
Achieving List Decoding Capacity Using Folded Reed-Solomon Codes

Venkatesan Guruswami and Atri Rudra

Abstract— We present error-correcting codes that achieve
the information-theoretically best possible trade-off between
the rate and error-correction radius. Specifically, for every
0 < R < 1 and ε > 0, we present an explicit construction
of error-correcting codes of rate R that can be list decoded
in polynomial time up to a fraction (1 − R − ε) of errors. At
least theoretically, this meets one of the central challenges in
algorithmic coding theory.

Our codes are simple to describe: they are folded Reed-
Solomon codes, which are in fact exactly Reed-Solomon codes,
but viewed as a code over a larger alphabet by careful bundling
of codeword symbols. Given the ubiquity of RS codes, this is
an appealing feature of our result, and in fact our methods
directly yield better decoding algorithms for RS codes when
errors occur in phased bursts.

These results were first reported in [1]. The description in
this paper, though, is different and the codes are based on
a different, more flexible, version of folding. The algebraic
argument underlying the decoding algorithm is also simpler,
and leads to a slightly better bound on decoding complexity
and worst-case list size.

I. INTRODUCTION

A. Background on List Decoding

Under the problem of list decoding an error-correcting
code C of block length n up to a fraction p of errors,
we are given a noisy received word r, and the goal is to
output all codewords of C within Hamming distance pn of
r. Even in a worst-case noise model, list decoding opens
up the possibility of decoding from a number of errors
exceeding the packing radius of the code (the idea being
that for pathological noise patterns the decoder may output
multiple answers).

In order for a family of codes to be efficiently decodable
up to a fraction p of errors, we need the a priori guarantee
that every Hamming ball of radius pn has few (at most
a polynomial in the block length) codewords. A standard
random coding argument shows that we can have ρ >
1 − R − o(1) over large enough alphabets, cf. [2], [3],
and a simple counting argument shows that ρ must be at
most 1 − R. Therefore the list decoding capacity, i.e., the
information-theoretic limit of list decodability, is given by
the trade-off ρcap(R) = 1 − R. Since the message has Rn
correct symbols, one needs at least a fraction R of correct
symbols in order to do meaningful error-recovery. (Indeed,
this holds even for the weaker model of erasures, and even if
the adversary announces which symbols it plans to erase!) In

The authors are with the Department of Computer Science and Engineer-
ing, University of Washington, Seattle, WA 98195.

V. Guruswami was supported in part by NSF CCF-0343672, a Sloan Re-
search Fellowship, and a David and Lucile Packard Foundation Fellowship.

A. Rudra was supported in part by NSF CCF-0343672.

other words, list decoding enables the possibility of achieving
the information-theoretically optimal trade-off between the
rate of a code and the fraction of errors that can be corrected,
even for an adversarial/worst-case noise model.

As is typical with capacity theorems in coding theory, the
above-mentioned list decodable codes are non-constructive.
In order to realize the potential of list decoding, one needs
explicit constructions of such codes, and on top of that,
polynomial time algorithms to perform list decoding. After
essentially no progress in this direction in over 30 years, the
work of Sudan [4] and improvements to it in [5], achieved
efficient list decoding up to ρGS(R) = 1 −

√
R errors for

the important family of Reed-Solomon (RS) codes. The latter
algorithm in [5] could also handle different weights on differ-
ent coordinates by encoding them into an appropriate number
of interpolation multiplicities, and in an important follow-
up work, Koetter and Vardy [6] developed soft-decoding
algorithms for Reed-Solomon codes that leverage this fact.

The 1 −
√

R bound stood as the best known error-
correction radius for efficient list decoding for several years,
and improving upon it emerged as a central open problem
in the subject. In a recent breakthrough, Parvaresh and
Vardy [7] presented codes that are list-decodable beyond the
1−

√
R radius for low rates R. The codes they suggest are

variants of Reed-Solomon (RS) codes obtained by evaluating
m > 1 correlated polynomials at elements of the underlying
field (with m = 1 giving RS codes). For any m > 1,
they achieve the error-correction radius ρ

(m)
PV (R) = 1 −

m+1
√

mmRm. For rates R → 0, choosing m large enough,
they can list decode up to radius 1−O(R log(1/R)), which
approaches the capacity 1−R. However, for R > 1/16, the
best choice of m (the one that maximizes ρ

(m)
PV (R)) is in

fact m = 1, which reverts back to RS codes and the error-
correction radius 1 −

√
R. See Figure 1 where the bound

1 − 3
√

4R2 for the case m = 2 is plotted — except for
very small rates, it gives a very small improvement over
the 1 −

√
R bound achieved for RS codes. Thus, getting

arbitrarily close to capacity for some rate, as well as beating
the 1−

√
R bound for every rate, both remained open.

B. Our Result
In this paper, we describe codes that get arbitrarily close

to the list decoding capacity ρcap(R) for every rate. In
other words, we give explicit codes of rate R together with
polynomial time list decoding up to a fraction 1−R− ε of
errors for every rate R and arbitrary ε > 0.

These results were first reported in [1]. We would like to
point out that the presentation in this paper is somewhat dif-
ferent from the original papers [7], [1] in terms of technical



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ρ 
 (

F
R

A
C

T
IO

N
 O

F
 E

R
R

O
R

S
) 

 -
--

>

R  (RATE)  --->

List decoding capacity (this work)
Unique decoding radius

Guruswami-Sudan
Parvaresh-Vardy

Fig. 1. Error-correction radius ρ plotted against the rate R of the code for
known algorithms. The best possible trade-off, i.e., list decoding capacity,
is ρ = 1−R, and the codes and algorithms reported here achieve this. Note
that this is twice the best fraction of errors correctable by unique decoding
algorithms that only correct up to half-the-distance.

details, organization, as well as chronology. Our description
closely follows that of an upcoming survey [8] where the
interested reader may find further background and details
on algebraic list decoding. With the benefit of hindsight,
we believe this alternate presentation to be simpler than the
description in [1].

Below, we discuss some technical aspects of the original
development of this material, in order to shed light on the
origins of our work.

C. Bibliographic Remarks

Two independent works by Coppersmith and Sudan [9]
and Bleichenbacher, Kiayias and Yung [10] considered the
variant of RS codes where the message consists of two (or
more) independent polynomials over F, and the encoding
consists of the joint evaluation of these polynomials at
elements of F (so this defines a code over F2).1 A naive
way to decode these codes, which are also called “inter-
leaved Reed-Solomon codes,” would be to recover the two
polynomials individually, by running separate instances of
the RS decoder. Of course, this gives no gain over the
performance of RS codes. The hope in these works was that
something can possibly be gained by exploiting that errors
in the two polynomials happen at “synchronized” locations.
However, these works could not give any improvement over
the 1−

√
R bound known for RS codes for worst-case errors.

Nevertheless, for random errors, where each error replaces
the correct symbol by a uniform random field element, they
were able to correct well beyond a fraction 1 −

√
R of

errors. In fact, as the order of interleaving (i.e., number of
independent polynomials) grows, the radius approaches the
optimal value 1−R. This model of random errors is not very

1The resulting code is in fact just a Reed-Solomon code where the
evaluation points belong to the subfield F of the extension field over F
of degree two.

practical or interesting in a coding-theoretic setting, though
the algorithms are interesting from an algebraic viewpoint.

In [11], Parvaresh and Vardy gave a heuristic decoding
algorithm for these interleaved RS codes based on multi-
variate interpolation. However, the provable performance of
these codes coincided with the 1 −

√
R bound for Reed-

Solomon codes. The key obstacle in improving this bound
was the following: for the case when the messages are pairs
(f(X), g(X)) of degree k polynomials, two algebraically
independent relations were needed to identify both f(X)
and g(X). The interpolation method could only provide one
such relation in general (of the form Q(X, f(X), g(X)) = 0
for a trivariate polynomial Q(X, Y, Z)). This still left too
much ambiguity in the possible values of (f(X), g(X)).
(The approach in [11] was to find several interpolation
polynomials, but there was no guarantee that they were not
all algebraically dependent.)

Then, in [7], Parvaresh and Vardy put forth the ingenious
idea of obtaining the extra algebraic relation essentially “for
free” by enforcing it as an a priori condition satisfied at the
encoder. Specifically, instead of letting the second polyno-
mial g(X) to be an independent degree k polynomial, their
insight was to make it correlated with f(X) by a specific
algebraic condition, such as g(X) = f(X)d mod E(X)
for some integer d and an irreducible polynomial E(X) of
degree k + 1.

Then, once we have the interpolation polynomial
Q(X, Y, Z), f(X) can be obtained as follows: Reduce the
coefficients of Q(X, Y, Z) modulo E(X) to get a polynomial
T (Y, Z) with coefficients from F[X]/(E(X)) and then find
roots of the univariate polynomial T (Y, Y d). This was the
key idea in [7] to improve the 1−

√
R decoding radius for

rates less than 1/16. For rates R → 0, their decoding radius
approached 1−O(R log(1/R)).

The modification to using independent polynomials, how-
ever, does not come for free. In particular, since one sends at
least twice as much information as in the original RS code,
there is no way to construct codes with rate more than 1/2
in the PV scheme. If we use s > 2 correlated polynomials
for the encoding, we incur a factor 1/s loss in the rate. This
proves quite expensive, and as a result the improvements
over RS codes offered by these codes are only manifest at
very low rates.

The central idea behind our work is to avoid this rate
loss by making the correlated polynomial g(X) essentially
identical to the first (say g(X) = f(γX)). Then the eval-
uations of g(X) can be inferred as a simple cyclic shift of
the evaluations of f(X), so intuitively there is no need to
explicitly include those too in the encoding. The folded RS
encoding of f(X) compresses all the needed information,
without any extra redundancy for g(X). In particular, from
a received word that agrees with folded RS encoding of
f(X) in many places, we can infer a received word (with
symbols in F2) that matches the value of both f(X) and
f(γX) = g(X) in many places, and then run the decoding
algorithm of Parvaresh and Vardy.

The terminology of folded RS codes was coined in [12],



where an algorithm to correct random errors in such codes
was presented (for a noise model similar to the one used in
[9], [10] that was mentioned earlier). The motivation was to
decode RS codes from many random “phased burst” errors.
Our decoding algorithm for folded RS codes can also be
likewise viewed as an algorithm to correct beyond the 1−

√
R

bound for RS codes if errors occur in large, phased bursts
(the actual errors can be adversarial).

II. FOLDED REED-SOLOMON CODES

In this section, we will use a simple variant of Reed-
Solomon codes called folded Reed-Solomon codes for which
we can beat the 1 −

√
R decoding radius possible for RS

codes. In fact, by choosing parameters suitably, we can
decode close to the optimal fraction 1 − R of errors with
rate R.

A. Description of Folded Codes

Consider a Reed-Solomon code C = RSF,F∗ [n, k] consist-
ing of evaluations of degree k polynomials over F at the set
F∗ of nonzero elements of F. Let q = |F| = n + 1. Let γ
be a generator of the multiplicative group F∗, and let the
evaluation points be ordered as 1, γ, γ2, . . . , γn−1. Using all
nonzero field elements as evaluation points is one of the most
commonly used instantiations of Reed-Solomon codes.

Let m > 1 be an integer parameter called the folding
parameter. For ease of presentation, we will assume that m
divides n = q − 1.

Definition 2.1 (Folded Reed-Solomon Code): The m-
folded version of the RS code C, denoted FRSF,γ,m,k, is
a code of block length N = n/m over Fm. The encoding
of a message f(X), a polynomial over F of degree at
most k, has as its j’th symbol, for 0 6 j < n/m, the
m-tuple (f(γjm), f(γjm+1), · · · , f(γjm+m−1)). In other
words, the codewords of C ′ = FRSF,γ,m,k are in one-one
correspondence with those of the RS code C and are
obtained by bundling together consecutive m-tuple of
symbols in codewords of C.

Note that the folding operation does not change the rate
R of the original Reed-Solomon code. The relative distance
of the folded RS code also meets the Singleton bound and
is at least 1−R.

B. Why might folding help?

Since folding seems like such a simplistic operation, and
the resulting code is essentially just a RS code but viewed
as a code over a large alphabet, let us now understand why
it can possibly give hope to correct more errors compared to
the bound for RS codes.

Consider the folded RS code with folding parameter m =
4. First of all, decoding the folded RS code up to a fraction p
of errors is certainly not harder than decoding the RS code up
to the same fraction p of errors. Indeed, we can “unfold” the
received word of the folded RS code and treat it as a received
word of the original RS code and run the RS list decoding
algorithm on it. The resulting list will certainly include all
folded RS codewords within distance p of the received word,

and it may include some extra codewords which we can, of
course, easily prune.

In fact, decoding the folded RS code is a strictly easier
task. To see why, say we want to correct a fraction 1/4 of
errors. Then, if we use the RS code, our decoding algorithm
ought to be able to correct an error pattern that corrupts
every 4’th symbol in the RS encoding of f(X) (i.e., corrupts
f(x4i) for 0 6 i < n/4). However, after the folding
operation, this error pattern corrupts every one of the symbols
over the larger alphabet F4, and thus need not be corrected.
In other words, for the same fraction of errors, the folding
operation reduces the total number of error patterns that need
to be corrected, since the channel has less flexibility in how
it may distribute the errors.

It is of course far from clear how one may exploit this to
actually correct more errors. To this end, algebraic ideas that
exploit the specific nature of the folding and the relationship
between a polynomial f(X) and its shifted counterpart
f(γX) will be used. These will be come clear once we
describe our algorithms later in the paper.

We note that above “simplification” of the channel is not
attained for free since the alphabet size increases after the
folding operation. For folding parameter m that is an absolute
constant, the increase in alphabet size is moderate and the
alphabet remains polynomially large in the block length.
(Recall that the RS code has an alphabet size that is linear
in the block length.) Still, having an alphabet size that is
a large polynomial is somewhat unsatisfactory. Fortunately,
our alphabet reduction techniques from Section V can handle
polynomially large alphabets, so this does not pose a big
problem.

III. TRIVARIATE INTERPOLATION BASED DECODING

The list decoding algorithm for RS codes from [4], [5]
is based on bivariate interpolation. The key factor driving
the agreement parameter t needed for the decoding to be
successful was the ((1, k)-weighted) degree D of the in-
terpolated bivariate polynomial. Our quest for an improved
algorithm for folded RS codes will be based on trying to
lower this degree D by using more degrees of freedom in
the interpolation. Specifically, we will try to use trivariate
interpolation of a polynomial Q(X, Y1, Y2) through n points
in F3. This enables performing the interpolation with D =
O((k2n)1/3), which is much smaller than the Θ(

√
kn) bound

for bivariate interpolation. In principle, this could lead to an
algorithm that works for agreement fraction R2/3 instead
of R1/2. Of course, this is a somewhat simplistic hope and
additional ideas are needed to make this approach work. We
now turn to the task of developing a trivariate interpolation
based decoder and proving that it can indeed decode up to
a fraction 1−R2/3 of errors.

A. Facts about trivariate interpolation

We begin with some basic definitions and facts concerning
trivariate polynomials.

Definition 3.1: For a polynomial Q(X, Y1, Y2) ∈
F[X, Y1, Y2], its (1, k, k)-weighted degree is defined to



be the maximum value of ` + kj1 + kj2 taken over all
monomials X`Y j1

1 Y j2
2 that occur with a nonzero coefficient

in Q(X, Y1, Y2).
Definition 3.2 (Multiplicity of zeroes): A polynomial

Q(X, Y1, Y2) over F is said to have a zero of
multiplicity r > 1 at a point (α, β1, β2) ∈ F3 if
Q(X + α, Y1 + β1, Y2 + β2) has no monomial of degree
less than r with a nonzero coefficient. (The degree of the
monomial XiY j1

1 Y j2
2 equals i + j1 + j2.)

Lemma 3.1: Let {(αi, yi1, yi2)}n
i=1 be an arbitrary set of

n triples from F3. Let Q(X, Y1, Y2) ∈ F[X, Y1, Y2] be a
nonzero polynomial of (1, k, k)-weighted degree at most D
that has a zero of multiplicity r at (αi, yi1, yi2) for every
i ∈ [n]. Let f(X), g(X) be polynomials of degree at most
k such that for at least t > D/r values of i ∈ [n], we have
f(αi) = yi1 and g(αi) = yi2. Then, Q(X, f(X), g(X)) ≡ 0.

Proof: If we define R(X) = Q(X, f(X), g(X)), then
R(X) is a univariate polynomial of degree at most D, and
for every i ∈ [n] for which f(αi) = yi1 and g(αi) = yi2,
(X − αi)r divides R(X). Therefore if rt > D, then R(X)
has more roots (counting multiplicities) than its degree, and
so it must be the zero polynomial.

Lemma 3.2: Given an arbitrary set of n triples
{(αi, yi1, yi2)}n

i=1 from F3 and an integer parameter
r > 1, there exists a nonzero polynomial Q(X, Y1, Y2)
over F of (1, k, k)-weighted degree at most D such that
Q(X, Y1, Y2) has a zero of multiplicity r at (αi, yi1, yi2) for
all i ∈ [n], provided D3

6k2 > n
(
r+2
3

)
. Moreover, we can find

such a Q(X, Y1, Y2) in time polynomial in n, r by solving
a system of homogeneous linear equations over F.

Proof: The condition that Q(X, Y1, Y2) has a zero of
multiplicity r at a point amounts to

(
r+2
3

)
homogeneous lin-

ear conditions in the coefficients of Q. The number of mono-
mials in Q(X, Y1, Y2) equals the number, say N3(k, D), of
triples (i, j1, j2) of nonnegative integers that obey i + kj1 +
kj2 6 D. One can show that the number N3(k, D) is at
least as large as the volume of the 3-dimensional region
{x + ky1 + ky2 6 D | x, y1, y2 > 0} ⊂ R3 [7]. An easy
calculation shows that the latter volume equals D3

6k2 . Hence,
if D3

6k2 > n
(
r+2
3

)
, then the number of unknowns exceeds

the number of equations, and we are guaranteed a nonzero
solution.

B. Using trivariate interpolation for Folded RS codes

Let us now see how trivariate interpolation can be used in
the context of decoding the folded RS code C ′ = FRSF,γ,m,k

of block length N = (q − 1)/m. (Throughout this section,
we denote q = |F|, and n = q − 1.) Given a received word
z ∈ (Fm)N for C ′ that needs to be list decoded, we define
y ∈ Fn to be the corresponding “unfolded” received word.
(Formally, let the j’th symbol of z be (zj,0, . . . , zj,m−1) for
0 6 j < N . Then y is defined by yjm+l = zj,l for 0 6 j <
N and 0 6 l < m.)

Suppose f(X) is a polynomial whose encoding agrees
with z on at least t locations. Then, here is an obvious but
important observation:

For at least t(m − 1) values of i, 0 6 i < n,
both the equalities f(γi) = yi and f(γi+1) = yi+1

hold.
Define the notation g(X) = f(γX). Therefore, if we con-
sider the n triples (γi, yi, yi+1) ∈ F3 for i = 0, 1, . . . , n− 1
(with the convention yn = y0), then for at least t(m − 1)
triples, we have f(γi) = yi and g(γi) = yi+1. This suggests
that interpolating a polynomial Q(X, Y1, Y2) through these
n triples and employing Lemma 3.1, we can hope that f(X)
will satisfy Q(X, f(X), f(γX)) = 0, and then somehow
use this to find f(X). We formalize this in the following
lemma. The proof follows immediately from the preceding
discussion and Lemma 3.1.

Lemma 3.3: Let z ∈ (Fm)N and let y ∈ Fn be the
unfolded version of z. Let Q(X, Y1, Y2) be any nonzero poly-
nomial over F of (1, k, k)-weighted degree at D which has a
zero of multiplicity r at (γi, yi, yi+1) for i = 0, 1, . . . , n−1.
Let t be an integer such that t > D

(m−1)r . Then every
polynomial f(X) ∈ F[X] of degree at most k whose
encoding according to FRSF,γ,m,k agrees with z on at least
t locations satisfies Q(X, f(X), f(γX)) ≡ 0.
Lemmas 3.2 and 3.3 motivate the following approach to list
decoding the folded RS code FRSF,γ,m,k. Here z ∈ (Fm)N

is the received word and y = (y0, y1, . . . , yn−1) ∈ Fn is its
unfolded version. The algorithm uses an integer multiplicity
parameter r > 1, and is intended to work for an agreement
parameter 1 6 t 6 N .

Algorithm Trivariate-FRS-decoder:
Step 1 (Trivariate Interpolation) Define the degree param-

eter

D = b 3
√

k2nr(r + 1)(r + 2)c+ 1 . (1)

Interpolate a nonzero polynomial Q(X, Y1, Y2)
with coefficients from F with the following two
properties: (i) Q has (1, k, k)-weighted degree at
most D, and (ii) Q has a zero of multiplicity r
at (γi, yi, yi+1) for i = 0, 1, . . . , n − 1 (where
yn = y0). (Lemma 3.2 guarantees the feasibility
of this step as well as its computability in time
polynomial in n, r.)

Step 2 (Trivariate “Root-finding”) Find a list of all de-
gree 6 k polynomials f(X) ∈ F[X] such that
Q(X, f(X), f(γX)) = 0. Output those whose
encoding agrees with z on at least t locations.

Ignoring the time complexity of Step 2 for now, we
can already claim the following result concerning the error-
correction performance of this strategy.

Lemma 3.4: The algorithm Trivariate-FRS-
decoder successfully list decodes the folded
Reed-Solomon code FRSF,γ,m,k up to a radius

N −
⌊
N m

m−1
3

√
k2

n2

(
1 + 1

r

) (
1 + 2

r

)⌋
− 2.

Proof: By Lemma 3.3, we know that any f(X) whose
encoding agrees with z on t or more locations will be
output in Step 2, provided t > D

(m−1)r . For the choice
of D in (1), this condition is met for the choice t =



1 + b 3

√
k2n

(m−1)3

(
1 + 1

r

) (
1 + 2

r

)
+ 1

(m−1)r c. The decoding
radius is equal to N − t, and recalling that n = mN , we get
bound claimed in the lemma.
The rate of the folded Reed-Solomon code is R = (k +
1)/n > k/n, and so the fraction of errors corrected (for
large enough r) is 1− m

m−1R2/3. And letting the parameter
m grow, we can approach a decoding radius of 1−R2/3.

C. Root-finding step

In light of the above discussion, the only missing piece
in our decoding algorithm is an efficient way to solve the
following trivariate “root-finding” type problem:

Given a nonzero polynomial Q(X, Y1, Y2) with co-
efficients from a finite field F of size q, a primitive
element γ of the field F, and an integer parameter
k < q − 1, find a list of all polynomials f(X) of
degree at most k such that Q(X, f(X), f(γX)) ≡
0.

The following simple algebraic lemma is at the heart of our
solution to this problem.

Lemma 3.5: Let F be the field Fq of size q, and let γ be
a primitive element that generates its multiplicative group.
Then we have the following two facts:

1) The polynomial E(X) def= Xq−1−γ is irreducible over
F.

2) Every polynomial f(X) ∈ F[X] of degree less than
q − 1 satisfies f(γX) = f(X)q mod E(X).

Proof: The fact that E(X) = Xq−1 − γ is irreducible
over Fq follows from a known, precise characterization of all
irreducible binomials, i.e., polynomials of the form Xa − c,
see for instance [13, Chap. 3, Sec. 5]. For completeness,
and since this is an easy special case, we now prove this
fact. Suppose E(X) is not irreducible and some irreducible
polynomial f(X) ∈ F[X] of degree b, 1 6 b < q−1, divides
it. Let ζ be a root of f(X) in the extension field Fqb . We then
have ζqb−1 = 1. Also, f(ζ) = 0 implies ζq−1 = γ. These

equations together imply γ
qb−1
q−1 = 1. Now, γ is primitive

in Fq, so that γm = 1 iff m is divisible by (q − 1). We
conclude that q−1 must divide 1+ q + q2 + · · ·+ qb−1. This
is, however, impossible since 1 + q + q2 + · · · + qb−1 ≡ b
(mod (q− 1)) and 0 < b < q− 1. This contradiction proves
that E(X) has no such factor of degree less than q− 1, and
is therefore irreducible.

For the second part, we have the simple but useful identity
f(X)q = f(Xq) that holds for all polynomials in Fq[X].
Therefore, f(X)q − f(γX) = f(Xq) − f(γX). The latter
polynomial is clearly divisible by Xq − γX , and thus also
by Xq−1 − γ. Hence f(X)q ≡ f(γX) (mod E(X)) which
implies that f(X)q mod E(X) = f(γX) since the degree
of f(γX) is less than q − 1.
Armed with this lemma, we are ready to tackle the trivariate
root-finding problem.

Lemma 3.6: There is a deterministic algorithm that on
input a finite field F of size q, a primitive element γ of the
field F, a nonzero polynomial Q(X, Y1, Y2) ∈ F[X, Y1, Y2]
of degree less than q in Y1, and an integer parameter k <

q − 1, outputs a list of all polynomials f(X) of degree at
most k satisfying the condition Q(X, f(X), f(γX)) ≡ 0.
The algorithm has runtime polynomial in q.

Proof: Let E(X) = Xq−1 − γ. We know by
Lemma 3.5 that E(X) is irreducible. We first divide out the
largest power of E(X) that divides Q(X, Y1, Y2) to obtain
Q0(X, Y1, Y2) where Q(X, Y1, Y2) = E(X)bQ0(X, Y1, Y2)
for some b > 0 and E(X) does not divide Q0(X, Y1, Y2).
Clearly, if f(X) satisfies Q(X, f(X), f(γX)) = 0, then
Q0(X, f(X), f(γX)) = 0 as well, so we will work with Q0

instead of Q. Let us view Q0(X, Y1, Y2) as a polynomial
T0(Y1, Y2) with coefficients from F[X]. Further, reduce
each of the coefficients modulo E(X) to get a polynomial
T (Y1, Y2) with coefficients from the extension field F̃ def=
F[X]/(E(X)) (this is a field since E(X) is irreducible over
F). We note that T (Y1, Y2) is a nonzero polynomial since
Q0(X, Y1, Y2) is not divisible by E(X).

In view of Lemma 3.5, it suffices to find degree
6 k polynomials f(X) satisfying Q0(X, f(X), f(X)q)
(mod E(X)) = 0. In turn, this means it suffices to find
elements Γ ∈ F̃ satisfying T (Γ,Γq) = 0. If we define
the univariate polynomial R(Y1)

def= T (Y1, Y
q
1 ), this is

equivalent to finding all Γ ∈ F̃ such that R(Γ) = 0, or
in other words the roots in F̃ of R(Y1).

Now R(Y1) is a nonzero polynomial since R(Y1) = 0
iff Y2 − Y q

1 divides T (Y1, Y2), and this cannot happen as
T (Y1, Y2) has degree less than less than q in Y1. The degree
of R(Y1) is at most dq where d is the total degree of
Q(X, Y1, Y2). The characteristic of F̃ is at most q, and its
degree over the base field is at most q lg q. Therefore, we
can find all roots of R(Y1) by a deterministic algorithm
running in time polynomial in d, q [14]. Each of the roots
will be a polynomial in F[X] of degree less than q − 1.
Once we find all the roots, we prune the list and only output
those roots f(X) that have degree at most k and satisfy
Q0(X, f(X), f(γX)) = 0.
With this, we have a polynomial time implementation of the
algorithm Trivariate-FRS-decoder. There is the technicality
that the degree of Q(X, Y1, Y2) in Y1 should be less than q.
This degree is at most D/k, which by the choice of D in
(1) is at most (r+3) 3

√
n/k < (r+3)q1/3. For a fixed r and

growing q, the degree is much smaller than q. (In fact, for
constant rate codes, the degree is a constant independent of
n.) By letting m, r grow in Lemma 3.4, and recalling that
the running time is polynomial in n, r, we can conclude the
following main result of this section.

Theorem 3.7: For every ε > 0 and R, 0 < R < 1, there is
a family of m-folded Reed-Solomon codes for m = O(1/ε)
that have rate at least R and which can be list decoded up
to a fraction 1 − (1 + ε)R2/3 of errors in time polynomial
in the block length and 1/ε.

IV. CODES APPROACHING LIST DECODING CAPACITY

Given that trivariate interpolation improved the decoding
radius achievable with rate R from 1 − R1/2 to 1 − R2/3,
it is natural to attempt to use higher order interpolation
to improve the decoding radius further. In this section, we



discuss the (quite straightforward) technical changes needed
for such a generalization.

Consider again the m-folded RS code C ′ = FRSF,γ,m,k

where F = Fq. Let s be an integer in the range 1 6 s 6 m.
We will develop a decoding algorithm based on interpolating
an (s + 1)-variate polynomial Q(X, Y1, Y2, . . . , Ys). The
definitions of the (1, k, k, . . . , k)-weighted degree (with k
repeated s times) of Q and the multiplicity at a point
(α, β1, β2, . . . , βs) ∈ Fs+1 are straightforward extensions of
Definitions 3.1 and 3.2.

As before let y = (y0, y1, . . . , yn−1) be the unfolded
version of the received word z ∈ (Fm)N of the folded
RS code that needs to be decoded. For convenience, define
yj = yj mod n for j > n. Following algorithm Trivariate-
FRS-decoder, for suitable integer parameters D, r, the
interpolation phase of the (s+1)-variate FRS decoder will fit
a nonzero polynomial Q(X, Y1, . . . , Ys) with the following
properties:

1) It has (1, k, k, . . . , k)-weighted degree at most D
2) It has a zero of multiplicity r at

(γi, yi, yi+1, . . . , yi+s−1) for i = 0, 1, . . . , n− 1.

The following is a straightforward generalization of Lemmas
3.2 and 3.3.

Lemma 4.1: 1) Provided Ds+1

(s+1)!ks > n
(
r+s
s+1

)
, a nonzero

polynomial Q(X, Y1, . . . , Ys) with the above stated
properties exists and moreover can be found in time
polynomial in n and rs.

2) Let t be an integer such that t > D
(m−s+1)r . Then

every polynomial f(X) ∈ F[X] of degree at most k
whose encoding according to FRSF,γ,m,k agrees with
the received word z on at least t locations satisfies
Q(X, f(X), f(γX), . . . , f(γs−1X)) ≡ 0.

Note the lower bound condition on D above is met with
the choice

D =
⌊
(ksnr(r + 1) · · · (r + s))1/(s+1)

⌋
+ 1 . (2)

The task of finding a list of all degree
k polynomials f(X) ∈ F[X] satisfying
Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 can be solved
using ideas similar to the proof of Lemma 3.6. First,
by dividing out by E(X) enough times, we can assume
that not all coefficients of Q(X, Y1, . . . , Ys), viewed as
a polynomial in Y1, . . . , Ys with coefficients in F[X],
are divisible by E(X). We can then go modulo E(X)
to get a nonzero polynomial T (Y1, Y2, . . . , Ys) over the
extension field F̃ = F[X]/(E(X)). Now, by Lemma 3.5,
we have f(γjX) = f(X)qj

mod E(X) for every j > 1.
Therefore, the task at hand reduces to the problem of
finding all roots Γ ∈ F̃ of the polynomial R(Y1) where
R(Y1) = T (Y1, Y

q
1 , . . . , Y qs−1

1 ). There is the risk that R(Y1)
is the zero polynomial, but it is easily seen that this cannot
happen if the total degree of T is less than q. This will be
the case since the total degree is at most D/k, which is at
most (r + s)(n/k)1/(s+1) � q.

The degree of the polynomial R(Y1) is at most qs, and
therefore all its roots in F̃ can be found in qO(s) time. We
conclude that the “root-finding” step can be accomplished in
polynomial time.

The algorithm works for agreement t > D
(m−s+1)r , which

for the choice of D in (2) is satisfied if

t >
(
1 +

s

r

) (ksn)1/(s+1)

m− s + 1
+ 2 .

Recalling that the block length of the code is N = n/m and
the rate is (k +1)/n, the algorithm can decode a fraction of
errors approaching

1−
(
1 +

s

r

) m

m− s + 1
Rs/(s+1) (3)

using lists of size at most qs. By picking r, m large enough
compared to s, the decoding radius can be made larger than
1 − (1 + ε)Rs/(s+1) for any desired ε > 0. We state this
result formally below.

Theorem 4.2: For every ε > 0, integer s > 1 and 0 <
R < 1, there is a family of m-folded Reed-Solomon codes
for m = O(s/ε) that have rate at least R and which can be
list decoded up to a fraction 1 − (1 + ε)Rs/(s+1) of errors
in time (Nm)O(s)(1/ε)O(1) where N is the block length of
the code. The alphabet size of the code as a function of the
block length N is (Nm)O(m).

In the limit of large s, the decoding radius approaches the
list decoding capacity 1−R, leading to our main result.

Theorem 4.3 (Explicit capacity-approaching codes): For
every ε > 0 and 0 < R < 1, there is a family of folded
Reed-Solomon codes that have rate at least R and which
can be list decoded up to a fraction 1 − R − ε of errors in
time (N/ε)O(1/ε) where N is the block length of the code.
The alphabet size of the code as a function of the block
length N is (N/ε)O(1/ε2).

Remark 4.1: It is possible to slightly improve the bound

of (3) to 1 −
(
1 + s

r

)(
mR

m−s+1

)s/(s+1)

with essentially no
effort. The idea is to not use only a fraction (m− s + 1)/m
of the n (s+1)-tuples for interpolation. Specifically, we omit
tuples with γi for i mod m > m−s. This does not affect the
number of (s+1)-tuples for which we have agreement (this
remains at least t(m−s+1)), but the number of interpolation
conditions is reduced to N(m−s+1) = n(m−s+1)/m. This
translates into the stated improvement in error correction
radius. For clarity of presentation, we simply chose to use
all n tuples for interpolation.

V. ACHIEVING CAPACITY OVER BOUNDED ALPHABETS

The above capacity-achieving codes have two main short-
comings: (i) their alphabet size is a large polynomial in the
block length, and (ii) the bound on worst-case list size as well
as decoding time complexity grows as nΩ(1/ε) where ε is
the distance to capacity. Fortunately, using ideas concerning
list-recovering and expander-based codes from [15], [16],
together with the fact that above list decoding algorithm
extends to a powerful list-recovering algorithm, we can
reduce the alphabet size that is a constant depending only on



the distance to capacity. Formally, we can show the following
result. For a sketch of the proof, see [1] or [8].

Theorem 5.1: For every R, 0 < R < 1, every ε > 0, there
is a polynomial time constructible family of codes over an
alphabet of size 2O(1/ε4) that have rate at least R and which
can be list decoded up to a fraction (1−R− ε) of errors in
polynomial time.

Binary codes decodable up to Zyablov bound
Concatenating the folded RS codes with suitable inner

codes also gives us polytime constructible binary codes that
can be efficiently list decoded up to the Zyablov bound,
i.e., up to twice the radius achieved by the standard GMD
decoding of concatenated codes. Formally, we can show the
following result (details omitted, see [1]).

Theorem 5.2: For all 0 < R, r < 1 and all ε > 0, there is
a polynomial time constructible family of binary linear codes
of rate at least R · r that can be list decoded in polynomial
time up to a fraction (1−R)H−1(1− r)− ε of errors.

REFERENCES

[1] V. Guruswami and A. Rudra, “Explicit capacity-achieving list-
decodable codes,” in Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, May 2006, pp. 1–10.

[2] V. V. Zyablov and M. S. Pinsker, “List cascade decoding,” Problems of
Information Transmission, vol. 17, no. 4, pp. 29–34, 1981 (in Russian);
pp. 236-240 (in English), 1982.

[3] P. Elias, “Error-correcting codes for list decoding,” IEEE Transactions
on Information Theory, vol. 37, pp. 5–12, 1991.

[4] M. Sudan, “Decoding of Reed-Solomon codes beyond the error-
correction bound,” Journal of Complexity, vol. 13, no. 1, pp. 180–193,
1997.

[5] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometric codes,” IEEE Transactions on Information
Theory, vol. 45, pp. 1757–1767, 1999.

[6] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Transactions on Information Theory, vol. 49,
no. 11, pp. 2809–2825, 2003.

[7] F. Parvaresh and A. Vardy, “Correcting errors beyond the Guruswami-
Sudan radius in polynomial time,” in Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science, 2005, pp. 285–
294.

[8] V. Guruswami, List Decoding: Achieving Capacity for Worst-Case
Errors, ser. Foundations and Trends in Theoretical Computer Science
(FnT-TCS). NOW publishers, 2006, to appear.

[9] D. Coppersmith and M. Sudan, “Reconstructing curves in three (and
higher) dimensional spaces from noisy data,” in Proceedings of the
35th Annual ACM Symposium on Theory of Computing, June 2003,
pp. 136–142.

[10] D. Bleichenbacher, A. Kiayias, and M. Yung, “Decoding of interleaved
Reed Solomon codes over noisy data,” in Proceedings of the 30th
International Colloquium on Automata, Languages and Programming,
2003, pp. 97–108.

[11] F. Parvaresh and A. Vardy, “Multivariate interpolation decoding be-
yond the Guruswami-Sudan radius,” in Proceedings of the 42nd Aller-
ton Conference on Communication, Control and Computing, 2004.

[12] V. Y. Krachkovsky, “Reed-Solomon codes for correcting phased error
bursts,” IEEE Transactions on Information Theory, vol. 49, no. 11,
pp. 2975–2984, November 2003.

[13] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their
applications. Cambridge University Press, Cambridge, MA, 1986.

[14] E. Berlekamp, “Factoring polynomials over large finite fields,” Math-
ematics of Computation, vol. 24, pp. 713–735, 1970.

[15] V. Guruswami and P. Indyk, “Expander-based constructions of effi-
ciently decodable codes,” in Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science, 2001, pp. 658–667.

[16] ——, “Linear-time encodable/decodable codes with near-optimal
rate,” IEEE Transactions on Information Theory, vol. 51, no. 10, pp.
3393–3400, October 2005.


