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Abstract—We present error-correcting codes that achieve the symbols in the message to that in the codeword — thus, for
information-theoretically best possible trade-off betwen the rate 3 code with encoding functioR : ©¥ — %7, the rate equals

and error-correction radius. Specifically, for every 0 < R < 1 k:/n. The block lengthof the code equals;, and ¥ is its
and e > 0, we present an explicit construction of error-correcting ) '

codes of rateR that can be list decoded in polynomial time up to alphabet . ) ) ) . . .

a fraction (1 — R —¢) of worst-case errors. At least theoretically, The goal in decoding is to find, given a noisy received
this meets one of the central challenges in algorithmic codg word, the actual codeword that it could have possibly result
theory. from. If we target correcting a fractiop of errors ( will be

Our codes are simple to describe: they aréolded Reed-Solomon 3 ; ; ; : :
codes, which are in fact exactly Reed-Solomon (RS) codes, but called the error-correction radius or decoding radiugntthis

viewed as a code over a larger alphabet by careful bundling of amounts to finding Code\_/vords within (normalized Hamming)
codeword symbols. Given the ubiquity of RS codes, this is an distancep from the received word. We are guaranteed that

appealing feature of our result, and in fact our methods diretly  there will be a unique such codeword providedery two
yield better decoding algorithms for RS codes when errors amr  distinct codewords differ on at least a fractidp of positions,
in phased bursis. or in other words the relative distance of the code is at least

The alphabet size of these folded RS codes is polynomial2 H . th lative distandeof d i
in the block length. We are able to reduce this to a constant <F- owever, since (he relative dislaneeor a code mus

(depending one) using existing ideas concerning “list recovery” Satisfyd < 1 — R where R is the rate of the code (by the
and expander-based codes. Concatenating the folded RS csde Singleton bound), the best trade-off betweerand R that

with suitable inne.r codes, we get birjary codes that can effiently unique decoding permits is = py(R) = (1 — R)/2. But
decoded up totwice the radius achieved by the standard GMD s js an overly pessimistic estimate of the error-coicect
decoding. radius, since the way Hamming spheres pack in space, for
Index Terms—Algebraic decoding, Folded Reed-Solomon mgostchoices of the received word there will be at most one
codes, List Decoding, List Recovery, Reed-Solomon Codes codeword within distance from it even forp much greater
thand /2. Thereforealwaysinsisting on a unique answer will
|. INTRODUCTION preclude decoding most such received words owing to a few
A. Background on List Decoding pathological received words that have more than one coadkwor

RROR-CORRECTING codes enable reliable commun\f\—'Ithln d!stance roughly)'/2 frqm them_.
cation of messages over a noisy channel by cleverg/A notion called list decoding provides a clean way to get
I

introducing redundancy into the message to encode it into aound this predicament, and yet deal with worst-case error

codeword, which is then transmitted on the channel. This Fi)é':‘ltitsetrrc];';flnSg;:\:ﬁggoﬁgﬁhtﬁﬁsﬁgd?rrc;;nter?;'rrzgéﬁ;gg
accompanied by a decoding procedure that recovers thector . . gistance .

. . \gord. The notion of list decoding itself is quite old and date
message even when several symbols in the transmitted code-

word are corrupted. In this work, we focus on the adversaribf"Ck to work in 1950's by Elias[[4] and Wozencraffl [5].
pted. ' .Elowever, the algorithmic aspects of list decoding were not
or worst-case model of errors — we do not assume anythi

ng . i . :
about how the errors and error locations are distributecbdy r(gnved until the more recent workSI[6L1[7] which studiec:th

an upper bound on the total number of errors that may l%oblem for complexity theor_et|c motwaﬂo_ns.
s . Let us call a cod&€” (p, L)-list decodablef the number of
caused. The central trade-off in this theory is the one betwe . . .
; codewords within distanceof any received word is at moét
the amount of redundancy needed and the fraction of errqrs . . ) .
. 0 obtain better trade-offs via list decoding, we néedl)-list
that can be corrected. The redundancy is measured byatae : ! .
L : . ._decodable codes whefeis bounded by a polynomial function
of the code, which is the ratio of the the number of informatio X o 7 .
of the block length, since this is aa priori requirement
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We note that since the original messag¢ has Rn sym- 1 — /R is the largest radius for which small list size can be
bols, it is information-theoretically impossible to penfothe shown generically, via the so-called Johnson bound to argue
decoding if at most a fractiofR — ¢) of the received symbols about the number of codewords in Hamming balls using only
agree with the encoding of1 (for somee > 0). This holds information on the relative distance of the code, Efl[13].
even for the erasure channel, and even if we are told in aédvancin a recent breakthrough papér]14], Parvaresh and Vardy
which symbols will be erased! Therefore, for any given ratg@resented codes that are list-decodable beyondl theyv' R
list decoding allows one to decode up to the largest fractioadius for low ratesR. The codes they suggest are variants
of errors that one can meaningfully hope to correct. of Reed-Solomon (RS) codes obtained by evaluating>

The above-mentioned list decodable codes are, howeverorrelated polynomials at elements of the underlying field
non-constructive. In order to realize the potential of listwith m = 1 giving RS codes). For any: > 1, they achieve
decoding, one needs explicit constructions of such codes, ahe error-correction radiup%“\l,) (R) = 1— ""/mm™Rm™. For
on top of that, polynomial time algorithms to perform listateskR — 0, choosingn large enough, they can list decode up
decoding. After essentially no progress in this directioover to radiusl — O(Rlog(1/R)), which approaches the capacity
30 years, the work of Sudahi[7] and improvements to ifidl [10], — R. However, forR > 1/16, the best choice ofn (the
achieved efficient list decoding up te:s(R) = 1— VR erors  one that maximizeg{®’ (R)) is in factm = 1, which reverts
for an important family of codes called Reed-Solomon codesack to RS codes and the error-correction radius /R.
Note thatl — V'R > py(R) = (1 — R)/2 for every rateR, (See Figurd]l where the bound- ¥/4R? for the casem —

0 < R <1, so this result showed that list decoding can bg s plotted — except for very low rates, it gives a small
effectively used to go beyond the unique decoding radius fpRprovement ovepcs(R).) Thus, getting arbitrarily close to

every rate (see Figuf@ 1). The rafigs(R?)/pu (1) approaches capacity for some rate, as well as beating the v/R bound
2 for ratesR — 0, enabling error-correction when the fractiorfor every rate, both remained offen
of errors approaches 100%, a feature that has found numerous
applications outside coding theory, see for exampplé [, [
Chap. 12]. B. Our Results
In this paper, we describe codes that get arbitrarily close
List decoding capacity (s work) —e— to the list decoding capacity..,,(R) for every rate. In other

Unique decoding radius ---&---

Guruswam; Sudan -0 words, we give explicit codes of rat® together with polyno-
os L5 ] mial time list decoding up to a fractioh— R — ¢ of errors
for every rateR and arbitrarye > 0. As remarked before,
this attains the information-theoretically best possttaele-off
o8 r e, 1 one can hope for between the rate and error-correction sadiu
N S While the focus of our presentation is primarily on the major
b TEeel, e | asymptotic improvements we obtain over previous methods,
a e we stress that our results offers a complexity vs. perfoicean
) trade-of and gives non-trivial improvements, even for ¢éarg
rates and modest block lengths, with a value of the “folding
&*ﬂ-@:% parameter’m as small ast. A discussion of the bounds for
) Fead small values ofn appears in Sectio@IIED.
0 0z 04 05 0s 1 Our codes are simple to describe: they &méded Reed-
R RATE) > Solomon codeswvhich are in faciexactlyReed-Solomon (RS)
codes, but viewed as a code over a larger alphabet by careful
Fig. 1. Error-correction radiug plotted against the rat& of the code for bundling of codeword symbols. Given the ubiquity of RS
known algorithms. The best possible trade-off, i.e., cépas p = 1 — R, . : .
and our work achieves this. codes, this is an appealing feature of our result, and in fact
our methods directly yield better decoding algorithms f& R
Unfortunately, the improvement provided by [10] ovetodes when errors occur phased burst¢a model considered
unique decoding diminishes for larger rates, which is dtuain [5]).
the regime of greater practical interest. For rafes— 1, Our result extends easily to the problemlist recovery(see
the ratiopis—&f"" approacheg, and already for raté? = 1/2  Definition[5.1). The biggest advantage here is that we are abl
the ratio Is at most.18. Thus, while the results of[7][T10] to achieve a rate that is independent of the size of the input
demonstrated that list decoding always, for every ratebesa |ists. This is an extremely useful feature in concatenatstec
correcting more errors than unique decoding, they fell shafonstructions. We are able to use this to reduce the alphabet
of realizing the full quantitative potential of list decod. size needed to achieve capacity, and also obtain results for
The boundpcs(R) stood as the best known error-correctiominary codes. We briefly describe these results below.
radius for efficient list decoding for several years. In faoh-
structing(p, L)-list decodable codes of rafe for p > pas(R) Lindependent of our work, Alex Vardy (personal communiaaticon-

and polynomially bounded, regardless of the ComplexityStrUCtEd a variant of the code defined nl[14] which could Is¢ diecoded
: with fraction of errors more tharl — v/R for all rates R. However, his

of a_Ctua”y performing |i5.t quOding to radius itself was construction gives only a small improvement over the- v/R bound and
elusive. Some of this difficulty was due to the fact thadoes not achieve the list decoding capacity.
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To get withine of capacity, the folded RS codes that wevariant of RS codes where the message consists of two (or
construct have alphabet sizeé”(!/¢) where n is the block more) independent polynomials over some fi@ldand the
length. By concatenating our codes of rate closel tthat encoding consists of the joint evaluation of these polyradni
are list recoverable) with suitable inner codes followed bat elements of (so this defines a code OVE?) A naive way
redistribution of symbols using an expander graph (sinibar to decode these codes, which are also called “interleaved-Re
a construction for linear-time unique decodable code$§]h [3Solomon codes,” would be to recover the two polynomials in-
we can get withine of capacity with codes over an alphabedtividually, by running separate instances of the RS decdfer
of size20(="*1es(1/2)) | A counting argument shows that codesourse, this gives no gain over the performance of RS codes.
that can be list decoded efficiently to withinof the capacity The hope in these works was that something can possibly be
need to have an alphabet size25¥!/¢)| so the alphabet size gained by exploiting that errors in the two polynomials heipp
we attain is in the same ballpark as the best possible. at “synchronized” locations. However, these works couldl no

For binary codes, the list decoding capacity is known to kgve any improvement over the— /R bound known for RS
poin(R) = H~1(1—R) whereH (-) denotes the binary entropycodes for worst-case errors. Nevertheless,réoxdom errors
function [9], [16]. We do not know explicit constructions ofwhere each error replaces the correct symbol by a uniform
binary codes that approach this capacity. However, using aandom field element, they were able to correct well beyond a
codes in a natural concatenation scheme, we give polynonfialction 1 — /R of errors. In fact, as the order of interleaving
time constructible binary codes of ratg that can be list (i.e., number of independent polynomials) grows, the radiu
decoded up to a fractiopy,.i, (R) of errors, wherey,.,(R) is  approaches the optimal value— R. Since these are large
the “Zyablov bound”. See Figufd 2 for a plot of these boundalphabet codes, this model of random errors is not intergsti
from a coding-theoretic perspecﬂzethough the algorithms
are interesting from an algebraic viewpoint.

In [20], Parvaresh and Vardy gave reeuristic decoding
algorithm for these interleaved RS codes based on multi-
variate interpolation. However, the provable performaonte
these codes coincided with the — /R bound for Reed-
Solomon codes. The key obstacle in improving this bound
was the following: for the case when the messages are pairs
(f(X),9(X)) of degreek polynomials, two algebraically
independent relations were needed to identify bg{hY)
and g(X). The interpolation method could only provide one
such relation in general (of the for®@ (X, f(X),g(X)) =0
for a trivariate polynomialQ(X,Y, Z)). This still left too
much ambiguity in the possible values @f(X), g(X)). (The
approach in[[20] was to find several interpolation polyndmjia
0 02 04 06 o8 1 but there was no guarantee that they were not all algebhaical

RRATE) > dependent.)

Then, in [14], Parvaresh and Vardy put forth the ingenious
Fig. 2.  Error-correction radiug of our algorithm for binary codes plotted

against the rat&?. The best possible trade-off, i.e., capacitypis= H—!(1— Idea}, of obtalnlr_wg the extra algepralc r,el_atlon e.ss_entl‘éftby
R), and is also plotted. free” by enforcing it as ama priori condition satisfied at the

encoder. Specifically, instead of letting the second patyiad
g(X) to be an independent degreepolynomial, their insight
. ) was to make it correlated withi(X) by a specific algebraic
C. Bibliographic Remarks condition, such agy(X) = f(X)¢ mod E(X) for some
These results were first reported il [1]. We would likéntegerd and an irreducible polynomidl(X) of degreek+1.
to point out that the presentation in this paper is somewhatThen, once we have the interpolation polynomial
different from the original papersTiL4[][1] in terms of tetbal Q(X,Y,Z), f(X) can be obtained as follows: Reduce
details, organization, as well as chronology. With the liie0é the coefficients of Q(X,Y,Z) modulo E(X) to get a
hindsight, we believe this alternate presentation to be&m polynomial T(Y,Z) with coefficients fromF[X]/(E(X))

and more self-contained direct than the description[in [1dnd then find roots of the univariate polynomiA(Y, Y'?).
which used the results of Parvaresh-Vardy as a black-box.

The exact relationship of our codes to the Parvaresh-Vardythe resulting code is in fact just a Reed-Solomon code whbee t
construction is spelled out in detail in SectibnJI-C. BeJowevaluation points belong to the subfiéiiof the extension field oveF of
we discuss some technical aspects of the original devell)pm%eg"e?3 two. . .

. . . . . This is because, as pointed out by Piotr Indyk, over largbapts one
of this material, in order to shed “ght on the origins of OUEan reduce decoding from uniformly random errors to deapdiiom erasures
work. We also point the reader to the survieyl[17] for a dethilevith a negligible loss in rate. The idea is to pad each codevsgmbol with
treatment of recent advances in algorithms for list deog)din a small trail of0’s; a uniformly random error is highly unlikely to keep each

. . %ctheseo’s intact, and can thus be detected and declared as an erbsre
Two mdependent works by Coppersmlth and Sudan [1 all that decoding from a fractioh — R of erasures with rat&? is easy
and Bleichenbacher, Kiayias and Yurlig1[19] considered theing Reed-Solomon codes.
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This was the key idea in[T14] to improve the — VR
decoding radius for rates less thayp16. For ratesR — 0,
their decoding radius approachéd- O(Rlog(1/R)). -
The modification to using independent polynomials, how- i
ever, does not come for free. In particular, since one sehds a e
least twice as much information as in the original RS code, )|
there is no way to construct codes with rate more th#n )
in the PV scheme. If we use > 2 correlated polynomials
for the encoding, we incur a factdr/s loss in the rate. This
proves quite expensive, and as a result the improvements ove
RS codes offered by these codes are only manifest at very low
rates. words, C' is obtained fromC’ by truncating the last’ — n
The central idea behind our work is to avoid this rate loss [Bymbols. Note thatn dividesn.
making the correlated polynomia{ X ) essentially identical to  Definition 2.1 (Folded Reed-Solomon Cod&he m-
the first (sayg(X) = f(yX)). Then the evaluations gf(X) folded version of the RS cod€, denotedFRSk . 1, IS @
can be inferred as a simple cyclic shift of the evaluations ebde of block lengthV = n/m overF™, wheren < |F| —1
f(X), so intuitively there is no need to explicitly include thosés the largest integer that is divisible by. The encoding
too in the encoding. of a message(X), a polynomial overF of degree at most
k, has as itsj’'th symbol, for0 < j < n/m, the m-tuple
(f(y7™), f(7mFY), | f(7™F ™ 1)), In other words, the
o o ) codewords of FRSg, .., are in one-one correspondence
We begin with a description of our code construction, foldegith those of the RS codé' and are obtained by bundling
Reed-Solomon codes, and outline their relation to F’artnare§()gether consecutiver-tuple of symbols in codewords .
Vardy codes in Sectiofillll. In Sectidllll, we present angye jljustrate the above construction for the choice= 4
analyze a_trivariate interpolation based (_jecode_r for BIRS Figure[3. The polynomialf(X) is the message, whose
codes, which lets us approach a decoding radius 6fR*/*  Reed-Solomon encoding consists of the values fofat
With rat_eR. In Se_ctiorﬂ}}’, we extend th_e approach(to+ 1)- 20,21, ..., 7n_1 Wherez; = ~i. Then, we perform a folding
variate interpolation for any > 3, allowing us to decode up gperation by bundling together tuples dfsymbols to give a
to radius1 — R*/(**1) and by pickings large enough obtain codeword of length /4 over the alphabe™.
our main result (Theoreli4.4) on explicit codes achievisg li  note that the folding operation does not change the rate
decoding capacity. In Sectiddl V, we generalize our decoding of the Reed-Solomon codé. The relative distance of the
algorithm to the list recovery setting with almost no 0ss ify|ged RS code also meets the Singleton bound and is at least
rate, and use this powerful primitive to reduce the alphalzet | _ p.
of our capacity-achieving codes to a constant depending onl ramark 2.1 (Origins of term “folded RS codesJhe ter-

on distance to capacity as well as to copstruct binary Co_dﬁﬁwology of folded RS codes was coined [A][15], where an
list-decodable up to the Zyablov bound. Finally, we closthwi gi4orithm to correct random errors in such codes was present
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Fig. 3. Folding of the Reed Solomon code with parameter= 4.

D. Organization

some remarks in Sectidd VI, (for a noise model similar to the one used [nJ[18[][19] that
was mentioned earlier). The motivation was to decode RS
Il. FOLDED REED-SOLOMON CODES codes from many random “phased burst” errors. Our decoding

In this section, we will use a simple variant of Reed@lgorithm for folded RS codes can also be likewise viewed as

Solomon codes called folded Reed-Solomon codes for whi@h algorithm to correct beyond the- /R bound for RS codes
we can beat thé— /R decoding radius possible for RS codedf €rrors occur in large, phased bursts (the actual erronsbea
In fact, by choosing parameters suitably, we can decode ci@§iversarial).

to the optimal fractionl — R of errors with rateR.

B. Why might folding help?

A. Description of Folded Codes Since folding seems like such a simplistic operation, and
Consider a Reed-Solomon cod# = RSy p+[n/, k] consist- the resulting code is essentially just a RS code but viewed as
ing of evaluations of degrek polynomials overf at the set a code over a large alphabet, let us now understand why it
F* of nonzero elements of. Let ¢ = |F| = n’ + 1. Let can possibly give hope to correct more errors compared to the
~ be a generator of the multiplicative grolify, and let the bound for RS codes.
evaluation points be ordered asvy,~2,...,7™ L. Using all Consider the folded RS code with folding parameter= 4.
nonzero field elements as evaluation points is one of the méstst of all, decoding the folded RS code up to a fractioof
commonly used instantiations of Reed-Solomon codes.  errors is certainly not harder than decoding the RS code up
Let m > 1 be an integer parameter called tfi@lding to the same fractiop of errors. Indeed, we can “unfold” the
parameter Definen < n’ to be the largest integer that isreceived word of the folded RS code and treat it as a received
divisible by m. Let C' be the[n, k]r RS code that is defined word of the original RS code and run the RS list decoding
by the set of evaluation points,~v,~2,...,y"~!. In other algorithm on it. The resulting list will certainly includella



folded RS codewords within distangeof the received word, do), but as such does not lead to any better codes for list
and it may include some extra codewords which we can, décoding.
course, easily prune. Here comes our second main idea. Let us compare
In fact, decoding the folded RS code is a strictly easi¢he folded RS code to a PV code of order (in-
task. It is not too hard to see that correctingl’ errors, stead of orderm) for the set of evaluation points
where the errors occur ifi contiguous blocks involves far few {1,~,...4™ 2, 4™ ..., 4" "™ ..., v,_2}. We find that in the
error patterns than correcting?” errors that can be arbitrarily PV encoding off, for every0 < i < n/m — 1 and every
distributed. As a concrete example, say we want to corrett< j < m — 1, f(y™*/) appears exactly twice (once
a fraction1/4 of errors. Then, if we use the RS code, ouas f(y™*7/) and another time ag, (y~ty™*7)), whereas it
decoding algorithm ought to be able to correct an error patteappears only once in the folded RS encoding. (See FIdure 4 for
that corrupts everyt'th symbol in the RS encoding of (X) an example whem: = 4 and s = 2.) In other words, the PV
(i.e., corruptsf(xz4;) for 0 < ¢ < n/4). However, after the
folding operation, this error pattern corrupts every onehef .
symbols over the larger alphabEt, and thus need not be -~
corrected. In other words, for the same fraction of errans, t
folding operation reduces the total number of error patern
that need to be corrected, since the channel has less figxibik,
in how it may distribute the errors. A
It is of course far from clear how one may exploit this to
actually correct more errors. To this end, algebraic idéas t
exploit the specific nature of the folding and the relatiopsh
between a polynomigl(X') and its shifted counterpaff{yX) Fig. 4. The correspondence between a folded Reed-Solomde @eith

will be used. These will become clear once we describe owr= 4 andz; = ~%) and the Parvaresh Vardy code (of order 2) evaluated

. . over {1,v,v%,4%,...,7"~ %, ...,y 2}. The correspondence for the first
algorlthms later in the p“a_per. L . block in the folded RS codeword and the first three blocks RN codeword
We note that above “simplification” of the channel is nok shown explicitly in the left corner of the figure.

attained for free since the alphabet size increases after th

folding operatioﬂ. For folding parameter that is an absolute . .
constant, the increase in alphabet size is moderate and fﬁl!lqg folded RS codes have the same information, but the rate of

alphabet remains polynomially large in the block Iengtli)e folgled RS codes is bigger by a factor-?ééfm—? —2- %

(Recall that the RS code has an alphabet size that is linea I%codmg the foldgd RS codes ffrom.a f:cactlpnofferrorr]s

the block length.) Still, having an alphabet size that isrgda reduces to correcting the same ractlp_no errors for t. N

polynomial is somewhat unsatisfactory. Fortunately, s PV code. But the rate vs. error-correction radius tradeiff

alphabet reduction techniques, which are used in SeEiGh V_better for the _folded RS code since it has (for large enough
almost) twice the rate of the PV code.

can handle polynomially large alphabets, so this does re IO(gnln other words, our folded RS codes are chosen such that

a big problem. Moreover, the benefits of our results kick iﬂ1ey are “compressed” forms of suitable PV codes, and thus

already for very small values of: (see SectioRIILD). have better rate than the corresponding PV code for a similar
) error-correction performance. This is where our gain isj an

C. Relation to Parvaresh Vardy codes using this idea we are able to construct folded RS codes of

In this subsection, we relate folded RS codes to thateR that are list decodable up to radius roughly **/Rs

Parvaresh-Vardy (PV) code5714], which among other thindsr any s > 1. Picking s large enough lets us get within any

will help make the ideas presented in the previous subsectidesired: from capacity.

more concrete.

The basic idea in the PV codes is to encode a polynoghial  |||. TRIVARIATE INTERPOLATION BASED DECODING

by the evaluations of > 2 polynomialsfy = f, f1,..., fs—1 The list decodin :

‘ o d ) g algorithm for RS codes froid [7[.-]10]
where ({Z(X)d N fz‘l_(Xc)j _ISIOd EI(X) fc_);]:i? apprtlnpirlate is based on bivariate interpolation. The key factor drivihg
powerd (and some irreducible polynomial(X)) — let us greement parameteérneeded for the decoding to be suc-

;?”.S tr:je o_lr)oller Ofl such_:Ecg(de. Ogrﬂ:irSt main itdea_l s tohpic essful was the((, k)-weighted) degre® of the interpolated
€ irreducible polynomiall(X) (and the parameted) in suc bivariate polynomial. Our quest for an improved algorithon f

a manner that every polynomiglof degree at most satisfies f : . :

S 7 r _ g olded RS codes will be based on trying to lower this degree
th? ftc;]llowmg 'd?m't);'{th)d_ If(X)f' ﬁoc_}_f(X), fvvlr;jer(;:- R by using more degrees of freedom in the interpolation.
7 1S the generalor ot the underlying ield. Thus, a folde pecifically, we will try to usetrivariate interpolation of
code with bundling using an as above is in fact exactlya polynomial Q(X, Y1,Y2) through n points in F3. This

the PV code of ordes = m for the set of evaluation points enables performing the interpolation with — 0(6’/%)
m A 2m (n/m—1)m P H H i ; - . !

{167 U 7t7th Si I}iThE’ 'S n:jce asit sfhtl)(;/vsdtfllqast PV \which is much smaller than th® (v kn) bound for bivariate

codes can meet the Singleton bound (since folde Coﬂﬁ%rpolation. In principle, this could lead to an algonthhat

iAR2/3 1/2
4However, we note that most of the operations in decodingtatie place quk_s for agreement fraCU.OR. /% instead ofR /. . Of Cqurse'
in the original field. this is a somewhat simplistic hope and additional ideas are

Flyws) | f(7%a)
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needed to make this approach work. We now turn to the taskaafndition under which a polynomig) with the stated property
developing a trivariate interpolation based decoder anglipg  exists.) |
that it can indeed decode up to a fractibpr- R?/3 of errors.

B. Using trivariate interpolation for Folded RS codes

Let us now see how trivariate interpolation can be used in
e context of decoding the folded RS cod®& = FRSr + m &

of block lengthN = n/m. (Throughout this section, we will
usen to denote the block length of the “unfolded” RS code.)
Given a received word: € (F™)Y for C” that needs to
be list decoded, we defing € F" to be the corresponding
“unfolded” received word. (Formally, let thgth symbol ofz

A. Facts about trivariate interpolation

We begin with some basic definitions and facts concerni@lg
trivariate polynomials.

Definition 3.1: For a polynomial Q(X,Y1,Y2)
F[X,Y1,Ys], its (1,k, k)-weighted degree is defined to
be the maximum value of + kj; + kj» taken over all
monomials X Y{' Yy that occur with a nonzero coefficient
in Q(valayé) . . 1 I i

Definition 3.2 (Multiplicity of zeroes)A polynomial b_e (Z“L Z v fé’rmo’g fo<r ?Vganjd(?ivl. I:fr)] };ifafﬁegg:ge?y
Q(X,Y1,Y;) over F is said to have a zero of multiplicity Ygmtl = Zjl ~J = ‘ y

. . to be the sef0,1,2,....n—1}\{m—-1,2m—-1,...,n—1}
r > 1atapointla, by, 62) € B if QX +a, Yi+01,Ya4B2) 5 letng = |I]. Note thatng = (m — 1)n/m.

Eg:ffirc]:(i)enTo(r']r%rzlzleO:ege(g‘r?r?e I?:jnct)rr]r?i;]\y}g?] ;jzngnizlrg Supposef (X)) is a polynomial whose encoding agrees with
’ 9 Y3 € z on at least locations. Then, here is an obvious but important

i+ j1+ j2.) ion:
Lemma 3.3:Let {(c, yi1, yi2) }2, be an arbitrary set o observation: o
triples fromF3. Let Q(X, Y1, Ya) € F[X, Y1, Y2] be a nonzero For at leastt(m — 1) values ofi, i € I, both the

polynomial of (1, k, k)-weighted degree at mo#? that has a equalitiesf(') = y; and f(y""!) = yi41 hold.
zero of multiplicity - at (o, yi1, yi2) for everyi, 1 < i < ny. Define the notatliO@(X) = f(yX). Therefore, if we consider
Let £(X),g(X) be polynomials of degree at mastsuch that the no triples (v',yi, yi1) € F* for i € I, then for at least
for at leastt > D/r values ofi, we havef(a;) = y; and t(m — 1) triples, we havef(y') = y; and g(7') = yit1.
g(a;) = yio. Then,Q(X, f(X),g(X)) = 0. This suggests that interpolating a polynom@(X, Y7, Y5)
Proof: If we define R(X) = Q(X, f(X),g(X)), then through thesenq triples and employing Lemmia_3.3, we can
R(X) is a univariate polynomial of degree at mdst Now, hope thatf(X) will satisfy Q(X, f(X), f(yX)) = 0, and
for every i for which f(a;) = i and g(a;) = y», then somehow use this to finf(X). We formalize this in
(X — a;)" divides R(X) (this follows from the definition the following lemma. The proof follows immediately from the
of what it means forQ to have a zero of multiplicity- at preceding discussion and Lemial3.3.
(s, fl), g())). Therefore ifrt > D, thenR(X) has more Lemma 35:Let z € (F™)V and lety € F" be the
roots (counting multiplicities) than its degree, and so itsin unfolded version ofz. Let Q(X,Y;,Y2) be any nonzero
be the zero polynomial. m polynomial overF of (1, k, k)-weighted degree ab that has
Lemma 3.4:Given an arbitrary set of no triples a zero of multiplicity  at (v',y;, y:41) for i € I. Lett
{(viyyin,yi2) 2, from F3 and an integer parameterbe an integer such that> ﬁ. Then every polynomial
r > 1, there exists a nonzero polynomid&)(X,Y;,Ys) f(X) e F[X] of degree at most whose encoding according
over F of (1,k,k)-weighted degree at mosb such that to FRSr, ., . agrees withz on at leastt locations satisfies
Q(X,Y1,Y3) has a zero of multiplicity- at (v, yi1,yi2) for  Q(X, f(X), f(7X)) = 0.

allie{1,2...,n0}, provided Lemmad3¥ anfl 3.5 motivate the following approach to list
3 decoding the folded RS Cod€RSr .., 1. Herez ¢ (F™)N
D T+ 2 . ) T 7
=] > n0< 5 ) (1) is the received word angt = (yo,y1,---,Yn—1) € F* is its

. o ~unfolded version. The algorithm uses an integer multipfici
Moreover, we can find such@(X, Y1, Y2) in time polynomial parameter- > 1, and is intended to work for an agreement
in ng, r by solving a system of homogeneous linear equatiopgrameter < ¢t < N.
overF. . L .

Proof: The condition thatQ(X,Y:,Ys) has a zero of Algorithm Trl.var?ate—FRS—decc_)der. _
multiplicity » at a point amounts t¢"}*) homogeneous linear ~ Step 1 (Trivariate Interpolation) Define the degree paramet
conditions in the coefficients @. The number of monomials 3 /73
. . = 1 1.
in Q(X,Y1,Ys) equals the number, say;(k, D), of triples D = [¥/Enor(r + 1)(r +2)] + 2)

(i, j1, j2) of nonnegative integers that obey kj; + kjo < D. Interpolate a nonzero polynomi&l(X, Y7, ¥2) with
One can show that the numh®§ (k, D) is at least as large as coefficients fromF with the following two proper-
the volume of the 3-dimensional regidm + ky; + kys < D | ties: (i) Q has(1, k, k)-weighted degree at mog,
z,y1,y2 = 0} C R? [I4]. An easy calculation shows that the and (i) Q has a zero of multiplicity: at (v*, v;, yi+1)
latter volume equal#—i. Hence, if% > no(TJgQ), then the for i € I. (Lemma[3} guarantees the feasibility
number of unknowns exceeds the number of equations, and of this step as well as its computability in time
we are guaranteed a nonzero solution. (See Rematk 3.1 for polynomial inr andng (and hencen).)

an accurate estimate of the number of monomialglok, k)- Step 2 (Trivariate “Root-finding”) Find a list of all de-

weighted degree at mo#, which sometimes leads to a better gree < k polynomials f(X) € F[X] such that



Q(X, f(X), f(vX)) = 0. Output those whose en-F, so thaty™ = 1 iff m is divisible by (¢ —1). We conclude

coding agrees witlx on at least locations.

Ignoring the time complexity of Step 2 for now, weimpossible sincd +¢+¢°+---+¢" ' =

thatg — 1 must dividel +q+q?+- - -+¢*~L. This is, however,
(mod (¢ — 1))

can already claim the following result concerning the errofnd 0 < b < ¢ — 1. This contradiction proves that(X)

correction performance of this strategy.
Theorem 3.6:The algorithm Trivariate-FRS-decoder
successfully list decodes the

code FRSp~ ., r UP to a number of errors equal tof(X)?

3 mk 2 1 2
<N—{NVKG;EJ O+;H1+ﬁJ—2>
Proof: By Lemmal3b, we know that any(X) whose
encoding agrees withe on ¢ or more locations will be
output in Step 2, provided > ﬁ. For the choice

of D in @), this condition is met for the choice

1+ L{’/(n’i"f)g (1+3) (1+2) + Gtpy)- The number of
errors is equal toN — ¢, and recalling than = mN and
ng
decoding radius. |

The rate of the folded Reed-Solomon codefis= (k +

1)/n > k/n, and so the fraction of errors corrected (for Iarg%

mR

enoughr) is 1 — (.75

decoding their codes using trivariate interpolationl [1%he
bound becomes better for larger valuesnof and letting the

(m — 1)n/m, we get the claimed bound on the lis

has no such factor of degree less than 1, and is therefore
irreducible.

folded Reed-SolomonFor the second part, we have the simple but useful identity

f(X9) that holds for all polynomials irff,[X].
Therefore, f(X)? — f(vX) = f(X?) — f(vX). The latter
polynomial is clearly divisible byX? — ~vX, and thus also
by X721 —~. Hencef(X)? = f(yX) (mod E(X)) which
implies thatf(X)? mod E(X) = f(yX) since the degree of
f(vX) is less than; — 1. [ |

Armed with this lemma, we are ready to tackle the trivariate
root-finding problem.

Theorem 3.8:There is a deterministic algorithm that on
input a finite fieldF of size ¢, a primitive elementy of the
ield F, a nonzero polynomial (X, Y1,Y3) € F[X, Y7, Y3] of
degree less thagin Y7, and an integer parametgér< ¢ — 1,
utputs a list of all polynomialsf(X) of degree at most

satisfying the conditionQ(X, f(X), f(vX)) = 0. The

3
. Note that form = 2, this is algorithm has run time polynomial ig.
just the bound — (2R)?/3 that Parvaresh-Vardy obtained for

Proof: Let E(X) = X971 —~. We know by Lemm&317
that £(X) is irreducible. We first divide out the largest power
of F(X) that dividesQ(X,Y1,Y2) to obtain Qo (X, Y7,Y2)

folding parametern grow, we can approach a decoding radiugthere Q(X, Y3, Ys) = E(X)?Qo(X, Y1, Y2) for someb > 0

of 1 — R%/3.

C. Root-finding step

In light of the above discussion in Sectibn1ll-B, the onl

missing piece in our decoding algorithm is efficientway to

solve the following trivariate “root-finding” type problem
Given a nonzero polynomia) (X, Y7, Y>) with co-
efficients from a finite field® of sizeq, a primitive
elementy of the fieldF, and an integer parameter
k < g —1, find a list of all polynomialsf(X) of
degree at most such thaQ(X, f(X), f(vX)) = 0.

The following simple algebraic lemma is at the heart of our

solution to this problem.

Lemma 3.7:Let F be the fieldF, of sizeq, and lety be a
primitive element that generates its multiplicative grotipen
we have the following two facts:

1) The polynomialE'(X) dof xa-1 _ ~ is irreducible over
F

2) Every polynomialf (X) € F[X] of degree less thap—1
satisfiesf (vX) = f(X)? mod E(X).
Proof: The fact thatE(X) = X9~ — v is irreducible

andE(X) does not divid&)o (X, Y1, Y>). Clearly, if f(X) sat-
isfies Q(X, £(X), f(3X)) = 0, thenQo (X, £(X), f(4X)) =

0 as well, so we will work with@q instead of@). Let us view
Qo(X,Y1,Ys) as a polynomially (Y7, Ys) with coefficients

¥rom F[X]. Further, reduce each of the coefficients modulo

E(X) to geta polynomial’ (Y7, Y2) with coefficients from the

extension field® %' F[X]/(E(X)) (this is a field sinceZ(X)

is irreducible overF). We note that7'(Y1,Y>) is a nonzero
polynomial sinceQo (X, Y1, Y>) is not divisible by E(X).

In view of LemmdZ3, it suffices to find degreek polyno-
mials f(X) satisfyingQo (X, f(X), f(X)?) (mod E(X)) =
0. In turn, this means it suffices to find elemeiitss F sat-
isfying T(I', T'?) = 0. If we define the univariate polynomial
R(Y7) ef T(Y1,Y{), this is equivalent to finding all' € F
such thatR(I") = 0, or in other words the roots iR of R(Y}).

Now R(Y7) is a nonzero polynomial sinc&®(Y;) = 0
iff Y2 — Y}’ divides T'(Y3,Y2), and this cannot happen as
T(Y1,Y2) has degree less than less tham Y;. The degree
of R(Y1) is at mostdg where d is the total degree of
Q(X,Y1,Y3). The characteristic off is at mostg, and its
degree over the base field is at madiy¢q. Therefore, we
can find all roots of R(Y:) by a deterministic algorithm

overF, follows from a known, precise characterization of a'lunning in time polynomial ind, ¢ [22]. Each of the roots

irreducible binomials, i.e., polynomials of the for® — ¢,

will be a polynomial inF[X] of degree less thag — 1.

see for instance[[21, Chap. 3, Sec. 5]. For completenegs, e e find all the roots, we prune the list and only output

and since this is an easy special case, we now prove thiSse roots off(X)

that have degree at mostand satisfy

fact. SupposeF(X) is not irreducible and some irreducibIeQO(X F(X), f(4X)) = 0. -

polynomial f(X) € F[X]| of degreeb, 1 < b < ¢ — 1, divides
it. Let ¢ be a root off(X) in the extension field .. We then
have (¢ ~! = 1. Also, f(¢) = 0 implies ¢9~! = ~. These

b_
equations together implyyqqTll = 1. Now, ~ is primitive in

With this, we have a polynomial time implementation of the
algorithm Trivariate-FRS-decoder. There is the technicality
that the degree of)(X,Y7,Y2) in Y7 should be less thaaq.
This degree is at modD/k, which by the choice oD in @)



is at most(r + 3)¢/n/k < (r + 3)¢"/%. For a fixedr and By Lemmad3B[314 and the degree bould (2), the algorithm
growing ¢, the degree is much smaller than (In fact, for outlined above will work as long as
constant rate codes, the degree is a constant independent of
n.) By Ie_tting.mm. grow in Theqrenﬂ]& and recalling that no —e(m+1) > i/anO (1 + l) (1 + 2) + 1.
the running time is polynomial im,r, we can conclude the T T T
following main result of this section.

Theorem 3.9:For everye > 0 and R, 0 < R < 1, there is

a family of m-folded Reed-Solomon codes fet = O(1/¢) 1 2 1
that have rate at leagt and which can be list decoded upto 7 —1—e(m+1) > i/an (1 + ;) (1 + ;) +
a fraction1 — (1 + ¢)R?/3 of errors in time polynomial in the

block length and! /e. Recalling that, = Nm, the above is satisfied if

2
D. Alternate decoding bound for high rates and practical e < <L>N 1— §/<E> (1+ l) (1+ 2))
m n r r

Recalling thathy = n — 1 < n, the above is satisfied if

considerations +1
2/3
In the discussion above, the fraction of errmps(ﬁ—i) , _ Ll
+
i+ (m,2) _ p2/3 ; m
call it p. " (I), approaches — fi/® (and hence improves Noting thatm > 1, leads to the following analog of Theo-

upon the bound ofpcs(R) = 1 — /R in [I0]) for every

rate R for large enoughm. For practical implementations the

parametenn will be soTe f,mall fixed integer. Note that for,
m,2

- ; 1
fixed m, the bound ofp. ™™ (1) is useless fot > 1 — 70, 4oiodes the folded Reed-Solomon COdERSF - . &

whereas thel — v/R bound for decoding Reed-SoIomonas long as the number of errors is less than
codes|[[ID] is meaningful for alk < 1. s 5

Given that one is often interested in high rate codes, tl’;émlﬂ) N (1 - \/(%) (1+3)(1+ %))l - L
suggests that in order to reap the benefits of our new co large enough-, the above implies” that rat& folded

for large rates, the folding parameter needs to be pickegelaiRs codes can be list decoded up to a fracm’xé’ﬁg) (R) =

enough. Fortunately, this is not the case, and we now shgw,, ) (1 B Rg/g) of errors
that one can beat the— v/R bound for all ratesk for a fixed ngolm rison of the bour.1dsWe now make a compari
value of the folding parameten; in fact, a value as small P P

m,2)  (m,2) :
asm — 5 suffices. These bounds also hint at the fact that tif8" Petween the boundéo 1 Pa and pgs. We first

rem[3.6:
Theorem 3.10The version of algorithm Trivariate-
FRS-decoder  discussed above, successfully list

i : . o (m,2) (1m,2)

improvements offered by the decoding algorithms in thisgpaphote that p, =" (k) > Pa3/2 (R) for every rate R >
are not just asymptotic and kick in for parameter choices$ tha, 1 1 In particular. o™ (R) >
could be practical. el ) mt1—{/m(m—1)2 ~np Py (R)

Our goal now is to sketch how a minor change to thpgm’Q)(R) for all ratesR > 1 — L. Let us now compare

m

algorithm in Sectiod.III=B allows us to correct a fraction p}()mﬂ)(R) and pas(R). Specifically, we give a heuristic ar-

(m2) py_ M (] _ p2s 3 gument to show that for high enough rat&sand m > 4,
Py (R) = m+ 1 ( a ) 3) P2 (R) > pas(R). Let R = 1—e&. Then ignoring the(£2)
terms in the Taylor expansions we gets(1 —¢) =~ ¢/2 and

of errors. Th? bgc))und opy™* (R) gives a larger decoding P —e) ~ sty the latter quantity is strictly larger
radius thanp. ™ (R) for !i‘{%)e rﬁ%ﬁR- A more Precise than the former for everyn > 4. In fact, it can be verified that
comparison of the bounds.™ ™, p;,"™ and pgs is done at for all rates i > 0.44, p\"? > pes. Figureld plots the trade-
the end of this subsection. The improvement of the decodi

. m R) and ( (m:2)(R), o™ (R ) for some small
radius to pg ’2)(R) for large rates (and hence small error pas(B) max (o (R). p ()

fractions) comes via another way to analyze (a variant OY)’;llues ofm > 2. The limit for largem, which is1 — R?/3,
the algorithm in SectioELTIEB, which was suggested to us by lso plotted. _ .
Jorm Justesen. The algorithm is the same as in Seichion I1I-BRemark 3.1 (Better bound i, &, k)-weighted degree):

except that the set of interpolating points is slightly eiigint. FOr small values of the parameter one should use a better
In particular in the trivariate interpolating step, we ckeo €Stimate for the degree bourid than the bound{1) based on

[ ={0,1,....n—2}. Letng = |I| = n — 1. The crucial the volume argument. The number of mor.1omiéﬂ§;Y1jlY2j2

observation here is that an erroneous symbok F™ (for whose(1, k, k)-weighted degree is at mo#l is exactly equal

some positior) < j < N in the received word:) translates to a9 0t

to at mostm + 1 errors among the interpolation tuples in k( > + (D —ak + 1)< > (4)

the trivariate interpolation step. More precisely, giveratt

0 < e < N is the number of errors, wherea = | 2 |. This is often larger than th&; lower bound
For at leastt’ = ny — e(m + 1) values ofi, i € I, we used in LemmB:3.4, and certainly for any specific setting of
both the equalitiesf (v*) = y; and f(v**!) = y; 11 parameters:, k, r, the estimate[{4) should be used. A similar

hold. remark applies for the bound used in Leminal 4.1 fer+
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Fig. 5. Error-correction radiumax(pl(]m’Q)(R), P (R)) for m = 4, 5.
For comparisorpgs(R) = 1 —+/R and the limitl — R2/3 are also plotted.
For m = 5, the performance of the trivariate interpolation alganitfstrictly
improves upon that opgg for all rates.

2) It has a zero of multplicity r at

(’yl,yi,yprl, . ,yiJrS,l) fori e I.
The following is a straightforward generalization of Lensna
B2 and3k. .

Lemma 4.1: 1) Providedm > ny (ZE) a nonzero
polynomial Q(X,Y1,...,Ys) with the above stated
properties exists and moreover can be found in time
polynomial inn andr*.

2) Let t be an integer such that > m. Then
every polynomialf(X) € F[X] of degree at mosk
whose encoding according RSk ~ ., » agrees with
the received wordz on at leastt locations satisfies
QX F(X), f(yX),.... f(7" "1 X)) = 0.

Proof: The first part follows from (i) a simple lower
bound on the number of monomial& Y --.Y? with
a+ k(by + by + -+ + bs) < D, which gives the number
of coefficients ofQ(X, Y1, ...,Y;), and (ii) an estimation of
the number of(s + 1)-variate monomials of total degree less
thanr, which gives the number of interpolation conditions per
(s + 1)-tuple.

The second part is similar to the proof of Lemifal3.5.

1)-variate interpolation. Since it makes no difference fog ths f(X) has agreement on at least locations of z,
asymptotics, we chose to stick with the simpler expressiong,en for at leastt(m — s + 1) of the (s + 1)-tuples

IV. CODES APPROACHING LIST DECODING CAPACITY

Given that trivariate interpolation improved the decoding

radius achievable with rat® from 1 — R'/2 to 1 — R?/3, itis
natural to attempt to use higher order interpolation to iover

the decoding radius further. In this section, we discuss trﬁ‘rﬁjssg?)rngrges (counting multiplicities) than its degeeel
h = .

(quite straightforward) technical changes needed for saic
generalization.

Consider again then-folded RS codeC’ = FRSF 4 m.k
whereF = F,. Let s be an integer in the range< s < m.

We will develop a decoding algorithm based on interpo-

lating an (s + 1)-variate polynomialQ(X,Yy,Ya,...,Ys).
The definitions of the(l, k, k, . .., k)-weighted degree (with
k repeateds times) of ) and the multiplicity at a point
(a7617623 s
Definitions[31 andZ3]2.

As before lety = (yo,91,...,yn—1) be the unfolded
version of the received word € (F™)Y of the folded RS

code that needs to be decoded. Define the set of interpolatonpolynomial in Y7, ..

pointsT to be integers i{0, 1, ...
set:
o
U {im+m—-—s+1,jm+m—s+2,...,jm+m—1}.
j=0

,n— 1} exceptthose in the

The reason for this choice of is that if the m-tuple
containing y; is correct and: € I, then all thes values
Yis Yitl, - -, Yits—1 are correct.

Defineng = |I|. Note thatng = n(m — s+ 1)/m. Follow-
ing algorithm Trivariate-FRS-decoder, for suitable integer
parameterdD, r, the interpolation phase of the + 1)-variate
FRS decoder will fit a nonzero polynomi@ (X, Y,...,Ys)
with the following properties:

1) It has(1,k,k, ..., k)-weighted degree at mo#?

,Bs) € Fs*1 are straightforward extensions ofQ(X, f(X), f(vX),...

(V'3 Yir Yit1s - Yirs—1), We havef(y'*7) =y, ; for j =
0,1,...,5s—1. As in Lemmd3B, we conclude th&( X) def
(X, f(X), f(4X),..., f(v*~1X)) has a zero of multiplicity
7 at~* for each suct{s + 1)-tuple. Also, by desigi?(X) has

degree at mosD. Hence ift(m — s+ 1)r > D, then R(X)

Note the lower bound condition ab above is met with the
choice

D =|(knor(r+1)--(r+ )P +1. ()

The task of finding a list of all degree
k  polynomials  f(X) € F[X]  satisfying
,f(v*71X)) = 0 can be solved

using ideas similar to the proof of Theorem13.8. First,
by dividing out by F(X) enough times, we can assume
that not all coefficients ofQ(X,Y,...,Ys), viewed as
.,Y; with coefficients in F[X],
are divisible by F(X). We can then go moduld®(X)
to get a nonzero polynomial’(Y7,Ys,...,Ys) over the
extension fieldF = F[X]/(E(X)). Now, by Lemmal3l7,
we havef(77X) = f(X)? mod E(X) for every j > 1.
Therefore, the task at hand reduces to the problem of

finding all rootsT" € F of the polynomial R(Y;) where
R(Y1) = T(Y,YY,...,YZ ). There is the risk thaR(Y7)
is the zero polynomial, but it is easily seen that this cannot
happen if the total degree d@f is less thang. This will be
the case since the total degree is at mbgt, which is at
most (r + s)(n/k)"/ T <« q.

The degree of the polynomiak(Y;) is at mostq®, and
therefore all its roots iff can be found ing®*) time. We
conclude that the “root-finding” step can be accomplished in

polynomial time.



The algorithm works for agreement> which takesq®(*) time. Of the two, the time complexity of the root

Db
(m—s+1)r?

for the choice ofD in @) is satisfied if finding step dominates, which {gVm)°(). |
1/(s+1) In the limit of larges, the decoding radius approaches the
(kSng)t/(s+1) [ 2 j list decoding capacity — R, leading to our main result.
> m—s+ 1 H 1+ s +2. Theorem 4.4 (Explicit capacity-approaching codeBjpr
=1 everye > 0 and0 < R < 1, there is a family of folded

The above along with the fact that, = N(m — s + 1) Reed-Solomon codes that have rate at l¢astnd which can

implies the following, which is multivariate generalizai of be list decoded up to a fractidn- 2 —< of errors in time (and

Theoren3Bb. outputs a list of size at mosf)V/e2)0¢ " 1s(1/R) where N
Theorem 4.2:For every integerm > 1 and everys, is the block length of the code. The alphabet sizze of the code

1 < s < m, the (s + 1)-variate FRS decoder successfullyas a function of the block lengtV is (N/e2)0(1/<7).

list decodes then-folded Reed-Solomon COUERSE -, 1 UP Proof: Given e, R, we will apply Theoren4]3 with the

to a radiusN —¢ as long as the agreement parameteatisfies choice

k s s ] s = ’VM-‘ and § = M . (9)
I (Nil) 11 (1 + ) Lo ®) log(I +¢) R(1+e)
mes j=1 " The list decoding radius guaranteed by Theokem 4.3 is at leas

The algorithm runs im©() time and outputs a list of size at 1—(1+6RYETY = 1 - R(1+6)(1/R)Y/+D

most|F|* = n®). _ > 1-R(1+6)(1+¢)
Recalling that the block length ¢fRSg . 1 IS N = n/m

and the rate igk + 1)/n, the above algorithm can decode a = 1-(R+e),
fraction of errors approaching where the inequality follows from the choice sfin @) and
T . the second equality follows by using the valuedof
L e ( mR ) H (1 4 1) 7) We now turn our attention to the time complexity of the
m—s+1 e r decoding algorithm and the alphabet size of the code. To this

o . o end we first claim thatn = O(1/£2). To see this note that by
using lists of size at mosj®. By picking ,m large enough the definition ofs ands:

compared tos, the decoding radius can be made larger than

1— (14 6)R*/(*Y for any desired > 0. We state this result m = O (f) -0 (S (R+e) 5)) -0 (% . Lln(l/R))
formally below. g , e(1-R) € 1-R
Theorem 4.3:For every0 < § < 1, integers > 1 and =0(1/¢7),

0 < R < 1, there is a family ofm-folded Reed-Solomon

where for the last step we uséd(1/R) < L+ — 1 for 0 <
codes form = O(s/d) that have rate at leag® and which P (L/R) < 7

) ) o/ (5+1) R < 1. The claims on the running time, worst case list size
can be list deg?ged up to a fraction (1+6) R of erorc()Sr)s and the alphabet size of the code follow from Theofem 4.3
in time (Nm) and outputs a list of size at mogym) ’and the facts that — O(1/?) and s = O(= ' log(1/R)).

where N is the block length of the code. The alphabet size of

[ |
the code as a function of the block lengthis (Nm)°("™). , . .
Proof: We first note that[7) is at least With the proof of our main theore.tlcal result (TheorEml4.4)
completed, we close this section with a few remarks.
1— (1 i f) ( m ) Re/(s+1) (8) Remark 4.1 (Improved decoding radius for high rates):
r/ \m-—s+1 As in SectionI:D, it is possible to improve the bound of

We now instantiate the parameterandm in terms ofs and @ to

0 s
_ 3s _(s=1)(3+9) m R J
T—F m—f. max e 1 + le;[l 1—|—S ,

With the above choice, we have

2 ol (MR N\'T J
(1+5)L=(1+é) <1+ b= +\l (m—s—i—l) H(1+r>) '
r/m—s+1 3

j=1

Together with the bound[}8) on the decoding radius, wehe former bound is better for large rates.
conclude that thés + 1)-variate decoding algorithm certainly Remark 4.2 (Degree of relation betweg(X) and f(vX)):
list decodes up to a fraction— (1 +§)R*/*1) of errors.  Let K be the extension fieldF,[X]/(E(X)) where
The worst case list size ig® and the claim on the list E(X) = X9°! — ~. The elements ofK are in one-one
size follows by recalling thay < n +m and N = n/m. correspondence with polynomials of degree less than 1
The alphabet size ig™ = (Nm)°(™). The running time overF,. The content of LemmBZ3.7, which we made crucial
has two major components: (1) Interpolating the 1-variate use of above, is that the map : K — K defined by
polynomial Q(-), which by LemmdZ]1 ignr)°™M); and (2) f(X) — f(yX) is a degreeq map overK, ie., as a
Finding all the roots of the interpolated polynomial, whictpolynomial overK, I'(Z) = Z%. The fact that this degree is
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as large agj is in turn the cause for the large list size thatvhere N = n/m. We briefly justify this claim. The gen-
we need for list decoding. It is natural to ask if a differen¢ralization of the list decoding algorithm of Secti@nl IV is
map I'" could have lower degree (perhaps over a differestraightforward: instead of one interpolation condition €ach
extension fieldK;). Unfortunately, it turns out this is not symbol of the received word, we just impos&| < I many
possible, as argued below. interpolation conditions for each positiane {1,2,...,n}
Indeed, letl” be a ring homomorphism df,,[X] defined (whereS; is thei'th input set in the list recovery instance).
by I'"(f(X)) = f(G(X)) for some polynomialG overF,. The number of interpolation conditions is at most, and
Let E4(X) be an irreducible polynomial oveF, of degree so replacing: by nl in the bound of Lemm&Z 1 guarantees
¢, and letK; = F,[X]/(E1(X)) be the associated extensiorsuccessful decoding. This in turn implies that the condiba
field. We can viewI” as a mapl'; on K; by identifying the number of agreement dil (6) generalizes to the onEdn (10).
polynomials of degree less thah with K; and defining This straightforward generalization to list recovery isasipive
I'1(f(X)) = f(G(X)) mod E{(X). The key point is that feature of all interpolation based decoding algorithins [Z0],
I'; is anF,-linear map onK;. Expressed as a polynomialll4] beginning with the one due to Suddn [7].
over K1, I'; must therefore be #inearized polynomial[271,

. : Pickin and in @), we get(¢,1)-list

Chap. 3, Sec. 4], which has only terms with exponents that g':h>>tSR ; m>>> li%s l/(s+)1) N get(c, ) th
are powers ofy (including ¢° = 1). It turns out that for our recover with rateft for ¢ = ( ) . - ow comes he
remarkable fact: we can pick a suitable>> [ and perform

23:222;?1 cannot have degrel and so it must have degree((,Z)-Iist recovery with agreement parametér > R + ¢
which is independent off We state the formal result below
(TheorenTZY is a special case whea 1).
V. EXTENSIONS AND CODES OVERSMALLER ALPHABETS Theorem 5.2:For every integet > 1, forall R,0 < R < 1
A. Extension to list recovery ande > 0, and for every prime, there is arexplicit family of
o _folded Reed-Solomon codes over fields of characteristiat
We now present a very useful generalization of the lig{aye rate at least and which can béR + ¢, {)-list recovered

decoding result of Theorel 3.4 to the settingisf recovery i holynomialtime. The alphabet size of a code of block langt
Under the list recovery problem, one is given as input fog; iy the family iS(N/Ez)O(a*1ogz/(1—R))_

each codeword position, not just one but a set of several,say  p(qof: (Sketch)Using the exact same arguments as in
alp_habet symbqls. The goal is to find ano! output all codeworgsg, proof of TheoreriZl3 to the agreement condition(af (10),
which agree with some element of the input sets for sevefgl get that one can list recover in polynomial time as long
positions. Codes for which this more general problem can lag< > (14 0)(IR*)Y+D), for any§ > 0. The arguments
solved turn out to be extremely valuable as outer codes ) yptains a lower bound oR 1 ¢ are similar to the ones

concatenated code cons_trgg:t.ions. In short, this is beme employed in the proof of theoref®.4. Howeverneeds to
can pass a set of possibilities from decodings of the inngg gefined in a slightly different manner:

codes and then list recover the outer code with those sets as

the input. If we only had a list-decodable code at the outer 5 — [ log(l/R) ]

level, we will be forced to make a unique choice in decoding log(1+¢)

the inner codes thus losing valuable information.
Definition 5.1 (List Recovery)A code ¢ C X" is said

to be (¢, 1, L)-list recoverable if for every sequence of set§

Also this implies thatm = O % , which implies the
laimed bound on the alphabet size of the code. [ |

Remark 5.1 (Soft Decoding)he decoding algorithm for

S1,...,5, where eachS; C X has at most elements, the .
number of codewords € C for which ¢; € S; for at least(n IOI?‘ed;lS cof?_esffrom:heoriﬂ.? can bhe fu:jther g(jenergi[zed
positionsi € {1,2,...,n} is at mostL. o handle soft information, where for each codeword positio

i the decoder is given as input a non-negative weight

for each possible alphabet symbal The weightsw; . can

be used to encode the confidence information concerning the
likelihood of the thei'th symbol of the codeword being[23].

For anye > 0, for suitable choice of parameters, our codes
of rate R over alphabel have a soft decoding algorithm that
outputs all codewords = (¢, ¢, ..., cy) that satisfy

A code C C X" is said to (¢,!)-list recoverable in
polynomial time if it is (¢,, L(n))-list recoverable for some
polynomially bounded functiot(-), and moreover there is a
polynomial time algorithm to find the at mo&{n) codewords
that are solutions to anfC, [, L(n))-list recovery instance.
We remark that whei = 1, (¢, 1, -)-list recovery is the same
as list decoding up to él — ) fraction of errors. List recovery
has been implicitly studied in several works; the namefitsel ~ N 1/(s+1)
was coined in[2]. > wie, = ((1 +¢)(RN)* (Z > wi’j)) .

TheoremTZK can be generalized to list recover the folded i=1 i=1 265
RS codes. Specifically, for a FRS code with parameters asppr s = 1, this soft decoding condition is identical to the one
Section1V, for an arbitrary constamt> 1, we can(¢,{)-list for Reed-Solomon codes iR ]10].
recover in polynomial time provided

B. Binary codes decodable up to Zyablov bound

k “nl ¢ j ) ) i i
(N = =t} (71) n H (1 + l) +2. (10) Concatenating the folded RS codes with suitable inner codes
mes e " also gives us polytime constructible binary codes that can b
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efficiently list decoded up to the Zyablov bound, i.e., up tbound [25].
twice the radius achieved by the standard GMD decoding
of concatenated codes. The optimal list recoverabilityref t

folded RS codes plays a crucial role in establishing suchcai Capacity-Achieving codes over smaller alphabets
result. Our result of Theoreni4l4 has two undesirable aspects:

Theorem 5.3:For all0 < R, < 1 and alle > 0, there is both the alphabet size and worst-case list size output by the

a polynomial time constructible family of binary linear =i list decoding algorithm are a polynomial of large degree in
of rate at least? - » which can be list decoded in polynomialthe block length. We now show that the alphabet size can be
time up to a fractionl — R)H (1 —r) — ¢ of errors. reduced to a constant that depends only on the distarioe
Proof: We will construct binary codes with the claimedcapacity.
property by concatenating two codé€s andCs. For C;, we  Theorem 5.4:For everyR, 0 < R < 1, everye > 0, there
will use a folded RS code over a field of characterigtiwith is a polynomial time constructible family of codes over an
block lengthny, rate at leasf, and which can béR+¢, 1)-list  alphabet of size?(c " 10£(1/)) that have rate at leagt and
recovered in polynomial time fdr= [10/¢]. Let the alphabet which can be list decoded up to a fractigh — R — ¢) of
size of C; be 2™ where M = O(c¢~21log(1/¢)logny). For errors in polynomial time.
Cy, we will use a binary linear code of dimensiol and Proof: The theorem is proved using the code construction
rate at least- which is (p, [)-list decodable fop = H~'(1 — scheme used in]3] for linear time unique decodable codds wit
r — ). Such a code is known to exist via a random codingptimal rate, with different components appropriate fet tie-
argument that employs the semi-random metHod [16]. Alsepding plugged in. We briefly describe the main ideas behind
a greedy construction of such a code by constructinglits the construction and proof below. The high level approact is
basis elements in turn is presented inl[16] and this procesgncatenate two codés,,, andCj,, and then redistribute the
takes29(M) time. We conclude that the necessary inner coggmbols of the resulting codeword using an expander graph
can be constructed im?(e”log(l/s)) time. The code™;, being (Figure[=Q depicts this high level structure and should be
a folded RS code over a field of characterigjds Fo-linear, Useful in reading the following formal description). In the
and therefore when concatenated with a binary linear innféflowing, assume that < 1/6 and letd = 2.
code such a€), results in a binary linear code. The rate of The outer code,,; will be a code of ratg1 — 2¢) over an
the concatenated code is at ledstr. alphabets of sizen/9°" that can beg(l — e, O(1/¢))-list
The decoding algorithm proceeds in a natural way. Givegcovered in polynomial time, as guaranteed by Thedrein 5.2.
a received word, we break it up into blocks correspondinghat is, the rate ofCo, will be close tol, and it can be
to the various inner encodings ;. Each of these blocks (¢, !)-list recovered for largé and¢ — 1.
is list decoded up to a radiys returning a set of at mogt ~ The inner codeC;, will be a ((1 — R — 4¢),0(1/¢))-list
possible candidates for each outer codeword symbol. Trer oudecodable code with near-optimal rate, say rate at lgast
code is then R + ¢, 1)-list recovered using these sets, each ¢¥). Such a code is guaranteed to exist over an alphabet of
which has size at most as input. To argue about the fractiorsize O(1/¢?) using random coding arguments. A naive brute-
of errors this algorithm corrects, we note that the alganith force for such a code, however, is too expensive, since we
fails to recover a codeword only if on more than a fractioneed a code withj%| = n*® codewords. Guruswami and
(1 — R — ¢) of the inner blocks the codeword differs fromindyk [2], see also[[12, Sec. 9.3], prove that there is a small
the received word on more than a fractipnof symbols. It (gquasi-polynomial sized) sample spacepstudolinear codes
follows that the algorithm correctly list decodes up to aiuad in which most codes have the needed property. Furthermore,
(1-R—-¢)p=(1—R—e)H (1 —r—c¢). Sinces > 0 was they also present a deterministic polynomial time consionc
arbitrary, we get the claimed result. m of such a code (using derandomization techniques), [sée [12,
Optimizing over the choice of inner and outer codes raté&ec. 9.3.3].
r, R in the above results, we can decode up to the ZyablovThe concatenation af',,; andC;, gives a code”;oncat Of
bound, see Figurg 2. rate at leastl — 2¢)(R + 3¢) > R over an alphabeE of
Remark 5.2:In particular, decoding up to the Zyablovsize |%| = O(1/¢%). Moreover, given a received word of the
bound implies that we can correct a fractidh/2 — <) of concatenated code, one can find all codewords that agree with
errors with rate2(¢®) for small ¢ — 0, which is better the received word on a fractioR + 4¢ of locations in at least
than the rate of2(e3/log(1/¢)) achieved in[[24]. However, (1 —¢) of the inner blocks. Indeed, we can do this by running
our construction and decoding complexity a8 ~1°s(1/))  the natural list decoding algorithm, call i, for Ceoneat that
whereas these are at mgit)n® for an absolute constantin ~ decodes each of the inner blocks to a radiuglof R — 4¢)
[24]. Also, we bound the list size needed in the worst-case bgturning up tol = O(1/¢) possibilities for each block, and
nOE " log(1/2) \while the list size needed in the constructiothen (1 — &, 1)-list recoveringCiu;.
in [24] is (1/¢)CUoglog(1/2)), The last component in this construction iDa= O(1/e*)-
Remark 5.3 (Decoding up to the Blokh-Zyablov bound): regular bipartite expander graph which is used to redisteb
In a follow-up paper, we use a similar approach extendegmbols of the concatenated code in a manner so that an
to multilevel concatenation schemes together with innewerall agreement on a fractioR + 7¢ of the redistributed
codes that have good “nested” list-decodability propsrtte symbols implies a fractional agreement of at leBst 4< on
construct binary codes list-decodable up to Biekh-Zyablov most (specifically a fractiofil —¢)) of the inner blocks of the



12

concatenated code. In other words, the expander redigtgbuwith those ofC..,cat. Given a codeword € Ceopeat, its ND
symbols in a manner that “smoothens” the distributions afymbols (each belonging t8) are placed on théV D edges
errors evenly among the various inner blocks (except fof G, with the D symbols in itsi’th block (belonging to%?,
possibly ac fraction of the blocks). This expander baseds defined above) being placed on theedges incident on
redistribution incurs no loss in rate, but increases thaahet the i'th vertex of L (in some fixed order). The codeword in

size toO(1/¢2)0(1/") = 20(= " log(1/2)) C* corresponding te has as its’th symbol the collection of
L D symbols (in some fixed order) on the edges incident on
\  Expander graph G the i’th vertex of R. See Figurd_V-IC for a pictorial view of
‘ ﬁ. the construction.

j>.c‘ i Note that the rate of* is identical to thatC.o.cat, and is

c | /. thus at least. Its alphabet size i&5|2 = O(1/£2)01/=") =

N 1 S e 20(= " 1og(1/2)) | as claimed. We will now argue ho@* can

) % be list decoded up to a fractidil — R — 7¢) of errors.
P Given a received word € (XP)V, the following is the

natural algorithm to find all codewords af* with agreement
at least(R + 7¢)N with r. Redistribute symbols according
to the expander backwards to compute the received wbrd
for Ceoncat Which would result inr. Then run the earlier-
mentioned decoding algorithtd on r’.

We now briefly argue the correctness of this algorithm. Let
¢ € C* be a codeword with agreement at le@&t + 7¢) N
) with r. Let ¢’ denote the codeword af.....; that leads to
¢/ c after symbol redistribution by, and finally suppose”
’ is the codeword ofC,,; that yieldsc’ upon concatenation

‘\\ o>
0
=
<
) Ul pI0MOPO))

Uz Cin

by Ci,. By the expansion properties @f, it follows that all

, —e
Ei L }Z. but aé fraction of N D-long blocks ofr’ have agreement
b at least(R + 6¢)D with the corresponding blocks af. By

Codeword in Cyy

Cin
. ‘ ? an averaging argument, this implies that at least a fraction
S %’ (1- \/5) of the N blocks ofc’ that correspond to codewords
- odenand m of C;, encoding theN; symbols ofc”, agree with at least a
Comment fraction (1 — v/0)(R+6¢) = (1 —¢)(R+6¢) > R+ 4¢ of the

Fio 6. The code dinth £ of Theorel3.4. We start with symbols of the corresponding block ef. As argued earlier,
Ig. ©. e CO * used in e proor o eore 4. e start wi P . . . .
codeword (us ..., uxy ) in Cous. Then every symbol is encoded i, %this in turn implies that the decoding algorithifor Coopncat

to form a codeword iNCeoncat (this intermediate codeword is marked bywhen run on input’ will output a polynomial size list that
the dotted box). The symbols in the codeword €dfoncat are divided into  will include c’. [
chunks of D symbols and then redistributed along the edges of an expande

G of degreeD. In the figure, we usé = 3 for clarity. Also the distribution

pf tr;]ree symbols:, b andc (that form a symbol in the final codeword @©*) VI. CONCLUDING REMARKS

is shown.

We close with some remarks and open questions. In the

We now discuss some details of how the expander is us@tieliminary versionl[l] of this paper, we noted that the &ald
Suppose that the block length of the folded RS collg, is RS codes bear some resemblance to certain “randomness
N, and that ofC}, is N,. Let us assume thal, is a multiple extractors” constructed i [26], and wondered if some of the
of D, say N, = noD (if this is not the case, we can make itechniques in this work and’[lL4] could be used to construct
so by padding at mosb — 1 dummy symbols at a negligible Simple extractors based on univariate polynomials. In amec
loss in rate). Therefore codewords 6f,,, and therefore also work [27], this has been answered in the affirmative in a
of Ceoncat, Can be thought of as being composed of blocKeirly strong sense. It is shown ii_[27] that the Parvaresh-
of D symbols each. LetN = Njn,, so that codewords of Vardy codes yield excellent “randomness condensers,” whic
Ceoncat Can be viewed as elements (B°). achieve near-optimal compression of a weak random source

Let G = (L, R, E) be aD-regular bipartite graph withiv  while preserving all its min-entropy, and in turn these lead
vertices on each side (i.6,| = |R| = N), with the property the best known randomness extractors (that are optimal up to
that for every subset” C R of size at leas{R + 7¢) N, the constant factors).
number of vertices belonging tb that have at mostR+6¢) D We have solved the qualitative problem of achieving list
of their neighbors inY is at mosté N (for § = 2). It is a decoding capacity over large alphabets. Our work could be
well-known fact (used also irlJ[3]) that ¥ is picked to be improved with some respect to some parameters. The size of
the double cover of a Ramanujan expander of dedree the list needed to perform list decoding to a radius that is
4/(0e?), thenG will have such a property. within ¢ of capacity grows as.”(*/¢) wheren is the block

We now define our final cod€”* = G(Ceoncat) € (XP)Y  length of the code. It remains an open question to bring this
formally. The codewords i@'* are in one-one correspondencdist size down to a constant independentgf or even to



f(e)n® with an exponent independent ot (we recall that
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[83] ——, “Linear-time encodable/decodable codes with nagtimal rate,”

the existential random coding arguments work with a lisesiz
of O(1/¢)). We managed to reduce the alphabet size need

to approach capacity to a constant independent ¢fowever,

this involved a brute-force search for a rather large coddbl

Obtaining a “direct” algebraic construction over a constan
sized alphabet (such as variants of algebraic-geometi®&) (A

(6]

codes) might help in addressing these two issues. To this end

Guruswami and PatthakR4] deficerrelated AG codesand

(7]

describe list decoding algorithms for those codes, based on
generalization of the Parvaresh-Vardy approach to thergéne [g]
class of algebraic-geometric codes (of which RS codes are a

special case). However, to relate folded AG codes to cdaéla

AG codes like we did for RS codes requires bijections on the
set of rational points of the underlying algebraic curvet thglo]

have some special, hard to guarantee, property. This stepsse

like an highly intricate algebraic task, and especially rsdhie
interesting asymptotic setting of a family of asymptotigal
good AG codes over a fixed alphabet.

Finally, constructing binary codes (grary codes for some

[11]
[12]

[13]

fixed, small value ofg) that approach the respective list

decoding capacity remains a challenging open problem.
recent work [[ZB], we show that theexist g-ary linear con-

(4]

catenated codes that achieve list decoding capacity (in the

sense that every Hamming ball of radié, '(1 — R — ¢)
has polynomially many codewords, whei® is the rate).

[15]

IEEE Transactions on Information Thegryol. 51, no. 10, pp. 3393—
3400, October 2005.

P. Elias, “List decoding for noisy channelsTechnical Report 335,
Research Laboratory of Electronics, MIT957.

J. M. Wozencraft, “List Decoding,Quarterly Progress Report, Research
Laboratory of Electronics, MITvol. 48, pp. 90-95, 1958.

0. Goldreich and L. A. Levin, “A hard-core predicate fofl @ne-
way functions,” in Proceedings of the 21st Annual ACM Symposium
on Theory of Computingl989, pp. 25-32.

M. Sudan, “Decoding of Reed-Solomon codes beyond ther-err
correction bound,Journal of Complexityvol. 13, no. 1, pp. 180-193,
1997.

V. V. Zyablov and M. S. Pinsker, “List cascade decodingroblems of
Information Transmissignvol. 17, no. 4, pp. 29-34, 1981 (in Russian);
pp. 236-240 (in English), 1982.

P. Elias, “Error-correcting codes for list decodindBEE Transactions
on Information Theoryvol. 37, pp. 5-12, 1991.

V. Guruswami and M. Sudan, “Improved decoding of Reetb&on and
algebraic-geometric codedEEE Transactions on Information Theory
vol. 45, pp. 1757-1767, 1999.

M. Sudan, “List decoding: Algorithms and applicatighSIGACT News
vol. 31, pp. 16-27, 2000.

V. Guruswami, List decoding of error-correcting codeser. Lecture
Notes in Computer Science. Springer, 2004, no. 3282.

——, “Limits to list decodability of linear codes,” iRroceedings of the
34th ACM Symposium on Theory of Computiag02, pp. 802-811.

F. Parvaresh and A. Vardy, “Correcting errors beyone €uruswami-
Sudan radius in polynomial time,” iRroceedings of the 46th Annual
IEEE Symposium on Foundations of Computer ScieR@65, pp. 285—
294,

V. Y. Krachkovsky, “Reed-Solomon codes for correctipgased error
bursts,”IEEE Transactions on Information Theoryol. 49, no. 11, pp.
2975-2984, November 2003.

In particular, this re_su_lts holds when the Ou_ter code 'S_ [%6] V. Guruswami, J. Hastad, M. Sudan, and D. ZuckermafiBinatorial
folded RS code. This is somewhat encouraging news since bounds for list decoding,IEEE Transactions on Information Theory

concatenation has been the preeminent method to construct Vol 48, no. 5, pp. 1021-1035, 2002.

good list-decodable codes over small alphabets. But iegliz [t
the full potential of concatenated codes and achievingagpa

(or even substantially improving upon the Blokh-Zyablo18]
bound) with explicit codes and polynomial time decoding

remains a huge challenge. It seems likely that carefullyseho

soft information to pass from the inner decodings to thigo]
outer algebraic decoder (sde][29.][30] for examples of such
decoders) may hold the key to further progress in list demg)di[zo]

concatenated codes.
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