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Explicit Codes Achieving List Decoding Capacity:
Error-correction with Optimal Redundancy

VENKATESAN GURUSWAMI and ATRI RUDRA

Abstract—We present error-correcting codes that achieve the
information-theoretically best possible trade-off between the rate
and error-correction radius. Specifically, for every 0 < R < 1
and ε > 0, we present an explicit construction of error-correcting
codes of rateR that can be list decoded in polynomial time up to
a fraction (1−R− ε) of worst-case errors. At least theoretically,
this meets one of the central challenges in algorithmic coding
theory.

Our codes are simple to describe: they arefolded Reed-Solomon
codes, which are in fact exactly Reed-Solomon (RS) codes, but
viewed as a code over a larger alphabet by careful bundling of
codeword symbols. Given the ubiquity of RS codes, this is an
appealing feature of our result, and in fact our methods directly
yield better decoding algorithms for RS codes when errors occur
in phased bursts.

The alphabet size of these folded RS codes is polynomial
in the block length. We are able to reduce this to a constant
(depending onε) using existing ideas concerning “list recovery”
and expander-based codes. Concatenating the folded RS codes
with suitable inner codes, we get binary codes that can efficiently
decoded up totwice the radius achieved by the standard GMD
decoding.

Index Terms—Algebraic decoding, Folded Reed-Solomon
codes, List Decoding, List Recovery, Reed-Solomon Codes

I. I NTRODUCTION

A. Background on List Decoding

ERROR-CORRECTING codes enable reliable communi-
cation of messages over a noisy channel by cleverly

introducing redundancy into the message to encode it into a
codeword, which is then transmitted on the channel. This is
accompanied by a decoding procedure that recovers the correct
message even when several symbols in the transmitted code-
word are corrupted. In this work, we focus on the adversarial
or worst-case model of errors — we do not assume anything
about how the errors and error locations are distributed beyond
an upper bound on the total number of errors that may be
caused. The central trade-off in this theory is the one between
the amount of redundancy needed and the fraction of errors
that can be corrected. The redundancy is measured by therate
of the code, which is the ratio of the the number of information
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symbols in the message to that in the codeword — thus, for
a code with encoding functionE : Σk → Σn, the rate equals
k/n. The block lengthof the code equalsn, and Σ is its
alphabet.

The goal in decoding is to find, given a noisy received
word, the actual codeword that it could have possibly resulted
from. If we target correcting a fractionρ of errors (ρ will be
called the error-correction radius or decoding radius), then this
amounts to finding codewords within (normalized Hamming)
distanceρ from the received word. We are guaranteed that
there will be a unique such codeword providedevery two
distinct codewords differ on at least a fraction2ρ of positions,
or in other words the relative distance of the code is at least
2ρ. However, since the relative distanceδ of a code must
satisfy δ 6 1 − R where R is the rate of the code (by the
Singleton bound), the best trade-off betweenρ and R that
unique decoding permits isρ = ρU (R) = (1 − R)/2. But
this is an overly pessimistic estimate of the error-correction
radius, since the way Hamming spheres pack in space, for
mostchoices of the received word there will be at most one
codeword within distanceρ from it even forρ much greater
thanδ/2. Therefore,alwaysinsisting on a unique answer will
preclude decoding most such received words owing to a few
pathological received words that have more than one codeword
within distance roughlyδ/2 from them.

A notion called list decoding provides a clean way to get
around this predicament, and yet deal with worst-case error
patterns. Under list decoding, the decoder is required to output
a list of all codewords within distanceρ from the received
word. The notion of list decoding itself is quite old and dates
back to work in 1950’s by Elias [4] and Wozencraft [5].
However, the algorithmic aspects of list decoding were not
revived until the more recent works [6], [7] which studied the
problem for complexity-theoretic motivations.

Let us call a codeC (ρ, L)-list decodableif the number of
codewords within distanceρ of any received word is at mostL.
To obtain better trade-offs via list decoding, we need(ρ, L)-list
decodable codes whereL is bounded by a polynomial function
of the block length, since this is ana priori requirement
for polynomial time list decoding. How large canρ be as
a function of R for which such(ρ, L)-list decodable codes
exist? A standard random coding argument shows that we can
haveρ > 1 − R − o(1) over large enough alphabets, cf. [8],
[9], and a simple counting argument shows thatρ can be at
most 1 − R. Therefore thelist decoding capacity, i.e., the
information-theoretic limit of list decodability, is given by the
trade-off ρcap(R) = 1 − R = 2ρU (R). Thus list decoding
holds the promise of correctingtwiceas many errors as unique
decoding, foreveryrate.
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We note that since the original messageM hasRn sym-
bols, it is information-theoretically impossible to perform the
decoding if at most a fraction(R−ε) of the received symbols
agree with the encoding ofM (for someε > 0). This holds
even for the erasure channel, and even if we are told in advance
which symbols will be erased! Therefore, for any given rate,
list decoding allows one to decode up to the largest fraction
of errors that one can meaningfully hope to correct.

The above-mentioned list decodable codes are, however,
non-constructive. In order to realize the potential of list
decoding, one needs explicit constructions of such codes, and
on top of that, polynomial time algorithms to perform list
decoding. After essentially no progress in this direction in over
30 years, the work of Sudan [7] and improvements to it in [10],
achieved efficient list decoding up toρGS(R) = 1−

√
R errors

for an important family of codes called Reed-Solomon codes.
Note that1 −

√
R > ρU (R) = (1 − R)/2 for every rateR,

0 < R < 1, so this result showed that list decoding can be
effectively used to go beyond the unique decoding radius for
every rate (see Figure 1). The ratioρGS(R)/ρU (R) approaches
2 for ratesR → 0, enabling error-correction when the fraction
of errors approaches 100%, a feature that has found numerous
applications outside coding theory, see for example [11], [12,
Chap. 12].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ρ 
 (

F
R

A
C

T
IO

N
 O

F
 E

R
R

O
R

S
) 

 -
--

>

R  (RATE)  --->

List decoding capacity (this work)
Unique decoding radius

Guruswami-Sudan
Parvaresh-Vardy

Fig. 1. Error-correction radiusρ plotted against the rateR of the code for
known algorithms. The best possible trade-off, i.e., capacity, is ρ = 1 − R,
and our work achieves this.

Unfortunately, the improvement provided by [10] over
unique decoding diminishes for larger rates, which is actually
the regime of greater practical interest. For ratesR → 1,
the ratio ρGS(R)

ρU (R) approaches1, and already for rateR = 1/2
the ratio is at most1.18. Thus, while the results of [7], [10]
demonstrated that list decoding always, for every rate, enables
correcting more errors than unique decoding, they fell short
of realizing the full quantitative potential of list decoding.

The boundρGS(R) stood as the best known error-correction
radius for efficient list decoding for several years. In factcon-
structing(ρ, L)-list decodable codes of rateR for ρ > ρGS(R)
and polynomially boundedL, regardless of the complexity
of actually performing list decoding to radiusρ, itself was
elusive. Some of this difficulty was due to the fact that

1 −
√

R is the largest radius for which small list size can be
shown generically, via the so-called Johnson bound to argue
about the number of codewords in Hamming balls using only
information on the relative distance of the code, cf. [13].

In a recent breakthrough paper [14], Parvaresh and Vardy
presented codes that are list-decodable beyond the1 −

√
R

radius for low ratesR. The codes they suggest are variants
of Reed-Solomon (RS) codes obtained by evaluatingm >

1 correlated polynomials at elements of the underlying field
(with m = 1 giving RS codes). For anym > 1, they achieve
the error-correction radiusρ(m)

PV (R) = 1 − m+1
√

mmRm. For
ratesR → 0, choosingm large enough, they can list decode up
to radius1 − O(R log(1/R)), which approaches the capacity
1 − R. However, forR > 1/16, the best choice ofm (the
one that maximizesρ(m)

PV (R)) is in fact m = 1, which reverts
back to RS codes and the error-correction radius1 −

√
R.

(See Figure 1 where the bound1 − 3
√

4R2 for the casem =
2 is plotted — except for very low rates, it gives a small
improvement overρGS(R).) Thus, getting arbitrarily close to
capacity for some rate, as well as beating the1 −

√
R bound

for every rate, both remained open1.

B. Our Results

In this paper, we describe codes that get arbitrarily close
to the list decoding capacityρcap(R) for every rate. In other
words, we give explicit codes of rateR together with polyno-
mial time list decoding up to a fraction1 − R − ε of errors
for every rateR and arbitraryε > 0. As remarked before,
this attains the information-theoretically best possibletrade-off
one can hope for between the rate and error-correction radius.
While the focus of our presentation is primarily on the major
asymptotic improvements we obtain over previous methods,
we stress that our results offers a complexity vs. performance
trade-of and gives non-trivial improvements, even for large
rates and modest block lengths, with a value of the “folding
parameter”m as small as4. A discussion of the bounds for
small values ofm appears in Section III-D.

Our codes are simple to describe: they arefolded Reed-
Solomon codes, which are in factexactlyReed-Solomon (RS)
codes, but viewed as a code over a larger alphabet by careful
bundling of codeword symbols. Given the ubiquity of RS
codes, this is an appealing feature of our result, and in fact
our methods directly yield better decoding algorithms for RS
codes when errors occur inphased bursts(a model considered
in [15]).

Our result extends easily to the problem oflist recovery(see
Definition 5.1). The biggest advantage here is that we are able
to achieve a rate that is independent of the size of the input
lists. This is an extremely useful feature in concatenated code
constructions. We are able to use this to reduce the alphabet
size needed to achieve capacity, and also obtain results for
binary codes. We briefly describe these results below.

1Independent of our work, Alex Vardy (personal communication) con-
structed a variant of the code defined in [14] which could be list decoded
with fraction of errors more than1 −

√
R for all rates R. However, his

construction gives only a small improvement over the1 −
√

R bound and
does not achieve the list decoding capacity.
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To get within ε of capacity, the folded RS codes that we
construct have alphabet sizenO(1/ε) where n is the block
length. By concatenating our codes of rate close to1 (that
are list recoverable) with suitable inner codes followed by
redistribution of symbols using an expander graph (similarto
a construction for linear-time unique decodable codes in [3]),
we can get withinε of capacity with codes over an alphabet
of size2O(ε−4 log(1/ε)). A counting argument shows that codes
that can be list decoded efficiently to withinε of the capacity
need to have an alphabet size of2Ω(1/ε), so the alphabet size
we attain is in the same ballpark as the best possible.

For binary codes, the list decoding capacity is known to be
ρbin(R) = H−1(1−R) whereH(·) denotes the binary entropy
function [9], [16]. We do not know explicit constructions of
binary codes that approach this capacity. However, using our
codes in a natural concatenation scheme, we give polynomial
time constructible binary codes of rateR that can be list
decoded up to a fractionρZyab(R) of errors, whereρZyab(R) is
the “Zyablov bound”. See Figure 2 for a plot of these bounds.
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Fig. 2. Error-correction radiusρ of our algorithm for binary codes plotted
against the rateR. The best possible trade-off, i.e., capacity, isρ = H−1(1−
R), and is also plotted.

C. Bibliographic Remarks

These results were first reported in [1]. We would like
to point out that the presentation in this paper is somewhat
different from the original papers [14], [1] in terms of technical
details, organization, as well as chronology. With the benefit of
hindsight, we believe this alternate presentation to be simpler
and more self-contained direct than the description in [1],
which used the results of Parvaresh-Vardy as a black-box.
The exact relationship of our codes to the Parvaresh-Vardy
construction is spelled out in detail in Section II-C. Below,
we discuss some technical aspects of the original development
of this material, in order to shed light on the origins of our
work. We also point the reader to the survey [17] for a detailed
treatment of recent advances in algorithms for list decoding.

Two independent works by Coppersmith and Sudan [18]
and Bleichenbacher, Kiayias and Yung [19] considered the

variant of RS codes where the message consists of two (or
more) independent polynomials over some fieldF, and the
encoding consists of the joint evaluation of these polynomials
at elements ofF (so this defines a code overF

2).2 A naive way
to decode these codes, which are also called “interleaved Reed-
Solomon codes,” would be to recover the two polynomials in-
dividually, by running separate instances of the RS decoder. Of
course, this gives no gain over the performance of RS codes.
The hope in these works was that something can possibly be
gained by exploiting that errors in the two polynomials happen
at “synchronized” locations. However, these works could not
give any improvement over the1−

√
R bound known for RS

codes for worst-case errors. Nevertheless, forrandom errors,
where each error replaces the correct symbol by a uniform
random field element, they were able to correct well beyond a
fraction1−

√
R of errors. In fact, as the order of interleaving

(i.e., number of independent polynomials) grows, the radius
approaches the optimal value1 − R. Since these are large
alphabet codes, this model of random errors is not interesting
from a coding-theoretic perspective3, though the algorithms
are interesting from an algebraic viewpoint.

In [20], Parvaresh and Vardy gave aheuristic decoding
algorithm for these interleaved RS codes based on multi-
variate interpolation. However, the provable performanceof
these codes coincided with the1 −

√
R bound for Reed-

Solomon codes. The key obstacle in improving this bound
was the following: for the case when the messages are pairs
(f(X), g(X)) of degreek polynomials, two algebraically
independent relations were needed to identify bothf(X)
and g(X). The interpolation method could only provide one
such relation in general (of the formQ(X, f(X), g(X)) = 0
for a trivariate polynomialQ(X, Y, Z)). This still left too
much ambiguity in the possible values of(f(X), g(X)). (The
approach in [20] was to find several interpolation polynomials,
but there was no guarantee that they were not all algebraically
dependent.)

Then, in [14], Parvaresh and Vardy put forth the ingenious
idea of obtaining the extra algebraic relation essentially“for
free” by enforcing it as ana priori condition satisfied at the
encoder. Specifically, instead of letting the second polynomial
g(X) to be an independent degreek polynomial, their insight
was to make it correlated withf(X) by a specific algebraic
condition, such asg(X) = f(X)d mod E(X) for some
integerd and an irreducible polynomialE(X) of degreek+1.

Then, once we have the interpolation polynomial
Q(X, Y, Z), f(X) can be obtained as follows: Reduce
the coefficients of Q(X, Y, Z) modulo E(X) to get a
polynomial T (Y, Z) with coefficients from F[X ]/(E(X))
and then find roots of the univariate polynomialT (Y, Y d).

2The resulting code is in fact just a Reed-Solomon code where the
evaluation points belong to the subfieldF of the extension field overF of
degree two.

3This is because, as pointed out by Piotr Indyk, over large alphabets one
can reduce decoding from uniformly random errors to decoding from erasures
with a negligible loss in rate. The idea is to pad each codeword symbol with
a small trail of0’s; a uniformly random error is highly unlikely to keep each
of these0’s intact, and can thus be detected and declared as an erasure. Now
recall that decoding from a fraction1 − R of erasures with rateR is easy
using Reed-Solomon codes.
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This was the key idea in [14] to improve the1 −
√

R
decoding radius for rates less than1/16. For ratesR → 0,
their decoding radius approached1 − O(R log(1/R)).

The modification to using independent polynomials, how-
ever, does not come for free. In particular, since one sends at
least twice as much information as in the original RS code,
there is no way to construct codes with rate more than1/2
in the PV scheme. If we uses > 2 correlated polynomials
for the encoding, we incur a factor1/s loss in the rate. This
proves quite expensive, and as a result the improvements over
RS codes offered by these codes are only manifest at very low
rates.

The central idea behind our work is to avoid this rate loss by
making the correlated polynomialg(X) essentially identical to
the first (sayg(X) = f(γX)). Then the evaluations ofg(X)
can be inferred as a simple cyclic shift of the evaluations of
f(X), so intuitively there is no need to explicitly include those
too in the encoding.

D. Organization

We begin with a description of our code construction, folded
Reed-Solomon codes, and outline their relation to Parvaresh-
Vardy codes in Section II. In Section III, we present and
analyze a trivariate interpolation based decoder for folded RS
codes, which lets us approach a decoding radius of1 − R2/3

with rateR. In Section IV, we extend the approach to(s+1)-
variate interpolation for anys > 3, allowing us to decode up
to radius1 − Rs/(s+1), and by pickings large enough obtain
our main result (Theorem 4.4) on explicit codes achieving list
decoding capacity. In Section V, we generalize our decoding
algorithm to the list recovery setting with almost no loss in
rate, and use this powerful primitive to reduce the alphabetsize
of our capacity-achieving codes to a constant depending only
on distance to capacity as well as to construct binary codes
list-decodable up to the Zyablov bound. Finally, we close with
some remarks in Section VI.

II. FOLDED REED-SOLOMON CODES

In this section, we will use a simple variant of Reed-
Solomon codes called folded Reed-Solomon codes for which
we can beat the1−

√
R decoding radius possible for RS codes.

In fact, by choosing parameters suitably, we can decode close
to the optimal fraction1 − R of errors with rateR.

A. Description of Folded Codes

Consider a Reed-Solomon codeC′ = RSF,F∗[n′, k] consist-
ing of evaluations of degreek polynomials overF at the set
F
∗ of nonzero elements ofF. Let q = |F| = n′ + 1. Let

γ be a generator of the multiplicative groupF∗, and let the
evaluation points be ordered as1, γ, γ2, . . . , γn′

−1. Using all
nonzero field elements as evaluation points is one of the most
commonly used instantiations of Reed-Solomon codes.

Let m > 1 be an integer parameter called thefolding
parameter. Define n 6 n′ to be the largest integer that is
divisible by m. Let C be the[n, k]F RS code that is defined
by the set of evaluation points1, γ, γ2, . . . , γn−1. In other

f(x0) f(x1) f(x2) f(x3) f(x4) f(x5) f(x6) f(x7) f(xn−4) f(xn−3) f(xn−2) f(xn−1)

f(x0)

f(x1)

f(x2)

f(x3)

f(x4)

f(x5)

f(x6)

f(x7)

f(xn−4)

f(xn−3)

f(xn−2)

f(xn−1)

Fig. 3. Folding of the Reed Solomon code with parameterm = 4.

words, C is obtained fromC′ by truncating the lastn′ − n
symbols. Note thatm dividesn.

Definition 2.1 (Folded Reed-Solomon Code):The m-
folded version of the RS codeC, denotedFRSF,γ,m,k, is a
code of block lengthN = n/m over F

m, wheren 6 |F| − 1
is the largest integer that is divisible bym. The encoding
of a messagef(X), a polynomial overF of degree at most
k, has as itsj’th symbol, for 0 6 j < n/m, the m-tuple
(f(γjm), f(γjm+1), · · · , f(γjm+m−1)). In other words, the
codewords of FRSF,γ,m,k are in one-one correspondence
with those of the RS codeC and are obtained by bundling
together consecutivem-tuple of symbols in codewords ofC.
We illustrate the above construction for the choicem = 4
in Figure 3. The polynomialf(X) is the message, whose
Reed-Solomon encoding consists of the values off at
x0, x1, . . . , xn−1 wherexi = γi. Then, we perform a folding
operation by bundling together tuples of4 symbols to give a
codeword of lengthn/4 over the alphabetF4.

Note that the folding operation does not change the rate
R of the Reed-Solomon codeC. The relative distance of the
folded RS code also meets the Singleton bound and is at least
1 − R.

Remark 2.1 (Origins of term “folded RS codes”):The ter-
minology of folded RS codes was coined in [15], where an
algorithm to correct random errors in such codes was presented
(for a noise model similar to the one used in [18], [19] that
was mentioned earlier). The motivation was to decode RS
codes from many random “phased burst” errors. Our decoding
algorithm for folded RS codes can also be likewise viewed as
an algorithm to correct beyond the1−

√
R bound for RS codes

if errors occur in large, phased bursts (the actual errors can be
adversarial).

B. Why might folding help?

Since folding seems like such a simplistic operation, and
the resulting code is essentially just a RS code but viewed as
a code over a large alphabet, let us now understand why it
can possibly give hope to correct more errors compared to the
bound for RS codes.

Consider the folded RS code with folding parameterm = 4.
First of all, decoding the folded RS code up to a fractionp of
errors is certainly not harder than decoding the RS code up
to the same fractionp of errors. Indeed, we can “unfold” the
received word of the folded RS code and treat it as a received
word of the original RS code and run the RS list decoding
algorithm on it. The resulting list will certainly include all
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folded RS codewords within distancep of the received word,
and it may include some extra codewords which we can, of
course, easily prune.

In fact, decoding the folded RS code is a strictly easier
task. It is not too hard to see that correctingmT errors,
where the errors occur inT contiguous blocks involves far few
error patterns than correctingmT errors that can be arbitrarily
distributed. As a concrete example, say we want to correct
a fraction 1/4 of errors. Then, if we use the RS code, our
decoding algorithm ought to be able to correct an error pattern
that corrupts every4’th symbol in the RS encoding off(X)
(i.e., corruptsf(x4i) for 0 6 i < n/4). However, after the
folding operation, this error pattern corrupts every one ofthe
symbols over the larger alphabetF

4, and thus need not be
corrected. In other words, for the same fraction of errors, the
folding operation reduces the total number of error patterns
that need to be corrected, since the channel has less flexibility
in how it may distribute the errors.

It is of course far from clear how one may exploit this to
actually correct more errors. To this end, algebraic ideas that
exploit the specific nature of the folding and the relationship
between a polynomialf(X) and its shifted counterpartf(γX)
will be used. These will become clear once we describe our
algorithms later in the paper.

We note that above “simplification” of the channel is not
attained for free since the alphabet size increases after the
folding operation4. For folding parameterm that is an absolute
constant, the increase in alphabet size is moderate and the
alphabet remains polynomially large in the block length.
(Recall that the RS code has an alphabet size that is linear in
the block length.) Still, having an alphabet size that is a large
polynomial is somewhat unsatisfactory. Fortunately, existing
alphabet reduction techniques, which are used in Section V-C,
can handle polynomially large alphabets, so this does not pose
a big problem. Moreover, the benefits of our results kick in
already for very small values ofm (see Section III-D).

C. Relation to Parvaresh Vardy codes

In this subsection, we relate folded RS codes to the
Parvaresh-Vardy (PV) codes [14], which among other things
will help make the ideas presented in the previous subsection
more concrete.

The basic idea in the PV codes is to encode a polynomialf
by the evaluations ofs > 2 polynomialsf0 = f, f1, . . . , fs−1

where fi(X) = fi−1(X)d mod E(X) for an appropriate
power d (and some irreducible polynomialE(X)) — let us
call s the order of such a code. Our first main idea is to pick
the irreducible polynomialE(X) (and the parameterd) in such
a manner that every polynomialf of degree at mostk satisfies
the following identity:f(γX) = f(X)d mod E(X), where
γ is the generator of the underlying field. Thus, a folded RS
code with bundling using anγ as above is in fact exactly
the PV code of orders = m for the set of evaluation points
{1, γm, γ2m, . . . , γ(n/m−1)m}. This is nice as it shows that PV
codes can meet the Singleton bound (since folded RS codes

4However, we note that most of the operations in decoding still take place
in the original field.

do), but as such does not lead to any better codes for list
decoding.

Here comes our second main idea. Let us compare
the folded RS code to a PV code of order2 (in-
stead of order m) for the set of evaluation points
{1, γ, . . . γm−2, γm, . . . , γn−m, . . . , γn−2}. We find that in the
PV encoding off , for every 0 6 i 6 n/m − 1 and every
0 < j < m − 1, f(γmi+j) appears exactly twice (once
asf(γmi+j) and another time asf1(γ

−1γmi+j)), whereas it
appears only once in the folded RS encoding. (See Figure 4 for
an example whenm = 4 ands = 2.) In other words, the PV

FRS codeword

f(x0)

f(γx0)

f(γ2x0)

f(x0)

f(γx0)

f(γ2x0)

f(γ3x0)

f(x4)

f(γx4)

f(γ2x4)

f(γ3x4)

f(x0)

f(γx0)

f(γx0)

f(γ2x0)

f(γ2x0)

f(γ3x0)

f(γ3x0)

PV codeword

f(x4)

f(γx4)

f(γx4)

f(γ2x4)

f(γ2x4)

f(γ3x4)

Fig. 4. The correspondence between a folded Reed-Solomon code (with
m = 4 andxi = γi) and the Parvaresh Vardy code (of orders = 2) evaluated
over {1, γ, γ2, γ4, . . . , γn−4, . . . , γn−2}. The correspondence for the first
block in the folded RS codeword and the first three blocks in the PV codeword
is shown explicitly in the left corner of the figure.

and folded RS codes have the same information, but the rate of
the folded RS codes is bigger by a factor of2m−2

m = 2 − 2
m .

Decoding the folded RS codes from a fractionρ of errors
reduces to correcting the same fractionρ of errors for the
PV code. But the rate vs. error-correction radius trade-offis
better for the folded RS code since it has (for large enough
m, almost) twice the rate of the PV code.

In other words, our folded RS codes are chosen such that
they are “compressed” forms of suitable PV codes, and thus
have better rate than the corresponding PV code for a similar
error-correction performance. This is where our gain is, and
using this idea we are able to construct folded RS codes of
rateR that are list decodable up to radius roughly1− s+1

√
Rs

for any s > 1. Picking s large enough lets us get within any
desiredε from capacity.

III. T RIVARIATE INTERPOLATION BASED DECODING

The list decoding algorithm for RS codes from [7], [10]
is based on bivariate interpolation. The key factor drivingthe
agreement parametert needed for the decoding to be suc-
cessful was the ((1, k)-weighted) degreeD of the interpolated
bivariate polynomial. Our quest for an improved algorithm for
folded RS codes will be based on trying to lower this degree
D by using more degrees of freedom in the interpolation.
Specifically, we will try to usetrivariate interpolation of
a polynomial Q(X, Y1, Y2) through n points in F

3. This
enables performing the interpolation withD = O(

3
√

k2n),
which is much smaller than theΘ(

√
kn) bound for bivariate

interpolation. In principle, this could lead to an algorithm that
works for agreement fractionR2/3 instead ofR1/2. Of course,
this is a somewhat simplistic hope and additional ideas are
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needed to make this approach work. We now turn to the task of
developing a trivariate interpolation based decoder and proving
that it can indeed decode up to a fraction1 − R2/3 of errors.

A. Facts about trivariate interpolation

We begin with some basic definitions and facts concerning
trivariate polynomials.

Definition 3.1: For a polynomial Q(X, Y1, Y2) ∈
F[X, Y1, Y2], its (1, k, k)-weighted degree is defined to
be the maximum value ofℓ + kj1 + kj2 taken over all
monomialsXℓY j1

1 Y j2
2 that occur with a nonzero coefficient

in Q(X, Y1, Y2).
Definition 3.2 (Multiplicity of zeroes):A polynomial

Q(X, Y1, Y2) over F is said to have a zero of multiplicity
r > 1 at a point(α, β1, β2) ∈ F

3 if Q(X+α, Y1+β1, Y2+β2)
has no monomial of degree less thanr with a nonzero
coefficient. (The degree of the monomialX iY j1

1 Y j2
2 equals

i + j1 + j2.)
Lemma 3.3:Let {(αi, yi1, yi2)}n0

i=1 be an arbitrary set ofn0

triples fromF
3. Let Q(X, Y1, Y2) ∈ F[X, Y1, Y2] be a nonzero

polynomial of(1, k, k)-weighted degree at mostD that has a
zero of multiplicity r at (αi, yi1, yi2) for every i, 1 6 i 6 n0.
Let f(X), g(X) be polynomials of degree at mostk such that
for at leastt > D/r values ofi, we havef(αi) = yi1 and
g(αi) = yi2. Then,Q(X, f(X), g(X)) ≡ 0.

Proof: If we define R(X) = Q(X, f(X), g(X)), then
R(X) is a univariate polynomial of degree at mostD. Now,
for every i for which f(αi) = yi1 and g(αi) = yi2,
(X − αi)

r divides R(X) (this follows from the definition
of what it means forQ to have a zero of multiplicityr at
(αi, f(αi), g(αi))). Therefore ifrt > D, thenR(X) has more
roots (counting multiplicities) than its degree, and so it must
be the zero polynomial.

Lemma 3.4:Given an arbitrary set of n0 triples
{(αi, yi1, yi2)}n0

i=1 from F
3 and an integer parameter

r > 1, there exists a nonzero polynomialQ(X, Y1, Y2)
over F of (1, k, k)-weighted degree at mostD such that
Q(X, Y1, Y2) has a zero of multiplicityr at (αi, yi1, yi2) for
all i ∈ {1, 2 . . . , n0}, provided

D3

6k2
> n0

(

r + 2

3

)

. (1)

Moreover, we can find such aQ(X, Y1, Y2) in time polynomial
in n0, r by solving a system of homogeneous linear equations
over F.

Proof: The condition thatQ(X, Y1, Y2) has a zero of
multiplicity r at a point amounts to

(

r+2
3

)

homogeneous linear
conditions in the coefficients ofQ. The number of monomials
in Q(X, Y1, Y2) equals the number, sayN3(k, D), of triples
(i, j1, j2) of nonnegative integers that obeyi+kj1+kj2 6 D.
One can show that the numberN3(k, D) is at least as large as
the volume of the 3-dimensional region{x+ky1 +ky2 6 D |
x, y1, y2 > 0} ⊂ R

3 [14]. An easy calculation shows that the
latter volume equalsD

3

6k2 . Hence, if D3

6k2 > n0

(

r+2
3

)

, then the
number of unknowns exceeds the number of equations, and
we are guaranteed a nonzero solution. (See Remark 3.1 for
an accurate estimate of the number of monomials of(1, k, k)-
weighted degree at mostD, which sometimes leads to a better

condition under which a polynomialQ with the stated property
exists.)

B. Using trivariate interpolation for Folded RS codes

Let us now see how trivariate interpolation can be used in
the context of decoding the folded RS codeC′′ = FRSF,γ,m,k

of block lengthN = n/m. (Throughout this section, we will
usen to denote the block length of the “unfolded” RS code.)
Given a received wordz ∈ (Fm)N for C′′ that needs to
be list decoded, we definey ∈ F

n to be the corresponding
“unfolded” received word. (Formally, let thej’th symbol ofz
be (zj,0, . . . , zj,m−1) for 0 6 j < N . Theny is defined by
yjm+l = zj,l for 0 6 j < N and0 6 l < m.) Finally defineI
to be the set{0, 1, 2, . . . , n− 1} \ {m− 1, 2m− 1, . . . , n− 1}
and letn0 = |I|. Note thatn0 = (m − 1)n/m.

Supposef(X) is a polynomial whose encoding agrees with
z on at leastt locations. Then, here is an obvious but important
observation:

For at leastt(m − 1) values ofi, i ∈ I, both the
equalitiesf(γi) = yi andf(γi+1) = yi+1 hold.

Define the notationg(X) = f(γX). Therefore, if we consider
the n0 triples (γi, yi, yi+1) ∈ F

3 for i ∈ I, then for at least
t(m − 1) triples, we havef(γi) = yi and g(γi) = yi+1.
This suggests that interpolating a polynomialQ(X, Y1, Y2)
through thesen0 triples and employing Lemma 3.3, we can
hope thatf(X) will satisfy Q(X, f(X), f(γX)) = 0, and
then somehow use this to findf(X). We formalize this in
the following lemma. The proof follows immediately from the
preceding discussion and Lemma 3.3.

Lemma 3.5:Let z ∈ (Fm)N and let y ∈ F
n be the

unfolded version ofz. Let Q(X, Y1, Y2) be any nonzero
polynomial overF of (1, k, k)-weighted degree atD that has
a zero of multiplicity r at (γi, yi, yi+1) for i ∈ I. Let t
be an integer such thatt > D

(m−1)r . Then every polynomial
f(X) ∈ F[X ] of degree at mostk whose encoding according
to FRSF,γ,m,k agrees withz on at leastt locations satisfies
Q(X, f(X), f(γX)) ≡ 0.
Lemmas 3.4 and 3.5 motivate the following approach to list
decoding the folded RS codeFRSF,γ,m,k. Here z ∈ (Fm)N

is the received word andy = (y0, y1, . . . , yn−1) ∈ F
n is its

unfolded version. The algorithm uses an integer multiplicity
parameterr > 1, and is intended to work for an agreement
parameter1 6 t 6 N .

Algorithm Trivariate-FRS-decoder:
Step 1 (Trivariate Interpolation) Define the degree parameter

D = ⌊ 3
√

k2n0r(r + 1)(r + 2)⌋ + 1 . (2)

Interpolate a nonzero polynomialQ(X, Y1, Y2) with
coefficients fromF with the following two proper-
ties: (i) Q has(1, k, k)-weighted degree at mostD,
and (ii)Q has a zero of multiplicityr at (γi, yi, yi+1)
for i ∈ I. (Lemma 3.4 guarantees the feasibility
of this step as well as its computability in time
polynomial inr andn0 (and hence,n).)

Step 2 (Trivariate “Root-finding”) Find a list of all de-
gree 6 k polynomials f(X) ∈ F[X ] such that
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Q(X, f(X), f(γX)) = 0. Output those whose en-
coding agrees withz on at leastt locations.

Ignoring the time complexity of Step 2 for now, we
can already claim the following result concerning the error-
correction performance of this strategy.

Theorem 3.6:The algorithm Trivariate-FRS-decoder
successfully list decodes the folded Reed-Solomon
code FRSF,γ,m,k up to a number of errors equal to
(

N −
⌊

N 3

√

(

mk
(m−1)n

)2
(

1 + 1
r

) (

1 + 2
r

)

⌋

− 2

)

.

Proof: By Lemma 3.5, we know that anyf(X) whose
encoding agrees withz on t or more locations will be
output in Step 2, providedt > D

(m−1)r . For the choice
of D in (2), this condition is met for the choicet =

1 + ⌊ 3

√

k2n0

(m−1)3

(

1 + 1
r

) (

1 + 2
r

)

+ 1
(m−1)r ⌋. The number of

errors is equal toN − t, and recalling thatn = mN and
n0 = (m − 1)n/m, we get the claimed bound on the list
decoding radius.

The rate of the folded Reed-Solomon code isR = (k +
1)/n > k/n, and so the fraction of errors corrected (for large

enoughr) is 1 −
(

mR
m−1

)2/3

. Note that form = 2, this is

just the bound1− (2R)2/3 that Parvaresh-Vardy obtained for
decoding their codes using trivariate interpolation [14].The
bound becomes better for larger values ofm, and letting the
folding parameterm grow, we can approach a decoding radius
of 1 − R2/3.

C. Root-finding step

In light of the above discussion in Section III-B, the only
missing piece in our decoding algorithm is anefficientway to
solve the following trivariate “root-finding” type problem:

Given a nonzero polynomialQ(X, Y1, Y2) with co-
efficients from a finite fieldF of size q, a primitive
elementγ of the field F, and an integer parameter
k < q − 1, find a list of all polynomialsf(X) of
degree at mostk such thatQ(X, f(X), f(γX)) ≡ 0.

The following simple algebraic lemma is at the heart of our
solution to this problem.

Lemma 3.7:Let F be the fieldFq of sizeq, and letγ be a
primitive element that generates its multiplicative group. Then
we have the following two facts:

1) The polynomialE(X)
def
= Xq−1 − γ is irreducible over

F.
2) Every polynomialf(X) ∈ F[X ] of degree less thanq−1

satisfiesf(γX) = f(X)q mod E(X).
Proof: The fact thatE(X) = Xq−1 − γ is irreducible

over Fq follows from a known, precise characterization of all
irreducible binomials, i.e., polynomials of the formXa − c,
see for instance [21, Chap. 3, Sec. 5]. For completeness,
and since this is an easy special case, we now prove this
fact. SupposeE(X) is not irreducible and some irreducible
polynomialf(X) ∈ F[X ] of degreeb, 1 6 b < q − 1, divides
it. Let ζ be a root off(X) in the extension fieldFqb . We then
have ζqb

−1 = 1. Also, f(ζ) = 0 implies ζq−1 = γ. These

equations together implyγ
qb

−1
q−1 = 1. Now, γ is primitive in

Fq, so thatγm = 1 iff m is divisible by(q− 1). We conclude
thatq−1 must divide1+q+q2+ · · ·+qb−1. This is, however,
impossible since1 + q + q2 + · · · + qb−1 ≡ b (mod (q − 1))
and 0 < b < q − 1. This contradiction proves thatE(X)
has no such factor of degree less thanq − 1, and is therefore
irreducible.

For the second part, we have the simple but useful identity
f(X)q = f(Xq) that holds for all polynomials inFq[X ].
Therefore,f(X)q − f(γX) = f(Xq) − f(γX). The latter
polynomial is clearly divisible byXq − γX , and thus also
by Xq−1 − γ. Hencef(X)q ≡ f(γX) (mod E(X)) which
implies thatf(X)q mod E(X) = f(γX) since the degree of
f(γX) is less thanq − 1.

Armed with this lemma, we are ready to tackle the trivariate
root-finding problem.

Theorem 3.8:There is a deterministic algorithm that on
input a finite fieldF of size q, a primitive elementγ of the
field F, a nonzero polynomialQ(X, Y1, Y2) ∈ F[X, Y1, Y2] of
degree less thanq in Y1, and an integer parameterk < q − 1,
outputs a list of all polynomialsf(X) of degree at most
k satisfying the conditionQ(X, f(X), f(γX)) ≡ 0. The
algorithm has run time polynomial inq.

Proof: Let E(X) = Xq−1 − γ. We know by Lemma 3.7
thatE(X) is irreducible. We first divide out the largest power
of E(X) that dividesQ(X, Y1, Y2) to obtainQ0(X, Y1, Y2)
whereQ(X, Y1, Y2) = E(X)bQ0(X, Y1, Y2) for someb > 0
andE(X) does not divideQ0(X, Y1, Y2). Clearly, iff(X) sat-
isfiesQ(X, f(X), f(γX)) = 0, thenQ0(X, f(X), f(γX)) =
0 as well, so we will work withQ0 instead ofQ. Let us view
Q0(X, Y1, Y2) as a polynomialT0(Y1, Y2) with coefficients
from F[X ]. Further, reduce each of the coefficients modulo
E(X) to get a polynomialT (Y1, Y2) with coefficients from the

extension field̃F
def
= F[X ]/(E(X)) (this is a field sinceE(X)

is irreducible overF). We note thatT (Y1, Y2) is a nonzero
polynomial sinceQ0(X, Y1, Y2) is not divisible byE(X).

In view of Lemma 3.7, it suffices to find degree6 k polyno-
mials f(X) satisfyingQ0(X, f(X), f(X)q) (mod E(X)) =
0. In turn, this means it suffices to find elementsΓ ∈ F̃ sat-
isfying T (Γ, Γq) = 0. If we define the univariate polynomial

R(Y1)
def
= T (Y1, Y

q
1 ), this is equivalent to finding allΓ ∈ F̃

such thatR(Γ) = 0, or in other words the roots iñF of R(Y1).
Now R(Y1) is a nonzero polynomial sinceR(Y1) = 0

iff Y2 − Y q
1 divides T (Y1, Y2), and this cannot happen as

T (Y1, Y2) has degree less than less thanq in Y1. The degree
of R(Y1) is at most dq where d is the total degree of
Q(X, Y1, Y2). The characteristic of̃F is at mostq, and its
degree over the base field is at mostq lg q. Therefore, we
can find all roots ofR(Y1) by a deterministic algorithm
running in time polynomial ind, q [22]. Each of the roots
will be a polynomial in F[X ] of degree less thanq − 1.
Once we find all the roots, we prune the list and only output
those roots off(X) that have degree at mostk and satisfy
Q0(X, f(X), f(γX)) = 0.

With this, we have a polynomial time implementation of the
algorithmTrivariate-FRS-decoder. There is the technicality
that the degree ofQ(X, Y1, Y2) in Y1 should be less thanq.
This degree is at mostD/k, which by the choice ofD in (2)
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is at most(r + 3) 3
√

n/k < (r + 3)q1/3. For a fixedr and
growing q, the degree is much smaller thanq. (In fact, for
constant rate codes, the degree is a constant independent of
n.) By letting m, r grow in Theorem 3.6, and recalling that
the running time is polynomial inn, r, we can conclude the
following main result of this section.

Theorem 3.9:For everyε > 0 andR, 0 < R < 1, there is
a family of m-folded Reed-Solomon codes form = O(1/ε)
that have rate at leastR and which can be list decoded up to
a fraction1− (1 + ε)R2/3 of errors in time polynomial in the
block length and1/ε.

D. Alternate decoding bound for high rates and practical
considerations

In the discussion above, the fraction of errors1−
(

mR
m−1

)2/3

,

call it ρ
(m,2)
a (R), approaches1 − R2/3 (and hence improves

upon the bound ofρGS(R) = 1 −
√

R in [10]) for every
rateR for large enoughm. For practical implementations the
parameterm will be some small fixed integer. Note that for
fixed m, the bound ofρ(m,2)

a (R) is useless forR > 1 − 1
m ,

whereas the1 −
√

R bound for decoding Reed-Solomon
codes [10] is meaningful for allR < 1.

Given that one is often interested in high rate codes, this
suggests that in order to reap the benefits of our new codes
for large rates, the folding parameter needs to be picked large
enough. Fortunately, this is not the case, and we now show
that one can beat the1−

√
R bound for all ratesR for a fixed

value of the folding parameterm; in fact, a value as small
asm = 5 suffices. These bounds also hint at the fact that the
improvements offered by the decoding algorithms in this paper
are not just asymptotic and kick in for parameter choices that
could be practical.

Our goal now is to sketch how a minor change to the
algorithm in Section III-B allows us to correct a fraction

ρ
(m,2)
b (R) =

m

m + 1

(

1 − R2/3
)

(3)

of errors. The bound ofρ(m,2)
b (R) gives a larger decoding

radius thanρ
(m,2)
a (R) for large ratesR. A more precise

comparison of the boundsρ(m,2)
a , ρ

(m,2)
b and ρGS is done at

the end of this subsection. The improvement of the decoding
radius to ρ

(m,2)
b (R) for large rates (and hence small error

fractions) comes via another way to analyze (a variant of)
the algorithm in Section III-B, which was suggested to us by
Jørn Justesen. The algorithm is the same as in Section III-B
except that the set of interpolating points is slightly different.
In particular in the trivariate interpolating step, we choose
I = {0, 1, . . . , n − 2}. Let n0 = |I| = n − 1. The crucial
observation here is that an erroneous symbolzj ∈ F

m (for
some position0 6 j < N in the received wordz) translates
to at mostm + 1 errors among the interpolation tuples in
the trivariate interpolation step. More precisely, given that
0 6 e 6 N is the number of errors,

For at leastt′ = n0 − e(m + 1) values ofi, i ∈ I,
both the equalitiesf(γi) = yi andf(γi+1) = yi+1

hold.

By Lemmas 3.3, 3.4 and the degree bound (2), the algorithm
outlined above will work as long as

n0 − e(m + 1) > 3

√

k2n0

(

1 +
1

r

)(

1 +
2

r

)

+
1

r
.

Recalling thatn0 = n − 1 < n, the above is satisfied if

n − 1 − e(m + 1) > 3

√

k2n

(

1 +
1

r

)(

1 +
2

r

)

+
1

r
.

Recalling thatn = Nm, the above is satisfied if

e <

(

m

m + 1

)

N



1 − 3

√

(

k

n

)2(

1 +
1

r

)(

1 +
2

r

)





− 2

m + 1
.

Noting thatm > 1, leads to the following analog of Theo-
rem 3.6:

Theorem 3.10:The version of algorithm Trivariate-
FRS-decoder discussed above, successfully list
decodes the folded Reed-Solomon codeFRSF,γ,m,k

as long as the number of errors is less than
⌊

(

m
m+1

)

N

(

1 − 3

√

(

k
n

)2 (
1 + 1

r

) (

1 + 2
r

)

)⌋

− 1.

For large enoughr, the above implies that rateR folded
RS codes can be list decoded up to a fractionρ

(m,2)
b (R) =

(

m
m+1

)

(

1 − R2/3
)

of errors.
Comparison of the bounds:We now make a compari-

son between the boundsρ(m,2)
b , ρ

(m,2)
a and ρGS. We first

note that ρ
(m,2)
b (R) > ρ

(m,2)
a (R) for every rate R >

(

1 − 1
m

)

(

1

m+1− 3
√

m(m−1)2

)3/2

. In particular,ρ(m,2)
b (R) >

ρ
(m,2)
a (R) for all rates R > 1 − 1

m . Let us now compare

ρ
(m,2)
b (R) and ρGS(R). Specifically, we give a heuristic ar-

gument to show that for high enough ratesR and m > 4,
ρ
(m,2)
b (R) > ρGS(R). Let R = 1−ε. Then ignoring theO(ε2)

terms in the Taylor expansions we getρGS(1 − ε) ≈ ε/2 and
ρ
(m,2)
b (1 − ε) ≈ 2mε

3(m+1) : the latter quantity is strictly larger
than the former for everym > 4. In fact, it can be verified that
for all ratesR > 0.44, ρ

(4,2)
b > ρGS. Figure 5 plots the trade-

off ρGS(R) andmax
(

ρ
(m,2)
b (R), ρ

(m,2)
a (R)

)

for some small

values ofm > 2. The limit for largem, which is 1 − R2/3,
is also plotted.

Remark 3.1 (Better bound on(1, k, k)-weighted degree):
For small values of the parameterr, one should use a better
estimate for the degree boundD than the bound (1) based on
the volume argument. The number of monomialsX iY j1

1 Y j2
2

whose(1, k, k)-weighted degree is at mostD is exactly equal
to

k

(

a + 2

3

)

+ (D − ak + 1)

(

a + 2

2

)

(4)

wherea =
⌊

D
k

⌋

. This is often larger than theD
3

6k2 lower bound
we used in Lemma 3.4, and certainly for any specific setting of
parametersn, k, r, the estimate (4) should be used. A similar
remark applies for the bound used in Lemma 4.1 for(s +
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Fig. 5. Error-correction radiusmax(ρ
(m,2)
b (R), ρ

(m,2)
a (R)) for m = 4, 5.

For comparisonρGS(R) = 1−
√

R and the limit1−R2/3 are also plotted.
For m = 5, the performance of the trivariate interpolation algorithm strictly
improves upon that ofρGS for all rates.

1)-variate interpolation. Since it makes no difference for the
asymptotics, we chose to stick with the simpler expressions.

IV. CODES APPROACHING LIST DECODING CAPACITY

Given that trivariate interpolation improved the decoding
radius achievable with rateR from 1−R1/2 to 1−R2/3, it is
natural to attempt to use higher order interpolation to improve
the decoding radius further. In this section, we discuss the
(quite straightforward) technical changes needed for sucha
generalization.

Consider again them-folded RS codeC′ = FRSF,γ,m,k

whereF = Fq. Let s be an integer in the range1 6 s 6 m.
We will develop a decoding algorithm based on interpo-
lating an (s + 1)-variate polynomialQ(X, Y1, Y2, . . . , Ys).
The definitions of the(1, k, k, . . . , k)-weighted degree (with
k repeateds times) of Q and the multiplicity at a point
(α, β1, β2, . . . , βs) ∈ F

s+1 are straightforward extensions of
Definitions 3.1 and 3.2.

As before let y = (y0, y1, . . . , yn−1) be the unfolded
version of the received wordz ∈ (Fm)N of the folded RS
code that needs to be decoded. Define the set of interpolation
pointsI to be integers in{0, 1, . . . , n−1} exceptthose in the
set:

n
m

−1
⋃

j=0

{jm + m − s + 1, jm + m − s + 2, . . . , jm + m − 1}.

The reason for this choice ofI is that if the m-tuple
containing yi is correct andi ∈ I, then all thes values
yi, yi+1, . . . , yi+s−1 are correct.

Definen0 = |I|. Note thatn0 = n(m− s + 1)/m. Follow-
ing algorithm Trivariate-FRS-decoder, for suitable integer
parametersD, r, the interpolation phase of the(s + 1)-variate
FRS decoder will fit a nonzero polynomialQ(X, Y1, . . . , Ys)
with the following properties:

1) It has(1, k, k, . . . , k)-weighted degree at mostD

2) It has a zero of multiplicity r at
(γi, yi, yi+1, . . . , yi+s−1) for i ∈ I.

The following is a straightforward generalization of Lemmas
3.4 and 3.5.

Lemma 4.1: 1) Provided Ds+1

(s+1)!ks > n0

(

r+s
s+1

)

, a nonzero
polynomial Q(X, Y1, . . . , Ys) with the above stated
properties exists and moreover can be found in time
polynomial inn andrs.

2) Let t be an integer such thatt > D
(m−s+1)r . Then

every polynomialf(X) ∈ F[X ] of degree at mostk
whose encoding according toFRSF,γ,m,k agrees with
the received wordz on at leastt locations satisfies
Q(X, f(X), f(γX), . . . , f(γs−1X)) ≡ 0.

Proof: The first part follows from (i) a simple lower
bound on the number of monomialsXaY b1

1 · · ·Y bs
s with

a + k(b1 + b2 + · · · + bs) 6 D, which gives the number
of coefficients ofQ(X, Y1, . . . , Ys), and (ii) an estimation of
the number of(s + 1)-variate monomials of total degree less
thanr, which gives the number of interpolation conditions per
(s + 1)-tuple.

The second part is similar to the proof of Lemma 3.5.
If f(X) has agreement on at leastt locations of z,
then for at leastt(m − s + 1) of the (s + 1)-tuples
(γi, yi, yi+1, . . . , yi+s−1), we havef(γi+j) = yi+j for j =

0, 1, . . . , s− 1. As in Lemma 3.3, we conclude thatR(X)
def
=

Q(X, f(X), f(γX), . . . , f(γs−1X)) has a zero of multiplicity
r at γi for each such(s+1)-tuple. Also, by designR(X) has
degree at mostD. Hence ift(m − s + 1)r > D, thenR(X)
has more zeroes (counting multiplicities) than its degree,and
thusR(X) ≡ 0.

Note the lower bound condition onD above is met with the
choice

D =
⌊

(ksn0r(r + 1) · · · (r + s))
1/(s+1)

⌋

+ 1 . (5)

The task of finding a list of all degree
k polynomials f(X) ∈ F[X ] satisfying
Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 can be solved
using ideas similar to the proof of Theorem 3.8. First,
by dividing out by E(X) enough times, we can assume
that not all coefficients ofQ(X, Y1, . . . , Ys), viewed as
a polynomial in Y1, . . . , Ys with coefficients in F[X ],
are divisible by E(X). We can then go moduloE(X)
to get a nonzero polynomialT (Y1, Y2, . . . , Ys) over the
extension fieldF̃ = F[X ]/(E(X)). Now, by Lemma 3.7,
we havef(γjX) = f(X)qj

mod E(X) for every j > 1.
Therefore, the task at hand reduces to the problem of
finding all roots Γ ∈ F̃ of the polynomialR(Y1) where
R(Y1) = T (Y1, Y

q
1 , . . . , Y qs−1

1 ). There is the risk thatR(Y1)
is the zero polynomial, but it is easily seen that this cannot
happen if the total degree ofT is less thanq. This will be
the case since the total degree is at mostD/k, which is at
most(r + s)(n/k)1/(s+1) ≪ q.

The degree of the polynomialR(Y1) is at mostqs, and
therefore all its roots iñF can be found inqO(s) time. We
conclude that the “root-finding” step can be accomplished in
polynomial time.
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The algorithm works for agreementt > D
(m−s+1)r , which

for the choice ofD in (5) is satisfied if

t >
(ksn0)

1/(s+1)

m − s + 1





s
∏

j=1

(

1 +
j

r

)





1/(s+1)

+ 2 .

The above along with the fact thatn0 = N(m − s + 1)
implies the following, which is multivariate generalization of
Theorem 3.6.

Theorem 4.2:For every integerm > 1 and every s,
1 6 s 6 m, the (s + 1)-variate FRS decoder successfully
list decodes them-folded Reed-Solomon codeFRSF,γ,m,k up
to a radiusN−t as long as the agreement parametert satisfies

t > s+1

√

√

√

√

(

N
k

m − s + 1

)s s
∏

j=1

(

1 +
j

r

)

+ 2 . (6)

The algorithm runs innO(s) time and outputs a list of size at
most |F |s = nO(s).

Recalling that the block length ofFRSF,γ,m,k is N = n/m
and the rate is(k + 1)/n, the above algorithm can decode a
fraction of errors approaching

1 − s+1

√

√

√

√

(

mR

m − s + 1

)s s
∏

j=1

(

1 +
j

r

)

(7)

using lists of size at mostqs. By picking r, m large enough
compared tos, the decoding radius can be made larger than
1− (1+ δ)Rs/(s+1) for any desiredδ > 0. We state this result
formally below.

Theorem 4.3:For every0 < δ 6 1, integer s > 1 and
0 < R < 1, there is a family ofm-folded Reed-Solomon
codes form = O(s/δ) that have rate at leastR and which
can be list decoded up to a fraction1−(1+δ)Rs/(s+1) of errors
in time (Nm)O(s) and outputs a list of size at most(Nm)O(s)

whereN is the block length of the code. The alphabet size of
the code as a function of the block lengthN is (Nm)O(m).

Proof: We first note that (7) is at least

1 −
(

1 +
s

r

)

(

m

m − s + 1

)

Rs/(s+1). (8)

We now instantiate the parametersr andm in terms ofs and
δ:

r =
3s

δ
m =

(s − 1)(3 + δ)

δ
.

With the above choice, we have
(

1 +
s

r

) m

m − s + 1
=

(

1 +
δ

3

)2

< 1 + δ .

Together with the bound (8) on the decoding radius, we
conclude that the(s +1)-variate decoding algorithm certainly
list decodes up to a fraction1 − (1 + δ)Rs/(s+1) of errors.

The worst case list size isqs and the claim on the list
size follows by recalling thatq 6 n + m and N = n/m.
The alphabet size isqm = (Nm)O(m). The running time
has two major components: (1) Interpolating thes + 1-variate
polynomialQ(·), which by Lemma 4.1 is(nrs)O(1); and (2)
Finding all the roots of the interpolated polynomial, which

takesqO(s) time. Of the two, the time complexity of the root
finding step dominates, which is(Nm)O(s).

In the limit of larges, the decoding radius approaches the
list decoding capacity1 − R, leading to our main result.

Theorem 4.4 (Explicit capacity-approaching codes):For
every ε > 0 and 0 < R < 1, there is a family of folded
Reed-Solomon codes that have rate at leastR and which can
be list decoded up to a fraction1−R−ε of errors in time (and
outputs a list of size at most)(N/ε2)O(ε−1 log(1/R)) whereN
is the block length of the code. The alphabet size of the code
as a function of the block lengthN is (N/ε2)O(1/ε2).

Proof: Given ε, R, we will apply Theorem 4.3 with the
choice

s =

⌈

log(1/R)

log(1 + ε)

⌉

and δ =
ε(1 − R)

R(1 + ε)
. (9)

The list decoding radius guaranteed by Theorem 4.3 is at least

1 − (1 + δ)Rs/(s+1) = 1 − R(1 + δ)(1/R)1/(s+1)

> 1 − R(1 + δ)(1 + ε)

= 1 − (R + ε),

where the inequality follows from the choice ofs in (9) and
the second equality follows by using the value ofδ.

We now turn our attention to the time complexity of the
decoding algorithm and the alphabet size of the code. To this
end we first claim thatm = O(1/ε2). To see this note that by
the definition ofs andδ:

m = O
(s

δ

)

= O

(

s · R(1 + ε)

ε(1 − R)

)

= O

(

1

ε2
· R ln(1/R)

1 − R

)

= O(1/ε2) ,

where for the last step we usedln(1/R) 6
1
R − 1 for 0 <

R 6 1. The claims on the running time, worst case list size
and the alphabet size of the code follow from Theorem 4.3
and the facts thatm = O(1/ε2) and s = O(ε−1 log(1/R)).

With the proof of our main theoretical result (Theorem 4.4)
completed, we close this section with a few remarks.

Remark 4.1 (Improved decoding radius for high rates):
As in Section III-D, it is possible to improve the bound of
(7) to

max





m

m + s − 1



1 − s+1

√

√

√

√Rs

s
∏

j=1

(

1 +
j

s

)



 ,

1 − s+1

√

√

√

√

(

mR

m − s + 1

)s s
∏

j=1

(

1 +
j

r

)



 .

The former bound is better for large rates.
Remark 4.2 (Degree of relation betweenf(X) and f(γX)):

Let K be the extension fieldFq[X ]/(E(X)) where
E(X) = Xq−1 − γ. The elements ofK are in one-one
correspondence with polynomials of degree less thanq − 1
over Fq. The content of Lemma 3.7, which we made crucial
use of above, is that the mapΓ : K → K defined by
f(X) 7→ f(γX) is a degreeq map over K, i.e., as a
polynomial overK, Γ(Z) = Zq. The fact that this degree is
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as large asq is in turn the cause for the large list size that
we need for list decoding. It is natural to ask if a different
map Γ′ could have lower degree (perhaps over a different
extension fieldK1). Unfortunately, it turns out this is not
possible, as argued below.

Indeed, letΓ′ be a ring homomorphism ofFq[X ] defined
by Γ′(f(X)) = f(G(X)) for some polynomialG over Fq.
Let E1(X) be an irreducible polynomial overFq of degree
ℓ, and letK1 = Fq[X ]/(E1(X)) be the associated extension
field. We can viewΓ′ as a mapΓ1 on K1 by identifying
polynomials of degree less thanℓ with K1 and defining
Γ1(f(X)) = f(G(X)) mod E1(X). The key point is that
Γ1 is an Fq-linear map onK1. Expressed as a polynomial
over K1, Γ1 must therefore be alinearized polynomial, [21,
Chap. 3, Sec. 4], which has only terms with exponents that
are powers ofq (including q0 = 1). It turns out that for our
purposesΓ1 cannot have degree1, and so it must have degree
at leastq.

V. EXTENSIONS AND CODES OVERSMALLER ALPHABETS

A. Extension to list recovery

We now present a very useful generalization of the list
decoding result of Theorem 4.4 to the setting oflist recovery.
Under the list recovery problem, one is given as input for
each codeword position, not just one but a set of several, sayl,
alphabet symbols. The goal is to find and output all codewords
which agree with some element of the input sets for several
positions. Codes for which this more general problem can be
solved turn out to be extremely valuable as outer codes in
concatenated code constructions. In short, this is becauseone
can pass a set of possibilities from decodings of the inner
codes and then list recover the outer code with those sets as
the input. If we only had a list-decodable code at the outer
level, we will be forced to make a unique choice in decoding
the inner codes thus losing valuable information.

Definition 5.1 (List Recovery):A code C ⊆ Σn is said
to be (ζ, l, L)-list recoverable if for every sequence of sets
S1, . . . , Sn where eachSi ⊆ Σ has at mostl elements, the
number of codewordsc ∈ C for which ci ∈ Si for at leastζn
positionsi ∈ {1, 2, . . . , n} is at mostL.

A code C ⊆ Σn is said to (ζ, l)-list recoverable in
polynomial time if it is (ζ, l, L(n))-list recoverable for some
polynomially bounded functionL(·), and moreover there is a
polynomial time algorithm to find the at mostL(n) codewords
that are solutions to any(ζ, l, L(n))-list recovery instance.
We remark that whenl = 1, (ζ, 1, ·)-list recovery is the same
as list decoding up to a(1−ζ) fraction of errors. List recovery
has been implicitly studied in several works; the name itself
was coined in [2].

Theorem 4.4 can be generalized to list recover the folded
RS codes. Specifically, for a FRS code with parameters as in
Section IV, for an arbitrary constantl > 1, we can(ζ, l)-list
recover in polynomial time provided

ζN > s+1

√

√

√

√

(

k

m − s + 1

)s
nl

m

s
∏

j=1

(

1 +
j

r

)

+ 2 . (10)

where N = n/m. We briefly justify this claim. The gen-
eralization of the list decoding algorithm of Section IV is
straightforward: instead of one interpolation condition for each
symbol of the received word, we just impose|Si| 6 l many
interpolation conditions for each positioni ∈ {1, 2, . . . , n}
(whereSi is the i’th input set in the list recovery instance).
The number of interpolation conditions is at mostnl, and
so replacingn by nl in the bound of Lemma 4.1 guarantees
successful decoding. This in turn implies that the condition on
the number of agreement of (6) generalizes to the one in (10).
This straightforward generalization to list recovery is a positive
feature of all interpolation based decoding algorithms [7], [10],
[14] beginning with the one due to Sudan [7].

Picking r ≫ s and m ≫ s in (10), we get(ζ, l)-list
recover with rateR for ζ >

(

lRs
)1/(s+1)

. Now comes the
remarkable fact: we can pick a suitables ≫ l and perform
(ζ, l)-list recovery with agreement parameterζ > R + ε
which is independent ofl! We state the formal result below
(Theorem 4.4 is a special case whenl = 1).

Theorem 5.2:For every integerl > 1, for all R, 0 < R < 1
andε > 0, and for every primep, there is anexplicit family of
folded Reed-Solomon codes over fields of characteristicp that
have rate at leastR and which can be(R+ε, l)-list recovered
in polynomial time. The alphabet size of a code of block length
N in the family is (N/ε2)O(ε−2 log l/(1−R)).

Proof: (Sketch)Using the exact same arguments as in
the proof of Theorem 4.3 to the agreement condition of (10),
we get that one can list recover in polynomial time as long
as ζ > (1 + δ)(lRs)1/(s+1), for any δ > 0. The arguments
to obtains a lower bound ofR + ε are similar to the ones
employed in the proof of theorem 4.4. However,s needs to
be defined in a slightly different manner:

s =

⌈

log(l/R)

log(1 + ε)

⌉

.

Also this implies thatm = O
(

log l
(1−R)ε2

)

, which implies the
claimed bound on the alphabet size of the code.

Remark 5.1 (Soft Decoding):The decoding algorithm for
folded RS codes from Theorem 4.4 can be further generalized
to handle soft information, where for each codeword position
i the decoder is given as input a non-negative weightwi,z

for each possible alphabet symbolz. The weightswi,z can
be used to encode the confidence information concerning the
likelihood of the thei’th symbol of the codeword beingz [23].
For anyε > 0, for suitable choice of parameters, our codes
of rateR over alphabetΣ have a soft decoding algorithm that
outputs all codewordsc = 〈c1, c2, . . . , cN 〉 that satisfy

N
∑

i=1

wi,ci
>

(

(1 + ε)(RN)s
(

N
∑

i=1

∑

z∈Σ

ws+1
i,z

)

)1/(s+1)

.

For s = 1, this soft decoding condition is identical to the one
for Reed-Solomon codes in [10].

B. Binary codes decodable up to Zyablov bound

Concatenating the folded RS codes with suitable inner codes
also gives us polytime constructible binary codes that can be
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efficiently list decoded up to the Zyablov bound, i.e., up to
twice the radius achieved by the standard GMD decoding
of concatenated codes. The optimal list recoverability of the
folded RS codes plays a crucial role in establishing such a
result.

Theorem 5.3:For all 0 < R, r < 1 and all ε > 0, there is
a polynomial time constructible family of binary linear codes
of rate at leastR · r which can be list decoded in polynomial
time up to a fraction(1 − R)H−1(1 − r) − ε of errors.

Proof: We will construct binary codes with the claimed
property by concatenating two codesC1 andC2. For C1, we
will use a folded RS code over a field of characteristic2 with
block lengthn1, rate at leastR, and which can be(R+ε, l)-list
recovered in polynomial time forl = ⌈10/ε⌉. Let the alphabet
size of C1 be 2M where M = O(ε−2 log(1/ε) logn1). For
C2, we will use a binary linear code of dimensionM and
rate at leastr which is (ρ, l)-list decodable forρ = H−1(1 −
r − ε). Such a code is known to exist via a random coding
argument that employs the semi-random method [16]. Also,
a greedy construction of such a code by constructing itsM
basis elements in turn is presented in [16] and this process
takes2O(M) time. We conclude that the necessary inner code
can be constructed innO(ε−2 log(1/ε))

1 time. The codeC1, being
a folded RS code over a field of characteristic2, is F2-linear,
and therefore when concatenated with a binary linear inner
code such asC2, results in a binary linear code. The rate of
the concatenated code is at leastR · r.

The decoding algorithm proceeds in a natural way. Given
a received word, we break it up into blocks corresponding
to the various inner encodings byC1. Each of these blocks
is list decoded up to a radiusρ, returning a set of at mostl
possible candidates for each outer codeword symbol. The outer
code is then(R + ε, l)-list recovered using these sets, each of
which has size at mostl, as input. To argue about the fraction
of errors this algorithm corrects, we note that the algorithm
fails to recover a codeword only if on more than a fraction
(1 − R − ε) of the inner blocks the codeword differs from
the received word on more than a fractionρ of symbols. It
follows that the algorithm correctly list decodes up to a radius
(1−R− ε)ρ = (1−R− ε)H−1(1− r − ε). Sinceε > 0 was
arbitrary, we get the claimed result.

Optimizing over the choice of inner and outer codes rates
r, R in the above results, we can decode up to the Zyablov
bound, see Figure 2.

Remark 5.2:In particular, decoding up to the Zyablov
bound implies that we can correct a fraction(1/2 − ε) of
errors with rateΩ(ε3) for small ε → 0, which is better
than the rate ofΩ(ε3/ log(1/ε)) achieved in [24]. However,
our construction and decoding complexity arenO(ε−2 log(1/ε))

whereas these are at mostf(ε)nc for an absolute constantc in
[24]. Also, we bound the list size needed in the worst-case by
nO(ε−1 log(1/ε)), while the list size needed in the construction
in [24] is (1/ε)O(log log(1/ε)).

Remark 5.3 (Decoding up to the Blokh-Zyablov bound):
In a follow-up paper, we use a similar approach extended
to multilevel concatenation schemes together with inner
codes that have good “nested” list-decodability properties, to
construct binary codes list-decodable up to theBlokh-Zyablov

bound [25].

C. Capacity-Achieving codes over smaller alphabets

Our result of Theorem 4.4 has two undesirable aspects:
both the alphabet size and worst-case list size output by the
list decoding algorithm are a polynomial of large degree in
the block length. We now show that the alphabet size can be
reduced to a constant that depends only on the distanceε to
capacity.

Theorem 5.4:For everyR, 0 < R < 1, everyε > 0, there
is a polynomial time constructible family of codes over an
alphabet of size2O(ε−4 log(1/ε)) that have rate at leastR and
which can be list decoded up to a fraction(1 − R − ε) of
errors in polynomial time.

Proof: The theorem is proved using the code construction
scheme used in [3] for linear time unique decodable codes with
optimal rate, with different components appropriate for list de-
coding plugged in. We briefly describe the main ideas behind
the construction and proof below. The high level approach isto
concatenate two codesCout andCin, and then redistribute the
symbols of the resulting codeword using an expander graph
(Figure V-C depicts this high level structure and should be
useful in reading the following formal description). In the
following, assume thatε < 1/6 and letδ = ε2.

The outer codeCout will be a code of rate(1−2ε) over an
alphabetΣ of sizen(1/δ)O(1)

that can be(1 − ε, O(1/ε))-list
recovered in polynomial time, as guaranteed by Theorem 5.2.
That is, the rate ofCout will be close to1, and it can be
(ζ, l)-list recovered for largel andζ → 1.

The inner codeCin will be a ((1 − R − 4ε), O(1/ε))-list
decodable code with near-optimal rate, say rate at least(R +
3ε). Such a code is guaranteed to exist over an alphabet of
sizeO(1/ε2) using random coding arguments. A naive brute-
force for such a code, however, is too expensive, since we
need a code with|Σ| = nΩ(1) codewords. Guruswami and
Indyk [2], see also [12, Sec. 9.3], prove that there is a small
(quasi-polynomial sized) sample space ofpseudolinear codes
in which most codes have the needed property. Furthermore,
they also present a deterministic polynomial time construction
of such a code (using derandomization techniques), see [12,
Sec. 9.3.3].

The concatenation ofCout andCin gives a codeCconcat of
rate at least(1 − 2ε)(R + 3ε) > R over an alphabetΣ of
size |Σ| = O(1/ε2). Moreover, given a received word of the
concatenated code, one can find all codewords that agree with
the received word on a fractionR+4ε of locations in at least
(1−ε) of the inner blocks. Indeed, we can do this by running
the natural list decoding algorithm, call itA, for Cconcat that
decodes each of the inner blocks to a radius of(1 − R − 4ε)
returning up tol = O(1/ε) possibilities for each block, and
then (1 − ε, l)-list recoveringCout.

The last component in this construction is aD = O(1/ε4)-
regular bipartite expander graph which is used to redistribute
symbols of the concatenated code in a manner so that an
overall agreement on a fractionR + 7ε of the redistributed
symbols implies a fractional agreement of at leastR + 4ε on
most (specifically a fraction(1−ε)) of the inner blocks of the
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concatenated code. In other words, the expander redistributes
symbols in a manner that “smoothens” the distributions of
errors evenly among the various inner blocks (except for
possibly a ε fraction of the blocks). This expander based
redistribution incurs no loss in rate, but increases the alphabet
size toO(1/ε2)O(1/ε4) = 2O(ε−4 log(1/ε)).

Codeword in

b
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b

〈a, b, c〉

D

D

Cin

Cin

Cin
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ou
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C
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d
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ord
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C
∗

a

c

a

Expander graph G

u1

u2

uN1

Cconcat

Fig. 6. The codeC∗ used in the proof of Theorem 5.4. We start with a
codeword〈u1, . . . , uN1

〉 in Cout. Then every symbol is encoded byCin

to form a codeword inCconcat (this intermediate codeword is marked by
the dotted box). The symbols in the codeword forCconcat are divided into
chunks ofD symbols and then redistributed along the edges of an expander
G of degreeD. In the figure, we useD = 3 for clarity. Also the distribution
of three symbolsa, b andc (that form a symbol in the final codeword inC∗)
is shown.

We now discuss some details of how the expander is used.
Suppose that the block length of the folded RS codeCout is
N1 and that ofCin is N2. Let us assume thatN2 is a multiple
of D, sayN2 = n2D (if this is not the case, we can make it
so by padding at mostD − 1 dummy symbols at a negligible
loss in rate). Therefore codewords ofCin, and therefore also
of Cconcat, can be thought of as being composed of blocks
of D symbols each. LetN = N1n2, so that codewords of
Cconcat can be viewed as elements in(ΣD)N .

Let G = (L, R, E) be aD-regular bipartite graph withN
vertices on each side (i.e.,|L| = |R| = N ), with the property
that for every subsetY ⊆ R of size at least(R + 7ε)N , the
number of vertices belonging toL that have at most(R+6ε)D
of their neighbors inY is at mostδN (for δ = ε2). It is a
well-known fact (used also in [3]) that ifG is picked to be
the double cover of a Ramanujan expander of degreeD >

4/(δε2), thenG will have such a property.
We now define our final codeC∗ = G(Cconcat) ⊆ (ΣD)N

formally. The codewords inC∗ are in one-one correspondence

with those ofCconcat. Given a codewordc ∈ Cconcat, its ND
symbols (each belonging toΣ) are placed on theND edges
of G, with theD symbols in itsi’th block (belonging toΣD,
as defined above) being placed on theD edges incident on
the i’th vertex of L (in some fixed order). The codeword in
C∗ corresponding toc has as itsi’th symbol the collection of
D symbols (in some fixed order) on theD edges incident on
the i’th vertex of R. See Figure V-C for a pictorial view of
the construction.

Note that the rate ofC∗ is identical to thatCconcat, and is
thus at leastR. Its alphabet size is|Σ|D = O(1/ε2)O(1/ε4) =
2O(ε−4 log(1/ε)), as claimed. We will now argue howC∗ can
be list decoded up to a fraction(1 − R − 7ε) of errors.

Given a received wordr ∈ (ΣD)N , the following is the
natural algorithm to find all codewords ofC∗ with agreement
at least(R + 7ε)N with r. Redistribute symbols according
to the expander backwards to compute the received wordr

′

for Cconcat which would result inr. Then run the earlier-
mentioned decoding algorithmA on r

′.
We now briefly argue the correctness of this algorithm. Let

c ∈ C∗ be a codeword with agreement at least(R + 7ε)N
with r. Let c

′ denote the codeword ofCconcat that leads to
c after symbol redistribution byG, and finally supposec′′

is the codeword ofCout that yields c
′ upon concatenation

by Cin. By the expansion properties ofG, it follows that all
but a δ fraction of N D-long blocks ofr′ have agreement
at least(R + 6ε)D with the corresponding blocks ofc′. By
an averaging argument, this implies that at least a fraction
(1−

√
δ) of theN1 blocks ofc′ that correspond to codewords

of Cin encoding theN1 symbols ofc′′, agree with at least a
fraction (1−

√
δ)(R+6ε) = (1− ε)(R+6ε) > R+4ε of the

symbols of the corresponding block ofr
′. As argued earlier,

this in turn implies that the decoding algorithmA for Cconcat

when run on inputr′ will output a polynomial size list that
will include c

′.

VI. CONCLUDING REMARKS

We close with some remarks and open questions. In the
preliminary version [1] of this paper, we noted that the folded
RS codes bear some resemblance to certain “randomness
extractors” constructed in [26], and wondered if some of the
techniques in this work and [14] could be used to construct
simple extractors based on univariate polynomials. In a recent
work [27], this has been answered in the affirmative in a
fairly strong sense. It is shown in [27] that the Parvaresh-
Vardy codes yield excellent “randomness condensers,” which
achieve near-optimal compression of a weak random source
while preserving all its min-entropy, and in turn these leadto
the best known randomness extractors (that are optimal up to
constant factors).

We have solved the qualitative problem of achieving list
decoding capacity over large alphabets. Our work could be
improved with some respect to some parameters. The size of
the list needed to perform list decoding to a radius that is
within ε of capacity grows asnO(1/ε) wheren is the block
length of the code. It remains an open question to bring this
list size down to a constant independent ofn, or even to
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f(ε)nc with an exponentc independent ofε (we recall that
the existential random coding arguments work with a list size
of O(1/ε)). We managed to reduce the alphabet size needed
to approach capacity to a constant independent ofn. However,
this involved a brute-force search for a rather large code.
Obtaining a “direct” algebraic construction over a constant-
sized alphabet (such as variants of algebraic-geometric (AG)
codes) might help in addressing these two issues. To this end,
Guruswami and Patthak [24] definecorrelated AG codes, and
describe list decoding algorithms for those codes, based ona
generalization of the Parvaresh-Vardy approach to the general
class of algebraic-geometric codes (of which RS codes are a
special case). However, to relate folded AG codes to correlated
AG codes like we did for RS codes requires bijections on the
set of rational points of the underlying algebraic curve that
have some special, hard to guarantee, property. This step seems
like an highly intricate algebraic task, and especially so in the
interesting asymptotic setting of a family of asymptotically
good AG codes over a fixed alphabet.

Finally, constructing binary codes (orq-ary codes for some
fixed, small value ofq) that approach the respective list
decoding capacity remains a challenging open problem. In
recent work [28], we show that thereexist q-ary linear con-
catenated codes that achieve list decoding capacity (in the
sense that every Hamming ball of radiusH−1

q (1 − R − ε)
has polynomially many codewords, whereR is the rate).
In particular, this results holds when the outer code is a
folded RS code. This is somewhat encouraging news since
concatenation has been the preeminent method to construct
good list-decodable codes over small alphabets. But realizing
the full potential of concatenated codes and achieving capacity
(or even substantially improving upon the Blokh-Zyablov
bound) with explicit codes and polynomial time decoding
remains a huge challenge. It seems likely that carefully chosen
soft information to pass from the inner decodings to the
outer algebraic decoder (see [29], [30] for examples of such
decoders) may hold the key to further progress in list decoding
concatenated codes.
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