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Abstract

This work, for the first time, combines fingerprint match-
ing, security, and indexing in one system. We use the fuzzy
vault construct with minutia path information to achieve
this. Since we only store translation and rotation invari-
ant information from the paths, we achieve pre-alignment
for “free,” which is a requirement of the fuzzy vault. We in-
troduce a hash table that allows indexing to be used with
our system, which effectively reduces the search space of
the database. Our system is secure in the sense that if the
database is compromised, it will be computationally infea-
sible for the intruder to recover the enrolled fingerprint tem-
plates.

1. Introduction

Strings are used widely in many identification schemes
such as passwords primarily because of three key proper-
ties. (1) Matching between any two pairs of strings is very
efficient. (2) There exist secure hashes that can be used
to store the strings. (3) Strings allow for efficient index-
ing structures that permit quick matching of a target string
against a database of strings. However, in applications such
as passwords, strings can be difficult for users to remember.

Biometrics such as fingerprints have the obvious advan-
tage of being hard to “forget.” Ideally, we would like to
replace strings with fingerprints in authentication applica-
tions. To successfully do this, we must be able to replicate
the three properties above with fingerprints. Unfortunately
(or fortunately for us researchers!), fingerprints are an in-
herently more difficult medium to work with. In particular,
unlike strings where the authentication protocol can demand
the same string be reproduced, it is impossible for a given
physical finger to produce exactly the same reading each
time it is scanned. This has led to a fair amount of research
on matching fingerprints [14, 15]. Somewhat more recently,
there has been research in designing secure hash functions
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for fingerprints [16, 8, 18], and indexing for fingerprints has
also been considered [9, 7, 22]. However, there has not been
much work in achieving more than one of these three goals
simultaneously. Recently, there was a study about the secu-
rity and matching performance of the so-called fuzzy vaults
of [16] in [13]. However, no existing work has considered
all three axes together. Our main contribution in this pa-
per is, to the best of our knowledge, the first study of per-
formance of fingerprints on the axes of matching accuracy,
security and indexing simultaneously.

Our starting points are two different schemes that have
been proposed for secure hashes and indexing. The first is
the fuzzy vault, proposed by Juels and Sudan [16], which
can match any two sets with sufficiently large intersection
and has been extended by [2]. This has been implemented
in the biometrics literature with the sets being the set of
minutia points [25, 23]. One of the major difficulties of this
approach has been the inability of the fuzzy vault to handle
translations and rotations of fingerprints which has inspired
work using geometric hashing with the fuzzy vault [11, 20].
The second scheme is inspired by that of Tan et al. [28]
and Mansukhani et al. [22] that index the fingerprints by
storing information about paths. In particular, the index-
ing algorithm uses this path information to narrow down
the search space on which it performs the final matching.
Our main technical contribution is a natural combination
of these two schemes to attain both security and fast index-
ing. In particular, from the hashing perspective, we first
convert the minutia points into a set of paths and then ap-
ply the fuzzy vault to this latter set. We would like to point
out that the path information that we store are distances and
certain angles, which are invariant under translation and ro-
tation. This automatically takes care of the shortcomings of
previous fuzzy vault implementations.

Finally, we present a thorough experimental evaluation
of our system on all three aspects of matching, security and
indexing. To measure the matching performance we use the
traditional notions of FAR and FRR to report ROC curves.
To measure the efficiency of indexing we measure the pene-
tration coefficient [7], which roughly speaking measures on



average how much indexing reduces the brute-force search
space. We use the security parameter from [13] to measure
the security we get from the fuzzy vault. (This security pa-
rameter is in turn based on a hardness predicate proposed
in the cryptography community [17].) We concede that, in-
dividually, our matching and indexing numbers do not beat
the existing state-of-the-art results. However, we would like
to point out that we expect to lose some performance when
we gain security. Furthermore, indexing (and matching) in-
herently seems to require leaking information about the fin-
gerprint, while secure hash functions try to obfuscate the
fingerprint. Thus, when considering all three aspects to-
gether, we cannot expect to beat the existing results in any
axis by itself.

2. Related Work
The matching between a single test template and the

set of enrolled biometric templates is possible either by
employing a fast matching algorithm, or with the help of
some indexing structure reducing the number of attempted
matches. For some biometric modalities, the fast match-
ing algorithm and identifying the test template among mil-
lions of enrolled ones are feasible. For example, the iris
template can be represented as a binary feature vector with
the matcher calculating the distance between two templates
by counting the number of differing bits. Using this ap-
proach, the iris biometric systems performing searches in
large databases in real time have been implemented [6].

Some biometric modalities, such as face and hand ge-
ometry, allow templates to be represented as feature vectors
with fixed dimensions. For such templates the multidimen-
sional indexing in feature space is possible, e.g. by tradi-
tional k-dimensional tree structures. For example, in [24]
a pyramid method was used to index 24-dimensional hand
geometry biometric templates.

But many biometric modalities, e.g. fingerprints, voice,
signature, etc., do not have fast matchers or fixed length
feature vector representations. As the focus of our research,
fingerprints are typically represented as variable size sets of
minutia point coordinates. Since there is no well defined
center or orientation of the fingerprint, the matching algo-
rithm should investigate all possible affine transformations
between two prints. As a result, it takes a relatively long
time of up to 1 second to perform a single match between
two fingerprint templates [4], and performing searches in
large databases of millions of fingerprints without any in-
dexing would be impractical.

The Henry classification system separates fingerprints
into 5 classes (left and right arcs or loops and whorl),
and many researchers proposed algorithms to perform au-
tomatic classification into such classes (e.g. [26]). Since 5
classes do not provide sufficient reduction of search space,
it was also proposed to filter database templates by compar-

ing them to the features used for classification, e.g. direc-
tion field [21]. Effectively such approaches extract a fixed
length feature vector and use it for initial matching or filter-
ing, which is followed later by traditional matching.

A different approach to fingerprint indexing is based on
the multidimensional indexing technique [3], such as geo-
metric hashing. Germain et al. applied such indexing to
fingerprints using minutia triplets [9]. From each minutia
triplet some features are extracted and quantized; depending
on concatenated binary vector of features, a triplet is placed
in the corresponding bucket. During matching, a test finger-
print will have minutia triplets occupying similar buckets
and by finding the list of fingerprints having triplets in the
same buckets as a test fingerprint we would be able to find
the matching fingerprint. The algorithm was later improved
by experimenting with different features and was shown to
outperform classification based methods [28].

The multidimensional indexing algorithms should find a
balance between the robustness of the feature extraction (so
that corresponding features of two fingerprints would be-
long to the same buckets) and the number of buckets (as dis-
cussed in [3], each bucket should contain only a small num-
ber of triplets for better reduction of the matching time).
In [22], a long vector of features is used for indexing, and
matching a single bucket in two fingerprints is sufficient for
retrieving an enrolled fingerprint. In this work, we utilize a
smaller length feature vector for achieving such balance.

Among the variety of techniques for creating privacy
preserving fingerprint templates, the fuzzy vault method re-
lies on set matching and seems to be most compatible with
the feature set indexing [9]. In the current paper we attempt
to combine both methods. The fuzzy vault has been applied
to fingerprints without indexing [25, 23] and attempted to be
used along with indexing [1], though we show that the sys-
tem proposed by Bohm et al. [1] has no provable security
with the parameters chosen. Specifically, the secret can be
recovered in polynomial time by inputting the entire vault
into the Reed-Solomon decoding algorithm by Guruswami
and Sudan [12]. The features employed for indexing in [9]
should be independent of the affine transformations, and the
fuzzy vaults based on such features have been proposed as
well, either by explicitly extracting transformation invari-
ant features [19] or by using geometric hashing construc-
tion [11, 20]. Since we need to use transformation invariant
features for the creation of the indexing hash tables, and
have an additional large number of fuzzy vault chaff points
for enrollment, the restrictions on the number of buckets [3]
suggest the use of complex indexing features different from
those used in above papers. Thus we utilized the complex
transformation invariant indexing features of [22] extracted
from the paths of neighboring minutiae, which proved to be
sufficient for our task.
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Figure 1. A path is represented by a single value z given by a
concatenation such that z = d0d1d2d3σ0σ1σ2σ3ψ1ψ2ψ3. The
di values are the distances between points and the ψi’s are inside
angles as shown. The σi’s are the difference in orientation between
minutia points and can range from 0 to 180 degrees.

3. System Details
Our system is based on fuzzy vaults locked using path in-

formation from the fingerprint minutia points. It populates a
hash table by enrolling fingerprints, then uses this table for
indexing when searching for a match. We (1) explain how
we obtain the paths, (2) how the systems enrolls fingerprints
and (3) how it searches the hash table for matches.

Paths. We use a set of paths of minutia points to repre-
sent a fingerprint in our system. Paths have the advantage
of being rotation and translation invariant which is critical
since we are using the fuzzy vault construct which requires
the fingerprints to be pre-aligned.

To convert a fingerprint template to a set of paths, we
choose each minutia point as the start to a path p0 exactly
once to obtain n paths from n points. The next point in a
path pi+1 is the Euclidean closest point to pi not already in
the path. This is repeated until a path of length 5 is found.

Each path is then represented in the finite field with
223 elements (denoted by F223 ) by concatenating 11 val-
ues extracted from the path. These values are di for the
Euclidean distance and σi for the difference in minutia
orientation(∆θ) between pi and pi+1. The other values
are ψi which is the inside angle formed by points pi−1,
pi, and pi+1 (see figure 1). We quantize and concatenate
all of these values to map the paths to values in F223 as
z = d0d1d2d3σ0σ1σ2σ3ψ1ψ2ψ3. Each value is given a
predetermined number of bits which defines the amount of
quantization. In our implementation, no value is given more
than four bits so there are at most sixteen possibilities for a
given value. This z value is the bin number in the hash table
corresponding to that path. We also quantize in a way that
distributes the z values close to uniformly over F223 as de-
scribed in [13] which is a requirement for security in fuzzy
vaults [17].

Enrollment in the hash table. The hash table is con-
structed to have one bin for each element in the field, and
each bin will contain a set of (ID, γ) pairs where ID
uniquely identifies a fingerprint and γ ∈ F223 . A fingerprint
is enrolled into the hash table by using its path information
to determine which bins it will be inserted into. There is a
one-one correspondence between the 223 possible paths and
the 223 bins in the hash table.

To enroll a fingerprint f , we lock a secret polynomial Ps

of degree k−1 over F223 using the fuzzy vault construct [16]
and insert the points of the vault into the hash table. To
accomplish this, we first find the z values that correspond
to the paths in f . For each of the z values, we insert an
(ID, γ) pair into bin z such that γ = Ps(z). For testing
purposes, Ps is randomly generated, though in practice this
would be any sensitive information such as an encryption
key.

After all the genuine points are inserted, we add 50,000
chaff points by choosing z and γ uniformly at random un-
der the conditions that γ 6= Ps(z). All of the genuine and
chaff points for a fingerprint will have the ID of the fin-
gerprint being enrolled. If all the points with the same ID
are extracted from the hash table, it would represent a tra-
ditional fuzzy vault. The chaff points serve the purpose of
obfuscating the data so an intruder can not determine which
paths correspond to the actual enrolled fingerprint [16]. The
intuition is that the genuine user will be able to recover the
paths from a new reading of the same fingerprint to find the
bins containing the genuine pairs.

During the enrollment process, if any z values are re-
peated, the duplicate is rejected so each fingerprint will be
in each bin at most once.

In our implementation, we used multiple fingerprint
readings for enrollment. We performed testing on the
FVC2002 databases which contain eight reading for each
fingerprint. We chose six readings for enrollment, then
tested on the remaining two. For multiple enrollment, we
added all of the paths found from the six readings to the
hash table with the same ID. That ID is then that finger-
print’s ID and is used to check for genuine matches. We
can not enroll each of the six readings with different ID’s as
this would expose a known weakness of fuzzy vaults [27].
Our testing shows that this results in an average of 245
unique paths for each enrollee.

Searching the hash table. To make use of the indexing
structure, we must be able to search the hash table and
quickly determine which fingerprints are likely to be gen-
uine. To accomplish this for a test fingerprint reading f ′,
the first step is to compute all its paths to find the set of z
values for f ′, just as we did for enrollment. We then ex-
tract all the (ID, γ) pairs from the bins pointed to by these
z values. We score each enrolled ID by counting the num-
ber of points extracted labeled with that ID and rank all
ID’s according to this score. This gives a list of fingerprint
ID’s sorted by the number of matched paths with the test
reading. We then compute the r value as how far down this
list the genuine fingerprint is. This value is used to find the
penetration coefficient of this scheme which we discuss in
section 4.



4. Evaluation
To evaluate our system, we present various results to

measure the indexing efficiency, matching accuracy, and se-
curity of the system. These metrics should all be considered
simultaneously to properly assess the overall effectiveness
of the system.

Metrics. To measure indexing, we use the time taken to
search the hash table for a single test reading, the hit rate
vs. penetration rate, and the penetration coefficient. We
define the penetration coefficient to be

P = r/N

where r is the average rank of the genuine fingerprint us-
ing our ranking scheme, and N is the total number of en-
rolled fingerprints. This metric relates to how much the
search space is reduced by using our indexing scheme. Ob-
serve that given random rankings, the expected value of P
is 0.5, not P = 1. Therefore, 0.5 should be considered the
worst-case measure of P. The penetration coefficient can be
thought of as the average penetration rate. Informally, it is
the area bounded above the curve in figure 2.

To measure the matching accuracy we use standard
ROC, FAR, and FRR curves. To obtain a score between
a test reading and an enrolled fingerprint, we find all the
bins that the two share and observe whether each point is
genuine or chaff. The score is then the number of genuine
points minus the number of chaff points in this set. This
score directly relates to the ability of that reading to unlock
the fuzzy vault corresponding to that fingerprint. Specif-
ically, the Welch-Berlekamp decoder can unlock the vault
iff this score is greater than or equal to the size of the se-
cret polynomial (k). These matching results represent the
ability to match fingerprints using only path information in
the presence of chaff points. To obtain this score in test-
ing, the chaff points are marked beforehand. This will not
be the case in practice and our indexing results do not use
these markings. We have tested our system by running the
Welch-Berlekamp decoder and verified the predicted behav-
ior. Running the decoder also made no significant impact on
the runtime of our system by running in less than 1ms on all
trials.

The security is measured by a parameter λ which is de-
fined as

λ =
√
nk − t

where t is the number of genuine minutia points used to
lock the vault and n is the total size of the vault (sum of
genuine and chaff points). Since t and n will vary between
fingerprints, we use the average number of genuine points
for both, which is t = 245 making n = 50, 245. We note
that λ is a logarithmic measure of security and is somewhat
analogous to the number of bits of security. Any attack on
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Figure 2. The fraction of the tested fingerprints that find their gen-
uine match (hit rate) for a given fraction of the database searched
in order of the ranking results from the hash table (penetration
rate).

the vault will take exponential time in terms of λ. Full
justification for the use of λ can be found in our previous
work [13] which is based on the hardness of Reed-Solomon
decoding which has been proposed to be a cryptographic
primitive [17]. In brief, any efficient attack on a fuzzy vault
with uniformly distributed genuine points can be used as an
efficient Reed-Solomon decoder which is believed to have
exponential time complexity in λ. We note that any fuzzy
vault implementation with λ ≤ 0 can be cracked in poly-
nomial time by applying the Reed-Solomon decoding algo-
rithm by Guruswami and Sudan [12].

Results. We conducted experiments on the four databases
from the Second International Fingerprint Verification
Competition (FVC2002) (http://bias.csr.unibo.it/fvc2002/).
The minutia positions were obtained by finding large cur-
vature points on the contours extracted from the binarized
fingerprint images [10]. Additionally, to improve the per-
formance of minutia extraction, the fingerprints were en-
hanced by the short time Fourier transform algorithm [5].
The impostor scores and indexing results were found by en-
rolling every fingerprint using the first six readings from the
databases and testing using the remaining two readings giv-
ing a total of 19800 impostor scores. The genuine scores
were calculated separately by enrolling each fingerprint 28
times (once for each six reading combination) and testing
with all readings. The matching score was taken from ev-
ery enrollment and test pair from the same fingerprint such

Table 1. The indexing performance of our system on the FVC2002
databases. For DB1 and and DB2, about 10% of the database
needs to be searched on average to find the genuine fingerprint.
Even on DB3 where our system did not perform as well, it still
cuts the search to 1

4
of the database.

Penetration Coefficient (P )
DB1 DB2 DB3 DB4
0.1031 0.0898 0.2582 0.1701
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Figure 3. Rates and security for FVC2002 Database 1 with 50,000
chaff points per enrollee. The security parameter λ was computed
using the average number of genuine minutia which is t = 245.

that the test print was not one of the six used to enroll. This
results in 5600 genuine scores. Throughout all the tests,
50,000 chaff points were used for each enrollment.

The effectiveness of the indexing aspect of the system
can be seen in table 1 and figure 2. Table 1 shows that for
DB1 and DB2 about 10% of the database would need to be
searched on average to find the genuine match. By figure 2,
we can see that a large number of the genuine matches are
at the top of the ranking list after searching the hash table.
For DB1, 66% of the tests returned the genuine fingerprint
as the first one in the ranking. This implies that by simply
returning the first result of the rankings every time, the fin-
gerprint would be correctly identified two thirds of the time
using DB1.

The security and matching performance of our system
can be seen in figures 3 and 4 and table 2. The security pa-
rameter λ is shown alongside FAR and FRR to illustrate the
tradeoff between security and matching. Since λ is a loga-
rithmic measure of security, a rather secure system can be
achieved even with polynomials with only two terms (lines)
where λ = 72. For more security, a polynomial with more
terms can be used which also reduces the FAR while in-
creasing FRR.

Figure 5 shows that a single hash table lookup can be per-
formed very fast which is essential for an indexing scheme.
Combined with the penetration coefficients from table 1, for

Table 2. Results for common setups in secure systems where k rep-
resents the number of term in the secret polynomial. The security
parameter λ was computed using 245 genuine points and 50,000
chaff points. We note that λ is a logarithmic measure of security
so the security grows exponentially with λ.

DB1 DB2
k λ FRR FAR FRR FAR
2 72.0 0.2386 0.0145 0.1261 0.0291
3 143.2 0.3654 0.0029 0.1920 0.0077
4 203.3 0.4816 0.0005 0.2648 0.0023
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Figure 4. ROC curves for experiments on the four databases from
FVC2002. The rates represent the matching performance of this
system if it were used directly for fingerprint verification using the
path information. The EER’s are .132, .090, .313, and .231 for
DB1, DB2, DB3, and DB4 resp. We note that these EER values
are not very useful since they all occur at k ≤ 0 meaning that there
is no security at this value.

DB1, on average we can eliminate 90% of the search space
in less than 1ms with 10,000 enrolled fingerprints.

Timing tests were performed on a machine with a 2.4Gh
processor and 32Gb of DIMM RAM clocked at 1333 MHz.
Currently our program resides exclusively in RAM which
does improve data access time. Our future work will test
larger databases residing on a hard drive to perform timing
tests that include disk access time.

5. Conclusion
In this paper we presented an algorithm for indexing pri-

vacy preserving fingerprint templates. In essence, the algo-
rithm combines the geometric hashing indexing technique
with the fuzzy vault method for creating privacy preserv-
ing templates. Such combination is achieved by filling the
hash table with additional chaff elements, which still al-
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Figure 5. Time taken to search the hash table for a fingerprint tem-
plate(given as a set of minutia points) and return a list ranking the
candidate matches. Actual data points are denoted by ‘X’ and the
best fit line was computed by assuming a logarithmic dependence
on the number of enrollees. All tests were conducted with the en-
tire hash table residing in RAM.



lows for the indexing part to function properly, but makes
the retrieval of non-chaff elements by the intruder impossi-
ble. The experiments show the acceptable performance of
the proposed method with respect to indexing, as well as
matching accuracy. In addition, it has been shown that the
algorithm has proper security characteristics.

Since the search in the hash table involves the matching
of test templates simultaneously against all enrolled finger-
prints, it does not seem possible to utilize any fingerprint
alignment information at this stage. As a result, the transfor-
mation invariant features extracted from the paths of neigh-
boring minutia are used in the system. Using such transfor-
mation invariant features might not deliver the best possible
performance with respect to matching accuracy. Thus, it
could be desirable to use a secondary matcher for verifying
the results of the indexing, and we see it as a direction for fu-
ture research. A challenge of constructing such a matcher is
ensuring that its features do not reduce security when com-
bined with the information from the hash table.
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