily).



TOURNAMENT when the weights satisfy probability
constraints.

There is a much simpler algorithm for both
weighted and unweighted FAS-TOURNAMENT than
ones considered by Ailon et al. — order the vertices
in increasing order of their (weighted) indegrees (ties
are broken arbitrarily). We analyze this algorithm
(which we call INCR-INDEG in this paper) and show
that it has an approximation guarantee of 5 for both
unweighted FAS-TOURNAMENT and weighted FAS-
TOURNAMENT when weights satisfy probability con-
straints.

We also study the problem of RANK-
AGGREGATION. In this problem, given n can-
didates and k permutations of the candidates
{π1, π2, · · · , πk}, we need to find the Kemeny op-
timal ranking, that is, a ranking π such that
κ(π, π1, π2, · · · , πk) =

∑k
i=1K(π, πi) is minimized,

where K(πi, πj) denotes the number of pairs of candi-
dates that are ranked differently by πi and πj . The
problem is NP-hard even when the number of lists
is only four [5, 11]. There is a simple deterministic
2-approximation for this problem — pick the best
of the input rankings. Ailon et al. reduce RANK-
AGGREGATION to weighted FAS-TOURNAMENT with
probability constraints [1]. This reduction implies
that INCR-INDEG is a 5-approximation for RANK-
AGGREGATION. Interestingly, INCR-INDEG in the
RANK-AGGREGATION setting is exactly the same as
the Borda’s method [7]. Thus, our results show that
the Borda’s method is a factor 5 approximation of the
Kemeny optimal ranking. Independent of our work,
Fagin et al. also show that the ranking produced by
Borda’s method is within a constant factor of the
Kemeny optimal ranking [13].

Finally, for any ε > 0, we exhibit an infinite family
of (unweighted) tournaments for which INCR-INDEG has
an approximation ratio of 5 − ε (irrespective of how
ties are broken). This result shows that our analysis is
tight. This is somewhat surprising as it shows that the
“dumbest” way of breaking ties is as good as the best
tie breaking mechanism (at least from the viewpoint of
approximation guarantees).

Independent of our work, van Zuylen [18]
has designed a deterministic algorithm for FAS-
TOURNAMENT with an approximation guarantee of 3
(when the weights satisfy probability constraints). Her
algorithm derandomizes the algorithm of Ailon et al.
mentioned earlier in this section (the pivot is chosen
based upon the solution to the relaxation of a well
known LP for FAS-TOURNAMENT).

The rest of the paper is organized as follows. We in-
troduce some notation and some known facts in Section

2. We analyze the algorithm INCR-INDEG in Section
3. In Section 4, we present an infinite family of tour-
naments for which INCR-INDEG has an approximation
factor of 5− ε, for any ε > 0. Finally, we conclude with
some open questions in Section 5.

2 Preliminaries

We first fix some notations. For any positive integer
m we will use [m] to denote the set {0, 1, · · · ,m − 1}.
Also for any pairs of integers a < b, we will use [a, b]
to denote the set {a, a + 1, · · · , b}. We will also use
(a, b] to denote the set {a + 1, · · · , b}. The vertex set
of the input tournament is assumed to be [n]. For any
edge (u, v) in T , its weight is given by wuv ≥ 0. For
the rest of the paper, the weights are assumed to satisfy
probability constraints, that is, for any u, v ∈ [n], the
following identity holds — wuv + wvu = 1. For any
vertex v ∈ [n], In(v) denotes the (weighted) indegree of
v, that is,

In(v) =
∑

u∈[n]\{v}

wuv.

We will use σ : [n] → [n] as a generic permutation.
O will denote the permutation returned by the optimal
algorithm for FAS-TOURNAMENT on input T while A
will denote the permutation returned by INCR-INDEG.
Given any permutation σ, Bσ denotes the sum of the
weight of backedges induced by σ on T , that is,

Bσ =
∑

u,v∈[n]:σ(u)>σ(v)

wuv.

We now recall two well known notions of distances
between permutations. Given permutations σ, ρ : [n]→
[n]; the Spearmans’ footrule distance between the two
permutations is given by

F(σ, ρ) =
∑

v∈[n]

|σ(v)− ρ(v)|

and the Kendall-Tau distance is given by

K(σ, ρ) =
1
2
·

∑
u,v∈[n]

1(σ(u)−σ(v))·(ρ(u)−ρ(v))<0

where 1(·) is the indicator function. In other words,
K(σ, ρ) is the number of (ordered) pairs which are or-
dered differently by σ and ρ. The following relationship
was shown in [9].

(2.1) K(σ, ρ) ≤ F(σ, ρ) ≤ 2K(σ, ρ)

For RANK-AGGREGATION, we will need the no-
tion of Kemeny distance. Given the input lists



{π1, π2, · · · , πk} and an aggregate permutation σ, the
Kemeny distance is defined as

κ(σ, π1, π2, · · · , πk) =
k∑

i=1

K(σ, πi)

We now present the reduction of RANK-
AGGREGATION to weighted FAS-TOURNAMENT with
probability constraints from [1]. Let {π1, · · · , πk} be a
RANK-AGGREGATION instance on the set of candidates
[n]. The equivalent weighted FAS-TOURNAMENT in-
stance is a weighted tournament on [n] such that for
any pair of vertices i and j, wij is the fraction of input
permutations which rank i before j. Note that by
construction the weights satisfy probability constraints.
Finally, sorting the vertices by their weighted indegrees
(on the weighted tournament constructed above), is the
well known Borda’s method [7].

3 The algorithm for FAS-TOURNAMENT

We will analyze INCR-INDEG in this section. Recall
that INCR-INDEG orders the vertices by their (weighted)
indegrees (with ties being broken arbitrarily).

Our main result is the following theorem.

Theorem 3.1. INCR-INDEG is a 5-approximation for
weighted FAS-TOURNAMENT, that is, BA ≤ 5BO.

The reduction from FAS-TOURNAMENT to RANK-
AGGREGATION outlined in Section 2 implies the follow-
ing corollaries to Theorem 3.1.

Corollary 3.1. INCR-INDEG is a 5-approximation
for RANK-AGGREGATION.

Corollary 3.2. If σ is the Kemeny optimal rank ag-
gregation for input rankings π1.π2, · · · , πk and σ′ is an
output of the Borda’s method for the same input, then

κ(σ′, π1, π2, · · · , πk) ≤ 5κ(σ, π1, π2, · · · , πk).

We will prove Theorem 3.1 through a sequence of
lemmas.

Lemma 3.1. For any permutation σ : [n]→ [n],

2Bσ ≥
∑

v∈[n]

|σ(v)− In(v)|.

Lemma 3.2. For any permutation σ : [n]→ [n],∑
v∈[n]

|σ(v)− In(v)| ≥
∑

v∈[n]

|A(v)− In(v)|.

Lemma 3.3. For any two permutations σ, ρ : [n]→ [n],∑
v∈[n]

|σ(v)− ρ(v)| ≥ |Bρ −Bσ|.

We first show how the above lemmas prove our main
result.

Proof of Theorem 3.1: Consider the following
sequence of inequalities.

4BO ≥
∑

v∈[n]

|O(v)− In(v)|+
∑

v∈[n]

|O(v)− In(v)|

≥
∑

v∈[n]

|O(v)− In(v)|+
∑

v∈[n]

|A(v)− In(v)|

=
∑

v∈[n]

(|O(v)− In(v)|+ |A(v)− In(v)|)

≥
∑

v∈[n]

|O(v)−A(v)|

≥ BA −BO

The first, second and last inequalities follow from Lem-
mas 3.1, 3.2 and 3.3 respectively (with σ = O and
ρ = A). The third inequality is triangle inequality
while the equality just follows from rearrangement of
the terms. Thus, we have BA ≤ 5BO which proves the
theorem.

In the rest of this section, we will prove Lemmas
3.1-3.3.

Proof of Lemma 3.1: Consider any arbitrary v ∈ [n].
Let W−

L (v) be the sum of weights of edges from vertices
to the “left” of v (according to σ) to v; W+

L (v) be the
sum of weights of edges from v to vertices which are to
the left of v ; and W−

R (v) be the sum of weights of edges
from vertices which are to the right of v to v. More
formally,

W−
L (v) =

∑
u:σ(u)<σ(v)

wuv

W+
L (v) =

∑
u:σ(u)<σ(v)

wvu

W−
R (v) =

∑
u:σ(u)>σ(v)

wuv

By definition, we have

(3.2) W−
L (v) + W−

R (v) = In(v)

The following identity follows from definitions and the
fact that weights satisfy probability constraints.

(3.3) W+
L (v) + W−

L (v) = σ(v)



Now, 2Bσ =
∑

v∈[n](W
+
L (v)+W−

R (v)) as each backedge
is counted twice in the sum. To complete the proof,
we claim that for any v ∈ [n], W+

L (v) + W−
R (v) ≥

|σ(v)− In(v)|.
Indeed from (3.2) and (3.3),

W+
L (v) + W−

R (v)

= σ(v) + In(v)− 2W−
L (v)

= |σ(v)− In(v)|+ 2(min{σ(v), In(v)} −W−
L (v))

≥ |σ(v)− In(v)|

The last inequality again follows from (3.2) and
(3.3) and the fact that W+

L (v),W−
R (v) ≥ 0.

Lemma 3.2 is a restatement of the fact that for any real
numbers a1 ≤ a2 · · · ≤ an, the permutation σ : [n]→ [n]
which minimizes the quantity

∑n
i=1 |ai − σ(i)| is the

identity. For the sake of completeness, we present a
proof in Appendix A.

Proof of Lemma 3.3: Consider the set of edges which
are back edges in σ but are not backedges in ρ. Denote
this set by Bσ\ρ. Also consider the set of edges which
are back edges in ρ but are not backedges in σ. Denote
this set by Bρ\σ. Note that

(3.4)
∑

(u,v)∈Bσ\ρ

wuv +
∑

(u,v)∈Bρ\σ

wuv ≥ |Bρ −Bσ|

The crucial observation is that if an edge (u, v) ∈ Bσ\ρ
then (v, u) ∈ Bρ\σ. This along with the fact that
the weights satisfy probability constraints imply that
K(σ, ρ) =

∑
(u,v)∈Bσ\ρ

wuv +
∑

(u,v)∈Bρ\σ
wuv which by

(3.4) implies K(σ, ρ) ≥ |Bρ − Bσ|. Equation (2.1)
completes the proof.

4 A Lower Bound for INCR-INDEG

We will prove the following theorem in this section.

Theorem 4.1. For every constant ε > 0, there exists
an infinite family of (unweighted) tournaments Tε such
that arranging the vertices of any tournament in Tε

according to their indegrees, irrespective of how ties are
broken, results in at least 5− ε times as many backedges
as the optimal ordering.

Note that the above result implies the analysis in
Section 3 is tight, even if one modified INCR-INDEG to
break ties in some “intelligent” way.

For any tournament T , we will use I(T ) to denote
the ordering according to indegrees which induces the
least number of backedges (that is, ties are broken “op-
timally”). Also let O(T ) denote the optimal ordering.

For the rest of this section we use tournaments to refer
to unweighted tournaments.

We will use two parameters, x and n, in this section.
For any n ≥ 5 and x ≥ 4 such that x is a perfect square,
we will construct a tournament Tx,n such that

(4.5) lim
x,n→∞

BI(Tx,n)

BO(Tx,n)
= 5,

which will prove Theorem 4.1.
In the rest of this section, we will describe the

construction of Tx,n and show that (4.5) holds. Fix
n ≥ 5 and x ≥ 4 such that x is a perfect square. Tx,n will
have n(2x + 1) vertices. We will partition the vertices
into n blocks of 2x + 1 vertices each. The ith block for
any i = 1, 2, . . . , n, will be denoted by bi. Further, for
every j = 0, 1, . . . , 2x; the jth node in bi will be denoted
by bi

j . The node bi
x is the middle node of bi and the sets

of nodes {bi
0, b

i
1, · · · , bi

x−1} and {bi
x+1, b

i
x+2, · · · , bi

2x} are
the left half and right half of bi respectively. Let φ
denote the ordering b1

0, · · · , b1
2x, b2

0, · · · , b2
2x, · · · , bn

0 , · · · ,
bn
2x. Finally, unless mentioned otherwise, an edge will

be called backward or forward in Tx,n with respect to
φ.

The basic idea behind the construction is as follows.
In Tx,n, the sub-tournaments spanned by each bi would
have no backedges if nodes in bi are arranged according
to φ. However, backedges from bi+1 and bi+2 will force
I(Tx,n) to order the vertices in bi (more or less) in the
reverse order of φ. This will result in I(Tx,n) inducing
many more back edges than the optimal.

We will describe the construction of Tx,n by starting
with a tournament on the vertex set ∪n

i=1b
i such that

all the edges are forward edges according to φ. Then
we will reverse the direction of some edges between bi

and bi+1 (which we call Type I edges) and some edges
between bi and bi+2 (which we call Type II edges) to
get our final Tx,n. We now formally define these edges.

Assume we start with a set of edges E on V =
∪n

i=1b
i such that for any u, v ∈ V , (u, v) ∈ E if

φ(u) < φ(v) and (v, u) ∈ E otherwise. We first describe
the Type I edges. For every i (1 ≤ i < n), the last
vertex of bi+1 has a Type I edge to every vertex in the
left half of bi. The second last vertex of bi+1 has a Type
I edge to all but the last vertex in the left half of bi and
so on. More formally, for every i = 1, 2, · · · , n− 1,

for (j = x + 1, x + 2, · · · , 2x)

for (k = 0, 1, · · · , j − x− 1)

E ← (E \ {(bi
k, bi+1

j }) ∪ {(bi+1
j , bi

k)}

See Figure 1 for an example when x = 4.
We turn to the Type II edges. First, partition

the left and the right half of every bi into
√

x con-



bi bi+1

Figure 1: The Type I edges between bi and bi+1 (1 ≤
i < n) when x = 4.

bi+1 bi+2bi

Figure 2: Type I edges between bi and bi+1 and Type
II edges between bi and bi+2 (1 ≤ i < n − 1) when
x = 4. Type II edges are the ones which are not present
in Figure 1.

secutive minigroups of
√

x vertices each. A minigroup
is connected to another if there is an edge from the
`th (0 ≤ ` ≤

√
x − 1) vertex in the first minigroup

to the `th vertex in the second minigroup. For any i
(1 ≤ i < n − 1), Type II edges are introduced to con-
nect the last minigroup in the right half of bi+2 to all
the minigroups in the left half of bi. The second last
minigroup in the right half of bi+2 is connected to all
but the last minigroup in the left half of bi and so on.
More formally. for every i = 1, 2, · · · , n− 2,

for (k = 0, 1, · · · ,
√

x− 1)

for (r = 0, 1, · · · , k)

for (` = 0, 1 · · · ,
√

x− 1)

E ← (E \ {(bi
r
√

x+`
, bi+2

x+k
√

x+`+1
)})

∪{(bi+2
x+k

√
x+`+1

, bi
r
√

x+`
)}

See Figure 2 for an example of Type II edges for the
case when x = 4.

The tournament defined by the vertices V and
edges E is the required tournament Tx,n. We will now
estimate the indegrees of the vertices in Tx,n. Consider

an i such that 2 < i < n − 2. Before Type I and
Type II edges were introduced, Tx,n was an acyclic
graph. Thus, the indegree of the vertex bi

j (where
0 ≤ j ≤ 2x) was the number of vertices connected to
it, that is, bi

j = (i − 1)(2x + 1) + j. When Type I
edges were introduced, the indegree of the last vertex
in bi decreased by x (as there was now an edge from
it to every vertex in the left half of bi−1) while the
indegree of the first vertex in bi increased by x (as there
was now an edge from every vertex in the right half
of bi+1 to bi

0). Similarly, the indegree of the second
last vertex decreased by x − 1 while the indegree of
the second vertex increased by x − 1 and so on. Thus,
after all Type I edges were introduced, the degree of bi

j

(0 ≤ j ≤ 2x) was (i − 1)(2x + 1) + x. When Type II
edges were introduced, the indegree of every vertex in
the last minigroup in the right half of bi decreased by√

x (as the last minigroup was now connected to every
minigroup in the left half of bi−2) while the indegree of
every vertex in the first minigroup in the left half of bi

increased by
√

x (as every minigroup in the right half of
bi+2 was now connected to the first minigroup in the left
half of bi). Similarly, the indegree of every vertex in the
second last minigroup in the right half of bi decreased by√

x− 1 while the indegree of every vertex in the second
minigroup in the left half of bi increased by

√
x− 1 and

so on. In particular, the indegree of bi
x did not change.

Thus, for 0 ≤ j < x, bi
j = (i − 1)(2x + 1) + x + dx−j√

x
e

and for x < j ≤ 2x, bi
j = (i− 1)(2x + 1) + x− d j−x√

x
e =

(i− 1)(2x + 1) + x + bx−j√
x
c.

Taking care of the boundary cases we have the
following expressions for the indegrees.

(4.6) In(b1
j ) =

{
x + dx−j√

x
e, j ∈ [0, x]

j, j ∈ (x, 2x]

(4.7) In(b2
j ) =

{
3x + 1 + dx−j√

x
e, j ∈ [0, x]

3x + 1, j ∈ (x, 2x]

For i = 3, · · · , n− 2 and for j = 0, 1, · · · , 2x;
(4.8)

In(bi
j) =

{
(i− 1)(2x + 1) + x + dx−j√

x
e, j ∈ [0, x]

(i− 1)(2x + 1) + x + bx−j√
x
c, j ∈ (x, 2x]

(4.9)

In(bn−1
j ) =

{
(n− 2)(2x + 1) + x, j ∈ [0, x]
(n− 2)(2x + 1) + x + bx−j√

x
c, j ∈ (x, 2x]

(4.10)

In(bn
j ) =

{
(n− 1)(2x + 1) + j, j ∈ [0, x]
(n− 1)(2x + 1) + x + bx−j√

x
c, j ∈ (x, 2x]

We first upper bound the number of backedges in
the optimal ordering.



Lemma 4.1. The number of backedges in the optimal
ordering of Tx,n is at most x2n

2 + o(x2n).

Proof. To prove the lemma, we show that Bφ ≤ x2n/2+
o(x2n). Note that the only backedges in Tx,n according
to φ are the Type I and Type II edges. By definition,
the number of Type I edges is

(n− 1)(x + x− 1 + · · ·+ 1) =
x(x− 1)

2
(n− 1) ≤ x2n

2

and the number of Type II edges is

(n− 2)(
√

x +
√

x− 1 + · · ·+ 1) =
x(
√

x− 1)
2

(n− 2)

≤ x3/2n

2
= o(x2n).

The proof is complete.

We now lower bound the number of backedges
induced by I(Tx,n).

Lemma 4.2. The number of backedges induced by
I(Tx,n) on Tx,n is at least 5x2n

2 − o(x2n).

Note that Lemmas 4.1 and 4.2 prove equation (4.5)
and thus, Theorem 4.1. We end this section by proving
Lemma 4.2.

Proof of Lemma 4.2: We first claim that for any
i < i′, every node in bi is placed before every node of
bi′ by I(Tx,n). In other words, all Type I and Type II
edges are back edges (between vertices in the different
blocks) according to I(Tx,y). The proof of lemma 4.1
shows that this number is at least x2n/2 − o(x2n).
For any i, let maxi and mini be the maximum and
minimum indegrees of all vertices in bi. To prove the
claim, we will show that

(4.11) for all i = 1, 2, · · · , n− 1; maxi < mini+1.

Indeed from Equations (4.6)-(4.10), we have the follow-
ing values for maxi and mini:

maxi =

 2x, i = 1
(2i− 1)x +

√
x + (i− 1), i = 2, · · · , n− 2

(2n− 3)x + (n− 2), i = n− 1

mini =

 3x + 1, i = 2
(2i− 1)x−

√
x + (i− 1), i = 3, · · · , n

(2n− 2)x + n− 1, i = n

An inspection of the values shows that (4.11) holds.
Thus, we have counted all the back edges between

vertices of bi and bi′ for i 6= i′. We now need to count
the number of back edges between vertices in the same
bi. Counting conservatively, we assume that there are

no such back edges for i ∈ {1, 2, n, n− 1}. Fix an i such
that 2 < i < n − 1. We claim that the number of back
edges between vertices in bi is at least

(4.12) x(2x + 1)− x(
√

x− 1).

To see this divide the left half of bi into
√

x minigroups–
l0, l1, · · · , l√x−1. In particular, lk consists of the vertices
bi
k
√

x
, bi

k
√

x+1
, · · · , bi

(k+1)
√

x−1
. Similarly the right half

of bi is divided into
√

x minigroups– r0, r1, · · · , r√x−1.
Observe from (4.8) that for any k = 0, 1, · · · ,

√
x − 1;

the degree of a vertex in lk and rk is (i − 1)(2x + 1) +
x +
√

x− k and (i− 1)(2x + 1) + x− k− 1 respectively.
Thus, I(Tx,n) will have to arrange vertices in the order
r√x−1, r

√
x−2, · · · , r0, followed by the middle node bi

x,
followed by vertices in the order l√x−1, l

√
x−2, · · · , l0.

Again counting conservatively, we assume that there
are no backedges in induced tournaments over any
minigroup lk or rk (where k = 0, 1, · · · ,

√
x − 1).

However, note that every other edge in T i
x,n, the induced

tournament over bi, is a backedge. There are a total
of

(
2x+1

2

)
= x(2x + 1) edges in T i

x,n while the induced
tournaments over any lk or rk has

(√
x

2

)
many edges and

there are 2
√

x such minigroups. This implies that the
number of backedges in T i

x,n is at least x(2x+1)−2
√

x ·√
x(
√

x− 1)/2 as claimed in (4.12).
Recalling that there are n − 4 choices for i, the

number of backedges within some block totaled over all
the n− 4 blocks is(

x(2x + 1)− x(
√

x− 1)
)
(n− 4) ≥ 2x2n− o(x2n).

Adding the estimates of the number of backedges be-
tween different bis and number of backedges within the
same bi completes the proof.

5 Conclusions and Open problems

The best known approximation guarantee for the FAS-
TOURNAMENT problem is 3 for deterministic algo-
rithms ([18]) and 2.5 for randomized algorithms ([1]). It
is an interesting open question to determine the correct
approximation factor. We remark that the complemen-
tary problem of maximum acyclic subgraph problem on
tournaments has a PTAS [3].
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A Proof of Lemma 3.2

If σ sorts the vertices in [n] according to their indegrees
then the statement of the lemma holds trivially.

So now consider the case when there exits i ∈ [n]
such that In(u) > In(v) where u = σ−1(i) and v =
σ−1(i+1). Construct a new ordering σ′ that is same as σ
except u and v are swapped: σ′(w) = σ(w) if w 6∈ {u, v}
and σ′(u) = i + 1, σ′(v) = i. We next show that∑

v∈[n] |σ(v)− In(v)| ≥
∑

v∈[n] |σ′(v)− In(v)|: the rest
of the proof is a simple induction. By the construction
of σ′,∑
v∈[n]

(|σ(v)− In(v)| − |σ′(v)− In(v)|)

= |i− In(u)|+ |i + 1− In(v)|
− |i− In(v)| − |i + 1− In(u)|

= 2(min{i, In(v)} −min{i, In(u)})
+ 2(min{i + 1, In(u)} −min{i + 1, In(v)})

The last equality follows from the identity |x − y| =
x + y − 2min{x, y}. Finally it can be verified4 that the
last sum is always non-negative.

4There are three cases. If i ≥ In(u) then the first term is
2(In(v) − In(u)) while the second term is 2(In(u) − In(v)). If
In(v) ≥ i then the first term is 0 while the second term is
2max(i + 1 − In(v), 0). Finally if In(u) > i > In(v) then the
first term is 2(In(v)− i) while the second term is 2(i+1− In(v)).


