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Abstract

In this work, we present a multiple server fingerprint
verification scheme that provides enhanced template secu-
rity by eliminating several known vulnerabilities of the fuzzy
vault scheme. We secure templates from adversarial attacks
in honest-but-curious server scenarios by utilizing commu-
tative encryption in which the raw fingerprint template is
never used in matching or storage.

In this system, there is a matching server that performs
the enrollment and matching functions on fingerprint data
that has been encrypted by a separate encryption server.
Since the encrypted template is stored at one server and
the encryption key is on another server, an attacker would
have to compromise both servers to decrypt the data. Even
in this case, the templates are protected by the fuzzy vault
scheme. Thus, this scheme limits an attacker’s ability to
attack active users even after compromising both servers
providing multiple layers of template security.

1. Introduction

As the use of fingerprints as a means to verify identity
increases, so does the importance of securing stored finger-
print templates. To enable matching, many schemes require
storage of raw fingerprint templates, leaving them exposed
to attackers who can compromise the database. Conven-
tional measures such as firewalls and encryption may be
suitable to prevent attacks in some applications, such as
government uses. However, large-scale commercial deploy-
ment of fingerprint recognition schemes may not be realized
until matching can be performed accurately without expos-

ing the raw fingerprint data to anyone other than the user.
This work makes progress towards this end.

We present a one-factor system that operates with an en-
cryption server and a matching server in such a way that
neither server has access to unencrypted template data as
described in Section 5. While we present this as a two server
system, each server can be naturally extended to be dis-
tributed over multiple servers for large scale applications.
The encryption server stores and applies the user-specific
encryption keys and the matching server stores a hash of
the encrypted template using the fuzzy vault scheme [11].
We use fuzzy vault since the space we draw template points
from is too small to prevent a brute force attack on a
straightforward hash function. Since the template points are
encrypted with a random key before constructing the vault,
we avoid a common attack on the fuzzy vault where two
vaults locked by the same template can be compared to find
the genuine points [24]. We use n-gons as fingerprint fea-
tures as presented in [18]. Most attacks on our system are
ineffective due to the encryption of the templates, though
even if both servers are compromised, the stored templates
are still protected by the fuzzy vaults.

We achieve a ZeroFAR (FRR when the FAR is zero)
of 12.6% on FVC2002-DB2 while a popular fuzzy vault
scheme by Nandakumar et al. reports a ZeroFAR of 14%
on the same dataset [19].

2. Related Work

While most proposed methods for secure storage of bio-
metric templates assume that the templates are represented
by fixed length binary or float value vectors, fuzzy vault [11]
has been designed as a method to store biometric templates



represented as unordered set of values. This property makes
it well suited for securing fingerprint templates, which are
typically represented as unordered sets of minutia points.
Multiple implementations of fingerprint fuzzy vault have
been proposed [6, 29, 19, 15, 28] and it currently seems
to be the most popular method of securing fingerprint data
among researchers. The advantages of fingerprint fuzzy
vault method over other methods of securing fingerprint
data include the existence of a formal security argument
based on the hardness of decoding underlying error cor-
recting codes [9], relatively good matching performance,
and the ability to use fuzzy vault in identification operating
mode [3, 10].

At the same time, multiple possible modes of attack on
fuzzy vaults have been reported. Scheirer and Boult de-
scribe [24] three possible attacks on privacy preserving bio-
metric systems, all them are applicable to fingerprint fuzzy
vaults. The first attack is via record multiplicity (also called
cross matching, correlation, or collusion attack), in which
the intruder is able to recover original biometric data given
two fuzzy vaults of the same finger. The experiments con-
firming the computational resources of such attack have
been performed as well [14, 22]. The second attack, surrep-
titious key-inversion, assumes that the intruder gains access
to the fuzzy vault of the user as well as the the key which
was used to lock the vault, and which should be recovered
during matching; given these, the intruder can easily obtain
original user’s fingerprint data. The third attack, blended
substitution, consists of adding fingerprint data of a second
person to the existing fingerprint fuzzy vault. The possi-
bilities to computationally recover hidden biometric data
from fuzzy vaults have been reported as well [8, 17], es-
pecially given non-uniform distribution of minutia points in
fingerprints [4], but such attacks can be mitigated by choos-
ing proper fuzzy vault configurations. In the current paper,
we propose an additional fuzzy vault specific encryption of
minutia data strings, which foremost addresses record mul-
tiplicity attacks, as well as makes other types of attacks
more difficult.

Some approaches to address the vulnerabilities of finger-
print fuzzy vaults have been previously proposed. One type
of approach considers the transformation of local minu-
tia information before encoding this information into the
vault [20, 16]. In these approaches, the user has to remem-
ber the key, which is used for transformations, and the trans-
formations are determined based on the positions of minu-
tia, their local neighborhoods and the key. Note that al-
though some matching results of enhanced fuzzy vaults ap-
pear to be better than the original ones, these can be caused
by implicit incorporation of the user specific key into the
matching decision [23]. As recommended by [23] we mea-
sure the matching performance of our system under the as-
sumption of a stolen user key. We also present matching

numbers for our two-factor system without a compromised
key, though these results come from the unlikeliness of two
keys (rather than two templates) matching.

The biometric database cross matching attacks exist for
other privacy protections methods, and the need to per-
form additional key based transformation of data have been
stressed as well. Kelkboom et al. [13] address the problem
of cross matching biometric templates protected by fuzzy
commitment scheme. The proposed random permutation of
data before the fuzzy commitment application makes cross
matching attack infeasible. That method could be consid-
ered advantageous to ours since the random permutations
are assumed to be public, but it is not directly applicable to
fuzzy vaults. The weaknesses in secure sketches and fuzzy
vaults from cross matching attacks have been described by
other researchers as well [27, 2].

Alternative methods include [12] which has good secu-
rity properties, though we cannot compare matching accu-
racy with this system since the work does not provide an
implementation. For general template security in biomet-
rics, the work of [26] provides a theoretical framework for
analysis.

3. Fuzzy Vault
In this section we briefly describe how the fuzzy

vault [11] is locked and unlocked given a template
representing a fingerprint as a set of integers T =
{t0, . . . , tn−1}.

3.1. Locking the Vault

The locking function first generates a random secret
polynomial, ps which will be ‘locked’ in the vault by T .
The genuine vault points are then evaluated and stored as
{(ti, ps(ti))}. To obfuscate the genuine data, chaff points
are added to the vault as (t, γ) where t and γ are generated
uniformly at random such that t /∈ T and γ 6= ps(t). A hash
of the secret polynomial h(ps) is stored along with the vault
and is used during the unlocking process for verification.

3.2. Unlocking the Vault

To unlock a vault V given a set T ′, the algorithm first
extracts the subset of vault points P ⊆ V by matching the
values of T ′ with V as follows: (t, γ) ∈ P if and only
if t ∈ T ′. Note that we use γ here because it is unknown
which elements of P are genuine and which are chaff. Input
P into the Welch-Berlekamp decoder [1] and compare the
hash of the output with the stored h(ps) for verification.

4. Commutative Encryption
We utilize a commutative encryption scheme as one

building block of our system. For notational simplicity, we
denote e(m) as the encryption of a message m under the



encryption key e; similarly, we denote d(c) as decryption
of the ciphertext c under the decryption key d. An encryp-
tion scheme is called commutative if for any combination
of message m and keys e1 and e2 we have

e1(e2(m)) = e2(e1(m)) .

Hence, by decrypting e2(e1(m)) with the inner decryption
key d1, we are able to obtain e2(m). This feature en-
ables our system to perform so-called blind encryption on
the users’ fingerprint template points. That is, our encryp-
tion server can encrypt the users’ fingerprint template points
without knowing those template points. (See Section 5.)

4.1. Instantiation Over Elliptic Curve

RSA is a well-known candidate for such a commuta-
tive encryption scheme; however, it is terribly inefficient,
as it is recommended to use 2000-bit RSA modules in order
to achieve reasonable security guarantee. RSA also needs
to be modified to a private key scheme to gain the com-
mutative property. For efficiency, we employ the Pohlig-
Hellman exponentiation cipher [21] with the same modu-
lus and instantiate it in elliptic curve groups over Fp. Let
Param := (p, a, b, g, q, ζ) be the elliptic curve domain pa-
rameters, consisting of a prime p that specifies the finite
field Fp, two elements a, b ∈ Fp that specifies an elliptic
curve E(Fp) defined by the equation:

E : y2 = x3 + ax+ b (mod p) ,

a base point g = (xg, yg) on E(Fp), a prime q which is the
order of g, and an integer ζ which is the cofactor. We denote
the cyclic group generated by g as G, and it is assumed that
the discrete logarithm assumption holds over G, i.e. for all
probabilistic polynomial time adversary A, the advantage

AdvDLG (A) = Pr
x←Zq

[A(Param, gx) = x]

is negligible.
Encryption in this scheme is performed by first choos-

ing a random encryption key e ← Zq and setting the de-
cryption key d = e−1 (mod q). The encryption of a fin-
gerprint point t ∈ {0, 1}∗ with key e1 is denoted as e1(t)
and computed as (gH(t))e1 = gH(t)·e1 , where H(·) is a
cryptographic hash function, say SHA1. Encrypting the
point again with another key e2 is computed as (e1(t))e2 =
gH(t)·e1·e2 , and the original encryption can be removed us-
ing d1by computing (gH(t)·e1·e2)d1 = gH(t)·e2 .1

The benchmark is tested with the 192-bit elliptic curve
domain parameters recommended by NIST p192, where

1gH(t) is an efficient encoding that maps the fingerprint template point
t to a point on the curve; however, our system does not require the existence
of an efficient decoding. The decoding problem is known as the discrete
logarithm problem, which increases the difficulty of an attacker who is
trying to recover the original fingerprint template.

p = 2192 − 264 − 1, which gives about 96-bit security
level. The elliptic curve domain parameters Param are hard-
wired. We also used the standard point compression tech-
nique: a point on E(Fp) is represented by its x coordinate
together with the least significant bit of its y coordinate, and
thus each ciphertext is only 193 bit long. The code is imple-
mented in C++, using Multi-precision Integer and Rational
Arithmetic C/C++ Library (MIRACL) crypto SDK.

5. Encryption Server Scheme
The scheme consist of clients, an encryption server (SE)

storing user-specific encryption keys, and a matching server
(SM ) implementing fuzzy vault on encrypted templates.
In this scheme neither of the servers gain any information
about the underlying fingerprint as it is encrypted before it
leaves the client. This is accomplished by the client using a
temporary pair of random encryption keys. A diagram illus-
trating the overview of the scheme is presented in Figure 5
and below we discuss each step of the system in detail.

For each enrollment or verification, the client generates a
random key pair, sends an encrypted template to SE , sends
the decryption key to SM , then deletes the key pair. It is
important to note that the user is never required to remem-
ber these keys and a new pair is generated each time a user
utilizes the system. Then SE reencrypts the template with
a user-specific key which is stored and stays constant for
each user. This twice encrypted template is then sent to
SM where the temporary user encryption is removed and a
fuzzy vault is locked, or unlocked for enrollment or verifi-
cation respectively.

5.1. Client

Each client can submit a template for either enrollment
or testing under their unique identifier, ID. The client exe-
cutes the same steps for enrollment or verification.

Step 1: Generate a random temporary encryption key pair
(eu, du) using the commutative encryption scheme as
described in Section 4.1.

Step 2: Send (du, ID) to SM .

Step 3: Compute and send (eu(H(T )), ID), where H(·)
is a cryptographic hash function, to SE as follows:

(a) Convert a fingerprint reading f into a set of trans-
lation invariant and rotation variant integers T =
{t0, t1, . . . , tn−1} via a template extraction pro-
cess as described in Section 8.

(b) Compute the encryption of the template as
eu(H(T )) = {eu(H(t0)), . . . , eu(H(tn−1))}
and send it to SE along with ID.

(c) Delete eu and du.



Figure 1. This illustration shows the steps involved in the multi-
server system. At Step 1, the client, claiming to be user ID,
generates a commutative encryption/decryption key pair (eu, du)
and at step 2 sends (du, ID) to SM . At Step 3, the client hashes
and encrypts her template T with her temporary key eu and sends
(eu(H(T )), ID) to SE . At Step 4, SE reencrypts eu(H(T )) with
eID and then, at step 5, sends (eID(eu(H(T ))), ID) to SM . For
Step 6, SM decrypts eID(eu(H(T ))) with du and by the commu-
tative property of the encryptions, produces eID(H(T )). If the
system is being used for enrollment, SM will generate a secret
polynomial and lock the template eID(H(T )) in the fuzzy vault
VID . If the system is being used for verification, SM will attempt
to unlock VID using eID(H(T )). At step 7, if VID unlocks and
produces the correct secret, SM returns back a “Verified" decision
to the client. The full details of all steps are described in the cor-
responding “steps" in this section.

5.2. Encryption Server (SE)

The encryption server is responsible for generating, stor-
ing, and applying the user-specific encryption keys. We
present SE as a single server, but it can be generalized to
any number of servers if more encryptions are desired. If
an attacker can recover the encrypted fingerprint by unlock-
ing the fuzzy vault, they must then recover the keys stored
at all of these servers to decrypt the stored data offline.

Step 4: Compute and send (eID(eu(H(T ))), ID) to SM
as follows:

(a) Wait for a message from the client containing
(eu(H(T )), ID).

(b) Enrollment only: Generate an random encryption
key eID using the same commutative encryption
scheme used for eu and du and store (ID, eID).
The decryption key dID is not computed.

(c) Encrypt eu(H(T )) using eID to get
eID(eu(H(T ))).

(d) Delete (eu(H(T )), ID).

Step 5: Send (eID(eu(H(T ))), ID) to SM and delete it.

5.3. Matching Server (SM )

The matching server locks, unlocks, and stores each en-
rolled user’s fuzzy vault. We present SM as a single server,
though it can easily be extended to multiple servers to dis-
tribute the computation and storage requirements.

Step 6: Enroll or match templates as follows:

(a) Wait for communication from SE containing
(eID(eu(H(T ))), ID) and from the client con-
taining (du, ID).

(b) Compute du(eID(eu(H(T )))) = eID(H(T )).
Store h(eID(H(T )))|` in the database, where ` is
the size of the original template points and h(·)|`
stands for the t left-most bits of the hash digest.2

(c) Enrollment: Construct and store a fuzzy vault
VID using the set eID(H(T )) as described in
Section 3.1.

(d) Verification: Use the set eID(H(T )) to attempt
to unlock VID as described in Section 3.2.

Delete (du, ID), (eID(eu(H(T ))), ID), and eID(H(T )).

Step 7: If the vault unlocks successfully, the client gains
access to the system.

6. Adversarial Scenarios
In this section, we give an overview of the security of

our system for all the combinations of servers being com-
promised. We use secure communication and assume that
all the communication channels are protected using authen-
ticated encryption, e.g. SSL/SSH. Other modern methods,
such as RSA, can be used to further secure the channel com-
munication. Thus, we only consider attacks on the servers
themselves.

6.1. No Servers Compromised

In every key-less secure biometric system an attacker can
submit fingerprints using a specific user’s ID until one of
them accepts. Each one of the random fingerprints is ex-
pected to be successful with probability equal to the FAR
of the system. For this reason, we only report the ZeroFAR
(the FRR where FAR is zero) to measure matching perfor-
mance [25]. Since we test with 4950 impostor matches with
a FAR of 0, an attacker would be expected to submit more
than 4950 random fingerprints to find a match. The system
would be able detect this many failed attempts on the same
ID and lock the user’s account.

2h(·) is implemented by using SHA256 in our prototype.



6.2. Matching Server Compromised

Offline security: If SE is offline, the stored templates
are protected by the encryption scheme. Note that all the
information SM uses for matching is encrypted fingerprint
template points. First of all, similar to RSA, fe(x) = xe is
conjectured to be a pseudo-random permutation indexed by
e under the discrete logarithm assumption. In addition, our
encryption scheme maps a fingerprint template point t to an
group element on the elliptic curve as gH(t). When H(·) is
viewed as a random oracle, no efficient adversary can dis-
tinguish the correlation between H(t1) and H(t2) for any
correlated t1 and t2; otherwise, she can break the random
oracle assumption. Hence, for any t1 and t2, the cipher-
texts of them, gH(t1)·e and gH(t2)·e appear to be random to
any computationally bounded adversary, when e is drawn
from Zq uniformly at random. Therefore, the confidential-
ity of the users’ fingerprint template is preserved. In Theo-
rem 1, we show that if fe(x) is a pseudo-random permuta-
tion then h(fe(x))|` is indistinguishable from a uniformly
random ` bit string, where h(fe(x))|` stands for the left-
most ` bit truncation of h(fe(x)) and h(·), H(·) are some
cryptographic secure hash functions.

Online security: If the attacker has control of SM and
SE is still online, they can pretend to be a particular client in
an attempt to build a mapping of eID. The attacker can gen-
erate a set of template points as a client to send to SE , then
observe the encryptions of these points received at SM . As
discussed in Section 7.2, the attacker cannot recover the en-
cryption key eID by querying the encryption oracle (SE).
However, by doing this repeatedly the attacker can deter-
mine the mapping of all the encryptions of template points
since the space of possible template points is fairly small
(experimentally about 230). In this way, the attacker can
decrypt the data without attacking SE directly, though the
repeated submission of templates with the same ID may be
detectable at SE , which can take action to limit this attack.

Our system itself limits the effectiveness of this attack
by hashing the encrypted data at SM using the fuzzy vault
scheme. After the attacker decrypts the fuzzy vault points,
they will still have to unlock the vault. This limits the at-
tacker either attempting to crack the fuzzy vault, or per-
form online attacks on live data. As a live attack, they can
wait for a user to submit a template for enrollment or test-
ing. This template will be encrypted, but not protected by a
fuzzy vault so the attacker could potentially compromise the
template using the attack mentioned earlier to find the map-
ping of eID. In this way, an attacker compromising SM can
potentially recover templates from active users, but cannot
easily recover the template of every enrolled user.

Protection from specific attacks: We discuss three spe-
cific attacks on fuzzy vaults in Section 2 that would nor-
mally be executed by an attacker compromising SM . We
show that our system can protect against these attacks.

With a standard fuzzy vault, an attacker recovering two
vaults locked using the same template can perform the
record multiplicity attack [14, 22]. Since our fuzzy vaults
are all encrypted with different random encryption keys, no
such offline attack is possible. The attack can somewhat
be executed in the online scenario by slowly mapping the
encryption of eID, though this would be detectable and dif-
ficult to perform.

The second attack occurs when an intruder obtains a
fuzzy vault as well as the secret polynomial used to lock
that vault. Given these, it is easy to determine which vault
points are genuine. The secret polynomial could only be
recovered by observing the unlocking process on a success-
ful unlocking of the vault or cracking the vault directly since
we don’t use or store this information for any other purpose.
Even after recovering the genuine template points, the in-
truder still needs to map the encryptions of eID to discover
the underlying fingerprint data.

The final attack we discuss here is that of blended sub-
stitution. With access to a locked fuzzy vault, an intruder
can add or replace points using a known template and lock
an additional secret in the vault. This allows the intruder
undetectable access since the legitimate user will still have
access as well. We limit this by comparing the unlocked
secret to a hash of the locking secret. It would be computa-
tionally infeasible for an attacker to generate a secret with
the same hash value due to the size of the random secrets
used.

6.3. Encryption Server Compromised

The encryption server only stores the encryption keys
and it only receives ciphertexts of the users’ fingerprint tem-
plate points and performs re-encryption. Note that users’
fingerprint template points ti ∈ {0, 1}` may be correlated;
nonetheless, as we will see it does not cause any secu-
rity problem. Assuming the cryptographically secure hash
function H : {0, 1}` 7→ {0, 1}κ realizes a random ora-
cle, by definition, H(·) has the uniform difference prop-
erty: ∀t1, t2 ∈ {0, 1}`, t1 6= t2, H(t1) −H(t2) (mod 2κ)
is uniformly distributed in {0, . . . , 2κ − 1}. Therefore,
given any two correlated t1, t2, H(t1) and H(t2) should
appear to be independent to all computationally bounded
adversaries. So that their corresponding group elements,
gH(t1) and gH(t2) is computationally indistinguishable from
two random group elements. Considering that (gH(ti))eu

are pseudo-random permutations of a set of independent
random group elements, no efficient adversary can obtain
any information from the user’s ciphertexts; otherwise the
random oracle assumption of the underlying cryptographic
hash function does not hold. We can even upgrade our sys-
tem to achieve unconditional security by requiring the client
to use a fresh random encryption key for each fingerprint
point. With a one-time key, e(i)u (ti) information theoreti-



cally hides ti when the encryption key e(i)u ← Zq is picked
uniformly at random. This is because the distribution of
H(ti) ·e(i)u is uniform distribution over Zq , and thus e(i)u (ti)
is a random group element.

6.4. Matching Server and Encryption Server Com-
promised

If both servers are comprimised all, attacks on the tem-
plates stored at SM can be performed offline, though the
genuine points are still hidden among the chaff points of
the fuzzy vault. Mapping the encryption of the keys stored
at SE can be computed offline since the attacker has access
to all the eID so we assume that there is no encryption and
the data is only protected by the fuzzy vault.

With both servers compromised, online attacks are
straight-forward. Since SE receives eu(T ) and SM receives
du, the encryption can be mapped and T can be recov-
ered. This is computationally expensive since recovering
(gH(t))eu given eu and g is still the discrete-log problem.
However, since the space the template points are drawn
from is relatively small, the mapping of the encryption can
be found by brute forcing every possible template point.

7. Security

Our system is secure against semi-honest (a.k.a. honest
but curious) non-colluding adversarial servers. In this set-
ting, both servers follow the protocol description, but they
might seek to recover the users’ fingerprints from all the
available information. This reflects the scenario where both
servers are honest but one of them is compromised by the
adversary.

7.1. Fuzzy Vault

To measure the security of the fuzzy vault, we use the
security parameter defined by [9]

λ =
√
cz − g, (1)

where z is the number of terms in the polynomial, c is
the total number of points in the vault, and g is the number
of genuine points in the vault. This parameter is analogous
to the bits of security of the vault. We note that this pa-
rameter gives an upper bound on the security assuming the
template locking set is uniformly distributed. This is the
case since the vault is locked using encrypted data, though
some security is lost when the adversary can decrypt the
vault points. The exact amount of security lost when the en-
cryption is compromised is difficult to analyze, though the
attacker would be able to perform attacks that take advan-
tage of the distribution of fingerprint templates.

7.2. Chosen Plaintext Key Recovery Resistance

The chosen plaintext key recovery attack is modeled as
the following game:

• Setup phase: The challenge C picks a random key
e← Zq .

• Query phase: For i = 1, 2, . . .:

– The adversary A sends C query xi ∈ G.

– C replies ci := xei to A.

• Guess phase: A outputs e∗

We say that the adversary wins if and only if e = e∗.
Our commutative encryption scheme is chosen plaintext

key recovery resistant if the discrete logarithm problem is
hard. (See [21] for more discussion.)

7.3. Pseudo-randomness of the Truncations

In this section, we show that the left-most `-bit trunca-
tions of h(gH(t)·e) is indistinguishable from U`, assuming
that fe(x) := xe is a pseudo-random permutation and h(·)
realizes a random oracle, where U` denotes the uniform dis-
tribution over {0, 1}`. In our scheme, we map each t to a
unique group element x = gH(t). Without loss of general-
ity, we will examine the property of h(fe(x))|`, as one can
always set x = gH(t) for our scheme.

Theorem 1. Let λ ∈ N be the security parameter, and
let G be a cyclic group with a λ-bit prime order q, where
the discrete logarithm problem is hard. Let h(·) be a ran-
dom oracle. Assuming Fλ = {fe(x) = xe|∀e ∈ Zq} is a
pseudo-random permutation family G 7→ G, for all interger
0 < ` < λ/2, the probability that a poly(λ) running time
adversary can distinguish h(fe(x))|` from U` is negligible
i.e., < 1

poly(λ) , where e is chosen uniformly at random from
Zq .

Proof. Given that fe(x) is a pseudo-random permutation,
by definition, no poly(λ)-time adversary can distinguish
fe(x) from a true random permutation π : G 7→ G. In ad-
dition, the poly(λ)-time adversary is not able to distinguish
a true random permutation π : G 7→ G from a true random
function r : G 7→ G with more than negligible probability.
It is due to the fact that the only event where the adversary
is able to distinguish a random permutation from a random
function is when the outputs of the random function have
a collision. Since a poly(λ)-time adversary can only query
at most poly(λ) queries to the random function, the prob-
ability to have a collision is bounded by poly(λ)

|G| < 1
poly(λ) .

Therefore, we can switch the output of fe(x) with a uni-
formly random group element in G, and the adversary has



negligible probability to distinguish such a switch. More-
over, when h(·) realizes a random oracle, h`(x) := h(x)|`
is a universal hash function G 7→ {0, 1}`, i.e.

∀x, y ∈ G, x 6= y : Pr[h`(x) = h`(y)] ≤ 2−`.

By the leftover hash lemma, the computational distance be-
tween h`(fe(x)) and U` is at most 2−

λ−`−1
2 ≤ 2−λ/4.

Hence, the probability that a poly(λ)-time adversary can
distinguish h(fe(x))|` fromU` is negligible, where e is cho-
sen uniformly at random from Zq .

8. Experimental Results
In this section, we analyze the experimental performance

of our system in terms of matching and timing. We con-
ducted the experiments on the first fingerprint database from
the Second International Fingerprint Verification Competi-
tion (FVC2002/DB2). The minutiae points were extracted
by finding large curvature points on the contours of the bi-
narized fingerprint images [7]. Additionally, to improve the
performance of minutia extraction, the fingerprints were en-
hanced by the short time Fourier transform algorithm [5].
We also remove suspect spurious minutia points by remov-
ing all points within a euclidean distance of 3 from each
other. A standard testing protocol for calculating all possi-
ble 2800 genuine and 4950 impostor matches was used. For
the hash functions h(·) and H(·) we use SHA256.

Here we briefly present matching results via the Zero-
FAR which is the False Reject Rate (FRR) at a fuzzy vault
operating threshold that achieves a False Accept Rate(FAR)
= 0. The matching scheme used in this system is n-gons
as developed in [18]. In this matching scheme a template is
represented by m minutia points and each minutia point is
represented as an ordered triple (x, y, θ). For each minutia
point in the template, the closest k neighboring minutia are
located, where k > n − 1, and subsets of these minutia of
size n are used to form the quantized n-gon feature as fol-
lows. Each point in the feature is labeled p0, p1, ..., pn−1
where x0 ≤ x1 ≤ ... ≤ xn−1, i.e., in order from left
to right with ties broken by y value. Each point is then
translated toward the origin by p0 in x and y but not θ, i.e,
pi = (xi − x0, yi − y0, θi) for every i ∈ 0, 1, ..., n − 1.
Then each resulting (x, y, θ) triple is quantized into 8 bins
and concatenated together to form the final n-gon feature
t = θ0 ◦ x1 ◦ y1 ◦ θ1 ◦ ... ◦ xn−1 ◦ yn−1 ◦ θn−1. After doing
this for each minutia point in the template, we have a tem-
plate T = t1, t2, ..., tq , where q is the resulting size of the
template. By design, this scheme is invariant in translation,
but variant in rotation. During verification, we generate a
larger template of all rotations by rotating each n-gon over
a fixed interval and quantizing it at each rotation to achieve a
form of rotation invariance for the test fingerprints. n-gons
all rotations (AR) locks the entire template of rotations in-
side the fuzzy vault and also uses creates the same template

for verification. We summarize our matching performance
in Table 1. The average enrollment and verification times
were 3.844 and 4.057 seconds. The tests were run using
three Macbook Pro’s with 2.0-2.9Ghz intel i7’s and 16Gb
of memory connected via a gigabit switch.

Method # Chaff g z λ ZeroFAR
n-gons 38,000 395 6 84.97 24.3%
n-gon AR 200,000 1474 12 80.89 12.6%

Table 1. Secure matching performance for the multi-server sys-
tem where g is the average number of genuine points in the fuzzy
vaults.

We note that the n-gons all rotations method introduces
a large amount of correlation between genuine points in the
template. In order to ameliorate this issue, we hash the tem-
plate points using a cryptographic hash function to remove
any correlation before encryption. However if an adversary
were able to recover an encryption key and it’s matching
fuzzy vault, she could potentially recognize this correlation.
Using n-gons single enrollment addresses this issue by only
enrolling under a single rotation, but at the cost of matching
performance, as shown in Table 1.

9. User Encrypted Scheme

In this section, we briefly describe how our system can
be converted into a two-factor system that provides a sig-
nificant increase in both security and matching accuracy. In
this version of the system, each user must maintain a user-
specific encryption key which is applied to each of the tem-
plate points before they are sent to the server where a fuzzy
vault will be constructed. These templates are sent directly
to the matching server since the user is performing the func-
tion of the encryption server. For enrollment, the genuine
points are encrypted with this key and sent to the matching
server to create a fuzzy vault; for verification, the genuine
template points are encrypted with this same key and used
to attempt to unlock the fuzzy vault. If the server is com-
promised, the user-specific encryption that is unknown to
the adversary is still protecting the template points. The ad-
versary must now overcome the encryption mapping before
they can unlock the fuzzy vault. The increase in matching
accuracy comes from the fact that impostor tests are per-
formed using a different encryption key than was used dur-
ing enrollment making all the imposter test scores equal to
0. By adjusting our parameters such that all genuine scores
are at least 1, we achieve a ZeroFAR of 0.

We note that we do not need commutative encryption for
this version of our system and could use a wide range of
encryption methods. We still use commutative encryption
in our implementation since it is secure with small key sizes
and is efficient in practice.



It may be unrealistic for a user to memorize a lengthy en-
cryption key, but we note that this can be achieved through
smart cards, near-field communication (NFC), and other re-
cently developed technologies. Unfortunately, user-specific
keys can be compromised in practice so there is much desire
to have a keyless system with similar security guarantees.
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