
Worst-case Optimal Join Algorithms

Hung Q. Ngo
University at Buffalo, SUNY
hungngo@buffalo.edu

Ely Porat
Bar-Ilan University

porately@cs.biu.ac.il

Christopher Ré
University of

Wisconsin–Madison
chrisre@cs.wisc.edu

Atri Rudra
University at Buffalo, SUNY

atri@buffalo.edu

ABSTRACT
Efficient join processing is one of the most fundamental and well-
studied tasks in database research. In this work, we examine al-
gorithms for natural join queries over many relations and describe
a novel algorithm to process these queries optimally in terms of
worst-case data complexity. Our result builds on recent work by
Atserias, Grohe, and Marx, who gave bounds on the size of a full
conjunctive query in terms of the sizes of the individual relations in
the body of the query. These bounds, however, are not constructive:
they rely on Shearer’s entropy inequality which is information-
theoretic. Thus, the previous results leave open the question of
whether there exist algorithms whose running time achieve these
optimal bounds. An answer to this question may be interesting
to database practice, as we show in this paper that any project-
join plan is polynomially slower than the optimal bound for some
queries. We construct an algorithm whose running time is worst-
case optimal for all natural join queries. Our result may be of
independent interest, as our algorithm also yields a constructive
proof of the general fractional cover bound by Atserias, Grohe,
and Marx without using Shearer’s inequality. In addition, we show
that this bound is equivalent to a geometric inequality by Bollobás
and Thomason, one of whose special cases is the famous Loomis-
Whitney inequality. Hence, our results algorithmically prove these
inequalities as well. Finally, we discuss how our algorithm can be
used to compute a relaxed notion of joins.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational databases

General Terms
Algorithms, Theory

Keywords
Join Algorithms, fractional cover bound, Loomis-Whitney inequal-
ity, Bollobás-Thomason inequality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’12, May 21–23, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1248-6/12/05 ...$10.00.

1. INTRODUCTION
Recently, Grohe and Marx [17] and Atserias, Grohe, and Marx [5]

(AGM’s results henceforth) derived tight bounds on the number of
output tuples of a full conjunctive query1 in terms of the sizes of the
relations mentioned in the query’s body. As query output size es-
timation is fundamentally important for efficient query processing,
these results have generated a great deal of excitement.

To understand the spirit of AGM’s results, consider the following
example where we have a schema with three attributes, A, B, and
C, and three relations, R(A, B), S (B,C) and T (A,C), defined over
those attributes. Consider the following natural join query:

q = R � S � T (1)

Let q(I) denote the set of tuples that is output from applying q to a
database instance I, i.e. q(I) is the set of triples of constants (a, b, c)
such that R(ab), S (bc), and T (ac) are in I. Our goal is to bound the
number of tuples returned by q on I, denoted by |q(I)|, in terms
of |R|, |S |, and |T |. For simplicity, let us consider the case when
|R| = |S | = |T | = N. A trivial bound is |q(I)| ≤ N3. One can obtain
a better bound by noticing that the output of any pair-wise join (say
R � S) will be a superset of q(I), since the union of the attributes
in R and S together contain (or “cover”) all attributes. This leads to
the bound |q(I)| ≤ N2. AGM showed that one can get a better upper
bound of |q(I)| ≤ N3/2 by generalizing the notion of cover to a so-
called “fractional cover” (see Section 2). Moreover, this estimate is
tight in the sense that for infinitely many values of N, one can find a
database instance I for which |R| = |S | = |T | = N and |q(I)| = N3/2.
These non-trivial estimates are exciting to database researchers as
they offer previously unknown, nontrivial methods to estimate the
cardinality of a query result – a fundamental problem to support
efficient query processing.

More generally, given an arbitrary natural-join query q and given
the sizes of input relations, the AGM method can generate an up-
per bound U such that |q(I)| ≤ U, where U depends on the “best”
fractional cover of the attributes. This “best” fractional cover can
be computed by a linear program (see Section 2 for more details).
Henceforth, we refer to this inequality as the AGM’s fractional
cover inequality, and the bound U as the AGM’s fractional cover
bound. They also show that the bound is essentially optimal in the
sense that for infinitely many sizes of input relations, there exists
an instance I such that each relation in I is of the prescribed size
and |q(I)| = U.

AGM’s results leave open whether one can compute the actual
set q(I) in time O(U). In fact, AGM observed this issue and pre-
sented an algorithm that computes q(I) with a running time of O(|q|2·
1A full conjunctive query is a conjunctive query where every vari-
able in the body appears in the head.

U · N) where N is the cardinality of the largest input relation and
|q| denotes the size of the query q. AGM established that their join-
project plan can in some cases be super-polynomially better than
any join-only plan. However, AGM’s join algorithm is not optimal.
Even on query (1), we can construct a family of database instances
I1, I2, . . . , IN , . . . , such that in the Nth instance IN we have |R| =
|S | = |T | = N and any join-project plan (which includes AGM’s
algorithm) takes Ω(N2)-time even though from AGM’s bound we
know that |q(I)| ≤ U = N3/2, which is the best worst-case run-time
that one can hope for.

The
√

N-gap on a small example motivates our central question.
In what follows, natural join queries are defined as the join of a set
of relations R1, . . . ,Rm.

Optimal Worst-case Join Evaluation Problem (Op-
timal Join Problem). Given a fixed database schema
R̄ =

{
Ri(Āi)

}m
i=1

and an m-tuple of integers N̄ = (N1, . . . ,Nm).
Let q be the natural join query joining the relations
in R̄ and let I(N̄) be the set of all instances such that
|RI

i | = Ni for i = 1, . . . ,m. Define U = supI∈I(N̄) |q(I)|.
Then, the optimal worst-case join evaluation problem
is to evaluate q in time O(U +

∑m
i=1 Ni).

Since any algorithm to produce q(I) requires time at least |q(I)|,
an algorithm that solves the above problem would have an optimal
worst-case data-complexity.2 (Note that we are mainly concerned
with data complexity and thus the O(U) bound above ignores the
dependence on |q|. Our results have a small O(|q|) factor.)

Implicitly, this problem has been studied for over three decades:
a modern RDBMS uses decades of highly tuned algorithms to effi-
ciently produce query results. Nevertheless, as we described above,
such systems are asymptotically suboptimal – even for query (1).
Our main result is an algorithm that achieves asymptotically opti-
mal worst-case running times for all join queries.

We begin by describing connections between AGM’s inequality
and a family of inequalities in geometry. In particular, we show that
the AGM’s inequality is equivalent to the discrete version of a ge-
ometric inequality proved by Bollobás and Thomason [8, Theorem
2]. This equivalence is shown in Section 2.2.

Our ideas for an algorithm solving the optimal join problem be-
gin by examining a special case of the Bollobás-Thomason (BT)
inequality: the classic Loomis-Whitney (LW) inequality [26]. The
LW inequality bounds the measure of an n-dimensional set in terms
of the measures of its (n − 1)-dimensional projections onto the co-
ordinate hyperplanes. The bound |q(I)| ≤

√
|R||S ||T | for query (1)

is exactly the LW inequality with n = 3 applied to the discrete mea-
sure. Our algorithmic development begins with a slight generaliza-
tion of query (1). We describe an algorithm for join queries which
have the same format as in the LW inequality setup with n ≥ 3.
In particular, we consider “LW instances” of the optimal join prob-
lem, where the query is to join n relations whose attribute sets are
all the distinct (n − 1)-subsets of a universe of n attributes. Since
the LW inequality is tight, and our join algorithm has running time
that is asymptotically data-optimal for this class of queries (e.g.,
O(N3/2) in our motivating example), our algorithm is worst-case
data-complexity optimal for LW instances.

Our algorithm for LW instances exhibits a key twist compared
to a conventional join algorithm. The twist is that our algorithm
partitions the values of the join key on each side of the join into
2In an RDBMS, one computes information, e.g., indexes, offline
that may obviate the need to read the entire input relations to pro-
duce the output. In a similar spirit, we can extend our results to
evaluate any query q in time O(U), removing the term

∑
i Ni by

precomputing some indices.

two sets: those values that are heavy and those values that are light.
Intuitively, a value of a join key is heavy if its fanout is high enough
so that joining all such join keys could violate the size bound (e.g.,
N3/2 above). The art is selecting the precise fanout threshold for
when a join key is heavy. This per-tuple choice of join strategy is
not typically done in standard RDBMS join processing.

Building on the algorithm for LW instances, we next describe
our main result: an algorithm to solve the optimal join problem for
all join queries. In particular, we design an algorithm for evaluat-
ing join queries which not only proves AGM’s fractional cover in-
equality without using the information-theoretic Shearer’s inequal-
ity, but also has a running time that is linear in the bound (modulo
pre-processing time). As AGM’s inequality is equivalent to BT
inequality and thus implies LW inequality, our result is the first al-
gorithmic proof of these geometric inequalities as well. To do this,
we must carefully select which projections of relations to join and
in which order our algorithm joins relations on a “per tuple” basis
as in the LW-instance case. Our algorithm computes these order-
ings, and then at each stage it performs a heavy/light tuple check
that is similar to the strategy used for the LW instances earlier.

It is easy to show that any join-only plan is suboptimal for some
queries. A natural question is, when do classical RDBMS algo-
rithms have higher worst-case run-time than our proposed approach?
AGM’s analysis of their join-project algorithm leads to a worst case
run-time complexity that is a factor of the largest relation worse
than the AGM’s bound. To investigate whether AGM’s analysis
is tight, we ask a sharper variant of this question: Given a query
q does there exist a family of instances I such that our algorithm
runs asymptotically faster than a standard binary-join-based plan
or AGM’s join-project plan? We give a partial answer to this ques-
tion by describing a sufficient syntactic condition for the query q
such that for each k ≥ 2, we can construct a family of instances
where each relation is of size N such that any project-join plan
(which as a special case includes AGM’s algorithm) will need time
Ω(N2/k2), while the fractional cover bound is O(N1+1/(k−1)) – an
asymptotic gap. We then show through a more detailed analysis
that our algorithm on these instances takes O(k2N)-time.

We consider several extensions and improvements of our main
result. In terms of the dependence on query size, our algorithms are
also efficient (at most linear in |q|, which is better than the quadratic
dependence in AGM) for full queries, but they are not necessarily
optimal. In particular, if each relation in the schema has arity 2,
we are able to give an algorithm with better query complexity than
our general algorithm. This shows that in general our algorithm’s
dependence on the factors of the query is not the best possible. We
also consider computing a relaxed notion of joins and give worst-
case optimal algorithms for this problem as well.

Outline. The remainder of the paper is organized as follows: in
the rest of this section, we describe related work. In Section 2
we describe our notation, formulate the main problem, and prove
the connection between AGM’s inequality and BT inequality. Our
main results are in Section 3. We first present a data-optimal join
algorithm for LW instances, and then present the optimal algorithm
for arbitrary join queries. We also discuss the limits of performance
of prior approaches and our approach in more detail. In Section 4,
we describe several extensions. We conclude in Section 5. Due to
space constraints some proofs are deferred to the full version [30].

Related Work
Grohe and Marx [17] made the first (implicit) connection between
fractional edge cover and the output size of a conjunctive query.
(Their results were stated for constraint satisfaction problems.) At-

serias, Grohe, and Marx [5] extended Grohe and Marx’s results in
the database setting.

The first relevant result of AGM is the following inequality. Con-
sider a join query over relations Re, e ∈ E, where E is a collection
of subsets of an attribute “universe” V , and relation Re is on at-
tribute set e. Then, the number of output tuples is bounded above
by

∏
e∈E |Re|xe , where x = (xe)e∈E is an arbitrary fractional cover of

the hypergraph H = (V, E).
They also showed that this bound is tight. In particular, for in-

finitely many positive integers N there is a database instance with
|Re| = N, ∀e ∈ E, and the upper bound gives the actual number of
output tuples. When the sizes |Re| were given as inputs to the (out-
put size estimation) problem, obviously the best upper bound is ob-
tained by picking the fractional cover x which minimizes the linear
objective function

∑
e∈E(log |Re|)·xe. In this “size constrained” case,

however, their lower bound is off from the upper bound by a factor
of 2n, where n is the total number of attributes. AGM also presented
an inapproximability result which justifies this gap. Note, however,
that the gap is only dependent on the query size and the bound is
still asymptotically optimal in the data-complexity sense.

The second relevant result from AGM is a join-project plan with
running time O

(
|q|2N1+

∑
xe

max

)
, where Nmax is the maximum size of

input relations and |q| = |V | · |E| is the query size.
The AGM’s inequality contains as a special case the discrete

versions of two well-known inequalities in geometry: the Loomis-
Whitney (LW) inequality [26] and its generalization the Bollobás-
Thomason (BT) inequality [8]. There are two typical proofs of the
discrete LW and BT inequalities. The first proof is by induction
using Hölder’s inequality [8]. The second proof (see Lyons and
Peres [27]) essentially uses “equivalent” entropy inequalities by
Han [19] and its generalization by Shearer [9], which was also the
route Grohe and Marx [17] took to prove AGM’s bound. All of
these proofs are non-constructive.

There are many applications of the discrete LW and BT inequal-
ities. The n = 3 case of the LW inequality was used to prove com-
munication lower bounds for matrix multiplication on distributed
memory parallel computers [22]. The inequality was used to prove
submultiplicativity inequalities regarding sums of sets of integers [18].
In [25], a special case of BT inequality was used to prove a network-
coding bound. Recently, some of the authors of this paper have
used our algorithmic version of the LW inequality to design a new
sub-linear time decodable compressed sensing matrices [12] and
efficient pattern matching algorithms [31].

Inspired by AGM’s results, Gottlob, Lee, and Valiant [13] gen-
eralized AGM’s results to conjunctive queries with functional de-
pendencies. Their key idea was a new notion, the “coloring num-
ber”, which is derived from the dual linear program of the frac-
tional cover linear program.

Join processing is one of the most studied problems in database
research. On the theoretical side, that acyclic queries can be com-
puted in polynomial time is one of the classic results in database
theory [1, Ch. 6.4]. When the join graph is acyclic, there are several
known results which achieve (near) optimal run time with respect to
the output size [32, 38]. One direction to extend the reach of these
positive results is using hypertree decompositions that capture the
idea that many queries are nearly acyclic [14, 15]; This work has
culminated in efficient algorithms for broad classes of conjunctive
queries – a more general class of queries than we consider here.
The algorithms in this work are complementary: our algorithms are
most interesting when the queries are cyclic. In practice, a stagger-
ing number of variants have been considered, we list a few: Block-
Nested loop join, Hash-Join, Grace, Sort-merge (see Grafe [16] for
a survey). Conceptually, it is interesting that none of the classical

algorithms consider performing a per-tuple cardinality estimation
as our algorithm does. It is interesting future work to implement
our algorithm to better understand its performance.

Related to the problem of estimating the size of an output is
cardinality estimation. A large number of structures have been
proposed for cardinality estimation [2, 10, 20, 23, 24, 33]. Often,
deriving estimates for arbitrary query expressions involves mak-
ing statistical assumptions, such as the independence or contain-
ment assumptions, which may result in large estimation errors [21].
Follow-up work has considered sophisticated probability models,
entropy-based models [28, 35] and graphical models [36]. In con-
trast, in this work we examine the worst case behavior of algo-
rithms in terms of its cardinality estimates.

On a technical level, the work adaptive query processing is re-
lated, e.g., Eddies [6] and RIO [7]. The main idea is that to com-
pensate for erroneous statistics, the query plan may adaptively be
changed (as it better understands the properties of the data). While
both our method and the methods proposed here are adaptive in
some sense, our focus is different: this body of work focuses on
heuristic optimization methods, while our focus is on provable worst-
case running time bounds. A related idea has been considered in
practice: heuristics that split tuples based on their fanout have been
deployed in modern parallel databases to handle skew [39]. This
idea was not used to theoretically improve the running time of join
algorithms. We are excited that a key mechanism used by our algo-
rithm is implemented in a modern commercial system.

2. PRELIMINARIES
We first describe our notation and formal problem statement.

Then, we describe the connection between AGM’s result and the
BT inequality.

2.1 Notation and Formal Problem Statement
We assume the existence of a set of attribute namesA = A1, . . . , An

with associated domains D1, . . . ,Dn and infinite set of relational
symbols R1,R2, A relational schema for the symbol Ri of ar-
ity k is a tuple Āi = (Ai1 , . . . , Aik) of distinct attributes that de-
fines the attributes of the relation. A relational database schema
is a set of relational symbols and associated schemas denoted by
R1(Ā1), . . . ,Rm(Ām). A relational instance for R(Ai1 , . . . , Aik) is a
subset of Di1 × · · · × Dik . A relational database I is an instance
for each relational symbol in schema, denoted by RI

i . A natural
join query (or simply query) q is specified by a finite subset of
relational symbols q ⊆ N, denoted by �i∈q Ri. Let Ā(q) denote
the set of all attributes that appear in some relation in q, that is
Ā(q) = {A | A ∈ Āi for some i ∈ q}. Given a tuple t we will write tĀ
to emphasize that its support is the attribute set Ā. Further, for any
S̄ ⊂ Ā we let tS̄ denote t restricted to S̄ . Given a database instance
I, the output of the query q on I is denoted q(I) and is defined as

q(I) def
=
{
t ∈ DĀ(q) | tĀi ∈ RI

i for each i ∈ q
}

where DĀ(q) is a shorthand for ×i:Ai∈Ā(q)Di.
We also use the notion of a semijoin: Given two relations R(Ā)

and S (B̄) their semijoin R � S is defined by

R � S def
= {t ∈ R : ∃u ∈ S s.t. tĀ∩B̄ = uĀ∩B̄} .

For any relation R(Ā), and any subset S̄ ⊆ Ā of its attributes, let
πS̄ (R) denote the projection of R onto S̄ , i.e.

πS̄ (R) =
{
tS̄ | ∃tĀ\S̄ , (tS̄ , tĀ\S̄) ∈ R

}
.

For any tuple tS̄ , define the tS̄ -section of R as

R[tS̄] = πĀ\S̄ (R � {tS̄ }).

From Join Queries to Hypergraphs. A query q =�i∈q Ri

on attributes Ā(q) can be viewed as a hypergraph H = (V, E) where
V = Ā(q) and there is an edge ei = Āi for each i ∈ q. Let Ne = |Re|
be the number of tuples in Re. From now on we use the hypergraph
and the original notation for the query interchangeably.

We use this hypergraph to introduce the fractional edge cover
polytope that plays a central role in our technical developments.
The fractional edge cover polytope defined by H is the set of all
points x = (xe)e∈E ∈ RE such that∑

e:v∈e
xe ≥ 1, for any v ∈ V

xe ≥ 0, for any e ∈ E

Note that the solution xe = 1 for e ∈ E is always a feasible so-
lution for hypergraphs representing join queries (since each vertex
appears in some edge,

∑
e:v∈e xe ≥ 1). A point x in the polytope is

also called a fractional (edge) cover solution of the hypergraph H.
Atserias, Grohe, and Marx [5] establish that for any point x =

(xe)e∈E in the fractional edge cover polytope

| �e∈E Re| ≤
∏
e∈E

Nxe
e . (2)

The bound is proved nonconstructively using Shearer’s entropy
inequality [9]. However, AGM provide an algorithm based on
join-project plans that runs in time O(|q|2 · N1+

∑
e xe

max) where Nmax =

maxe∈E Ne. They observed that for a fixed hypergraph H and given
sizes Ne the bound (2) can be minimized by solving the linear pro-
gram which minimizes the linear objective

∑
e(log Ne) · xe over frac-

tional edge cover solutions x. (Since in linear time we can deter-
mine if we have an empty relation, and hence an empty output, for
the rest of the paper we are always going to assume that Ne ≥ 1.)
We recast our problem using the above language.

Definition 2.1 (OJ Problem – Optimal Join Problem). With the
notation above, design an algorithm to compute �e∈E Re with run-
ning time

O

 f (|V |, |E|) ·
∏
e∈E

Nxe
e + g(|V |, |E|)

∑
e∈E

Ne

 .
Here f (|V |, |E|) and g(|V |, |E|) are ideally polynomials with (small)
constant degrees, which only depend on the query size. The linear
term

∑
e∈E Ne is to read and index the input (in a specific way). Such

an algorithm would be data-optimal in the worst case.3

We recast our motivating example from the introduction in our
notation. Recall that we are given as input, R(A, B), S (B,C),T (A,C).
The resulting hypergraph (V, E) is such that V = {A, B,C} and E
contains three edges corresponding to each of R, S , and T . More
explicitly, we have E = {{A, B}, {B,C}, {A,C}}. Thus, |V | = 3 and
|E| = 3. If Ne = N, one can check that the optimal solution to
the LP is xe =

1
2 for e ∈ E which has the objective value 3

2 log N;
3As shall be seen later, the worst-case preprocessing time is linear
in the RAM model using the “lazy array" technique of Lemma A.3
of Flum, Frick, and Grohe [11], at the expense of potentially huge
space overhead. To remove this excess space, we can build a set
of hash indices in expected linear time using any perfect hashing
scheme with worst-case constant time, e.g., Cuckoo hashing. Also,
one can build a search tree for each relation to ensure a worst-case
guarantee but with an extra log factor in the running time.

in turn, this gives supI∈I(N̄) |q(I)| ≤ N3/2 (recall I(N̄) = {I : |RI
e| =

Ne for e ∈ E}).

Example 1. Given an odd integer N, we construct an instance IN

such that (1) |RIN | = |S IN | = |T IN | = N, (2) |R � S | = |R � T | =
|S � T | = (N+1)2/4+(N−1)/2, and (3) |R � S � T | = (3N−1)/2.
The following instance satisfies all three properties:

RIN = S IN = T IN = {(0, j)}(N−1)/2
j=0 ∪ {(j, 0)}(N−1)/2

j=0 .

For example,

R � S = {(i, 0, j)}(N−1)/2
i, j=0 ∪ {(0, i, 0)}i=1,...,(N−1)/2

and R � S � T = {(0, 0, j)}(N−1)/2
j=0 ∪{(0, j, 0)}(N−1)/2

j=1 ∪{(j, 0, 0)}(N−1)/2
j=1 .

Thus, any standard join-based algorithm takes time Ω(N2). We
show later that any project-join plan (which includes AGM’s algo-
rithm) takes Ω(N2)-time too. Recall that the AGM bound for this
instance is O(N3/2), and our algorithm thus takes time O(N3/2). In
fact, as shall be shown later, on this particular family of instances
our algorithm takes only O(N) time.

2.2 Connections to Geometric Inequalities
We describe the Bollobás-Thomason (BT) inequality from dis-

crete geometry and prove that the BT inequality is equivalent to
the AGM inequality. We then look at a special case of the BT in-
equality called the Loomis-Whitney (LW) inequality, from which
our algorithmic development starts in the next section. The BT in-
equality can be stated as follows.

Theorem 2.2 (Discrete Bollobás-Thomason (BT) Inequality).
Let S ⊂ Zn be a finite set of n-dimensional grid points. Let F be a
collection of subsets of [n] in which every i ∈ [n] occurs in exactly
d members of F . Let S F be the set of projections Zn → ZF of points
in S onto the coordinates in F. Then, |S |d ≤

∏
F∈F |S F |.

To prove the equivalence between BT inequality and the AGM
bound, we first need a simple observation, whose proof can be
found in the full version [30].

Lemma 2.3. Consider an instance of the OJ problem consisting
of a hypergraph H = (V, E), a fractional cover x = (xe)e∈E of H,
and relations Re for e ∈ E. Then, in linear time we can trans-
form the instance into another instance H′ = (V, E′), x′ = (x′e)e∈E′ ,
(R′e)e∈E′ , such that the following properties hold:

(a) x′ is a “tight” fractional edge cover of the hypergraph H′,
namely x′ ≥ 0 and∑

e∈E′ :v∈e
x′e = 1, for every v ∈ V.

(b) The two problems have the same answer:

�e∈E Re = �e∈E′ R′e.

(c) AGM’s bound on the transformed instance is at least as good
as that of the original instance:∏

e∈E′
|R′e|x

′
e ≤

∏
e∈E

|Re|xe .

With this technical observation, we can now connect the two
families of inequalities:

Proposition 2.4. BT inequality and AGM’s fractional cover bound
are equivalent.

Proof. To see that AGM’s inequality implies BT inequality, we
think of each coordinate as an attribute, and the projections S F as
the input relations. Set xF = 1/d for each F ∈ F . It follows that
x = (xF)F∈F is a fractional cover for the hypergraph H = ([n],F).
AGM’s bound then implies that |S | ≤ ∏F∈F |S F |1/d.

Conversely, consider an instance of the OJ problem with hyper-
graph H = (V, E) and a rational fractional cover x = (xe)e∈E of H.
First, by Lemma 2.3, we can assume that all cover constraints are
tight, i.e.,

∑
e:v∈e xe = 1, for any v ∈ V . Second, when all vari-

ables xe are rational we can write xe as de/d for a positive common
denominator d. Consequently,∑

e:v∈e
de = d, for any v ∈ V.

Now, create de copies of each relation Re. Call the new relations
R′e. We obtain a new hypergraph H′ = (V, E′) where every attribute
v occurs in exactly d hyperedges. This is precisely the Bollóbas-
Thomason’s setting of Theorem 2.2. Hence, the size of the join
is bounded above by

∏
e∈E′ |R′e|1/d =

∏
e∈E |Re|de/d =

∏
e∈E |Re|xe .

When some of the xe are not rational, we can replace each irrational
xe by a rational x′e > xe with a sufficiently small difference and
apply the above analysis.

Loomis-Whitney. We now consider a special case of the BT
inequality, the discrete version of a classic geometric inequality
called the Loomis-Whitney inequality [26]. The setting is that for
n ≥ 2, V = [n] and E =

(
V
|V |−1

)
,4 where in this case xe = 1/(|V | −

1), ∀e ∈ E is a fractional cover solution for (V, E). LW showed the
following:

Theorem 2.5 (Discrete Loomis-Whitney (LW) inequality). Let
S ⊂ Zn be a finite set of n-dimensional grid points. For each di-
mension i ∈ [n], let S [n]\{i} denote the (n−1)-dimensional projection
of S onto the coordinates [n] \ {i}. Then, |S |n−1 ≤ ∏n

i=1 |S [n]\{i}|.

The LW inequality is a special case of the BT inequality (and so
the AGM inequality), and it is with this special case that we begin
our algorithmic development in the next section.

3. MAIN RESULTS
We first describe our algorithm for the LW inequality. We then

describe our main algorithmic result, which is an algorithm that
proves the AGM bound and whose running time matches the bound.
Finally, we observe some limitations of project-join plans, which
include as special cases both standard binary join-based algorithms
and AGM’s join algorithm.

3.1 Algorithm for Loomis-Whitney Instances
We first consider queries whose forms are slightly more general

than that in our motivating example (1). This class of queries has
the same setup as in LW inequality of Theorem 2.5. In this spirit,
we define a Loomis-Whitney (LW) instance of the OJ problem to be
a hypergraph H = (V, E) such that E is the collection of all subsets
of V of size |V | − 1. When the LW inequality is applied to this
setting, it guarantees that | �e∈E Re| ≤ (

∏
e∈E Ne)1/(n−1), and the

bound is tight in the worst case. The main result of this section is
the following:

Theorem 3.1 (Loomis-Whitney instance). Let n ≥ 2 be an in-
teger. Consider a Loomis-Whitney instance H = (V = [n], E) of
4We use E =

(
V
k

)
to denote the set of all undirected hyperedges

(subsets of nodes) of size exactly k.

the OJ problem with input relations Re, where |Re| = Ne for e ∈ E.
Then the join �e∈E Re can be computed in time

O

n2 ·
∏

e∈E

Ne

1/(n−1)

+ n2
∑
e∈E

Ne

 .

Before describing our algorithm, we give an example that illus-
trates the intuition behind our algorithm and solves the motivating
example (1) from the introduction.

Example 2. Recall that our input has three relations R(A, B), S (B,C),
T (A,C) and an instance I such that |RI | = |S I | = |T I | = N. Let
J = R � S � T . Our goal is to construct J in time O(N3/2). For
exposition, define a parameter τ ≥ 0 that we will choose below. We
use τ to define two sets that effectively partition the tuples in RI .

D = {tB ∈ πB(R) : |RI[tB]| > τ} and G = {(tA, tB) ∈ RI : tB � D}

Intuitively, D contains the heavy join keys in R. Note that |D| <
N/τ. Observe that J ⊆ (D× T)∪ (G � S) (also note that this union
is disjoint). Our algorithm will construct D × T (resp. G � S)
in time O(N3/2), then it will filter out those tuples in both S and R
(resp. T) using the hash tables on S and R (resp. T); this process
produces exactly J. Since our running time is linear in the above
sets, the key question is how big are these two sets?

Observe that |D × T | ≤ (N/τ)N = N2/τ while |G � S | =∑
tB∈πB(G) |R[tB]||S [tB]| ≤ τN. Setting τ =

√
N makes both terms

at most N3/2, establishing the running time of our algorithm. One
can check that if the relations are of different cardinalities, then we

can still use the same algorithm; moreover, by setting τ =
√
|R||T |
|S | ,

we achieve a running time of O(
√
|R||S ||T |+ |R| + |S | + |T |).

To describe the general algorithm underlying Theorem 3.1, we
need to introduce some data structures and notation.

Data Structures and Notation. Let H = (V, E) be an LW in-
stance. Algorithm 1 begins by constructing a labeled, binary tree T
whose set of leaves is exactly V and each internal node has exactly
two children. Any binary tree over this leaf set can be used. We de-
note the left child of any internal node x as lc(x) and its right child
as rc(x). Each node x ∈ T is labeled by a function label, where
label(x) ⊆ V are defined inductively as follows: label(x) = V \ {x}
for a leaf node x ∈ V , and label(x) = label(lc(x)) ∩ label(rc(x))
if x is an internal node of the tree. It is immediate that for any
internal node x we have label(lc(x)) ∪ label(rc(x)) = V and that
label(x) = ∅ if and only if x is the root of the tree. Let J denote
the output set of tuples of the join, i.e. J = �e∈E Re. For any node
x ∈ T , let T (x) denote the subtree of T rooted at x, and L(T (x))
denote the set of leaves under this subtree. For any three relations
R, S , and T , define R �S T = (R � T) � S .

Algorithm for LW instances. Algorithm 1 works in two stages.
Let u be the root of the tree T . First we compute a tuple set C(u)
containing the output J such that C(u) has a relatively small size
(at most the size bound times n). Second, we prune those tuples
that cannot participate in the join (which takes only linear time in
the size of C(u)). The interesting part is how we compute C(u).
Inductively, we compute a set C(x) that at each stage contains can-
didate tuples and an auxiliary set D(x), which is a superset of the
projection πlabel(x)(J \ C(x)). The set D(x) intuitively allows us to
deal with those tuples that would blow up the size of an intermedi-
ate relation. The key novelty in Algorithm 1 is the construction of
the set G that contains all those tuples (join keys) that are in some

Algorithm 1 Algorithm for Loomis-Whitney Instances

1: An LW instance: Re for e ∈
(

V
|V |−1

)
and Ne = |Re|.

2: P =
∏

e∈E N1/(n−1)
e (the size bound from LW inequality)

3: u← root(T); (C(u),D(u))← LW(u)
4: “Prune” C(u) and return

LW(x) : x ∈ T returns (C,D)
1: if x is a leaf then
2: return (∅,Rlabel(x))
3: (CL,DL)← LW(lc(x)) and (CR,DR)← LW(rc(x))
4: F ← πlabel(x)(DL) ∩ πlabel(x)(DR)
5: G ← {t ∈ F : |DL[t]| + 1 ≤ �P/|DR|�} // F = G = ∅ if |DR| = 0
6: if x is the root of T then
7: C ← (DL � DR) ∪CL ∪ CR

8: D← ∅
9: else

10: C ← (DL �G DR) ∪CL ∪ CR

11: D← F \G.
12: return (C,D)

sense light, i.e., joining over them would not exceed the size/time
bound P by much. The elements that are not light are postponed to
be processed later by pushing them to the set D(x). This is in full
analogy to the sets G and D defined in Example 2.

By induction on each step of the algorithm, we establish in the
full version of this paper that the following three properties hold
for every node x ∈ T : (1) πlabel(x)(J \ C(x)) ⊆ D(x); (2) |C(x)| ≤
(|L(T (x))| − 1) · P; and (3)

|D(x)| ≤ min
{

min
l∈L(T (x))

{N[n]\{l}},
∏

l∈L(T (x)) N[n]\{l}

P|L(T (x))|−1

}
.

Assuming the above three properties, we next prove that our al-
gorithm correctly computes the join J. Let u denote the root of the
tree T . By property (1),

πlabel(lc(u))(J \C(lc(u))) ⊆ D(lc(u))
πlabel(rc(u))(J \ C(rc(u))) ⊆ D(rc(u))

Hence,

J\(C(lc(u))∪C(rc(u))) ⊆ D(lc(u))×D(rc(u)) = D(lc(u)) � D(rc(u)).

This implies J ⊆ C(u). Thus, from C(u) we can compute J by
keeping only tuples in C(u) whose projection on any attribute set
e ∈ E =

(
[n]
n−1

)
is contained in Re (the “pruning” step).

Running Time. For the run time complexity of the above algo-
rithm, we claim that for every node x, we need time O(n|C(x)| +
n|D(x)|). To see this note that for each node x, the lines 4, 5, 7,
10, and 11 of Algorithm 1 can be computed within the time bound
using hashing. Using property (3) above, we have a (loose) up-
per bound of O

(
nP + n minl∈L(T (x)) N[n]\{l}

)
on the run time for node

x. Summing the run time over all the nodes in the tree gives the
claimed run time.

3.2 An Algorithm for All Join Queries
This section presents our algorithm for proving the AGM in-

equality that has a running time that matches the bound.

Theorem 3.2. Let H = (V, E) be a hypergraph representing a
natural join query. Let n = |V | and m = |E|. Let x = (xe)e∈E be an

arbitrary point in the fractional cover polytope∑
e:v∈e

xe ≥ 1, for any v ∈ V

xe ≥ 0, for any e ∈ E

For each e ∈ E, let Re be a relation of size Ne = |Re| (number of
tuples in the relation). Then,

(a) The join �e∈E Re has size (number of tuples) bounded by

| �e∈E Re| ≤
∏
e∈E

Nxe
e .

(b) Furthermore, the join �e∈E Re can be computed in time

O

mn
∏
e∈E

Nxe
e + n2

∑
e∈E

Ne + m2n

Remark 3.3. In the running time above, m2n is the query pre-
processing time, n2 ∑

e∈E Ne is the data preprocessing time, and
mn

∏
e∈E Nxe

e is the query evaluation time. If all relations in the
database are indexed in advance to satisfy three conditions (HT1),
(HT2), and (HT3) from Section 3.2.3, then we can remove the term
n2 ∑

e∈E Ne from the running time. To make the bound tight, the
fractional cover solution x should be the best fractional cover in
terms of the linear objective

∑
e(log Ne)·xe. The data-preprocessing

time of O(n2 ∑
e Ne) is for a single known query. If we were to in-

dex all relations in advance without knowing which queries to be
evaluated, then the advance-indexing takes O(n · n!

∑
e Ne)-time.

This price is paid once, up-front, for an arbitrary number of future
queries.

Before turning to our algorithm and proof of this theorem, we
observe that a consequence of this theorem is the following algo-
rithmic version of the discrete version of BT inequality.

Corollary 3.4. Let S ⊂ Zn be a finite set of n-dimensional grid
points. Let F be a collection of subsets of [n] in which every i ∈ [n]
occurs in exactly d members of F . Let S F be the set of projections
Zn → ZF of points in S onto the coordinates in F. Then,

|S |d ≤
∏
F∈F

|S F |. (3)

Furthermore, given the projections S F we can compute S in time

O

|F |n
∏

F∈F
|S F |

1/d

+ n2
∑
F∈F
|S F | + |F |2n

Recall that the LW inequality is a special case of the BT inequal-

ity. Hence, our algorithm proves the LW inequality as well.

3.2.1 The Algorithm and Terminology
Algorithm 2 has three main phases: (1) We first construct a la-

beled binary tree that we call a query plan tree or QP tree. Then,
we construct a total order of attributes to be used in the next step.
(2) Using the total order from phase (1), we construct a set of hash
indices for various probing operations in the next step. In step (3),
we give a recursive algorithm to compute the required join (whose
recursion is based on the QP tree). The algorithm in (3) is similar
to our LW algorithm: it uses a notion of heavy and light join keys,
it computes a superset of the join and uses hash tables to filter this
set. It does have some key technical differences: the structure of
the recursion is different and the handling of heavy/light join keys
is more general.

Algorithm 2 Computing the join �e∈E Re

Input: Hypergraph H = (V, E), |V | = n, |E| = m
Input: Fractional cover solution x = (xe)e∈E

Input: Relations Re, e ∈ E
1: Compute the query plan tree T , let u be T ’s root node
2: Compute a total order of attributes
3: Compute a collection of hash indices for all relations
4: return Recursive-Join(u, x, nil)

To make this section self-contained, we repeat some terminology
and notation. For each tuple t on attribute set A, we will write t as tA

to emphasize the support of t: tA = (ta)a∈A. Consider any relation R
with attribute set S . Let A ⊂ S and tA be a fixed tuple. Then, πA(R)
denotes the projection of R on to attributes in A and,

R[tA] := πS \A(R � {tA}) = {tS \A | (tA, tS \A) ∈ R}.

In particular, R[t∅] = R. There is a complete worked example of
our algorithm in the full version of this paper.

3.2.2 Step (1): Build a query plan tree
Given a query H = (V, E), fix an arbitrary order e1, e2, . . . , em

of all the hyperedges in E. We construct a labeled binary tree
(T , lc, rc) where lc (resp. rc) maps an internal node to their left
child (resp. right child) and to a special constant nil if no such
child exists. Each node x ∈ T is equipped with a pair of functions
label(x) ∈ [m] and univ(x) ⊆ V . Very roughly, each node x and
the sub-tree below it forms the “skeleton” of a sub-problem. There
will be many sub-problems that correspond to each skeleton. The
value label(x) points to an “anchor” relation for the sub-problem
and univ(x) is the set of attributes that the sub-problem is joining
on. The anchor relation divides the universe univ(x) into two parts
to further sub-divide the recursion structure.

Algorithm 3 Constructing the query plan tree T
1: Fix an arbitrary order e1, e2, . . . , em of all the hyperedges in E.
2: T ← build-tree(V,m)
build-tree(U, k)
1: if ei ∩U = ∅, ∀i ∈ [k] then
2: return nil
3: Create a node u with label(u)← k and univ(u) = U
4: if k > 1 and ∃i ∈ [k] such that U � ei then
5: lc(u)← build-tree(U \ ek, k − 1)
6: rc(u)← build-tree(U ∩ ek , k − 1)
7: return u

Algorithm 3 builds the query plan tree T . Note that line 5 and
6 will not be executed if U ⊆ ei,∀i ∈ [k], in which case u is a leaf
node. When u is not a leaf node, if U ⊆ ek then u will not have a
left child (lc(u) = nil). If ei ∩ U ∩ ek = ∅ for all i ∈ [k − 1] then u
will not have a right child (rc(u) = nil). The running time for this
pre-processing step is O(m2n). Figure 1 shows a query plan tree
produced by Algorithm 3 on an example query.

From T , we compute a total order on V in two steps. First, we
define a partial order of all attributes by traversing the tree T in
post-order. If a node u is visited before a node v, then all elements
of univ(u) precede elements univ(v) \ univ(u) in this partial order.
Second, we take an arbitrary linear extension of this partial order
and call it the total order. A complete pseudocode listing of this
routine can be found in the full version of this paper, along with a
few properties of the total order. In the example of Figure 1, the
total order is 1, 4, 2, 5, 3, 6.

q = R1(A1, A2, A4, A5)
� R2(A1, A3, A4, A6)
� R3(A1, A2, A3)
� R4(A2, A4, A6)
� R5(A3, A5, A6)

5

univ = {1,2,3,4,5,6}

4 4

3 3 3 3

2 2

{3,5,6}{1,2,4}

{1} {2,4}

{4} {2}

1

{2}

{3,5} {6}

2 2

{5} {3}

1

{5}

2

{6}

Figure 1: (a) A query q and (b) a sample QP tree for q.

3.2.3 Step (2): Build a Family of Indexes
We describe the form of the hash tables constructed by our al-

gorithm. Each hash table is described by a triple (i, K̄, Ā) where
i ∈ [m], K̄ ⊆ ei is the search key, and Ā ⊆ ei \ K̄ are the value at-
tributes. For each such triple, our algorithm builds three hash tables
that map hash keys t ∈ DK̄ to one of three data types below.

(HT1) A hash table that maps t to a Boolean that is true if t ∈
πK̄(Re). Thus, we can decide for any fixed tuple t ∈ DK̄

whether t ∈ πK̄(Re) in time O(|K̄|).

(HT2) A hash table that maps each t to |πĀ(Re[t])|, i.e., the number
of tuples u ∈ πK̄∪Ā(Re) such that tK̄ = uK̄ . For a fixed t ∈ DK̄ ,
this can be queried in time O(|K̄|).

(HT3) A hash table that returns all tuples u ∈ πĀ(Re[t]) in time lin-
ear in the output size (if the output is not empty).

The hash tables for relation Re can be built in total time O(Ne). We
denote this hash table by HTw(i, K̄, Ā) for w ∈ {1, 2, 3}. We abuse
notation slightly and write HTw(i,U, Ā) for w ∈ {1, 2, 3} when U \
ei � ∅ by defining HTw(i,U, Ā) = HTw(i,U ∩ ei, (Ā \U) ∩ ei).

We will describe later how the total order allows us to reduce
the total number hash indices down to O(n2m). We will only need
to build 3 hash tables for every triple (i, K̄, Ā) such that K̄ precede
Ā in the total order. Thus, for R4 in Figure 1 we need to build
at most 21 indexes, i.e., three indexes for each of the following
nine different key pairs: [(), (A4)], [(), (A4, A2)], [(), (A4, A2, A6)],
[(A4), (A2)], [(A4), (A2, A6)], [(A4, A2), (A6)], and [(A4, A2, A6), ()].
(It is less than 21 because some indices are trivial or not defined,
e.g. HT1 when t = ().) We group the pairs by brackets to make
them easier to visually parse.

3.2.4 Step (3): Compute the Join Recursively
We are ready to present the heart of Algorithm 2 which computes

the join recursively in a nested-loop-like fashion. The input to the
algorithm consists of the hypergraph H = (V, E) with |V | = n, |E| =
m, and a point x = (xe)e∈E in the fractional cover polytope∑

e:i∈e
xe ≥ 1, for any i ∈ V

xe ≥ 0, for any e ∈ E

Throughout this section, we denote the final output by J which is
defined to be J = �e∈E Re.

The crux of Algorithm 2 is a procedure called Recursive-Join
(Procedure 4) that takes as inputs three arguments: (1) a node u
from the QP-tree T whose label is k for some k ∈ [m]. (2) A tuple
tS ∈ DS where S is the set of all attributes preceding univ(u) in the
total order, and (3) a fractional cover solution yEk = (ye1 , . . . , yek) of
the hypergraph instance (univ(u), Ek). (Here, Ek = {e1, . . . , ek} and

Procedure 4 Recursive-Join(u, y, tS)
1: Let U = univ(u), k = label(u)
2: Ret← ∅ // Ret is the returned tuple set
3: if u is a leaf node of T then // note that U ⊆ ei, ∀i ≤ k
4: j← argmini∈[k]

{
|πU(Rei [tS∩ei])|

}
5: // By convention, Re[nil] = Re and Re[t∅] = Re

6: for each tuple tU ∈ πU(Re j [tS∩e j]) do
7: if tU ∈ πU(Rei [tS∩ei]), for all i ∈ [k] \ { j} then
8: Ret← Ret ∪ {(tS , tU)}
9: return Ret

10: if lc(u) = nil then // u is not a leaf node of T
11: L← {tS }
12: // note that L � ∅ and tS could be nil (when S = ∅)
13: else
14: L← Recursive-Join(lc(u), (y1, . . . , yk−1), tS)
15: W ← U \ ek, W− ← ek ∩ U
16: if W− = ∅ then
17: return L
18: for each tuple tS∪W = (tS , tW) ∈ L do
19: if yek ≥ 1 then
20: go to line 27

21: if
 k−1∏

i=1

|πei∩W− (Rei [t(S∪W)∩ei])|
yei

1−yek < |πW− (Rek [tS∩ek])|

then
22: Z ← Recursive-Join

(
rc(u),

(
yei

1−yek

)k−1

i=1
, tS∪W

)
23: for each tuple (tS , tW , tW−) ∈ Z do
24: if tW− ∈ πW− (Rek [tS∩ek]) then
25: Ret← Ret ∪ {(tS , tW , tW−)}
26: else
27: for each tuple tW− ∈ πW− (Rek [tS∩ek]) do
28: if tei∩W− ∈ πei∩W− (Rei [t(S∪W)∩ei]) for all ei such

that i < k and ei ∩W− � ∅ then
29: Ret← Ret ∪ {(tS , tW , tW−)}
30: return Ret

we only take the restrictions of hyperedges in Ek onto the universe
univ(u)). More precisely, yEk is a point in the following polytope:

∑
e∈Ek :i∈e

ye ≥ 1, for any i ∈ univ(u)

ye ≥ 0, for any e ∈ Ek

The goal of Recursive-Join is to compute a superset of the re-
lation {tS } × πuniv(u)(J[tS]), i.e., a superset of the output tuples that
start with tS on the attributes S ∪ univ(u). This intermediate output
is analogous to the set C in Algorithm 1 for LW instances. A sec-
ond similarity to Algorithm 1 is that our algorithm makes a choice
per tuple based on the output’s estimated size.

Theorem 3.2 is a special case of the following lemma where we
set u to be the root of the QP-tree T , y = x, and S = ∅ (tS = nil).
Finally, we observe that we need only O(n2) number of hash indices
per input relation, which completes the proof.

Lemma 3.5. Consider a call Recursive-Join(u, y, tS) to Proce-
dure 4. Let k = label(u) and U = univ(u). Then,

(a) The procedure outputs a relation Ret on attributes S ∪U with
at most the following number of tuples

B(u, y, tS) :=
k∏

i=1

|πU∩ei (Rei [tS∩ei])|
yi .

(For the sake of presentation, we use the convention that
when U ∩ ei = ∅ we set |πU∩ei (Rei [tS∩ei])| = 1 so that the
factor does not contribute anything to the product.)

(b) Furthermore, the procedure runs in time O(mn · B(u, y, tS)).

The lemma is proved by induction on the height of the sub-tree
of T rooted at u. We include a full formal proof in the full version
of this paper, but give the main ideas here.

Base Case. In the base case, the node u is a leaf, and univ(u) ⊆
ei,∀i ∈ [label(u)]. Observe that

min
i=1,...,k

|πU(Rei [tS])| ≤
k∏

i=1

|πU (Rei [tS])|yi = B(u, y, tS).

since
∑k

i=1 yi ≥ 1 (y is a fractional cover solution). Because the
left-hand-side of the above inequality is clearly an upper bound
on the number of output tuples, so is the right-hand-side. Hence,
(a) holds. To control the running time and prove (b), a nested-
loop strategy works: we first find the j that achieves the left-hand
side of the inequality, i.e., for which πU(Re j [tS]) is smallest among
j ∈ [k]. To find this minimum, we probe HT2(i, S ,U) with search
key tS for i ∈ [k] (i.e., once for each relation). Since u is a leaf
node, univ(u) ⊆ ei for each i ∈ [k] and hence U = U ∩ ei. Thus,
we can query HT3(j, S ,U) to find all tuples in relation πU(Re j [tS])
in time O(|πU(Re j [t])|). Then, for each such tuple v ∈ πU (Re j [t]),
and for each relation Rei with i ∈ [k] \ { j} we probe into Rei with
HT1(i, S ,U); the tuple v is returned iff this probe returns true for
all i ∈ [k] \ { j}. This procedure takes O(kn + kn|πU (Re j [tS])|) where
j is the minimum as above.

Induction Step. In this case, u is an internal node. The key chal-
lenge is that we have to make a cost-based decision about which
lower subproblems to solve. The interesting case is when there are
both a left- and a right-child problem. We recursively solve the left
subproblem, from which we get back a relation on S ∪U \ ek (each
of whose tuples has values tS on attributes S), which we then store
in a variable L (formally, L ⊇ {tS } × πU\ek (J[tS])). For example,
consider the highlighted node in Figure 1(b). We will refer to this
node throughout this section as our example. Here, S = {1} and so
we have a fixed tuple tS as input. The left-subproblem is the leaf
that computes the tuples in {tS } × π{4}(J[tS]), which have support
{1, 4}.

Next, for each tuple t = tS∪(U\ek) ∈ L, we will make a decision
on whether to solve an associated “right subproblem.” There are |L|
such subproblems and thus |L| decisions to make. Each decision is
based on our estimation of the running time if we were to solve the
subproblem. The run-time estimation is the AGM’s bound on the
output size of the sub-problem. To obtain the estimation, we define
for each right subproblem a fractional cover solution. The relation
Rek is used as an “anchor” for the entire process.

Specifically, we construct a hypergraph (univ(rc(u)), Ek−1) with
an associated fractional cover y′Ek−1

where y′ei
= yei/(1 − yek) for

i ∈ [k − 1]. (When yek ≥ 1 we will not solve this subproblem and
directly take option (1) below.) For each t ∈ L, the input relation
sizes for this sub-problem are |πei∩U∩ek (Rei [t])| for i ∈ [k − 1].

For each tS∪W = (tS , tW) ∈ L, where W = U \ ek, our algorithm
considers two options, and we use the estimated run-time of the
projected subproblem to choose between these options.

Option (1) Our algorithm loops over each tuple in πU∩ek (Rek [tS∩ek])
and filters it against all projections that are below it (lines 27–
29). In this case our running time is O(|πU∩ek (Rek)[tS∩ek]|). In
our running example, given the tuple t{1,4} = (t1, t4) ∈ L,
we would loop over each tuple t{2} = (t2) ∈ π{2}(R3[t1]).

For each such tuple, we add (t1, t4, t2) to the output Ret if
t2 ∈ π{2}(R1[(t1, t4)]). This check can be done by probing R1

using HT1(1, (A1, A4, A2), ()).

Option (2) Our algorithm solves the right subproblem recursively
and filters the result with πU∩ek (Rek [tS∩ek]) (lines 22–25). In
our running example, given (t1, t4) ∈ L the right subproblem
will compute those tuples (t2) in π{2}(R1[t{1,4}]) and then fil-
ter them with HT1(3, (A1, A2), ()). The important property
of option (2) is that its running time does not depend on
|πU∩ek (Rek [tS∩ek])|. In particular, option (2)’s running time
only depends on the output size of the right subproblem.

To decide between these two options, we compare the following
two quantities:

LHS = |πU∩ek (Rek [tS∩ek])| versus RHS =
k−1∏
i=1

∣∣∣πei∩U∩ek (Rei [t(S∪W)∩ei])
∣∣∣y′ei

We choose option (1) if either yek ≥ 1 or the LHS is less than
the RHS and option (2) otherwise. Observe that we can compute
both quantities given our indices in time proportional to O(kn). Our
overall running time is proportional to the minimum of these two
quantities (plus the inconsequential term O(kn)). Summing over all
tuples t ∈ L the minimum of the above two quantities and “unroll”
the sum by applying a generalized Hölder’s inequality many times
we can then prove both the output size and the running time.

Used Search Keys. Finally, we need to understand which search
keys are used in the hash table. Observe that whenever an attribute
v is used in a search key (e.g., HTw(i, S ,U) for w ∈ {1, 2, 3}), all
attributes that come before v in the total order and are in ei are
bound. Thus, if ei = (vi1 , . . . , vi|ei |

) and the attributes are ordered as
above, then the search key and the returned keys is always a prefix
of vi1 , . . . , vik . Hence, we only need to have 3n

∑
e∈E |e| indices. In

the full version of this paper, we describe a slightly more complex
data structure that combines all hash tables for one relation into a
single “search tree" structure. The search trees have the advantage
that their building time is deterministic (unlike a typically perfect
hashing scheme which has a constant worst-case lookup time but
only expected linear building time). However, the search trees ne-
cessitate a log-factor blow up in the total run time of our algorithm.

3.3 Limits of Standard Approaches
For a given join query q, we describe a sufficient syntactic con-

dition for q so that when computed by any join-project plan is
asymptotically slower than the worst-case bound. Our algorithm
runs within this bound, and so for such q there is an asymptotic
running-time gap.

Recall that an LW instance of the OJ problem is a join query
q represented by the hypergraph (V, E), where V = [n], and E =(

[n]
n−1

)
for some integer n ≥ 2. Our main result in this section is the

following lemma.5

Lemma 3.6. Let n ≥ 2 be an arbitrary integer. Given any LW-
query q represented by a hypergraph ([n],

(
[n]
n−1

)
), and any positive

integer N ≥ 2, there exist relations Ri, i ∈ [n], such that |Ri| =
N, ∀i ∈ [n], the attribute set for Ri is [n] \ {i}, and that any join-
project plan for q on these relations runs in time Ω(N2/n2).

Before proving the lemma, we note that both the traditional join-
tree algorithm and AGM’s algorithm are join-project plans, and
5We thank an anonymous PODS’12 referee for showing us that our
example works for all join-project plans rather than just the AGM
algorithm and arbitrary join-only algorithms.

thus their running times are asymptotically worse than the best
AGM bound for this instance which is | �n

i=1 Ri| ≤
∏n

i=1 |Ri|1/(n−1) =

N1+1/(n−1). On the other hand, both Algorithm 1 and Algorithm 2
take O(N1+1/(n−1))-time as we have analyzed. In fact, for Algorithm
2, we are able to demonstrate a stronger result: its run-time on this
instance is O(n2N) which is better than what we can analyze for
a general instance of this type. In particular, the run-time gap be-
tween Algorithm 2 and AGM’s algorithm is Ω(N) for constant n.

Proof of Lemma 3.6. In the instances below the domain of any
attribute will be D = {0, 1, . . . , (N − 1)/(n − 1)} For the sake of
clarity, we ignore the integrality issue. For any i ∈ [n], let Ri be
the set of all tuples in D[n]−{i} each of which has at most one non-
zero value. Then, it is not hard to see that |Ri| = (n − 1)[(N −
1)/(n − 1) + 1] − (n − 2) = N, for all i ∈ [n]; and, | �n

i=1 Ri| =
n[(N − 1)/(n − 1) + 1] − (n − 1) = N + (N − 1)/(n − 1).

A relation R on attribute set Ā ⊆ [n] is called simple if R is the set
of all tuples in DĀ each of which has at most one non-zero value.
Then, we observe the following properties. (a) The input relations
Ri are simple. (b) An arbitrary projection of a simple relation is
simple. (c) Let S and T be any two simple relations on attribute
sets ĀS and ĀT , respectively. If ĀS is contained in ĀT or vice versa,
then S � T is simple. If neither ĀS nor ĀT is contained in the other,
then |S � T | ≥ (1 + (N − 1)/(n − 1))2 = Ω(N2/n2).

For an arbitrary join-project plan starting from the simple re-
lations Ri, we eventually must join two relations whose attribute
sets are not contained in one another and this step alone requires
Ω(N2/n2) run time.

Finally, we analyze the run-time of Algorithm 2 directly on this
instance without resorting to Theorem 3.2.

Lemma 3.7. On the collection of instances from the previous
lemma, Algorithm 2 runs in time O(n2N).

Proof. Without loss of generality, assume the hyperedge order
Algorithm 2 considers is [n] − {1}, . . . , [n] − {n}. In this case, the
universe of the left-child of the root of the QP-tree is {n}, and the
universe of the right-child of the root is [n − 1].

The first thing Algorithm 2 does is that it computes the join Ln =

�n−1
i=1 π{n}(Ri), in time O(nN). Note that Ln = D, the domain. Next,

Algorithm 2 goes through each value a ∈ Ln and decides whether
to solve a subproblem or not. First, consider the case a > 0. Here
Algorithm 2 estimates a bound for the join �n−1

j=1 π[n−1](Rj[a]). The
estimate is 1 because |π[n−1](Rj[a])| = 1 for all a > 0. Hence, the
algorithm will recursively compute this join which takes time O(n2)
and filter the result against Rn. Overall, solving the sub problems
for a > 0 takes O(n2N) time. Second, consider the case when a = 0.
In this case |π[n−1](Rj[0])| = (n−2)N−1

(n−1) . The subproblem’s estimated
size bound is

n−1∏
i=1

|π[n−1](Rj[0])|
1/(n−1)

1−1/(n−1) =

[
(n − 2)N − 1

(n − 1)

](n−1)/(n−2)

> N

if N ≥ 4 and n ≥ 4. Hence, in this case Rn will be filtered against
the π[n−1](Rj[0]), which takes O(n2N) time.

Extending beyond LW instances. Using the above results,
we give a sufficient condition for when there exist a family of in-
stances I = I1, . . . , IN , . . . , such that on instance IN every binary
join strategy takes time at least Ω(N2), but our algorithm takes
o(N2). Given a hypergraph H = (V, E). We first define some nota-
tion. Fix U ⊆ V then call an attribute v ∈ V \ U U-relevant if for
all e such that v ∈ e then e ∩ U � ∅; call v U-troublesome if for all
e ∈ E, if v ∈ e then U ⊆ e. Now we can state our result:

Lemma 3.8. Given a join query H = (V, E) and some U ⊆ V
where |U | ≥ 2, then if there exists F ⊆ E such that |F| = |U | that
satisfies the following three properties: (1) each u ∈ U occurs in
exactly |U | − 1 elements in F, (2) each v ∈ V that is U-relevant ap-
pears in at least |U | − 1 edges in F, (3) there are no U-troublesome
attributes. Then, there is some family of instances I such that (a)
computing the join query represented by H with a join tree takes
timeΩ(N2/|U |2) while (b) the algorithm from Section 3.2 takes time
O(N1+1/(|U|−1)).

Given a (U, F) as in the lemma, the idea is to simply to set all
those edges in f ∈ F to be the instances from Lemma 3.6 and
extend all attributes with a single value, say c0. Since there are
no U-troublesome attributes, to construct the result set at least one
of the relations in F must be joined. Since any pair F must take
time Ω(N2/|U |2) by the above construction, this establishes (a). To
establish (b), we need to describe a particular feasible solution to
the cover LP whose objective value is N1+1/(|U|−1), implying that the
running time of our proposed algorithm is upper bounded by this
value. To do this, we first observe that any attribute not in U takes
the value only c0. Then, we observe that any node v ∈ V that is
not U-relevant is covered by some edge e whose size is exactly 1
(and so we can set xe = 1). Thus, we may assume that all nodes are
U-relevant. Then, observe that all relevant attributes can be set by
the cover xe = 1/(|U | − 1) for e ∈ F. This is a feasible solution to
the LP and establishes our claim.

4. EXTENSIONS

4.1 Combined Complexity
Given that our algorithms are data optimal for worst-case inputs

it is tempting to wonder if one can obtain an join algorithm whose
run time is both query and data optimal in the worst-case. We show
that in the special case when each input relation has arity at most
2 we can attain a data-optimal algorithm that is simpler than Algo-
rithm 2 with an asymptotically better query complexity.

Further, given promising results in the worst case, it is natural
to wonder whether or not one can obtain a join algorithm whose
run time is polynomial in both the size of the query as well as the
size of the output. More precisely, given a join query q and an
instance I, can one compute the result of query q on instance I in
time poly(|q|, |q(I)|, |I|). Unfortunately, this is not possible unless
NP = RP. We briefly present a proof of this fact below.

Each relation has at most 2 attributes. As is mentioned in
the introduction, our algorithm in Theorem 3.2 not only has bet-
ter data complexity than AGM’s algorithm (in fact we showed our
algorithm has optimal worst-case data complexity), it has better
query complexity. In this section, we show that for the special case
when the join query q is on relations with at most two attributes
(i.e., the corresponding hypergraph H is a graph), we can obtain
better query complexity compared to the algorithm in Theorem 3.2
(while retaining the same (optimal) data complexity).

Without loss of generality, we can assume that each relation con-
tains exactly 2 attributes because a 1-attribute relation Re needs to
have xe = 1 in the corresponding LP and thus, contributes a sep-
arate factor Ne to the final product. Thus, Re can be joined with
the rest of the query with any join algorithm (including the naive
Cartesian product based algorithm). In this case, the hypergraph
H is a graph which can be assumed to be simple. We assume that
all relations are indexed in advanced, which takes O(

∑
e Ne) time.

In what follows we will not include this preprocessing time in the
analysis.

We first state a lemma for the case when H is a cycle.

Lemma 4.1 (Cycle Lemma). If H is a cycle, then �e∈E Re can
be computed in time O(m

√∏
e∈H Ne).

The proof of the lemma shows that we can reduce the compu-
tation of the case when H is a cycle to our previous algorithm for
Loomis-Whitney instances with n = 3.

With the help of Lemma 4.1, we can now derive a solution for
the case when H is an arbitrary graph. Consider any basic feasible
solution x = (xe)e∈E of the fractional cover polyhedron∑

e:v∈e
xe ≥ 1, for any v ∈ V

xe ≥ 0, for any e ∈ E.

It is known that x is half-integral, i.e., xe ∈ {0, 1/2, 1} for all e ∈ E
(see Schrijver’s book [34], Theorem 30.10). However, we will also
need a graph structure associated with the half-integral solution;
hence, we adapt a known proof of the half-integrality property with
a slightly more specific analysis [34].

Lemma 4.2. For any basic feasible solution x = (xe)e∈E of the
fractional cover polyhedron above, xe ∈ {0, 1/2, 1} for all e ∈ E.
Furthermore, the collection of edges e for which xe = 1 is a union S
of stars. And, the collection of edges e for which xe = 1/2 form a set
C of vertex-disjoint odd-length cycles that are also vertex disjoint
from the union S of stars.

Now, let x∗ be an optimal basic feasible solution to the following
linear program.

min
∑

e(log Ne) · xe

s.t.
∑

e:v∈e xe ≥ 1, for any v ∈ V

xe ≥ 0, for any e ∈ E.

Then
∏

e∈E Nx∗e
e ≤

∏
e∈E Nxe

e for any feasible fractional cover x. Let
S be the set of edges on the stars and C be the collection of disjoint
cycles as shown in the above lemma, applied to x∗. Then,

∏
e∈E

Nx∗e
e =

∏
e∈S

Ne

∏
C∈C

√∏
e∈C

Ne.

Consequently, we can apply Lemma 4.1 to each cycle C ∈ C and
take a cross product of all the resulting relations with the relations
Re for e ∈ S . We summarize the above discussion in the following
theorem.

Theorem 4.3. When each relation has at most two attributes,
we can compute the join �e∈E Re in time O(m

∏
e∈E Nxe

e).

Impossibility of Instance Optimality. We use the standard
reduction of 3SAT to conjunctive queries but with two simple spe-
cializations: (i) We reduce from the 3UniqueSAT, where the input
formula is either unsatisfiable or has exactly one satisfying assign-
ment, and (ii) q is a full join query instead of a general conjunctive
query. It is known that 3UniqueSAT cannot be solved in determin-
istic polynomial time unless NP = RP [37].

We sketch the reduction here. Let φ = C1 ∧ C2 ∧ . . .Cm be
a 3UniqueSAT CNF formula on n variables a1, . . . , an. (W.l.o.g.
assume that a clause does not contain both a variable and its nega-
tion.) For each clause C j for j ∈ [m], create a relation Rj on the
variables that occur in C j. The query q is � j∈[m] Rj. Now define
the database I as follows: for each j ∈ [m], RI

j contains the seven

assignments to the variables in C j that makes it true. Note that q(I)
contains all the satisfying assignments for φ: in other words, q(I)
has one element if φ is satisfiable otherwise q(I) = ∅. In other
words, we have |q(I)| ≤ 1, |q| = O(m + n) and |I| = O(m). Thus an
instance optimal algorithm with time complexity poly(|q|, |q(I)|, |I|)
for q would be able to determine if φ is satisfiable or not in time
poly(n,m), which would imply NP = RP.

4.2 Relaxed Joins
We observe that our algorithm can actually evaluate a relaxed

notion of join queries. Say we are given a query q represented by
a hypergraph H = (V, E) where V = [n] and |E| = m. The m input
relations are Re, e ∈ E. We are also given a “relaxation” number
0 ≤ r ≤ m. Our goal is to output all tuples that agree with at
least m − r input relations. In other words, we want to compute
∪S⊆E,|S |≥m−r �e∈S Re. However, we need to modify the problem to
avoid the case that the set of attributes of relations indexed by S
does not cover all the attributes in the universe V . Towards this
end, define the set

C(q, r) =

S ⊆ E | |S | ≥ m − r and
⋃
e∈S

e = V

 .
With the notations established above, we are now ready to define

the relaxed join problem.

Definition 4.4 (Relaxed join problem). Given a query q rep-
resented by the hypergraph H = (V = [n], E), and an integer
0 ≤ r ≤ m, evaluate

qr
de f
=

⋃
S∈C(q,r)

(�e∈S Re) .

Before we proceed, we first make the following simple observa-
tion: given any two sets S , T ∈ C(q, r) such that S ⊆ T , we have
�e∈T Re ⊆�e∈S Re. This means in the relaxed join problem we only
need to consider subsets of relations that are not contained in any
other subset. In particular, define Ĉ(q, r) ⊆ C(q, r) to be the largest
subset of C(q, r) such that for any S � T ∈ Ĉ(q, r) neither S ⊂ T
nor T ⊂ S . We only need to evaluate qr =

⋃
S∈Ĉ(q,r) (�e∈S Re) .

Given an S ∈ Ĉ(q, r), let LPOpt(S) denote the size bound given
by the AGM fractional cover inequality (2) on the join query rep-
resented by the hypergraph (V, S), so that LPOpt(S) =

∏
e∈S |Re|x

∗
e

where x∗S = (x∗e)e∈S is an optimal solution to the following linear
program called LP(S):

min
∑

e∈S (log |Re|) · xe

subject to
∑

e∈S :v∈e xe ≥ 1 for any v ∈ V (4)
xe ≥ 0 for any e ∈ S .

Upper bounds. We start with a straightforward upper bound.

Proposition 4.5. Let q be a join query on m relations and let
0 ≤ r ≤ m be an integer. Then given sizes of the input relations, the
number of output tuples for query qr is upper bounded by∑

S∈Ĉ(q,r)

LPOpt(S).

Further, Algorithm 2 evaluates qr with data complexity linear in
the bound above. The next natural question is to determine how
good the upper bound is. Before we answer the question, we prove
a stronger upper bound.

Given a subset of hyperedges S ⊆ E that “covers” V , i.e. ∪e∈S e =
V , let BFS(S) ⊆ S be the subset of hyperedges in S that gets a
positive x∗e value in an optimal basic feasible solution to the linear
program LP(S) defined in (4). (If there are multiple such solutions,
pick any one in a consistent manner.) Call two subsets S ,T ⊆ E bfs-
equivalent if BFS(S) = BFS(T). Finally, define C∗(q, r) ⊆ Ĉ(q, r)
as the collection of sets from Ĉ(q, r) which contains exactly one
arbitrary representative from each bfs-equivalence class.

Theorem 4.6. Let q be a join query represented by H = (V, E),
and let 0 ≤ r ≤ m be an integer. The number of output tuples of qr

is upper bounded by
∑

S∈C∗ (q,r) LPOpt(S). Further, the query qr can
be evaluated in time

O

 ∑
S∈C∗(q,r)

(
mn · LPOpt(S) + poly(n,m)

)
plus the time needed to compute C∗(q, r) from q.

Note that since C∗(q, r) ⊆ Ĉ(q, r), the bound in Theorem 4.6 is
no worse than that in Proposition 4.5. We will show later that the
bound in Theorem 4.6 is indeed tight.

We defer the proof of Theorem 4.6 to the full version and men-
tion the main idea here. Let S � S ′ ∈ Ĉ(q, r) be two different sets
of hyperedges with the following property. Define T

de f
= BFS(S) =

BFS(S ′) and let x∗T = (x∗i)i∈T be the projection of the corresponding
optimal basic feasible solution to the (V, S) and the (V, S ′) prob-
lems projected down to T . (The two projections result in the same
vector x∗T .) The outputs of the joins on S and on S ′ are both subsets
of the output of the join on T . We can simply run Algorithm 2 on
inputs (V,T) and x∗T , then prune the output against relations Re with
e ∈ S \ T or S ′ \ T . In particular, we only need to compute �e∈T Re

once for both S and S ′.

Lower bound. We now show that the bound in Theorem 4.6 is
(almost) tight for some query and some database instance I.

We first define the query q. The hypergraph is H = (V = [n], E)
where m = |E| = n + 1. The hyperedges are E = {e1, . . . , en+1}
where ei = {i} for i ∈ [n] and en+1 = [n]. The database instance I
consists of relations Re, e ∈ E, all of which are of size N. For each
i ∈ [n], Rei = [N]. And, Ren+1 =

⋃N
i=1{N + i}n.

It is easy to check that for any r ≥ n, qr(I) is the set Ren+1 ∪ [N]n,
i.e. |qr(I)| = N + Nn. (For 0 < r < n, we have |qr(I)| = Nn.)
Next, we claim that for this query instance for any r > 0, C∗(q, r) =
{{n+ 1}, [n]}. Note that BFS({n+ 1}) = {n+ 1} and BFS([n]) = [n],
which implies that LPOpt({n + 1}) = N and LPOpt([n]) = Nn.
This along with Theorem 4.6 implies that |qr(I)| ≤ N + Nn, which
proves the tightness of the size bound in Theorem 4.6 for (r ≥ n),
as desired. (For 0 < r < n, the bound is almost tight.)

Finally, we argue that C∗(q, r) = {{n + 1}, [n]}. Towards this
end, consider any T ∈ Ĉ(q, r). Note that if (n + 1) � T , we have
T = [n] and since BFS(T) = T (and we will see soon that for
any other T ∈ Ĉ(q, r), we have BFS(T) � [n]), which implies that
[n] ∈ C∗(q, r). Now consider the case when (n + 1) ∈ T . Note that
in this case T = {n+1}∪T ′ for some T ′ ⊂ [n] such that |T ′| ≥ n− r.
Now note that all the relations in T cannot cover the n attributes
but Rn+1 by itself does include all the n attributes. This implies that
BFS(T) = {n + 1} in this case. This proves that {n + 1} is the other
element in C∗(q, r), as desired.

5. CONCLUSION AND FUTURE WORK
We establish optimal algorithms for the worst-case behavior of

join algorithms. We also demonstrate that the join algorithms em-
ployed in RDBMSs do not achieve these optimal bounds. More-
over, we demonstrate families of instances where join-project algo-
rithms are asymptotically worse by factors close to the size of the
largest relation. It is interesting to ask similar questions for aver-
age case complexity. Our work offers a different way to approach
join optimization rather than the traditional binary-join/dynamic-
programming-based approach. Thus, our immediate future work is
to implement these ideas to see how they compare in real RDBMS
settings to the algorithms in a modern RDBMS.

Another interesting direction is to extend these results to a larger
classes of queries and to database schemata that have constraints.
We include in the full version some preliminary results on full con-
junctive queries and simple functional dependencies (FDs). Not
surprisingly, using dependency information one can obtain tighter
bounds compared to the (FD-unaware) fractional cover technique.

There are potentially interesting connections between our work
and several inter-related topics. We algorithmically prove that the
AGM inequality is equivalent to the BT inequality; in turn both in-
equalities are essentially equivalent to Shearer’s entropy inequality.
There are known combinatorial interpretations of entropy inequali-
ties (which include Shearer’s as a special case); for example, Alon
et al. [3] derived some such connections using a notion of “sec-
tions" similar to what we used in this paper. An analogous parti-
tioning procedure is used by Marx [29] to compute joins by relating
the number of solutions to submodular functions. Query (1) is es-
sentially equivalent to the problem of enumerating all triangles in a
tri-partite graph, which can be solved in time O(N3/2) [4].

6. ACKNOWLEDGMENTS
We thank Georg Gottlob for sending us a full version of his

work [13] and XuanLong Nguyen for introducing us to the Loomis-
Whitney inequality. We thank the anonymous referees for many
helpful comments that greatly improved the presentation of the pa-
per. In particular, we thank a reviewer for pointing out the cur-
rent proof (and statement) of Lemma 3.6 and an error in previous
lower bound argument in Section 4.2. AR’s work on this project
is supported the NSF CAREER Award under CCF-0844796. CR’s
work on this project is generously supported by the NSF CAREER
Award under IIS-1054009, the ONR under N000141210041, and
gifts from Google, Greenplum, LogicBlox, and Oracle.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking join

and self-join sizes in limited storage. In PODS, pages 10–20, 1999.
[3] N. Alon, I. Newman, A. Shen, G. Tardos, and N. K. Vereshchagin.

Partitioning multi-dimensional sets in a small number of "uniform"
parts. Eur. J. Comb., 28(1):134–144, 2007.

[4] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length
cycles. Algorithmica, 17(3):209–223, 1997.

[5] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for
relational joins. In FOCS, pages 739–748. IEEE, 2008.

[6] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query
processing. In SIGMOD Conference, pages 261–272, 2000.

[7] S. Babu, P. Bizarro, and D. J. DeWitt. Proactive re-optimization. In
SIGMOD Conference, pages 107–118, 2005.

[8] B. Bollobás and A. Thomason. Projections of bodies and hereditary
properties of hypergraphs. Bull. London Math. Soc., 27(5), 1995.

[9] F. R. K. Chung, R. L. Graham, P. Frankl, and J. B. Shearer. Some

intersection theorems for ordered sets and graphs. J. Combin. Theory
Ser. A, 43(1):23–37, 1986.

[10] A. Deligiannakis, M. N. Garofalakis, and N. Roussopoulos. Extended
wavelets for multiple measures. TODS, 32(2):10, 2007.

[11] J. Flum, M. Frick, and M. Grohe. Query evaluation via
tree-decompositions. J. ACM, 49(6):716–752, 2002.

[12] A. C. Gilbert, H. Q. Ngo, E. Porat, A. Rudra, and M. J. Strauss.
Efficiently decodable �2/�2 for each compressed sensing with tiny
failure probability, November 2011. Manuscript.

[13] G. Gottlob, S. T. Lee, and G. Valiant. Size and treewidth bounds for
conjunctive queries. In PODS, pages 45–54, 2009.

[14] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions: A
survey. In MFCS, 2001.

[15] G. Gottlob, Z. Miklós, and T. Schwentick. Generalized hypertree
decompositions: np-hardness and tractable variants. In PODS, 2007.

[16] G. Graefe. Query evaluation techniques for large databases. ACM
Computing Surveys, 25(2):73–170, June 1993.

[17] M. Grohe and D. Marx. Constraint solving via fractional edge covers.
In SODA, pages 289–298, 2006.

[18] K. Gyarmati, M. Matolcsi, and I. Z. Ruzsa. A superadditivity and
submultiplicativity property for cardinalities of sumsets.
Combinatorica, 30(2):163–174, 2010.

[19] T. S. Han. Nonnegative entropy measures of multivariate symmetric
correlations. Information and Control, 36(2):133–156, 1978.

[20] Y. E. Ioannidis. The history of histograms (abridged). In VLDB, 2003.
[21] Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors

in the size of join results. In SIGMOD Conference, 1991.
[22] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for

distributed-memory matrix multiplication. J. Parallel Distrib.
Comput., 64(9):1017–1026, 2004.

[23] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C.
Sevcik, and T. Suel. Optimal Histograms with Quality Guarantees. In
VLDB, 1998.

[24] A. C. König and G. Weikum. Combining Histograms and Parametric
Curve Fitting for Feedback-Driven Query Result-size Estimation. In
VLDB, 1999.

[25] A. R. Lehman and E. Lehman. Network coding: does the model need
tuning? In SODA, pages 499–504, 2005.

[26] L. H. Loomis and H. Whitney. An inequality related to the
isoperimetric inequality. Bull. Amer. Math. Soc, 55:961–962, 1949.

[27] R. Lyons. Probability on trees and networks, jun 2011. with Yuval
Peres url: http://php.indiana.edu/ rdlyons/prbtree/prbtree.html.

[28] V. Markl, N. Megiddo, M. Kutsch, T. M. Tran, P. J. Haas, and
U. Srivastava. Consistently estimating the selectivity of conjuncts of
predicates. In VLDB, pages 373–384, 2005.

[29] D. Marx. Tractable hypergraph properties for constraint satisfaction
and conjunctive queries. In STOC, pages 735–744, 2010.

[30] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join
algorithms, 2012. arXiv:1203.1952 [cs.DB].

[31] H. Q. Ngo, E. Porat, and A. Rudra. Personal Communciation.
[32] A. Pagh and R. Pagh. Scalable computation of acyclic joins. In

PODS, pages 225–232, 2006.
[33] V. Poosala, Y. Ioannidis, P. Haas, and E. J. Shekita. Improved

histograms for selectivity estimation of range predicates. In
SIGMOD, pages 294–305, 1996.

[34] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency.
Vol. A, volume 24 of Algorithms and Combinatorics.
Springer-Verlag, Berlin, 2003.

[35] U. Srivastava, P. J. Haas, V. Markl, M. Kutsch, and T. M. Tran.
Isomer: Consistent histogram construction using query feedback. In
ICDE, page 39, 2006.

[36] K. Tzoumas, A. Deshpande, and C. S. Jensen. Lightweight graphical
models for selectivity estimation without independence assumptions.
PVLDB, 4(11):852–863, 2011.

[37] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique
solutions. Theor. Comput. Sci., 47(3):85–93, 1986.

[38] D. E. Willard. Applications of range query theory to relational data
base join and selection operations. J. Comput. Syst. Sci., 52(1), 1996.

[39] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen. Handling data skew in
parallel joins in shared-nothing systems. In SIGMOD, 2008.

