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Abstract. Winkler and Zhang introduced the FIBER MINIMIZATION
problem in [10]. They showed that the problem is NP-complete but
left the question of approximation algorithms open. We give a simple
2-approximation algorithm for this problem. We also show how ideas
from the Dynamic Storage Allocation algorithm of Buchsbaum et al. [4]
can be used to give an approximation ratio arbitrarily close to 1 pro-
vided the problem instance satisfies certain criteria. We also show that
these criteria are necessary to obtain an approximation scheme. Our 2-
approximation algorithm achieves its guarantee unconditionally.

We also consider the extension of the problem to a ring network and
give a 2+ o0(1)-approximation algorithm for this topology. Our techniques
also yield a factor-2 approximation for the related problem of PACKING
INTERVALS IN INTERVALS, also introduced by Winkler and Zhang in
[10].

1 Introduction

The FIBER MINIMIZATION problem on an optical linesystem ([10]) relates to
the efficient construction of an optical fiber network to meet a specified collection
of demands. Consider n links (or edges) connected in a line. Each demand needs
to use some consecutive links, and thus the demands can be represented as a
set of line intervals. A segment of optical fiber, which is of wavelength y and
spans some consecutive links, can carry a collection of demands such that links
required by the demands are contained within the links spanned by the fiber,
and no two demands are assigned the same wavelength if there is a link which
they both use. The goal is to get a set of fiber segments which can carry all
demands such that the total length of fiber used is minimized.

This problem was introduced by Winkler and Zhang in [10]. The problem is
motivated by wavelength division multiplexing (WDM), which is used to parti-
tion the bandwidth available on an optical fiber into multiple channels each of



which can handle different wavelengths. These technologies have made very fast
all-optical transmission physically possible. See [3,10] for more details on the
practical motivations.

1.1 Problem definition

More formally, consider a linesystem of n links e, es, - - -, e,. We represent each
demand by d; = [l;,r;] for [; < r; if it requires the links e;;,e;;41---,¢€;;
the set of demands is denoted by D. We say demands d; and dj intersect (or
overlap) if either I; <l <rj or Iy <l; <ry. A fiber interval f is represented
by f = [ly,rs] for Iy < ry if it spans the edges e;,,e;;41---,er,. The goal
is to construct a set F of fiber intervals (each capable of carrying u different
wavelengths) of minimum total length (3_p5¢_, ,,(rs — s +1)) such that D
can be packed in F. A packing of D in F' is an assignment of each demand
d; = [lj,7;] to a fiber f = [lf,7f] € F, and a wavelength w € {1,---, u} within
f, such that [I;,7;] C [ly,r] and no two intersecting demands are assigned the
same wavelength in the same fiber.

1.2 Previous work

There is a substantial body of work relating to resource optimization in WDM
networks. Most of this work addresses the problem of minimizing the number
of wavelengths necessary to satisfy the presented demand for a given network
topology. This body of work is too extensive to summarize here — please see [8]
for a survey of the field.

In some recent work [2,3,5,9,10] it is sought to more faithfully represent
real-world constraints by assuming that fiber has a fixed capacity. Starting with
[10] this vein of research aims to optimize the use of fiber. There are different
flavors of this problem depending on what the objective function is —

— Minimizing the ratio of the number of fibers deployed to the minimum num-
ber of fibers required for any edge [2].

— Minimizing the maximum over all links the the number of fibers used in a
link [2, 5, 6].

— Minimize the total amount of fiber used [3, 6].

Much recent work addresses a different flavor of the FIBER MINIMIZATION
problem. That version assumes the availability of a device called a mesh optical
add/drop multiplexer (or MOADM), which allows the signals to moved from
one fiber to another as they pass through the nodes in the optical network
under consideration. In the presence of MOADMs, the FIBER MINIMIZATION
problem becomes “easier” as we are allowed to “break” a demand into segments
which span an edge while routing them through the network. For the case of
a linesystem, [10] give a polynomial time algorithm to solve this version of the
problem. For ring and tree networks, constant-factor approximation algorithms
are known [5,9]. Recently, Andrews and Zhang have showed that for general



graph topologies, this problem (which they call SUMFIBER-CHOOSEROUTE)
is hard to approximate to within a poly-logarithmic factor of the optimal for
a general network topology under some complexity assumptions, whether the
routing of the demands is performed by the algorithm ([3]), or specified as input
([2])- They also prove ([2]) a similar hardness result under a similar complexity
assumption for the problem where the objective function is to minimize the ratio,
over all edges, of the number of fibers deployed for that edge to the minimum
number of fibers required. These negative results are accompanied in all cases
by approximation algorithms with logarithmic approximation ratios.

A related set of problems is tackled in [1], where linesystem design is modeled
as a generalized graph coloring problem. A collection of optimal and approxima-
tion algorithms are presented for different network scenarios, where the objective
is to minimizing costs related to the set of colors employed. It has been pointed
out to us that some of their techniques can be employed to substitute Phase 1
of our algorithm in Section 2.

In the setting of [10] where there are no MOADMs, — that is, a demand
cannot change fibers at any node — FIBER MINIMIZATION was shown to be
NP-complete in [10]. To the best of our knowledge, ours are the first approxi-
mation algorithms in this model.

1.3 Our results

We present polynomial time approximation algorithms for the FIBER MINI-
MIZATION problem on some simple network topologies.

— In Section 2, we give a 2-approximation algorithm for the FIBER MINI-
MIZATION problem. This problem is similar to the Dynamic Storage Al-
location (DSA) problem in some aspects, and we employ techniques from
the DSA literature, such as those of Gergov [7] and Buchsbaum et al. [4], to
tackle it (Incidentally, the proof of Theorem 1 has essentially the same struc-
ture as the proof — to the best of our knowledge, unpublished — of Gergov’s
[7] algorithm being a 3-approximation for DSA, and may be interesting on
that account).

— We use a result of Buchsbaum et al. [4] to derive an approximation scheme
for FIBER MINIMIZATION in Section 3.

— We extend these results to obtain other approximations for related prob-
lems. In Section 4 give a factor 2 + o(1) approximation algorithm for FIBER
MINIMIZATION on a ring.

— We investigate the related problem of PACKING INTERVALS IN INTER-
VALS — also posed in [10] — in Section 5, and obtain a 2-approximation
algorithm.

2 A 2-approximation algorithm for FIBER
MINIMIZATION

As specified in Section 1.1, the input D to the FIBER MINIMIZATION problem
consists of demands d;, each of which is an interval of the form [l;,r;], where



l; <r; €{l,---,n}. For each link e;, we define Lp (i) = [{d; € D : i € [l;,7;]}|
(WLOG we assume that Lp(7) is a multiple of u) and L'3%* = max; Lp(i). The
algorithm uses an LT** x n matrix H to keep track of wavelength assignments.
For each k € {1,---, L'} the row Hy is referred to as the k** row and finally
would correspond to a wavelength in some fiber interval. We say that link e; is
colored ¢; in row k if Hy; = ¢;. For any row &k and color C, we call an interval
[l,7] in the kth row a C segment if Hy;_1 # C, Hgry1 # C and Vi € [I,7],
H,,=C.

The algorithm, which we refer to as the Simple algorithm, is specified in
Figures 1 and 2. In Phase 1, the algorithm constructs the matrix H and then
derives a “packing” Pp from H. We say that demand d; € D is packed in Pp
if (j,k) € Pp for some k € {1,---,L5**}. Pp is not a feasible solution since
the assignments of some demands overlap, although only to a limited extent. In
Phase 2, the overlaps are taken care of and a valid packing derived.

2.1 Algorithm outline

Let us briefly summarize the algorithm before we formally describe it. The basic
intuition for the algorithm comes from techniques often used for the Dynamic
Storage Allocation (DSA) problem, in particular those used in [7]. FIBER MINI-
MIZATION has some similarities with DSA, with the important distinction that
while the demands in DSA are axis-parallel rectangles, demands in our problem
are line intervals.

In a nutshell, this is how the algorithm works. During Phase 1 (Figure 1),
each matrix entry Hy; either has the value red (which means that no demand
can be “placed on e;” in the kth row), or green (which means that at most one
demand can be “placed on e;” in the kth row), or blue (which means overlapping
demands can be “placed on e;” in the kth row). Each edge e; is “alloted” Lp (%)
rows, which is why the first L5 — Lp(i) entries in the ith column of H are
colored red in Step 2. All other entries are colored green. Initially all green
segments are “available”.

In Step 3, the algorithm iterates over all possible rows and in each iteration
looks for an “available” green segment over which some “unpacked” demand
can be placed (maybe partially) in the following way: this demand can possibly
intersect blue segments in that row but it must not intersect with any other green
segment. The placement of a demand can fragment an “available” green segment
into smaller “available” green segments (the edges common to the placed demand
and the green segment are no longer available). The iteration is complete when
no demand can be placed on any available green segment. Edges which were
colored blue in the current row or did not have any demand placed on them in
the current row are colored blue in the next row. Note that this implies that
if an edge becomes blue in one row then it remains blue for all the subsequent
iterations (rows). Phase 1 of the algorithm is complete when D, iterations
are complete. We will show in Lemma 4 that after the first phase, all demands
are “packed”.



Further, in Lemma 5 we show that in a blue segment a demand may intersect,
if at all, with no more than one other demand. This suggests Phase 2 (Figure 2)
of the algorithm where demands are finally packed into fiber intervals. Consider
4 consecutive rows and consider maximal intervals of consecutive edges which
are not colored red in any of the p rows. In each such segment, every one of the u
rows has, by Lemma 5, at most two demands conflicting over any particular link.
Thus, creating two fiber intervals corresponding to such a segment is sufficient
to accommodate all the demands.

The algorithm is more formally described in Figures 1 and 2.

Phase 1
1. J« D, Pp « 0.
2. for (k+ L;k<LPB**;k+ k+1)
for (< 1L;i<mji<i+1)
Hy; « red if k < L'3*® — Lp(3); otherwise Hy ; « green.
3. for (k+ Lk< L7k« k+1)
(a) G« {[l,r]: Hy,; is green for all j € [I,r]; [I,r] is maximal} (G is the set of all
maximal green intervals in the kth row)
(b) while 3 [I,7] € G
i. if 3 d; = [lj,r;] € J such that ( d; is an unpacked demand)
A [Lr]N[L,ri] # 0 ( dj intersects [I,7]), and
B. Yw € [l;,r;], either w € [l,r] or Hy,, = blue (d; intersects no other
interval in G)
then
Add (j,k) to Pp and for all ¢ € [l;,r;]N[l,r] set Hpi1,; < green.
delete d; from J
delete [I,r] from G
if 1 <l add [1,1;] to G
if r; <radd[rj,r] to G
else
for all ¢ € [l, 7] set Hy,; < blue
delete [, r] from G
(c) for (i 1;i <m;i+i+1)
if Hy ; = blue then set Hy41,; < blue

Fig. 1. Phase 1 of the Simple algorithm

2.2 Correctness and performance

The following three lemmas follow directly from the way the matrix H is ma-
nipulated in the algorithm of Figure 1.

Lemma 1. At the end of Phase 1, if Hy,; = green for any k and i, then for all
1<k <k, Hy ; = green or Hy ; = red.



FD (—0
for (k=1;k<LP*;k=k+p)

1. Vi€ {1, ---,n}, c[i] < black;
2. Vie{l,.--,n}, if 3j € [k, k + p) such that H;; = red then c[i] + red.
3. for each maximal interval I = [l,7] C [1,n] such that ¢ € [I,r] = c[i] = black,
(a) Create two fiber segments fi(I) and f>(I) and add them to Fp.
(b) for all j € [k, k + p),
i. Let S; « {d; :d; CI,(i,j) € Pp}. Let 8j,1,8j,2,*,8j,~ be an ordering
of S; such that for any two demands sjo = [la,7a] and s;5 = [lp, 78],
a<b=r, <rp.
ii. fori=1,2,---, N,
— Assign s;,; the wavelength j — k + 1.
— Assign s;,; the fiber segment fo(I) if there exists some demand s; .
assigned wavelength j — k£ + 1 and fiber segment fi(I), such that
8j, N 8j,u # 0; otherwise, assign s;,; the fiber segment f1 ().

Fig. 2. Phase 2 of the Simple algorithm

Proof. If Hy ; is colored blue, then Hj; gets colored blue for all j > k' due
to repeated execution of Step 3(c); in particular Hy ; gets colored blue, which
contradicts the assumption on Hy; in the lemma. [ |

Lemma 2. At the end of Phase 1, if Hy; = red for any k and i, then for all
1<k <k, Hp ; = red.

Proof. This is ensured by Step 2, where Hy, ; is colored red for all k less than a
certain value. The color red is not employed at any other step in the algorithm;
nor is it ever replaced by any other color. [ ]

Lemma 3. At the end of Phase 1, Lp(i) = |{k : Hy,; # red }|.

Proof. This follows from how the coloring decision is made at Step 2, and the

fact that the set {(k,7) : Hy, is red} is invariant over the later steps of the

algorithm. ]
We now show that all demands in D are “packed” in Pp after Phase 1.

Lemma 4. At the end of Phase 1, J is empty.

Proof. Assume that this is not the case, and there is a demand d; = [ls, ] € J
at the end of Phase 1. One of the following three cases must arise:

— Case 1: There is one i € [l;,r¢] such that Hpma= ; = red. By Lemma 2, for all
k € [1,L'3**], Hy,; = red. Lemma 3 implies that D(4) = 0, which contradicts
the fact that d; uses link 4.

— Case 2: There exists i € [lt,r] such that Hpmae; = green. It follows from
Lemmas 1 and 2 and the coloring criterion of Step 2 that for all £ €
{1,---,LP* — Lp(i)}, Hi; = red; and for all k' € {LPB* — Lp(i) +
1,---,L%**}, Hy ; = green.



For each such %', it must be the case that in the k'th iteration of the for
loop in Step 3, some demand d; 3 e; was placed in row k', since otherwise
Hy, ; would have been colored blue at Step 3(b). In all there would be Lp ()
such demands, one for each value of k'. Including them, and including d;,
there are at least Lp(i) + 1 demands that use link e;, which contradicts the
definition of Lp (7).

— Case 3: For all i € [ly, 4], Hipmas ; = blue. We complete the proof by showing
that d; would have been placed by the algorithm in some row. Consider
k* = min{k : Vj € [ls,r], Hy ; = blue}. By the choice of k*, there exists an
interval [I,7] C [l¢, 7] such that in some iteration of the while loop of Step
3(b),

e [I,r] € G, and

e for all i € [l,r¢] — [I,7], Hg+,; =blue, and
e for all j € [I,r], Hg- ; is colored blue by the else clause of Step 3(b)(i).
This can only happen when there is no demand d; which is suitable for
placing over [l,r] in row k*: as indicated by conditions A and B in the
if statement. However, d; is precisely such a demand; it is unpacked, it
intersects [I,7], and (by the choice of k*) it does not anymore intersect any
other interval in G. Thus, instead of coloring [I,r] blue, d; should have been
placed over it; and this completes our proof by contradiction. ]

We now show that the packing Pp has a nice property— no link is used by
more than two demands that are placed in the same row. In other words, no
three demands conflict simultaneously.

Lemma 5. V(i, k), [{j : (j. k) 3 ei}| < 2.

Proof. Tt is easy to see from the way intervals are added to and deleted from
G that only one demand is placed on a green segment, that is, demands do not
overlap over green segments. Thus, it follows that overlaps can only take place
over blue segments (as no demands are placed over red segments).

Consider such a segment [/, r] in row k. Among the demands that are placed
over this segment, there can be at most one demand that contains H[k,[—1], and
at most one demand that contains H[k,r + 1] — that is because both H[k,! —1]
and H[k,r + 1] are non-blue and thus can not have overlapping demands placed
on them. By placement rules [3(b)i.A.] and [3(b)i.B.], no demand is contained
within a blue segment. Thus, no more than two demands can be placed over [I, 7]
in row k. ]

We next show that Phase 2 outputs a valid solution.

Lemma 6. Phase 2 (Figure 2) produces a valid packing of D in the set of Fp.

Proof. Consider a demand d; = [l;,7;]. Let d; be placed in row j where j €
[(h — 1), hu) for some j and h — that is, (i, j) € Pp.

First of all, let us verify that d; is assigned a fiber interval in Phase 2. Consider
the hth iteration of the for loop (Figure 2) in Phase 2. At Step 3(a), an interval
I 5 [l;,r;] would indeed be created, except if c[u] = red for some u € [l;,r;]. Is



that possible? For that to be the case, there must exist some j' € [(h — 1)u, hy)
such that Hj: ,, = red.

Recall how certain elements of H are colored red at Step 2 in Phase 1 (Figure
1). If Hj ,, is red, then H, , is red for all v < L'3** — Lp(u), and it is not red
for any other v. Since L'3%* — Lp(u) is a multiple of p (we have assumed the
load at any link to be a multiple of p), it follows that H, ,, is red either for all
v € [(h—1)p, hy), or for none of those values of v. In the latter case, the desired
fiber interval I is indeed created; while the former case is easy to rule out, since
it implies that Hj,, is red as well, which is not possible given that (i,j) € Pp
and u € [l;,7;] (no d; can be placed over a red interval in Phase 1).

Note that demand d; is assigned wavelength j — (h — 1) + 1, and one of
the fibers f1(I) and f2(I). It remains to be verified that no other demand is
assigned the same wavelength and the same fiber. We do this by pointing out
that the set of demands that have been assigned wavelength j — (h—1)u+1 on
f1i(I) or fo(I) is exactly the set of demands dj for which (k,j) € Pp. This set
of demands has been characterized by Lemma 5- any given link is contained in
no more than two of these demands. This set of demand can be thought of as a
collection of line intervals. Packing them into f;(I) and f>(I) without conflict is
akin to 2-coloring the corresponding interval graph (whose clique number is 2).
It is well-known and easy to see that a legal 2-coloring can be obtained simply
by scanning the intervals left-to-right, and greedily assigning them one of two
colors. Note that this is precisely what Step 3(b)ii of Phase 2 (Figure 2) attempts
to do. ]

N S, ko) .

et L be defined as . For any set F' of fiber intervals, let Lr be
the total length of fiber used in F.
The following lemma shows that Fp is a pretty good solution.

Lemma 7. L, = 2L.

Proof. Let us denote a fiber interval f by [If,r¢], and for any link e;, let L, (i) =
{f € Fp : i € [lg,f]}|- We will prove a stronger claim- for all e;, Ly, (i) =
2LDTm. The lemma follows by summing over all links.

Consider Step 3 of Phase 2 (Figure 2), where fiber intervals are created in
pairs (f1(I) and fo(I)). This step is repeated in the L3**/u iterations of the
for loop. A link e; will not be contained in these fiber intervals for iterations
1,2,---, 287 =Lp® and included in both intervals of a pair (f1(I), f2(I)) in all
subsequent iterations. This is because H, ; is red for all v < L'2** — Lp(i), and
not red for any other v, as we saw in the proof of Lemma 6. This implies that
during the first 22°—L£20 jterations, c[i] is red, and thus the fiber intervals
created do not include link e;. In other words, link e; is contained in exactly
2LDT(i) fiber intervals. ]

Clearly, L is a trivial lower bound on the length of the optimal set of fiber
intervals for D. Thus, we have the following result.

Theorem 1. Simple algorithm is a 2-approzimation algorithm for the FIBER
MINIMIZATION problem. [ |



3 An Approximation Scheme

In this section we employ the bozing technique of Buchsbaum et al. [4] to the
FIBER MINIMIZATION problem. The application of a result of [4] yields an
approximation scheme for our problem. Let us first briefly describe bozing, which
is applied in [4] to the Dynamic Storage Allocation problem. Let Z be a set of
jobs, where each job i is a triple of start time [;, end time r; and height h;. To
box Z means placing the jobs in a box b starting from time l, = min{l; : j € Z},
ending at time 7, = max{r; : j € Z} and of height hy > >_.. , h;. A bozing of Z
into a set B of boxes is a partition of Z into |B| subsets, each of which is then
boxed into a distinct b € B. At any time ¢, let Lz(t) denote 3 .7y <1<, By
and let LB(t) = EbeB:letgrb hy.

We will be working with jobs of unit height, for which the algorithm in
Section 2.1 of [4] comes with the following performance guarantee:

Theorem 2. [}] Given a set Z of jobs, each of height 1, an integer boz-height
parameter H, and a sufficiently small positive €, there exists a set B of boxes,
each of height H, and a boxing of Z into B such that for all time t:

Lp(t) < (1+4e)Lz(t) + O(HIS—QgH log %)

The key insight here is that each demand in the FIBER MINIMIZATION
problem can be viewed as a job of unit height, and packing of demands into
fiber intervals is analogous to the boxing of a collection of jobs. This leads us
to the following bound, where L (t) denotes as before the number of fibers in
F containing the link e; and Lp(t) denotes the number of demands in D using
link e;.

Lemma 8. Given a set D of demands and a sufficiently small positive €, there
ezists a set of fiber intervals F' and o packing of the demands of D into F such
that for all links e;:

Lp(t) < (1+4e) 228 1 O(*BL jog ).

Proof. A straightforward reduction maps an instance D of the FIBER MINI-
MIZATION problem to an instance of boxing. Corresponding to every demand
[[,7] in D, let there be a job with a start time of I — 1 and end time of r. Each
link e; is mapped to the time interval [{ — 1,4], and fiber intervals of wavelength
p = H map to boxes of height H = p.

Consider the boxing algorithm in Section 2.1 of [4]. As observed above, a
demand [I,r] in D corresponds to a job (I — 1,r) in the DSA setting. Further
note that a box of height y in the DSA setting corresponds to a fiber interval.
The set of fiber intervals F' and set of demands D map directly to the set B
of boxes and set Z of jobs, respectively, in the boxing instance. Observe that
Lp(t) = Lz(t) and Ly(t) = 224

The lemma follows directly from an application of Theorem 2 to the boxing
instance Z with H = p. ]

Noting that Lp = >, Lr(i) is the total length of fiber used by the algo-

2, In(d)
m

rithm, and Lp = , we have



Theorem 3. Ly < (1+4e)Lp + O(n) for sufficiently small positive constant €.

Proof. Using Lemma 8 and summing over all links. The last term on the right
hand side in Lemma 8 is a constant, which leads to the O(n) upon summation.
|

As in Section 2, we observe that for F*, the optimal set of fiber intervals,
Lp+ > Lp. Thus, algorithm of [4] has a competitive ratio arbitrarily close to 1
provided Lp = £2(n).

Next, we look at the O(n) term in Theorem 3 more carefully.

3.1 A Lower Bound

It is easy to see that the O(n) additive term in the statement of Theorem 3
cannot be done away with for any approximation scheme. Consider the set Dy,q
of demands over 2n + 1 links. Djo4 contains one copy of demand [1,2n + 1], and
1 — 1 copies each of demands [1,n + 1] and [n + 1,2n + 1].

Clearly, Lp,,, < 2n + 2 while Lp«, the value of the optimal solution, is
3n + 2. That is, there can be no positive constant § < % such that Lp« <

(14+6)Lp,,, + o(n) for all n.

4 FIBER MINIMIZATION in a Ring

Next, we look at what is perhaps the most natural generalization of the FIBER
MINIMIZATION problem. Ring topologies are very commonly encountered and
widely studied in optical routing literature. Consider a ring of n links where
each demand d; in the demand set D is an arc [l;,r;] which requires links
€1, €1, +1mod(n), " * *» €r; - Fiber intervals are now arcs each of which can support p
different wavelengths. The goal is to find the set of fiber arcs with the minimum
total length.

The straightforward technique of partitioning an arc coloring problem into
two interval coloring problems and taking the union of the two solutions would
seem to directly obtain an approximation ratio of twice of that of the approx-
imation ratio for the problem on a line system (that is, a ratio of four in this
case). However, a small tweak gives a (2 + ¢)-approximation ratio algorithm
with two invocations of the Simple algorithm of Figures 1 and 2. Arbitrar-
ily pick a link e; and consider the set of demands using link e;, D = {d; €
D :i € {l;,l; + lmod(n),---,r;}}. Now run the Simple algorithm on both
D? and D — D? to get sets of fiber intervals (arcs) Fp: and Fp_pi. Define
Fp = Fpi U Fp_p:. Due to (possible) rounding® “errors” we now have for each
link e;, Lr,, (i) < 2Lp(i) + 1. Thus we have:

Theorem 4. The combined algorithm gives Lp, < 2Lps +n, where Fy, is the
optimal set of fibers arcs for D.

3 For each arc e; at most 2 fiber intervals containing e; from the two solutions can be
merged in the solution for the original problem.



Theorem 4 implies that if Lps >
an approximation ratio of 2 + e.

The ideas developed in the paper so far can be applied to the related problem
of PACKING INTERVALS IN INTERVALS [10].

%n, then the combined algorithm achieves

5 PACKING INTERVALS IN INTERVALS

Winkler and Zhang also introduced the PACKING INTERVALS IN INTER-
VALS problem in [10]. Here we are given a set of demands D and a set of fiber
intervals F', and the goal is to determine if D can be packed in F'. Consider
the optimization version of this decision problem. What is the smallest value of
p such that F' can accommodate D? Our techniques imply a 2-approximation
algorithm for this problem in the following sense:

Theorem 5. If D can be packed in F' using no more than & wavelengths in each
fiber, then there exists an algorithm which can pack D in F wutilizing no more
than p wavelengths in each fiber.

Proof (Sketch): A small modification to the Simple algorithm is required. Let
F be the set of fiber intervals and for each edge e; define Lp(i) = § |[{f : F >
f=1ly,rs] and i € [lf,rs]}|. As in Section 2, L7}** is defined as max; Lp(4).
Run Step 1 and 2 of Figure 1 with these values of Lp(i) and L73**. Run Step 3
of Figure 1 with the given set of demands D. Execute Phase 2 (Figure 2) using
£ in place of p, and in the output Fp merge each (f1(I),f2(I)) pair.

Using arguments similar to ones used to prove Lemma 4, one can show that
if D can be packed in F' using no more than 4 wavelengths in each fiber then
J is empty after the execution of Phase 1 . Similarly, analogues of Lemmas 5, 6
and 7 can be proved if the assumption of the theorem statement is valid. The
definition of Lp (%) and the fact that the constructed Fp is actually F' completes
the proof. A detailed proof is omitted due to space restrictions. [ ]

6 Conclusions

We presented a clean 2-approximation algorithm for the FIBER MINIMIZA-
TION problem on a linesystem. We also apply techniques from [4] to give an
approximation scheme for this problem. Based upon our 2-approximation al-
gorithm, we obtain good approximations for the related problems of FIBER
MINIMIZATION on a ring and PACKING INTERVALS IN INTERVALS.

Interesting open problems include investigating the FIBER MINIMIZATION
problem on other network topologies, particularly those common in optical fiber
networks, such as trees and meshes.
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