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Abstract. The primary goal of compressed sensing and (non-adaptive) combinatorial group test-
ing is to recover a sparse vector x from an underdetermined set of linear equations Φx = y. Both
problems entail solving Φx = y given Φ and y but they use different models of arithmetic, different
models of randomness models for Φ, and different guarantees upon the solution x and the class of
signals from which it is drawn. In [32], Lipton introduced a model for error correction where the
channel is computationally bounded, subject to standard cryptographic assumptions, and produces
the error vector x that must be found and then corrected. This has been extended in [24, 34]
to create more efficient schemes against polynomial and logspace bounded channels. Inspired by
these results in error correction, we view compressed sensing and combinatorial group testing as
an adversarial process, where Mallory the adversary produces the vector x to be measured, with
limited information about the matrix Φ. We define a number of computationally bounded models
for Mallory and show that there are significant gains (in the minimum number of measurements)
to be had by relaxing the model from adversarial to computationally or information-theoretically
bounded, and not too much (in some cases, nothing at all) is lost by assuming these models over
oblivious or statistical models. We also show that differences in adversarial power give rise to
different lower bounds for the number of measurements required to defeat such an adversary. By
contrast we show that randomized one pass log space streaming Mallory is almost as powerful as a
fully adversarial one for group testing while for compressed sensing such an adversary as weak as
an oblivious one.
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1. Introduction

Group testing was introduced by Dorfman in his seminal 1943 paper to identify soldiers in WWII
who had syphilis [15]. Combinatorial group testing1 has found applications in drug and DNA library
screening (the literature is large, see [37, 26, 46, 25] and references thereof), multiple access control
protocols [5, 45], live baiting of DoS attackers [27], data forensics [23] and data streams [13], among
others. The reader is referred to the standard monograph on group testing for more details [16].

Compressed sensing was introduced much more recently in 2006 by [8, 14] as a method for acquir-
ing signals in a “compressed” fashion and then reconstructing good (i.e., sparse) approximations
to the signals from those observations. The problem has many practical applications from analog-
to-digital conversion [28, 43, 31], novel optical device design [47, 42, 17], pooling designs for rare
allele detection [20], and video acquisition [44], to cite a few examples.

Even though they were introduced more than half a century apart, compressed sensing and
(non-adaptive) combinatorial group testing are similar. Their primary goal is to recover a sparse
vector x from an underdetermined set of linear equations Φx = y. Both problems include solving
Φx = y given Φ and y but they use different models of arithmetic, different randomness models
for Φ and different guarantees upon the solution x and the class of signals from which it is drawn.
Compressed sensing attempts to recover a sparse signal x ∈ RN from a small number of linear
measurements Φx. The signal x is usually assumed to be composed of a “head”, the k largest
entries (in magnitude) of the vector, supported on a small number of indices, and a tail whose !1

or !2 norm is small. The goal is to recover a close approximation 2 x̂ to x from the measurements
Φx. In the combinatorial group testing model the binary matrix Φ represents a pooling design and
the goal is to recover a small set (of size d) of “defective” elements from a set of tests Φx. (Here
x ∈ {0, 1}N .) In the group testing model, a test fails if any items in the group being tested are
defective, so the matrix vector product Φx is done using boolean OR.

Compressed sensing and group testing share another similarity, which is a limited range of types
of models that generate the input signal x. Existing models typically fall into one of two categories:

• Adversarial or “for all” models. An ambitious goal is to successfully recover all signals
that satisfy a certain geometric property. In the compressed sensing this usually corre-
sponds to a bound on size of the support of the head, and an !1- or !2-norm bound on
the tail, although more restrictive models on the form of the support set (e.g., k non-zero
elements must lie within B < k contiguous blocks or on contiguous paths in a tree [3]).
In combinatorial group testing settings these correspond to restrictions on the Hamming
weight of the signal.

• Probabilistic or “for each” models. These are two slightly different cases. One goal
(that of the “for each” model in compressed sensing) is to recover a fixed, arbitrary vector
with high probability over the construction of the matrix Φ. A similar goal is to successfully
recover a random signal from a specified distribution with high probability over the signal,
which has been considered in compressed sensing. Statistical models that have been con-
sidered include the uniform distribution or graphical models for the k-sparse head [7, 10, 3],
possibly combined with i.i.d. Gaussian noise for the tail [7]. Somewhat surprisingly, nei-
ther the “for each” model nor the random signal model has received much attention in the
(non-adaptive) group testing setting, to the best of our knowledge3.

Both these extremal types of models have benefits and drawbacks. The advantage of the “for all”
model is that it places minimal assumptions on the signal, which typically implies that schemes
developed in this model also work in more benign models. The wide applicability of the “for

1In this paper we will only consider non-adaptive schemes.
2The output should satisfy ‖x − bx‖p ≤ C‖x − xk‖q where x − xk is the tail of the vector. There are three

combinations of norms !p/!q of interest: !2/!2, !2/!1, and !1/!1.
3There are, however, a number of adaptive group testing results for a variety of probabilistic models. See [29, 41, 33]
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all” model comes at a cost, and usually implies that positive results are harder to achieve. More
importantly, it is highly unlikely that a natural process would generate worst-case signals. On the
other hand, the “for each” model typically leads to stronger positive results but is not applicable
in as many situations. Schemes that specify particular distributions on the input tend to be
specialized, and it is debatable if a natural signal producing process would be oblivious to Φ, or
that a natural process would follow a simple, fully specified random process. One of the goals of this
paper is to develop a model for signals in such a way that it captures natural process and the same
time has the benefits of both the “for all” model (wider applicability of the schemes developed)
and the “for each” model (stronger positive results).

While schemes in the “for each” model are the easiest to construct, in many situations a “for
each” guarantee may not be sufficient. One problem that arises is that of feedback. In real-world
applications the measurement matrix, Φ, will be fixed and used to recover many signals. This is
acceptable if we can prove a “for all” guarantee on the matrix Φ, but if Φ only satisfies a “for each”
guarantee problems may arise. One of the simplest types of problems is when future signals may
depend on the measurements of current signals. As a simple example exhibiting feedback, imagine
a vector x indicating the monthly sales counts of items in a store. The management may wish to
keep a sketch, Φx, of the best selling items.4 The store may then choose to update its layout or
sales strategy depending on the result of the sketch.5 Next month’s sales will be influenced by this
updated layout or strategy, and hence are dependent on Φx. A more adversarial situation could
arise as follows. An attacker launches a missile at a ship. The ship, using some form of compressed
sensing radar [4], detects the incoming missile and takes evasive action. The ship’s evasive action
is viewed by the attacker, and the attacker can adjust his second attack accordingly. Since the
ship cannot be expected to choose a new measurement matrix, Φ, between successive attacks, the
second attack may not be detected using a matrix that only satisfies a “for each” guarantee.6 In
both these cases, successive signals are subject to some sort of feedback. Signals that depend on
some sort of feedback arise naturally, but these signals are not covered by the “for each” model.
These types of signals fit naturally into a bounded adversarial model. We point out as well, that
even if the attacker cannot be modeled as a simple process, the amount of information the attacker
receives from viewing the target’s evasive action is limited, so the attacker’s view of Φx is naturally
modeled as having to pass through an “information-theoretic bottleneck.”

When considering intermediate signal models, it is instructive to consider the landscape in a
related field: coding theory. Compressed sensing and group testing are closely related to coding, the
parallel is most easily seen by viewing Φ as the parity-check matrix of a linear code, and the signal
x as the error pattern [9]. Coding theory has a worst-case (for all) model pioneered by Hamming, as
well as a probabilistic (“for each”) models introduced by Shannon. Unlike compressed sensing and
group testing, coding theory also has a rich literature on intermediate models. One such example
is the arbitrarily varying channel [30]. Another example, that is more in line with computational
thinking, is the notion of computationally bounded adversaries. In [32], Lipton introduced a model
for error correction where the channel is computationally bounded, and is subject to standard
cryptographic assumptions. This has been extended in [24, 34] to create more efficient schemes
against polynomial and logspace bounded channels. Note that the “for all” model corresponds to a
computationally unbounded adversarial model while the probabilistic models correspond to much
weaker computationally bounded or oblivious adversaries.

4Suppose the sketch indicates that antihistamines are selling quite well, but sunscreen is doing poorly.
5In the example of the previous footnote, the manager suspects a high pollen count, which is confirmed through

some arbitrary process involving checking the pollen count online or in a weather forecast. The store moves the
sunscreen to a back shelf and, to be safe, also bug spray, and orders more facial tissues.

6In practice the measurement matrix, Φ, is often built into hardware and is extremely difficult to change on the
fly.

2



Given the importance of compressed sensing and group testing, we believe it is important to
develop an understanding of their properties under more than just the most extreme classes of
signal. The primary goal of this paper is to initiate the study of intermediate models for both
compressed sensing and group testing:

• Computationally bounded models. The goal here is to recover a signal generated by a
computationally bounded adversary that must be recovered with high probability over the
construction of Φ. This corresponds to the computationally bounded channels in coding
theory. Like the bounded channel model for error correcting codes, we often imagine that
the input for these problems is generated by some natural process; not necessarily power-
ful, but also not necessarily well-behaved, and, in particular, not necessarily independent
of the measurement matrix Φ. Furthermore, computational conditions are arguably more
natural for algorithms than geometric or statistical ones: a geometric model is useful math-
ematically, but does not give insight into how difficult it is to choose problematic vectors.
Statistical models put the burden on the problem designer to produce a natural model, if
one even exists. In contrast, a computationally bounded model is quite broad. As a special
case we consider the streaming adversary where one is only allowed a single pass over Φ
and uses only logarithmic amount of space.

• Information theoretically bounded models. Another way to have a spectrum of ad-
versaries it to characterize recoverable signals in terms of information content. Here, the
goal to recover all signals whose mutual information with Φ is small. Note that the “for
each” model corresponds to zero mutual information and the “for all” model corresponds
to the full information case.

A second goal of this paper is to compare the compressed sensing and group testing frameworks.
On the one hand group testing is an easier task than compressed sensing as we only need to handle
binary vectors (and there is no measurement noise7). On the other hand each measurement gives
very little information about x as each measurement in group testing is just an OR of the bits).
Our metric of comparison is the minimum number of measurements required to recover the signal
or the defective set, as in both problems a primary goal is to minimize the number of measurements
(the rows of Φ) necessary for recovery.

Let k denote both the size of the “head” of the signal and of the defective set. Then, if we compare
group testing to compressed sensing with !1/!1 error guarantees, it would seem that compressed
sensing is more powerful as O(k log(N/k)) measurements suffice [2] to perform (even) “for all” !1

compressed sensing while one needs Ω(k2 logk N) measurements [18, 19, 21] to recover k sparse
binary vectors by group testing. On the other hand, if we are interested in !2/!2 error bounds in
compressed sensing, then we must use Ω(N) measurements in the “for all” setting [12]. By contrast,
group testing only needs O(k2 log(N/k)) measurements [16] and thus, compressed sensing seems
harder.8

Only O(k log(N/k)) measurements are needed [22] in the “for each” model for !2/!2 recovery,
which is optimal [2], and far away from the lower bound of Ω(N) in the “for all” model. Since this
is the main gap between the “for all” and “for each” for compressed sensing, and we are interested
in interpolating between these cases, we will consider only !2/!2 compressed sensing for the rest
of the paper. Furthermore, !2/!2 norms are the most natural for signal processing as the !2 norm
squared is the signal energy and the error can be expressed in terms of signal-to-noise ratio (SNR),
a standard metric.

1.1. Our results. Our results are summarized in Table 1.
7Error-tolerant group testing is a well-studied topic but we will only concentrate on “error-less” group testing in

this paper.
8Since in group testing we deal with binary vectors, all !p norms are the same whereas in compressed sensing the

choice of the norm matters.
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Combinatorial group testing

Mallory Num. Measurements Reference

Adversarial Ω(d2 log(N/d)/ log(d)) [21, 18, 19]
Information-Theoretically bounded (logspace) O(d log(N)) this paper
Oblivious O(d log(N)) this paper
Binary symmetric channel Ω(d log(N/d)), O(d log(N)) this paper
Logspace streaming (one pass over the rows) Ω(d2/ log d) this paper
Deterministic O(log d log N) space Ω(d2/ log d) this paper

Sparse signal recovery

Mallory Num. Measurements Reference

Adversarial Ω(n) [12]

Adversarial, but restricted so that ‖x− xk‖1 ≤
√

k‖x− xk‖2 O(k log(N/k) [8, 14]
Information-Theoretically bounded (logspace) O(k log(N/k)) this paper
Logspace streaming (one pass over the rows) O(k log(N/k)) this paper
Oblivious O(k log(N/k)) [22]

Table 1. Results on the number of measurements in combinatorial group testing
and sparse recovery various access models. For sparse recovery, all results obtain an
!2/!2 error bound, that is, ‖x− x̂‖2 < C‖x− xk‖2, where x̂ is the recovered signal
and xk is the best k-term approximation.

We begin with our results on the “for each” or probabilistic models for group testing. We
show that O(d log N) measurements suffice to recover a d-sparse binary vector x in the “for each”
model as well as the case when x is generated by the well-known binary symmetric channel (each
bit is one independently with probability d/N). This shows that (a) we gain in the number of
measurements for group testing when we go from the “for all” to “for each” model and (b) group
testing and (both !1/!1 and !2/!2) compressed sensing have similar complexities in the “for each”
model. A natural follow-up question is whether we can distinguish between group testing and !2/!2

compressed sensing by an adversary that is weaker than the “for all” model (where we know there
is a gap).

Somewhat surprisingly we are able to show that a randomized one pass O(log N) space streaming
adversary suffices to distinguish between group testing and !2/!2 compressed sensing. In partic-
ular, we are able to show that O(k log(n/k)) measurements suffice against such an adversary for
!2/!2 compressed sensing, i.e., in some sense such an adversary is just as weak as a “for each”
adversary. We use lower bounds in communication complexity to show upper bounds for recovery
against a streaming adversary. On the other hand, we show that for group testing a randomized one
pass log space streaming adversary is almost as powerful as a “for all” adversary by showing that
Ω(d2/ log d) measurement are needed to perform group testing against such an adversary. Using
limited-wise hash functions, we can de-randomize this result to show that Ω(d2/ log d) measure-
ments are necessary to recover a d sparse binary vector against a deterministic O(log d log N) space
bounded adversary (with no a priori limit on the number of passes).

Finally, we show that for information-theoretically bounded adversaries with O(log N) bits of
mutual information do no better than the oblivious model for both compressed sensing and group
testing.

2. Preliminaries

2.1. Notation. There are three key components to both group testing and sparse signal recovery
designs: the measurement matrix Φ, the unknown sample or signal x, and the observations y. We
assume that x is of length N and that the matrix Φ has dimensions m×N . In the combinatorial
group testing literature, the number of rows m is typically denoted by t for tests but we will stick
with the sparse signal recovery notation. The final parameter of interest in either problem is the
number of defectives d that we seek (for group testing) or the sparsity k (for signal recovery). For
this parameter, we use the convention of the two separate bodies of literature and express the
number of measurements m in terms of d and N for group testing and k and N for sparse signal
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recovery. One important distinction between group testing and sparse recovery signals is that for
group testing, the signal x is a binary vector with d 1s, while for sparse recovery, the signal x ∈ RN

consists of two pieces: xk, the k-largest entries in absolute value (called the “head” of the vector),
and x− xk, the remaining N − k entries (called the “tail” of the vector).

Since we are considering these problems in an adversarial context, we will name the process
generating inputs x Mallory. She will take on various powers throughout the paper.

2.2. Models for Mallory. We consider several models for Mallory.
• Binary symmetric channel: Entries in the signal x are 1 with probability p and 0 with

probability 1 − p, independent of the matrix Φ (analogous to the error correcting code
setting in which bits in the encoded message are flipped with probability p). We consider
this model for combinatorial group testing only and note that in this model, the number of
defectives present in the signal is a random variable.

• Oblivious: Mallory cannot see the matrix Φ and generates the signal x independent from
Φ. In the combinatorial group testing problem, Mallory chooses a set of size d to be the
defective set. For sparse signal recovery, this model is equivalent to the “for each” signal
model.

• Information-Theoretic: Mallory’s output has bounded mutual information with the ma-
trix. To cast this in a computational light, we say that an algorithm M is (log-)information-
theoretically-bounded if M(x) = M2(M1(x)), where the output of M1 consists of at most
O(log(|x|)) bits. Lemma 1 shows that this requirement can be expressed as a bound on the
success probability of an oblivious adversary. We distinguish this case from the oblivious
case because it provides a natural abstraction in a number of settings. As mentioned in
the introduction, in a situation with feedback, it is reasonable to assume that an adversary
(powerful or not) might only see a few bits about Φ based on our actions. This might also
arise in a situation where a space-bounded streaming adversary does not start to generate
x until it has seen all of Φ. This is obviously a much weaker adversary that a general
information-theoretic bounded one, but it comes up naturally. For example, suppose mea-
surements must be coordinated between several sensors, and Φ (or a seed for Φ) must
be passed between them, through an environment which then generates the signals. The
sensors do not begin to take measurements until after Φ has been initialized. The signals
generated then depend on Φ, and hence an algorithm designed for an oblivious adversary
would not give guaranteed results. However, the assumption is that the environment can
be modeled as a simple process, perhaps with logarithmic space. A recovery algorithm
designed for an information-theoretic bounded adversary would apply.

• Streaming log-space: Mallory can stream over Φ but only has log space with which to
store information about Φ and to compute an error message. In contrast to the information
theoretic model above, which puts restrictions on the amount of mutual information between
the signal and Φ, this is a computational restriction. A logspace streaming adversary is the
natural “weakest” computationally bounded adversary, and thus is a reasonable place to
start our analysis. Additionally, it has practical applications: both the sensor example and
the error correction example above could fit into this model as well.

• Adversarial: Mallory has full computational power.
Before we dive into technical results, we give a general statement about randomized algorithms

and information theoretically bounded adversaries that we will use in the proceeding sections.9 For
a randomized algorithm A with failure probability ε > 0, if an omnipotent adversary sees the seed
r for A before choosing the input x, then A will fail. However, if the adversary has limited space,
success is still possible:

9Despite the simplicity of this observation, or, perhaps because of its simplicity, we cannot find an appropriate
reference for this result.
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Lemma 1. Pick ! = !(N), and fix 0 < α < 1. Let A be any randomized algorithm which takes
input x ∈ {0, 1}N , r ∈ {0, 1}m, which “succeeds” with probability 1 − ε. Then for any informa-
tion theoretically bounded algorithm M with space !, A(M(r), r) succeeds with probability at least
min {1− α, 1− !/ log(α/ε)} over the choice of r.

The proof is in the full version.

3. Combinatorial group testing

The goal of group testing is to identify a set of d “defective” elements from a population of size
N . This is accomplished by creating a pooling design, where each element is placed in multiple
“pools” and each pool is tested separately. A pool will fail if it contains at least one defective
element. The primary goal in this scenario is to minimize the number of pools, which is equivalent
to minimizing the number of tests needed. It is customary to identify the set of defectives as a
vector, x, of weight d in {0, 1}N , and a pool as a vector in {0, 1}N identifying which elements
are in the pool. The entire design, consisting of m pools, can be written concisely as a matrix
Φ ∈ {0, 1}m×N . The outcome of the m tests then corresponds to the matrix product Φx, where
the matrix product is computed using boolean AND an OR, since each test fails if any element in
that pool is defective.

Combinatorial group testing schemes have focused on developing pooling designs that are robust
against “worst-case” (adversarial) distribution of defectives. In particular, this means, that the
group testing scheme must be able to correctly identify any subset of size d from a population of size
N . In this worst-case adversarial model, explicit schemes are known which make m = O(d2 log(N))
tests [40], and it is known that any scheme must have m = Ω(d2 log(N)/ log(d)) [11].

Because we are not aware of any results about group testing in the random model (where the
signal is composed of N independent Bernoulli random variables) or in the oblivious model, we
first consider these models and note that O(d log(N)) measurements suffice in either case. We give
an explicit scheme that achieves this in the random model.

The rather large gap between the upper bound of d log(N) measurements in the random and
oblivious cases, and the lower bound of d2 log(N) measurements in the “for all” case indicates a
need for intermediate models. As a step towards filling this gap, we consider the similar case where
x is generated by a information-theoretically bounded adversary, and by computationally bounded
adversaries.

Our results show that moving from the restrictive “for each” model to the more general space
bounded adversary does not result in a decrease in efficiency. On the other hand, we show lower
bounds even for very weak computationally bounded adversaries. We show that any scheme where
Φ has m = O(d2/ log(d)) rows will fail against a randomized log-space adversary with one-pass
streaming access to Φ, or by a deterministic adversary with O(log N log m) space. As we will see in
Section 4, this contrasts with the sparse recovery case, where a logspace streaming adversary can
be defeated with the optimal number of measurements.

3.1. Binary symmetric channel. In this section, we give a concrete construction of a group
testing design which recovers a random set of defectives with high probability over the choice of
defectives. We consider a model where each item in the population is defective with probability
d/N , independent of all other items. Thus, the expected number of defective items is d. In the
setting of error-correcting codes, this corresponds to switching from Hamming’s adversarial model
of noise to Shannon’s binary symmetric channel.

Proposition 2. For any 0 < δ < 1, there is a group testing scheme with O
(
d log d

δ log
(

N
d log d

δ

))

tests that succeeds with probability 1 − δ against input distributions where each item is defective
independently with probability d/N .
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Proof. The idea is very simple: divide up domain (length N) into N/t chunks of size t each. If t
is not too large, in each chunk the expected number of ones is small. Thus with high probability,
each chunk will have very few ones (call that number x).

Our idea is then to create a block a block diagonal matrix, where we use a standard x-disjunct
matrix for each of the N/t chunks. The construction of [40] gives an x-disjunct matrix over a
population of size t with O(x2 log(t)) rows. Our test is simply a block diagonal matrix consisting
of d copies of this x-disjunct matrix, so our scheme requires (N/t)x2 log(t) tests.

It remains to choose x so that the probability of error is bounded by δ; the fact that we can
choose an appropriate x follows from some union bounds. The details are in the full version. !

There are, in fact, explicit constructions of x-disjunct matrices that can be constructed in poly-
nomial time [40]; furthermore, these can be decoded in sublinear time [38].

This scheme is nearly optimal:

Lemma 3. Any (non-adaptive) group testing scheme to recover from error rate d/N in the random
model with probability (1− δ) = Ω(1) requires at least NH(d/N) = d log

(
N
d

)
+ (N − d) log

(
N

N−d

)

tests.

The proof can be found in the full version of this paper.
While Lemma 3 relies on the fact that every group testing scheme is a compression algorithm,

the converse is not true. Group testing schemes are compression algorithms that can be represented
as a matrix product Φx, where the arithmetic is boolean AND and OR. This is similar to using the
parity-check matrix of binary error-correcting code for noiseless compression [6] except the matrix
multiplication is done using OR instead of XOR.

3.2. Oblivious adversary. We also consider the oblivious model, in which an adversary Mallory,
with no knowledge of the design matrix Φ, chooses a pattern of defectives to create x ∈ {0, 1}N .
For any x she chooses, we demand that with high probability over the construction of Φ, x is
recoverable from Φx and Φ. The construction in Proposition 2, post-multiplied by a random
permutation matrix, works in the oblivious setting with the same argument and the same number
of measurements. We observe that, using a random matrix, we may correct the log(d/δ) factor at
the cost of switching from log(N/d) to log N :

Proposition 4. For any distribution of vectors x ∈ {0, 1}N , where Pr[|Supp(x)| > d] < δ, there is
a distribution of design matrices Φ with O(d log(N)) rows such that with probability at least 1− 2δ
over the choice of Φ, and the choice of x, the signal x can be exactly recovered from Φx and Φ,
using boolean arithmetic.

The distribution where each entry of Φ is indepently 1 or 0 will work. It suffices to show that
within any fixed set of d columns, no one column is contained in the union of any of the others,
except with small probability. The details are in the full version.

Corollary 5. A m × n matrix where each entry is 1 with probability 1/d, and 0 with probability
1−1/d represents a pooling design against an oblivious adversary which recovers any weight d input
probability at least 1− δ over the choice of the matrix, where m = 4d log

(
N
δ

)
.

3.3. Group testing against a information-theoretically bounded adversary. The error
probability in Proposition 4 along with Observation 1 immediately implies that a logspace infor-
mation theoretically bounded adversary with access to the a matrix Φ drawn from the distribution
described above will also not succeed:

Corollary 6. Let Φ be a matrix so that each entry is 1 independently with probability 1/d, with
m = O(d log(N)) rows. For any information-theoretically bounded algorithm M with O(log N)
space which sees Φ and then generates x, x can be recovered exactly from Φx and Φ with probability
at least 2/3.
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3.4. Lower bounds against computationally bounded adversaries. In this section, we show
that the good news in group testing stops at oblivious or information-theoretically bounded adver-
saries. For even very simple computationally bounded adversaries, O(d2/ log d) measurements are
needed. We begin with a randomized adversary and then later show it can be de-randomized to
obtain the second adversary.

Theorem 7. Suppose Φ is an m×N binary matrix with m = O(d2/ log d) rows, and additionally
assume m = o(N). There is a algorithm with O(log(N)) space which streams over the rows of Φ
and outputs a set T ⊂ [N ] so that |T | ≤ d and so that the characteristic vector x of T satisfies the
following property: there is some i '∈ T so that if y is the characteristic vector of T ∪{i}, Φx = Φy.
In particular, accurate recovery of x is impossible.

To prove Theorem 7, we describe in Algorithm 1 a one pass low space adversary who streams
over Φ row-by-row and outputs a list of indices which will determine the set T of defectives.
Algorithm 1: A logspace streaming adversary which outputs a set T of defectives which will
resist recovery.

(1) Independently at random output each of the N column indices with probability
p = Θ

(
x log m

N

)
, where x will be chosen in the proof. Note that the above is done even

without looking at the matrix Φ.
(2) Pick a random i ∈ [N ] and remember it.
(3) For each row index r ∈ [m]:

(i) Count the number of ones y in row r;
(ii) Remember the first column j '= i such that Φr,j = 1.
(iii) Set B = Φr,i.
(iv) If (B ∧ y ≤ N/x ∧ j is defined), output j. Otherwise, do nothing.
(v) Stop if the algorithm has output d/2 (not necessarily distinct) j indices in Step 3(iv).

It is easy to check that the above algorithm can be implemented in one pass and O(log N) space.
The proof of correctness is can be found in the full version of this paper. The basic idea is

that this adversary will take care of the “heavy” rows (those with many ones) and the “light”
rows separately. The goal is to choose x large enough so that enough of the heavy rows are
covered, and small enough that not more than d indices are selected. This is possible as long as
m = O(d2/ log(d)).

Algorithm 1 can be de-randomized to produce an equivalent deterministic low space algorithm.
(Note that in this setting we will allow the adversary to make multiple passes over Φ.

Theorem 9. For any matrix Φ with O(d2/ log(d)) rows, there is a deterministic algorithm with
space O(log m log N) which generates x ∈ {0, 1}N with at most d nonzeroes so that for some y ∈
{0, 1}N with at most d non-zeros, Φx = Φy. In particular, recovery of x is impossible.

The proof is in the full version.

4. Sparse signal recovery

In sparse signal recovery, we wish to recover a signal x from measurements Φx with as little error
as possible. We will use the notation that x = y + z, where y is the head (the largest k terms) and
z is the tail. In this section, we suppose an adversary who generates the tail z, while the head y is
assumed to be worst-case.10

10Note that, beyond the distiction between a statistical model and a computational model, this is more general
than many random signal models which assume that both the head and the tail are random.
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The strongest possible bound on error between the original signal x and the recovered approxi-
mation x̂ is an !2/!2 requirement:

(1) ‖x− x̂‖2 ≤ C‖x− xk‖2.
This bound is achievable with m = O(k log(N/k)) (see [22]) in the oblivious model, meeting a lower
bound [2]. On the other hand, [12] show that in the adversarial model, (1) is impossible unless
N = O(m).

In this section, we show that even when relaxing the adversary to the logspace (information
theoretically bounded) model or logspace streaming model, (1) is still attainable with an optimal
number of rows, circumventing the lower bound in [12].

4.1. Information-Theoretically Bounded Adversaries. In this section we consider an adver-
sary who must pass through a log(N)-space information-theoretic bottleneck.

The Restricted Isometry Property (RIP) is a useful criterion for generating matrices for sparse
recovery:

Definition 11. A matrix Φ satisfies the Restricted Isometry Property with constant δ if for
every k-sparse vector x, (1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22.

In [12] it is shown that, when Φ has the Restricted Isometry Property, a sufficient condition for
unique recovery against an oblivious adversary is that no “tail” z is very stretched by Φ. This
implies that unique recovery is possible with !2/!2 error as long as Mallory cannot find z so that
‖Φz‖2 ≥ C‖z‖2. From the fact that for several standard ensembles (Gaussian, Bernoulli, etc)
an oblivious adversary is very unlikely to find such z (see for example [1]), Lemma 1 implies that
neither is Mallory. This does not imply that efficient recovery is possible, but in fact several existing
(efficient) algorithms will work. Many algorithms ([36], [35]) recover an exactly k-sparse x in the
adversarial setting which are stable in the !2/!2 sense against some post-measurement noise. That
is, if x is k-sparse, given Φx + e, such algorithms recover x̂ so that

(2) ‖x− x̂‖2 ≤ C‖e‖2.
This immediately gives an algorithm which works against an information-theoretically bounded
adversary with logarithmic space.

Proposition 13. Suppose that Φ is chosen to have independent Bernoulli or Gaussian entries.
Suppose A is an algorithm which recovers an exactly k-sparse vector x from Φx + e so that (2)
holds. Then A will succeed with high probability on any vector x generated by a logspace information
theoretically bounded adversary with access to Φ.

A downside of Proposition 13 is that we would like to use a more combinatorial approach, for
several reasons. First, these schemes tend to use sparser matrices and have faster recovery times.
Secondly, and more importantly for the purposes of this paper, we will see in Section 4.2 that
combinatorial algorithms will extend to work against a logspace streaming adversary as well as an
information theoretically bounded adversary.

Our construction is based on several constructions in the literature, including [22] and [39].
Unlike those constructions, however, our algorithm will have superlinear runtime. It follows we can
afford several simplifications. We do need strong guarantees of failure to take a union bound over
all possible heads of signals.

At a high level, the idea is to create Φ out of O(log N) hash matrices with O(k) buckets each.
Additionally, each nonzero element in the hash matrix is subject to a random sigh flip. With high
probability, at most one element of the head is hashed into each bucket, and the other (smaller)
elements in the bucket are likely to cancel each other out. The savings in the number of rows and
the error probability over other hashing-type algorithms comes from the recursive nature of the
reconstruction algorithm. To recover, a block of hash matrices is used to identify the top half of
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the heavy hitters, which are then subtracted off. The process is repeated with the remaining hash
matrices.

The algorithm itself and a proof of its correctness can be found in the full version of the paper.

4.2. A Streaming Adversary. In this section, we claim that the above combinatorial algorithm
continues to work with a logspace streaming adversary, at the cost of some constant factors.11

Theorem 17. Suppose x = y + z, where y is an arbitrary k-sparse vector and z is generated
synchronously by an adversary with O(log(N)) space streaming over the rows of a matrix Φ. Suppose
that k = o(N/(log(N/k) log N)) and k = Ω(log N). There is a distribution on m × N matrices Φ
with m = O(ε−1k log(N/k)) measurements and an efficient recovery algorithm which returns x̂ so
that ‖x− x̂‖2 ≤ O(ε)‖x− xk‖2 with probability at least 2/3.

The analysis uses communication complexity. Briefly, the idea is that as Mallory streams over
the rows, she only outputs a few entries relevant to that row, for most of the rows. She outputs
the other entries of the tail based only on her (limited) memory. Because the relevant analysis is
resilient to a constant fraction of errors in each block, we recover from her informed outputs, and
we may consider only those that she is trying to remember.

To make things easier on Mallory, we assume that she has unlimited computational power while
inspecting any one row, but that she can only carry log(N) bits with her between rows. We cast
this as a communication problem for players Alice and Bob, who are trying to solve the augmented
indexing. Given an instance of augmented indexing, we construct a matrix Φ so that if Mallory
could remember enough information after each block to find a problematic tail for the recover
algorithm, then Alice could use Mallory’s memory to send Bob a short message which would allow
him to solve their problem. This would violate a known bound in communication complexity.

The details are in the full version of the paper.

5. Conclusions and Future Work

We present several new models for signal generation in combinatorial group testing and sparse
recovery. These models capture the many natural situations in which the signal has a weak de-
pendence on the measurement matrix, or when subsequent signals one observes have some weak
dependence on the measurement matrix or upon the measurements obtained. It is often more
natural to assume that the process generating this signal is either computationally bounded, or has
limited information about the measurement matrix Φ than to assume that this process conforms
to particular geometric requirements or follows a certain distribution. We show that there are sig-
nificant gains (in the minimum number of measurements required) to be had by relaxing the model
from adversarial to computationally or information-theoretically bounded, and not too much (in
some cases, nothing at all) is lost by assuming these models over oblivious or statistical models.
We also show that in the group testing case, there is a difference between information-theoretically
bounded and computationally bounded (streaming) models, which contrasts the situation in sparse
recovery.

One model we have not discussed is that of a polynomial-time bounded adversary, with crypto-
graphic assumptions, which is a natural next step. It is perhaps of more practical use to consider
sparse recovery or group testing against such an adversary.
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[33] Marc Mézard and Cristina Toninelli. Group testing with random pools: optimal two-stage algorithms. CoRR,
abs/0706.3104, 2007.

[34] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error correction against computa-
tionally bounded noise. In TCC, pages 1–16, 2005.

[35] D Needell and J.A Tropp. Cosamp: iterative signal recovery from incomplete and inaccurate samples. Commu-
nications of the ACM, 53(12):93–100, 2010.

[36] D Needell and R Vershynin. Signal recovery from incomplete and inaccurate measurements via regularized
orthogonal matching pursuit. Selected Topics in Signal Processing, IEEE Journal of, 4(2):310–316, 2010.

[37] Hung Q. Ngo and Ding-Zhu Du. A survey on combinatorial group testing algorithms with applications to DNA
library screening. In Discrete mathematical problems with medical applications (New Brunswick, NJ, 1999),
volume 55 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 171–182. Amer. Math. Soc., Providence,
RI, 2000.

[38] Hung Q. Ngo, Ely Porat, and Atri Rudra. Efficiently decodable error-correcting list disjunct matrices and
applications. In Proceedings of the 38th International Colloquium on Automata, Languages and Programming
(ICALP), 2011. To appear.

[39] E Porat and M J Strauss. Sublinear time, measurement-optimal, sparse recovery for all. submitted to SODA
2012, 2011.

[40] Ely Porat and Amir Rothschild. Explicit non-adaptive combinatorial group testing schemes. In ICALP ’08,
volume 5125, pages 748–759, 2008.

[41] Milton Sobel and Phyllis A. Groll. Binomial group-testing with an unknown proportion of defectives. Techno-
metrics, 8(4):pp. 631–656, 1966.

[42] Dharmpal Takhar, Jason Laska, Michael B. Wakin, Marco F. Duarte, Dror Baron, Shriram Sarvotham, Kevin
Kelly, and Richard G. Baraniuk. A new compressive imaging camera architecture using optical-domain compres-
sion. In Proc. IS&T/SPIE Symposium on Electronic Imaging, 2006.

[43] M. Vetterli, P. Marziliano, and T. Blu. Sampling signals with finite rate of innovation. IEEE Trans. Signal Proc.,
50(6), June 2002.

[44] Michael Wakin, Jason Laska, Marco Duarte, Dror Baron, Shriram Sarvotham, Dharmpal Takhar, Kevin Kelly,
and Richard Baraniuk. Compressive imaging for video representation and coding. In Proc. Picture Coding Sym-
posium 2006, Beijing, China, Apr. 2006.

[45] J. K. Wolf. Born again group testing: multiaccess communications. IEEE Transaction on Information Theory,
IT-31:185–191, 1985.

[46] Xiaofeng Xin, Jean-François F. Rual, Tomoko Hirozane-Kishikawa, David E. Hill, Marc Vidal, Charles Boone,
and Nicolas Thierry-Mieg. Shifted transversal design smart-pooling for high coverage interactome mapping.
Genome research, 19(7):1262–1269, July 2009.

[47] Y.H. Zheng, D. J. Brady, M. E. Sullivan, and B. D. Guenther. Fiber-optic localization by geometric space coding
with a two-dimensional gray code. Applied Optics, 44(20):4306–4314, 2005.

12



RECOVERING SIMPLE SIGNALS
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Abstract. The primary goal of compressed sensing and (non-adaptive) combinatorial group test-
ing is to recover a sparse vector x from an underdetermined set of linear equations Φx = y. Both
problems entail solving Φx = y given Φ and y but they use different models of arithmetic, different
models of randomness models for Φ, and different guarantees upon the solution x and the class of
signals from which it is drawn. In [35], Lipton introduced a model for error correction where the
channel is computationally bounded, subject to standard cryptographic assumptions, and produces
the error vector x that must be found and then corrected. This has been extended in [25, 37]
to create more efficient schemes against polynomial and logspace bounded channels. Inspired by
these results in error correction, we view compressed sensing and combinatorial group testing as
an adversarial process, where Mallory the adversary produces the vector x to be measured, with
limited information about the matrix Φ. We define a number of computationally bounded models
for Mallory and show that there are significant gains (in the minimum number of measurements)
to be had by relaxing the model from adversarial to computationally or information-theoretically
bounded, and not too much (in some cases, nothing at all) is lost by assuming these models over
oblivious or statistical models. We also show that differences in adversarial power give rise to
different lower bounds for the number of measurements required to defeat such an adversary. By
contrast we show that randomized one pass log space streaming Mallory is almost as powerful as a
fully adversarial one for group testing while for compressed sensing such an adversary as weak as
an oblivious one.
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1. Introduction

Group testing was introduced by Dorfman in his seminal 1943 paper to identify soldiers in WWII
who had syphilis [15]. Combinatorial group testing1 has found applications in drug and DNA library
screening (the literature is large, see [40, 28, 50, 27] and references thereof), multiple access control
protocols [5, 49], live baiting of DoS attackers [29], data forensics [24] and data streams [13], among
others. The reader is referred to the standard monograph on group testing for more details [16].

Compressed sensing was introduced much more recently in 2006 by [8, 14] as a method for acquir-
ing signals in a “compressed” fashion and then reconstructing good (i.e., sparse) approximations
to the signals from those observations. The problem has many practical applications from analog-
to-digital conversion [30, 47, 34], novel optical device design [51, 46, 17], pooling designs for rare
allele detection [20], and video acquisition [48], to cite a few examples.

Even though they were introduced more than half a century apart, compressed sensing and
(non-adaptive) combinatorial group testing are similar. Their primary goal is to recover a sparse
vector x from an underdetermined set of linear equations Φx = y. Both problems include solving
Φx = y given Φ and y but they use different models of arithmetic, different randomness models
for Φ and different guarantees upon the solution x and the class of signals from which it is drawn.
Compressed sensing attempts to recover a sparse signal x ∈ RN from a small number of linear
measurements Φx. The signal x is usually assumed to be composed of a “head”, the k largest
entries (in magnitude) of the vector, supported on a small number of indices, and a tail whose !1

or !2 norm is small. The goal is to recover a close approximation 2 x̂ to x from the measurements
Φx. In the combinatorial group testing model the binary matrix Φ represents a pooling design and
the goal is to recover a small set (of size d) of “defective” elements from a set of tests Φx. (Here
x ∈ {0, 1}N .) In the group testing model, a test fails if any items in the group being tested are
defective, so the matrix vector product Φx is done using boolean OR.

Compressed sensing and group testing share another similarity, which is a limited range of types
of models that generate the input signal x. Existing models typically fall into one of two categories:

• Adversarial or “for all” models. An ambitious goal is to successfully recover all signals
that satisfy a certain geometric property. In the compressed sensing this usually corre-
sponds to a bound on size of the support of the head, and an !1- or !2-norm bound on
the tail, although more restrictive models on the form of the support set (e.g., k non-zero
elements must lie within B < k contiguous blocks or on contiguous paths in a tree [3]).
In combinatorial group testing settings these correspond to restrictions on the Hamming
weight of the signal.

• Probabilistic or “for each” models. These are two slightly different cases. One goal
(that of the “for each” model in compressed sensing) is to recover a fixed, arbitrary vector
with high probability over the construction of the matrix Φ. A similar goal is to successfully
recover a random signal from a specified distribution with high probability over the signal,
which has been considered in compressed sensing. Statistical models that have been con-
sidered include the uniform distribution or graphical models for the k-sparse head [7, 10, 3],
possibly combined with i.i.d. Gaussian noise for the tail [7]. Somewhat surprisingly, nei-
ther the “for each” model nor the random signal model has received much attention in the
(non-adaptive) group testing setting, to the best of our knowledge3.

Both these extremal types of models have benefits and drawbacks. The advantage of the “for all”
model is that it places minimal assumptions on the signal, which typically implies that schemes
developed in this model also work in more benign models. The wide applicability of the “for

1In this paper we will only consider non-adaptive schemes.
2The output should satisfy ‖x − bx‖p ≤ C‖x − xk‖q where x − xk is the tail of the vector. There are three

combinations of norms !p/!q of interest: !2/!2, !2/!1, and !1/!1.
3There are, however, a number of adaptive group testing results for a variety of probabilistic models. See [31, 45, 36]
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all” model comes at a cost, and usually implies that positive results are harder to achieve. More
importantly, it is highly unlikely that a natural process would generate worst-case signals. On the
other hand, the “for each” model typically leads to stronger positive results but is not applicable
in as many situations. Schemes that specify particular distributions on the input tend to be
specialized, and it is debatable if a natural signal producing process would be oblivious to Φ, or
that a natural process would follow a simple, fully specified random process. One of the goals of this
paper is to develop a model for signals in such a way that it captures natural process and the same
time has the benefits of both the “for all” model (wider applicability of the schemes developed)
and the “for each” model (stronger positive results).

While schemes in the “for each” model are the easiest to construct, in many situations a “for
each” guarantee may not be sufficient. One problem that arises is that of feedback. In real-world
applications the measurement matrix, Φ, will be fixed and used to recover many signals. This is
acceptable if we can prove a “for all” guarantee on the matrix Φ, but if Φ only satisfies a “for each”
guarantee problems may arise. One of the simplest types of problems is when future signals may
depend on the measurements of current signals. As a simple example exhibiting feedback, imagine
a vector x indicating the monthly sales counts of items in a store. The management may wish to
keep a sketch, Φx, of the best selling items.4 The store may then choose to update its layout or
sales strategy depending on the result of the sketch.5 Next month’s sales will be influenced by this
updated layout or strategy, and hence are dependent on Φx. A more adversarial situation could
arise as follows. An attacker launches a missile at a ship. The ship, using some form of compressed
sensing radar [4], detects the incoming missile and takes evasive action. The ship’s evasive action
is viewed by the attacker, and the attacker can adjust his second attack accordingly. Since the
ship cannot be expected to choose a new measurement matrix, Φ, between successive attacks, the
second attack may not be detected using a matrix that only satisfies a “for each” guarantee.6 In
both these cases, successive signals are subject to some sort of feedback. Signals that depend on
some sort of feedback arise naturally, but these signals are not covered by the “for each” model.
These types of signals fit naturally into a bounded adversarial model. We point out as well, that
even if the attacker cannot be modeled as a simple process, the amount of information the attacker
receives from viewing the target’s evasive action is limited, so the attacker’s view of Φx is naturally
modeled as having to pass through an “information-theoretic bottleneck.”

When considering intermediate signal models, it is instructive to consider the landscape in a
related field: coding theory. Compressed sensing and group testing are closely related to coding, the
parallel is most easily seen by viewing Φ as the parity-check matrix of a linear code, and the signal
x as the error pattern [9]. Coding theory has a worst-case (for all) model pioneered by Hamming, as
well as a probabilistic (“for each”) models introduced by Shannon. Unlike compressed sensing and
group testing, coding theory also has a rich literature on intermediate models. One such example
is the arbitrarily varying channel [33]. Another example, that is more in line with computational
thinking, is the notion of computationally bounded adversaries. In [35], Lipton introduced a model
for error correction where the channel is computationally bounded, and is subject to standard
cryptographic assumptions. This has been extended in [25, 37] to create more efficient schemes
against polynomial and logspace bounded channels. Note that the “for all” model corresponds to a
computationally unbounded adversarial model while the probabilistic models correspond to much
weaker computationally bounded or oblivious adversaries.

4Suppose the sketch indicates that antihistamines are selling quite well, but sunscreen is doing poorly.
5In the example of the previous footnote, the manager suspects a high pollen count, which is confirmed through

some arbitrary process involving checking the pollen count online or in a weather forecast. The store moves the
sunscreen to a back shelf and, to be safe, also bug spray, and orders more facial tissues.

6In practice the measurement matrix, Φ, is often built into hardware and is extremely difficult to change on the
fly.
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Given the importance of compressed sensing and group testing, we believe it is important to
develop an understanding of their properties under more than just the most extreme classes of
signal. The primary goal of this paper is to initiate the study of intermediate models for both
compressed sensing and group testing:

• Computationally bounded models. The goal here is to recover a signal generated by a
computationally bounded adversary that must be recovered with high probability over the
construction of Φ. This corresponds to the computationally bounded channels in coding
theory. Like the bounded channel model for error correcting codes, we often imagine that
the input for these problems is generated by some natural process; not necessarily power-
ful, but also not necessarily well-behaved, and, in particular, not necessarily independent
of the measurement matrix Φ. Furthermore, computational conditions are arguably more
natural for algorithms than geometric or statistical ones: a geometric model is useful math-
ematically, but does not give insight into how difficult it is to choose problematic vectors.
Statistical models put the burden on the problem designer to produce a natural model, if
one even exists. In contrast, a computationally bounded model is quite broad. As a special
case we consider the streaming adversary where one is only allowed a single pass over Φ
and uses only logarithmic amount of space.

• Information theoretically bounded models. Another way to have a spectrum of ad-
versaries it to characterize recoverable signals in terms of information content. Here, the
goal to recover all signals whose mutual information with Φ is small. Note that the “for
each” model corresponds to zero mutual information and the “for all” model corresponds
to the full information case.

A second goal of this paper is to compare the compressed sensing and group testing frameworks.
On the one hand group testing is an easier task than compressed sensing as we only need to handle
binary vectors (and there is no measurement noise7). On the other hand each measurement gives
very little information about x as each measurement in group testing is just an OR of the bits).
Our metric of comparison is the minimum number of measurements required to recover the signal
or the defective set, as in both problems a primary goal is to minimize the number of measurements
(the rows of Φ) necessary for recovery.

Let k denote both the size of the “head” of the signal and of the defective set. Then, if we compare
group testing to compressed sensing with !1/!1 error guarantees, it would seem that compressed
sensing is more powerful as O(k log(N/k)) measurements suffice [2] to perform (even) “for all” !1

compressed sensing while one needs Ω(k2 logk N) measurements [18, 19, 22] to recover k sparse
binary vectors by group testing. On the other hand, if we are interested in !2/!2 error bounds in
compressed sensing, then we must use Ω(N) measurements in the “for all” setting [12]. By contrast,
group testing only needs O(k2 log(N/k)) measurements [16] and thus, compressed sensing seems
harder.8

Only O(k log(N/k)) measurements are needed [23] in the “for each” model for !2/!2 recovery,
which is optimal [2], and far away from the lower bound of Ω(N) in the “for all” model. Since this
is the main gap between the “for all” and “for each” for compressed sensing, and we are interested
in interpolating between these cases, we will consider only !2/!2 compressed sensing for the rest
of the paper. Furthermore, !2/!2 norms are the most natural for signal processing as the !2 norm
squared is the signal energy and the error can be expressed in terms of signal-to-noise ratio (SNR),
a standard metric.

1.1. Our results. Our results are summarized in Table 1.
7Error-tolerant group testing is a well-studied topic but we will only concentrate on “error-less” group testing in

this paper.
8Since in group testing we deal with binary vectors, all !p norms are the same whereas in compressed sensing the

choice of the norm matters.
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Combinatorial group testing

Mallory Num. Measurements Reference

Adversarial Ω(d2 log(N/d)/ log(d)) [22, 18, 19]
Information-Theoretically bounded (logspace) O(d log(N)) this paper
Oblivious O(d log(N)) this paper
Binary symmetric channel Ω(d log(N/d)), O(d log(N)) this paper
Logspace streaming (one pass over the rows) Ω(d2/ log d) this paper
Deterministic O(log d log N) space Ω(d2/ log d) this paper

Sparse signal recovery

Mallory Num. Measurements Reference

Adversarial Ω(n) [12]

Adversarial, but restricted so that ‖x− xk‖1 ≤
√

k‖x− xk‖2 O(k log(N/k) [8, 14]
Information-Theoretically bounded (logspace) O(k log(N/k)) this paper
Logspace streaming (one pass over the rows) O(k log(N/k)) this paper
Oblivious O(k log(N/k)) [23]

Table 1. Results on the number of measurements in combinatorial group testing
and sparse recovery various access models. For sparse recovery, all results obtain an
!2/!2 error bound, that is, ‖x− x̂‖2 < C‖x− xk‖2, where x̂ is the recovered signal
and xk is the best k-term approximation.

We begin with our results on the “for each” or probabilistic models for group testing. We
show that O(d log N) measurements suffice to recover a d-sparse binary vector x in the “for each”
model as well as the case when x is generated by the well-known binary symmetric channel (each
bit is one independently with probability d/N). This shows that (a) we gain in the number of
measurements for group testing when we go from the “for all” to “for each” model and (b) group
testing and (both !1/!1 and !2/!2) compressed sensing have similar complexities in the “for each”
model. A natural follow-up question is whether we can distinguish between group testing and !2/!2

compressed sensing by an adversary that is weaker than the “for all” model (where we know there
is a gap).

Somewhat surprisingly we are able to show that a randomized one pass O(log N) space streaming
adversary suffices to distinguish between group testing and !2/!2 compressed sensing. In partic-
ular, we are able to show that O(k log(n/k)) measurements suffice against such an adversary for
!2/!2 compressed sensing, i.e., in some sense such an adversary is just as weak as a “for each”
adversary. We use lower bounds in communication complexity to show upper bounds for recovery
against a streaming adversary. On the other hand, we show that for group testing a randomized one
pass log space streaming adversary is almost as powerful as a “for all” adversary by showing that
Ω(d2/ log d) measurement are needed to perform group testing against such an adversary. Using
limited-wise hash functions, we can de-randomize this result to show that Ω(d2/ log d) measure-
ments are necessary to recover a d sparse binary vector against a deterministic O(log d log N) space
bounded adversary (with no a priori limit on the number of passes).

Finally, we show that for information-theoretically bounded adversaries with O(log N) bits of
mutual information do no better than the oblivious model for both compressed sensing and group
testing.

2. Preliminaries

2.1. Notation. There are three key components to both group testing and sparse signal recovery
designs: the measurement matrix Φ, the unknown sample or signal x, and the observations y. We
assume that x is of length N and that the matrix Φ has dimensions m×N . In the combinatorial
group testing literature, the number of rows m is typically denoted by t for tests but we will stick
with the sparse signal recovery notation. The final parameter of interest in either problem is the
number of defectives d that we seek (for group testing) or the sparsity k (for signal recovery). For
this parameter, we use the convention of the two separate bodies of literature and express the
number of measurements m in terms of d and N for group testing and k and N for sparse signal
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recovery. One important distinction between group testing and sparse recovery signals is that for
group testing, the signal x is a binary vector with d 1s, while for sparse recovery, the signal x ∈ RN

consists of two pieces: xk, the k-largest entries in absolute value (called the “head” of the vector),
and x− xk, the remaining N − k entries (called the “tail” of the vector).

Since we are considering these problems in an adversarial context, we will name the process
generating inputs x Mallory. She will take on various powers throughout the paper.

2.2. Models for Mallory. We consider several models for Mallory.
• Binary symmetric channel: Entries in the signal x are 1 with probability p and 0 with

probability 1 − p, independent of the matrix Φ (analogous to the error correcting code
setting in which bits in the encoded message are flipped with probability p). We consider
this model for combinatorial group testing only and note that in this model, the number of
defectives present in the signal is a random variable.

• Oblivious: Mallory cannot see the matrix Φ and generates the signal x independent from
Φ. In the combinatorial group testing problem, Mallory chooses a set of size d to be the
defective set. For sparse signal recovery, this model is equivalent to the “for each” signal
model.

• Information-Theoretic: Mallory’s output has bounded mutual information with the ma-
trix. To cast this in a computational light, we say that an algorithm M is (log-)information-
theoretically-bounded if M(x) = M2(M1(x)), where the output of M1 consists of at most
O(log(|x|)) bits. Lemma 1 shows that this requirement can be expressed as a bound on the
success probability of an oblivious adversary. We distinguish this case from the oblivious
case because it provides a natural abstraction in a number of settings. As mentioned in
the introduction, in a situation with feedback, it is reasonable to assume that an adversary
(powerful or not) might only see a few bits about Φ based on our actions. This might also
arise in a situation where a space-bounded streaming adversary does not start to generate
x until it has seen all of Φ. This is obviously a much weaker adversary that a general
information-theoretic bounded one, but it comes up naturally. For example, suppose mea-
surements must be coordinated between several sensors, and Φ (or a seed for Φ) must
be passed between them, through an environment which then generates the signals. The
sensors do not begin to take measurements until after Φ has been initialized. The signals
generated then depend on Φ, and hence an algorithm designed for an oblivious adversary
would not give guaranteed results. However, the assumption is that the environment can
be modeled as a simple process, perhaps with logarithmic space. A recovery algorithm
designed for an information-theoretic bounded adversary would apply.

• Streaming log-space: Mallory can stream over Φ but only has log space with which to
store information about Φ and to compute an error message. In contrast to the information
theoretic model above, which puts restrictions on the amount of mutual information between
the signal and Φ, this is a computational restriction. A logspace streaming adversary is the
natural “weakest” computationally bounded adversary, and thus is a reasonable place to
start our analysis. Additionally, it has practical applications: both the sensor example and
the error correction example above could fit into this model as well.

• Adversarial: Mallory has full computational power.
Before we dive into technical results, we give a general statement about randomized algorithms

and information theoretically bounded adversaries that we will use in the proceeding sections.9 For
a randomized algorithm A with failure probability ε > 0, if an omnipotent adversary sees the seed
r for A before choosing the input x, then A will fail. However, if the adversary has limited space,
success is still possible:

9Despite the simplicity of this observation, or, perhaps because of its simplicity, we cannot find an appropriate
reference for this result.
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Lemma 1. Pick ! = !(N), and fix 0 < α < 1. Let A be any randomized algorithm which takes
input x ∈ {0, 1}N , r ∈ {0, 1}m, which “succeeds” with probability 1 − ε. Then for any informa-
tion theoretically bounded algorithm M with space !, A(M(r), r) succeeds with probability at least
min {1− α, 1− !/ log(α/ε)} over the choice of r.

Proof. Let R be a uniform random variable over {0, 1}m, and let X = M(R). Let δ = Pr(A(X,R) fails ).
(Abusing notation, by A(X,R), I mean that both X = M(R) and R have the same draw from R).
Then

I(X : R) = Pr(A(X, R) fails )I(X : R|A(X, R) fails ) + Pr(A(X, R) succeeds )I(X : R|A(X, R) succeeds)
≥ δI(X : R|A(X,R) fails ).

Let B = {r ∈ {0, 1}m : A(M(r), r) fails }. If |B| < α · 2m, then by definition, A succeeds with
probability at least 1− α over the choice of r. So suppose that |B| ≥ α · 2m. Given that A(X, R)
fails, we may specify r from M(r) as a member of a set of at most ε2m bad seeds for M(r), using
at most log(ε2m) bits. On the other hand, to specify r should take at least

H(R | A(X, R) fails )− I(R : X | A(X, R) fails )

bits. Altogether,

I(X : R) | A(X, R) fails) ≥ H(R | A(X, R) fails )− log(ε2m)
≥ log(α · 2m)− log(ε · 2m)
= log(α/ε).

Then
! ≥ I(X : R) ≥ δ log(α/ε),

so

δ ≤ !

log(α/ε)
.

!

3. Combinatorial group testing

The goal of group testing is to identify a set of d “defective” elements from a population of size
N . This is accomplished by creating a pooling design, where each element is placed in multiple
“pools” and each pool is tested separately. A pool will fail if it contains at least one defective
element. The primary goal in this scenario is to minimize the number of pools, which is equivalent
to minimizing the number of tests needed. It is customary to identify the set of defectives as a
vector, x, of weight d in {0, 1}N , and a pool as a vector in {0, 1}N identifying which elements
are in the pool. The entire design, consisting of m pools, can be written concisely as a matrix
Φ ∈ {0, 1}m×N . The outcome of the m tests then corresponds to the matrix product Φx, where
the matrix product is computed using boolean AND an OR, since each test fails if any element in
that pool is defective.

Combinatorial group testing schemes have focused on developing pooling designs that are robust
against “worst-case” (adversarial) distribution of defectives. In particular, this means, that the
group testing scheme must be able to correctly identify any subset of size d from a population of size
N . In this worst-case adversarial model, explicit schemes are known which make m = O(d2 log(N))
tests [43], and it is known that any scheme must have m = Ω(d2 log(N)/ log(d)) [11].

Because we are not aware of any results about group testing in the random model (where the
signal is composed of N independent Bernoulli random variables) or in the oblivious model, we
first consider these models and note that O(d log(N)) measurements suffice in either case. We give
an explicit scheme that achieves this in the random model.
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The rather large gap between the upper bound of d log(N) measurements in the random and
oblivious cases, and the lower bound of d2 log(N) measurements in the “for all” case indicates a
need for intermediate models. As a step towards filling this gap, we consider the similar case where
x is generated by a information-theoretically bounded adversary, and by computationally bounded
adversaries.

Our results show that moving from the restrictive “for each” model to the more general space
bounded adversary does not result in a decrease in efficiency, and is below the lower bound in the
“for all” (adversarial) setting.

On the other hand, we show lower bounds even for very weak computationally bounded adver-
saries. We show that any scheme where Φ has m = O(d2/ log(d)) rows will fail against a random-
ized log-space adversary with one-pass streaming access to Φ, or by a deterministic adversary with
O(log N log m) space. As we will see in Section 4, this contrasts with the sparse recovery case,
where a logspace streaming adversary can be defeated with the optimal number of measurements.

3.1. Binary symmetric channel. In this section, we give a concrete construction of a group
testing design which recovers a random set of defectives with high probability over the choice of
defectives. We consider a model where each item in the population is defective with probability
d/N , independent of all other items. Thus, the expected number of defective items is d. In the
setting of error-correcting codes, this corresponds to switching from Hamming’s adversarial model
of noise to Shannon’s binary symmetric channel.

Proposition 2. For any 0 < δ < 1, there is a group testing scheme with O
(
d log d

δ log
(

N
d log d

δ

))

tests that succeeds with probability 1 − δ against input distributions where each item is defective
independently with probability d/N .

Proof. The idea is very simple: divide up domain (length N) into N/t chunks of size t each. If t
is not too large, in each chunk the expected number of ones is small. Thus with high probability,
each chunk will have very few ones (call that number x).

Our idea is then to create a block a block diagonal matrix, where we use a standard x-disjunct
matrix “for each” of the N/t chunks. We now show that with high probability this construction
succeeds.

The construction of [43] gives an x-disjunct matrix over a population of size t with O(x2 log(t))
rows. Our test is simply a block diagonal matrix consisting of d copies of this x-disjunct matrix,
so our scheme requires (N/t)x2 log(t) tests.

It remains to choose x so that the probability of error is bounded by δ. If X is the number of
defectives in a block, then

Pr[X > x] =
t∑

i=x

(
t

i

) (
d

N

)i (N − d

N

)t−i

≤
(

t

x

) (
d

N

)x (
N − d

N

)t−x x
(

N−d
N

)

x− td/N
([21], Equation 3.4)

≤
(

t

x

) (
d

N

)x

≤
(

te

x

)x (
d

N

)x

=
(

edt

Nx

)x

< 2−x (for x > 6dt
N )

If we choose x > max
(
6dt

N , log N
tδ

)
, then Pr[X > x] < δt

N . Taking a union bound over the N/t
blocks gives a probability of at most δ that any block contains more than x defectives.

We must now choose t to minimize the total number of measurements, N/tx2 log(t), subject to
the constraint x > max

(
6dt

N , log N
tδ

)
. Setting t = N

d log d
δ , the total number of measurements made

is O
(
d log d

δ log
(

N
d log d

δ

))
. !
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There are, in fact, explicit constructions of x-disjunct matrices that can be constructed in poly-
nomial time [43]; furthermore, these can be decoded in sublinear time [41].

This scheme is nearly optimal:

Lemma 3. Any (non-adaptive) group testing scheme to recover from error rate d/N in the random
model with probability (1− δ) = Ω(1) requires at least NH(d/N) = d log

(
N
d

)
+ (N − d) log

(
N

N−d

)

tests.

Proof. This follows immediately from Shannon’s Noiseless Coding Theorem. A group testing
scheme making m tests on a population of size N can be regarded as a compression scheme from
N bits to m bits. If the scheme recovers with a probability that does not approach zero, Shannon’s
Noiseless Coding Theorem tells us that the average codeword length must be NH(d/N) giving the
claimed bound. !

While Lemma 3 relies on the fact that every group testing scheme is a compression algorithm,
the converse is not true. Group testing schemes are compression algorithms that can be represented
as a matrix product Φx, where the arithmetic is boolean AND and OR. This is similar to using the
parity-check matrix of binary error-correcting code for noiseless compression [6] except the matrix
multiplication is done using OR instead of XOR.

3.2. Oblivious adversary. We also consider the oblivious model, in which an adversary Mallory,
with no knowledge of the design matrix Φ, chooses a pattern of defectives to create x ∈ {0, 1}N .
For any x she chooses, we demand that with high probability over the construction of Φ, x is
recoverable from Φx and Φ. The construction in Proposition 2, post-multiplied by a random
permutation matrix, works in the oblivious setting with the same argument and the same number
of measurements. We observe that, using a random matrix, we may correct the log(d/δ) factor at
the cost of switching from log(N/d) to log N :

Proposition 4. For any distribution of vectors x ∈ {0, 1}N , where Pr[|Supp(x)| > d] < δ, there is
a distribution of design matrices Φ with O(d log(N)) rows such that with probability at least 1− 2δ
over the choice of Φ, and the choice of x, the signal x can be exactly recovered from Φx and Φ,
using boolean arithmetic.

Proof. Consider an m×N measurement matrix Φ, where each entry is chosen to be 1 with prob-
ability p, and 0 otherwise. Let vj denote the jth column of Φ, and let Supp(vj) denote the set of
coordinates where vj $= 0. With probability 1−δ, the error pattern x ∈ {0, 1}N , has |Supp(x)| ≤ d.
If this is not the case, we may fail to recover. In the case that |Supp(x)| ≤ d, we need to show that
with high probability over the choice of Φ, for all j $∈ Supp(x), there exists an i ∈ [m], such that
vj(i) = 1, and v!(i) = 0 for all " ∈ Supp(x). In other words, vj $⊂

⋃
!∈Supp(x) v!.

We view x as fixed, and for any column, vj (j $∈ Supp(x)), the probability that an index i
has v!(i) = 0 for all " ∈ Supp(x), and vj(i) = 1, is exactly p(1 − p)|Supp(x)| ≥ p(1 − p)d. Since
this probability is the same “for each” row index i, a column is “bad” with probability at most
(1− p(1− p)d)m.

We would like to bound the probability that there exists a bad column by δ. There are N − d
columns not chosen by the support of x, so to take a union bound, we need ((1−p(1−p)d)m < δ

N−d .

Solving for m yields m >
log(N−d

δ )
log(1−p(1−p)d)

. Setting p = 1/d, we find that m > 4d log
(

N
δ

)
suffices. !

Corollary 5. A m × n matrix where each entry is 1 with probability 1/d, and 0 with probability
1−1/d represents a pooling design against an oblivious adversary which recovers any weight d input
probability at least 1− δ over the choice of the matrix, where m = 4d log

(
N
δ

)
.
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3.3. Group testing against a information-theoretically bounded adversary. The error
probability in Proposition 4 along with Observation 1 immediately implies that a logspace infor-
mation theoretically bounded adversary with access to the a matrix Φ drawn from the distribution
described above will also not succeed:

Corollary 6. Let Φ be a matrix so that each entry is 1 independently with probability 1/d, with
m = O(d log(N)) rows. For any information-theoretically bounded algorithm M with O(log N)
space which sees Φ and then generates x, x can be recovered exactly from Φx and Φ with probability
at least 2/3.

Proof. By Proposition 4 an oblivious adversary succeeds against Φ with probability at most O(1/N3).
Lemma 1 (with α = 1, and adjusting the constants inside the O(·) appropriately) implies that if x is
generated by a logspace adversary then recovery succeeds with probability at least min

{
2
3 , 1− O(log(N))

O(log(N3))

}
=

2
3 . !
3.4. Lower bounds. In this section, we show that the good news in group testing stops at oblivious
or information-theoretically bounded adversaries. For even very simple computationally bounded
adversaries, O(d2/ log d) measurements are needed. We begin with a randomized adversary and
then later show it can be derandomized to obtain the second adversary.

3.4.1. One pass log space randomized adversary.

Theorem 7. Suppose Φ is an m×N binary matrix with m = O(d2/ log d) rows, and additionally
assume m = o(N). There is a algorithm with O(log(N)) space which streams over the rows of Φ
and outputs a set T ⊂ [N ] so that |T | ≤ d and so that the characteristic vector x of T satisfies the
following property: there is some i %∈ T so that if y is the characteristic vector of T ∪{i}, Φx = Φy.
In particular, accurate recovery of x is impossible.

To prove Theorem 7, we describe in Algorithm 1 a one pass low space adversary who streams
over Φ row-by-row and outputs a list of indices which will determine the set T of defectives. Let x
be an integer that will be fixed later.
Algorithm 1: A logspace streaming adversary which outputs a set T of defectives which will
resist recovery.

(1) Independently at random output each of the N column indices with probability

p = Θ
(

x log m

N

)
.

Note that the above is done even without looking at the matrix Φ.
(2) Pick a random i ∈ [N ] and remember it.
(3) For each row index r ∈ [m]:

(i) Count the number of ones y in row r;
(ii) Remember the first column j %= i such that Φr,j = 1.
(iii) Set B = Φr,i.
(iv) If (B ∧ y ≤ N/x ∧ j is defined), output j. Otherwise, do nothing.
(v) Stop if the algorithm has output d/2 (not necessarily distinct) j indices in Step 3(iv).

It is easy to check that the above algorithm can be implemented in one pass and O(log N) space.
Lemma 8 below shows that the adversary succeeds with high probability, which proves Theorem 7.

Lemma 8. There exists an instantiation of x so that with high probability,
(i) Let T be the set of indices output in Step 1. Then

|T | ≤ d

2
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(ii) If S is the set of indices output then the ith column (which is chosen in Step 2) is contained
in the union of the columns in S.

Note that (i) and Step 4 ensure that |S| ≤ d, as needed.

Proof. For (i), note that due to Chernoff, with probability exp(−Ω(x log m)), in Step 1, Θ(x log m)
indices are output. Thus, the adversary outputs at most d nonzeros with probability at least
1− exp(−Ω(d)) as long as

(1) x ≤ O(d/ log m)

For (ii), call a row heavy if its weight is at least N/x. For a heavy row r, note that by step 1,

Pr[|{j|Mr,j = 1} ∩ T | ≥ 1] ≥ 1− (1− p)N/x ≥ 1−m−2,

where the last inequality follows by choosing the constants in the definition of p properly. Thus,
by the union bound, with probability at least 1− 1/m, T will cover each of the N columns in the
heavy rows. Let Φ′ be the sub-matrix of Φ containing only the non-heavy rows. It now suffices to
show that, with high probability, the indices output in step 3(iv) cover the ones in column i for all
the rows included in Φ′. Note that the average column weight of Φ′ is at most N/x · m · 1

N = m
x .

Pick δ small, to be determined later. As long as

(2) x ≥ 2m

δd
we will have the average column weight at most δ · d/2. Thus, with probability at least 1− δ, the
column i chosen in Step 2 will have Hamming weight (in Φ′) at most d/2.

There are two cases for such a column i:
(Case 1) column i has a “private” row r: i.e. Φ′

r,i = 1 but for every j %= i, Φ′
r,j = 0.

(Case 2) Column i has no private row, i.e. for every row r in Φ′ such that Φ′
r,i = 1 there exist a j %= i

such that Φ′
r,j = 1.

The number of columns i that fall in Case 1 values is at most m, which by assumption is o(N).
Thus, column i chosen in Step 2 is in Case 2 with probability at least 1 − δ − o(1). For such i’s
Step 3(iv) will output as many j’s as the weight of i in Φ′, which is at most d/2. (Note that the
algorithm ignores all the heavy rows in Step 3.) Thus, with high probability |S \T | ≤ d/2, and step
4 will not be executed. Further, with high probability S \ T covers all the non-heavy rows where i
has a 1.

To complete the argument we only need to show that there exists a value of x that satisfies both
(1) and (2). This is true if

m log m ≤ O(δd2),
which is satisfied with m ≤ O(d2/ log d), as desired. !

3.4.2. Deterministic low space adversary. In this section, we will derandomize Algorithm 1 and
present an equivalent deterministic low space algorithm. We allow this adversary to make multiple
passes over the input matrix Φ.

Theorem 9. For any matrix Φ with O(d2/ log(d)) rows, there is a deterministic algorithm with
space O(log m log N) which generates x ∈ {0, 1}N with at most d nonzeroes so that for some y ∈
{0, 1}N with at most d nonzeroes, Φx = Φy. In particular, recovery of x is impossible.

Proof. We will show that the Algorithm 1 can be simulated with O(log m log N) random bits and
O(log N) space. (By simulated we mean that the algorithm either outputs “fail” or outputs a set
S ⊆ [N ] such that |S| ≤ d and there exists an i ∈ [N ] \ S such that i lies in the union of the
columns in S. Further, the new algorithm outputs “fail” with probability < 1.) Thus, by going
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over all possible instantiations of the random bits, one obtains an O(log m log N) deterministic
space algorithm.

We now inspect the use of randomness in Algorithm 1. Note that Step 1 needs N bits of p-biased
random bits and Step 2 needs O(log N) random bits. We will show that in Step 1, the p-biased
random bits needs only be O(log m)-wise independent while Step 2 does not need any randomness.

We start with the easier case of Step 2. One can verify that the proof of Lemma 8 works as long
as the chosen column i has the following two properties:

(1) Column i does not have any private row and
(2) column i has at most d/2 ones in M ′.

The proof of Lemma 8 shows that at least 1− δ− o(1) fraction of i ∈ [N ] have this property. Given
any i ∈ [N ], it is easy to check in O(log N) space if column i has the required property. (One can
check that the following algorithm works: run steps 3(i)-(iii) of the algorithm and do the following
instead of Step 3(iv): (1) Stop with “fail” if B ∧ j is not defined and (2) Maintain a count C of
how many j would have been output in Step 3(iv) of the algorithm. Finally, declare i to have the
required property if the algorithm does not output “fail” and C ≤ d/2.) Thus, one can compute
the required i ∈ [N ] instead of the current Step 2 in the Algorithm 1.

We now move on to Step 1 of the algorithm. Step 1 needs N random bits (say R = (R1, . . . , RN ) ∈
{0, 1}N ) such that each Ri is p-biased, i.e. Pr[Ri = 1] = p. First, we argue that given R and M
as input one can verify in O(log N) space whether T = {i|Ri = 1} satisfies the following two
properties:

(1) |T | ≤ d/2 and
(2) T covers the heavy rows of M .

The adversary is done once she gets a hold of such a T . Verifying property (1) is easy as one can
compute

∑N
i=1 Ri in O(log N) space. Further, verifying (2) can also be done in O(log N) space as

follows: Go over each row r of M and check if (a) row r is heavy and (b) if so, if there exists an
j ∈ [N ] such that Mr,j = 1 and Rj = 1.

The proof of Lemma 8 shows that if each Ri is picked independently to be p-biased then with
high probability T = {i|Ri = 1} satisfies the properties (1) and (2) above. Next, we show that if
the random bit vector R is chosen to be O(log m)-wise independent p-biased bits in {0, 1}N , then
there exists a T that satisfies properties (1) and (2). To this end, we recall the following Chernoff
bound for limited independent sources (the statement below appear as part of Theorem 5 in [44]):

Theorem 10 ([44]). Let t ≥ 1 be an integer and let Y1, . . . , YN be t-wise independent random
variables taking values in [0, 1]. Let Y =

∑N
i=1 Yi and µ be the mean of Y . Then for any γ ≤ 1 and

if

t ≤
⌊
γ2µe−1/3

⌋
,

then
Pr [|Y − µ| ≥ γµ] ≤ exp (−&t/2') .

For the rest of the discussion, let t = 2(lnm) + 4. Now consider the random binary vector
R = (R1, . . . , RN ) ∈ {0, 1}N , where R1, . . . , RN are t-wise independent bits where Pr[Ri = 1] = p.
Let T be the random set {i|Ri = 1}. We will show that with non-zero probability T satisfies
properties (1) and (2) above.

By (a suitable) choice of x and p, we get that the expected value of
∑N

i=1 Ri is µ = d/4. Since
m = O(d2/ log d), for large enough value of d, we have t ≤ &µe−1/3'. Thus by applying Theorem 10
(with Yi = Ri and γ = 1), we have that

(3) Pr[|T | ≥ 2µ = d/2] ≤ exp(− lnm− 1) =
1

em
<

1
2
,

11



where µ = E
(∑N

i=1 Ri

)
and the last inequality follows as m ≥ 1.

We now verify property (2). Fix a heavy row r ∈ [m] of M . For every i ∈ [N ], define Yi = 1 if
Φr,i = Ri = 1 and otherwise define Yi = 0. By definition of a heavy row and proper choice of x,

µ ≥ pN/x ≥ Ω(log m).

By appropriate choice of the constant in the definition of p, we can ensure that µ ≥ 2e1/3(2#lnm$+
4), which in turn implies that t ≤ &γ2µe−1/3' for γ = (µ − 1)/µ. Thus by Theorem 10, we obtain
that

Pr

[
N∑

i=1

Yi = |{i|Mr,i = 1} ∩ T | ≤ 1

]
≤ exp(− lnm− 1) =

1
em

.

Thus, by the union bound over the at most m heavy rows, we get that T does not satisfy property
(2) with probability at most 1/e < 1/2. This along with (3) shows that with our choice of t-wise
independent p-biased bits, there exists at least one T that satisfies both properties (1) and (2).

Finally, we need to determine how many purely random bits we need to obtain N p-biased
random bits that are t-wise independent. For what follows we will assume without loss of generality
that p is a power of 2. It is well-known that can one obtain N unbiased t-wise independent bits
with O(t log N) random bits using BCH codes. To obtain p-biased t-wise independent bits we can
consider a t log(1/p)-wise independent N log(1/p) unbiased random bits. (Note that if we group
log(1/p) bits together and output a 1 iff all these log(1/p) bits are 1 then the resulting N bits are
t-wise independent p-biased bits.) This implies that one can get away with O(log m log(N/d) log N)
purely random bits (as p = Θ(d/N) by our choice of p and x).

However, we can do slightly better. Consider a Reed-Solomon code of dimension t and block
length N over an alphabet size q = 2"log N#. It is well-known that if one picks a random codeword
from this code then this is a t-wise independent random vector in FN

q . To convert this to a t-wise
p-biased random bits, replace each symbol in the codeword by a 1 iff the first log(1/p) bits of
that symbol are all 1. Note that the probability that a random element in Fq leads to a 1 with the
above conversion is 2log q−log(1/p)/q = p. Thus, the adversary now needs O(t log q) = O(log m log N)
purely random bits (to pick a random message from Ft

q), as desired.
The derandomization of Algorithm 1 is complete by noting that given a message in Ft

q and an
index i ∈ [N ] one can compute the value of the ith symbol in the corresponding codeword in space
O(log q) = O(log N). !

4. Sparse signal recovery

In sparse signal recovery, we wish to recover a signal x from measurements Φx with as little error
as possible. We will use the notation that x = y + z, where y is the head (the largest k terms) and
z is the tail. In this section, we suppose an adversary who generates the tail z, while the head y is
assumed to be worst-case.10

The strongest possible bound on error between the original signal x and the recovered approxi-
mation x̂ is an "2/"2 requirement:

(4) ‖x− x̂‖2 ≤ C‖x− xk‖2.

This bound is achievable with m = O(k log(N/k)) (see [23]) in the oblivious model, meeting a lower
bound [2]. On the other hand, [12] show that in the adversarial model, (4) is impossible unless
N = O(m).

10Note that, beyond the distiction between a statistical model and a computational model, this is more general
than many random signal models which assume that both the head and the tail are random.
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In this section, we show that even when relaxing the adversary to the logspace (information
theoretically bounded) model or logspace streaming model, (4) is still attainable with an optimal
number of rows, circumventing the lower bound in [12].

4.1. Information-Theoretically Bounded Adversaries. In this section we consider an adver-
sary who must pass through a log(N)-space information-theoretic bottleneck.

The Restricted Isometry Property (RIP) is a useful criterion for generating matrices for sparse
recovery:

Definition 11. A matrix Φ satisfies the Restricted Isometry Property with constant δ if for
every k-sparse vector x,

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22.

In [12] it is shown that, when Φ has the Restricted Isometry Property, a sufficient condition for
unique recovery against an oblivious adversary is that no “tail” z is very stretched by Φ.

Theorem 12 ([12]). If Φ satisfies the Restricted Isometry Property with constant δ for 2k-sparse
vectors, and if Mallory cannot generate a tail z so that

‖Φz‖2 >

(
(C − 1)(1 + δ)

2

)
‖z‖2,

then for all k-sparse y, and for all z generated by Mallory, if x = y + z , any x̂ which minimizes
‖Φx̂− Φx‖2 satisfies

‖x− x̂‖2 ≤ C‖x− xk‖2.

Theorem 12 implies that unique recovery is possible with "2/"2 error as long as Mallory cannot
find z so that ‖Φz‖2 ≥ C‖z‖2. From the fact that for several standard ensembles (Gaussian,
Bernoulli, etc) an oblivious adversary is very unlikely to find such z (see for example [1]), Lemma 1
implies that neither is Mallory. This does not imply that efficient recovery is possible, but in fact
several existing (efficient) algorithms will work. Many algorithms ([39], [38]) recover an exactly k-
sparse x in the adversarial setting which are stable in the "2/"2 sense against some post-measurement
noise. That is, if x is k-sparse, given Φx + e, such algorithms recover x̂ so that

(5) ‖x− x̂‖2 ≤ C‖e‖2.
This immediately gives an algorithm which works against an information-theoretically bounded
adversary with logarithmic space.

Proposition 13. Suppose that Φ is chosen to have independent Bernoulli or Gaussian entries.
Suppose A is an algorithm which recovers an exactly k-sparse vector x from Φx + e so that (5)
holds. Then A will succeed with high probability on any vector x generated by a logspace information
theoretically bounded adversary with access to Φ.

Proof. If Φ is chosen to have independent Bernoulli or Gaussian entries, then [1] shows that for a
fixed z,

Pr(‖Φz‖2 ≥ (1 + ε)‖z‖2) ≤ e−c0(ε)m,

for c0(ε) = 1
2(ε2/2 − ε3/3). If Mallory generates z, Lemma 1 (with α = 1

3), implies that with
probability at least 2/3 or

1−O

(
log N

m log(c0(ε))

)
,

which tends to 0 for any reasonable value of m, ‖Φz‖2 ≤ (1 + ε)‖z‖2. Thus, A returns x̂ so that

‖x− x̂‖2 ≤ C‖Φz‖2 ≤ C(1 + ε)‖z‖2.
!
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A downside of Proposition 13 is that we would like to use a more combinatorial approach, for
several reasons. First, these schemes tend to use sparser matrices and have faster recovery times.
Secondly, and more importantly for the purposes of this paper, we will see in Section 4.2 that
combinatorial algorithms will extend to work against a logspace streaming adversary as well as an
information theoretically bounded adversary.

Our construction is based on several constructions in the literature, including [23] and [42].
Unlike those constructions, however, our algorithm will have superlinear runtime. It follows we can
afford several simplifications. We do need strong guarantees of failure to take a union bound over
all possible heads of signals.

At a high level, the idea is to create Φ out of O(log N) hash matrices with O(k) buckets each.
Additionally, each nonzero element in the hash matrix is subject to a random sigh flip. With high
probability, at most one element of the head is hashed into each bucket, and the other (smaller)
elements in the bucket are likely to cancel each other out. The savings in the number of rows and
the error probability over other hashing-type algorithms comes from the recursive nature of the
reconstruction algorithm. To recover, a block of hash matrices is used to identify the top half of
the heavy hitters, which are then subtracted off. The process is repeated with the remaining hash
matrices.

4.1.1. A Hashing-Based Algorithm Effective Against Bounded Adversaries. In this section, we give
the details of the algorithm we will use for our proofs. We stress that the main ideas here are
from [42], and that the contribution of this work is meant to be the theoretical implications of the
algorithm, not the algorithm itself.

An inner loop (a “weak” recovery system) recovers half of the heavy hitters in each round. This
is wrapped inside a “top level” algorithm which iteratively finds all of the heavy hitters.

Each iteration in the outer loop corresponds to a (t · b) × N matrix Φj consisting of t hashing
b×N hash matrices Φ(i)

j (the parameters b, t are defined in the algorithm). If nonzero, the value of

Φ(i)
j (a, b) is ±1 independently with probability 1/2. Several copies of Φj , with different parameters,

are stacked together to get Φ.
14



Algorithm 2: A Weak System ([42])
Input: N , sparsity s, error tolerance η, omission ζ, Φx, and Φ
Output: x̂, an approximation of x
b = 8es

ηζ // number of hash buckets ;
t = 2(2ζ−1 + 1) log(Ne/s);
for j ∈ {1, 2, . . . , t} do

for i ∈ I do
x̂(j)

i = shj(i),i(Φx)hj(i);
// shj(i),i is sign flip of i’th position in hj(i)’th bucket, implicit in Φ ;

for i ∈ [N ] do
x̂i = medianj(x̂

(j)
i );

zero out all but the top s elements of x̂.;
return x̂

Algorithm 3: A Toplevel algorithm ([42])
Input: N , sparsity k, error tolerance ε, Φx, Φ
Output: x̂, an approximation of x
for j ∈ {1, 2, . . . , log(k)} do

s ← k/2j , η ← O(ε(3/4)j), ζ ← 1/2;
x′ ← the output of Algorithm 2 with the above parameters;
x̂ = x̂ + x′;
µ = µ− Φx′;

return x̂;

Proposition 14 shows that this algorithm works against an infomation-theoretically bounded ad-
versary.

Proposition 14. Algorithm 3 uses O(ε−1k log(N/k)) measurements and runs in times O(N log(N/k)).
If x = y + z, where y is an arbitrary k-sparse vector and z is generated by an information the-
oretically bounded adversary with (1/4) log(N) space, Algorithm 3 returns x̂ so that ‖x − x̂‖2 ≤
(1 + O(ε))‖x− xk‖2 with probability 2/3, where xk is the best k-term approximation to x.

The proof is similar to that in [42]. For completeness, we will repeat the parts that must be
tweaked in this setting. We rely on the following lemma.

Lemma 15. Without loss of generality, scale x = y + z so that ‖x‖∞ = 1.For a fixed z, and for
any y with ‖y‖0 = s, Algorithm 2 returns x̂ so that x = x̂+ ŷ + ẑ, so that ‖ŷ‖0 ≤ ζs, ‖x̂‖0 = s, and
‖ẑ‖2 ≤ (1 + O(√η))‖z‖2, with probability at least

1−
( s

N

)s

over the construction of Φ.
It uses

O

(
s log(N/s)

ζ2η

)

measurements, and has running time

O(ζ−1N log(N/s)).

Proof. For j ≤ t and i ≤ N We say that a measurement x̂(j)
i has failed for xi if

|x̂(j)
i − xi| >

√
η

s
‖z‖2.
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Similarly, say that the final measurement x̂i (before zeroing out the smallest N − k) for xi has
failed if

|x̂i − xi| >

√
η

s
‖z‖2.

Fix S ⊂ [N ] to be the support set of y, and Z ⊂ [N ] to be any set of size ζs. We will show that
with high probability, at least one measurement x̂i for i ∈ Z has not failed. Taking a union bound
over S and Z, we will conclude that with high probability, there are at most ζs failed measurements.

First, consider how the elements outside S∪Z hash: Let Xj,i denote the sum of elements outside
S ∪ Z that hash into the same bucket as xi on trial j:

Xj,i := x̂(j)
i −

∑

i′∈S∪Z;h(i′)=h(i)

Φi(h(i), i′) =
∑

i$∈S∪Z

Φj(h(i), i)zi.

Then Xi,j has variance

Var(Xi,j) =
∑

i$∈S∩Z

z2
i Var(Φj(#, i)) ≤

‖z‖22
b

.

By Chebyshev’s inequality,

Pr
(
|Xi,j | ≥

√
η

s
‖z‖2

)
≤ s

b2η
=

ζ

8e
.

The probability that two elements of S ∪ Z collide is also ζ
8e , for a total failure probability of ζ

4e .
There are |S ∪ Z| · t (item, iteration) pairs, and by a Chernoff bound (okay to apply here because
of negative association), the probability that more than a ζ fraction of them fail is

Pr
(

more than
ζ

2
|S ∪ Z|t (item, iteration) pairs fail

)
≤

(
1
2

)ζ|S∪Z|t/2

≤
( s

eN

)2s+ζ
.

In the favorable case, there are at most a ζ/2 fraction of pairs (i, j) with i ∈ S ∪ Z and j ≤ t so
that x̂(j)

i has failed. In this case, there are at most ζ|S ∪Z| elements that have a majority of failed
estimates.

Taking a union bound over the choice of S and Z, we obtain that

Pr(more than ζ|S ∪ Z| measurements x̂i fail) ≤
(

N

s

)(
N

ζs

) ( s

eN

)2s+ζ

≤
( s

eN

)s
ζ−ζs

≤
( s

N

)s
.

Next we define ŷ and ẑ. Then the claim that x = x̂ + ŷ + ẑ follows as in the statement of the
Lemma follows as the proof in [42]. Let J = Supp(x̂) and let T = Supp(y). Let B be the set of
indices in J ∪ T that have failed. Then:

• If i /∈ T ∪J , then i contributes xi to ẑ. Since i /∈ Supp(y), these i’s contribute at most ‖z‖22
to ‖ẑ‖22.

• Pick an arbitrary bijection ψ : T \ J → J \ T , and let ψ(i) = i for i ∈ J ∩ T . Then:
– If either of i, ψ(i) ∈ B (i gets a failed estimate), then xi contributes to ŷ. There are at

most O(ζs) of these.
– If both i, ψ(i) are not in B (neither estimate fails, but the algorithm chose ψ(i) over

the better choice i), then ψ(i) contributes xψ(i) − x̂ψ(i) to ẑ (and x̂ψ(i) to x̂). Also, i
contributes xi to ẑ. There are at most O(s) contributions of the form xψ(i) − x̂ψ(i),

each of which is at most
√

η
s‖z‖2, for total √η‖z‖2. The contribution xi to ẑ is nearly
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offset by xψ(i) that contributes to z but not to ẑ, so the the net contribution of i and
ψ(i) to ‖ẑ‖22 − ‖z‖22 is under control; specifically, it is

(xψ(i) − x̂ψ(i))2 + x2
i − x2

ψ(i) ≤ (xψ(i) − x̂ψ(i))2 + x̂2
i − x̂2

ψ(i) + (xψ(i) − x̂ψ(i))2 + (xi − x̂i)2

≤ O

(√
η

s
‖z‖2

)
,

since the i and ψ(i) estimates are at most O
(√

η
s‖z‖2

)
and x̂2

i ≤ x̂2
ψ(i) since the

algorithm chose ψ(i) over i.
Thus, the total contribution to ‖ẑ‖2 is (1 + O(√η))‖z‖2, and ŷ is indeed O(ζs)-sparse. !

Given this Lemma, the proof of Proposition 14 amounts to showing that the error probability is
small enough to apply Lemma 1.

Proof. The failure probability of each of the log(k) iterations is (s/N)s, which (after adjusting
constants) is enough to take a union bound over all

(N
s

)
possible heads. So the total failure

probability, for a fixed tail vector z, is at most
log(k)∑

j=1

(
k

2jN

)k/2j

.

This rapidly converging series is bounded by the largest term, O(1/N). By Observation 1, (choosing
α = 1/4), the probability of failure when Mallory is generating z is at most 1/4 or %/ log(N/2). If
% = (1/4) log(N), then this probability is bounded by 1/3 as N grows. !

4.2. A Streaming Adversary. In this section, we show that Algorithm 3 continues to work with
a logspace streaming adversary, at the cost of some constant factors.11

The analysis uses communication complexity. Briefly, Alice holds an input in a ∈ A, and sends
one message m to Bob, who holds b ∈ B. Bob uses b and m to compute a function f(a, b) correctly
with probability at least 1− δ for some δ. The randomized one-way communication complexity of
f is minimum over all protocols of the the number of bits communicated by Alice in the worst case
for that protocol. Let Indq : FN

q × (Fq × [N ]) → {0, 1} be given by

Indq((x1, x2, . . . , xN ), (z, i)) =

{
1 xi = z

0 xi (= z
.

This is a tweak on the standard indexing problem, in which q = 2. The standard indexing problem
is known to have randomized one way communication complexity Ω(N) [32, 26], and the same is
true (by a straightforward extension of the proof in [26]) for larger q:

Theorem 16. For all δ sufficiently small (bounded above by a small constant), the randomized
communication cost of Indq with failure probability δ is Ω(N log(q)).

We will show that if a streaming adversary with log space could defeat Algorithm 3, then there
would be a one way protocol for two players, Alice and Bob, which solves Indq, using only log N
space, contradicting Theorem 16. However, this approach will only show that Mallory’s success
probability must be less than 1 − δ, for a small constant δ. In order to reduce this probability
to something smaller than 1/2, we simply run the algorithm O(1/δ) times, recovering vectors
x̂1, x̂2, . . . , x̂O(1/δ). With probability at least 1/2, x̂i = x is correct for some i. This means that

11It seems likely that no “geometric” algorithm would be able to succeed against such an adversary, where
“geometric” means based on the RIP and !2 distances. Indeed, a streaming adversary can generate a vector z
in the row space of Φ via matrix multiplication, which would have ‖Φz‖ much greater than ‖z‖.

17



with overwhelming probability, for each iteration Φj , Φj x̂i = Φix for each j, and this will not be
true for the incorrect x̂j . Thus, we may pick out the correct preimage.

Theorem 17. Suppose that k = o(N/(log(N/k) log N)) and k = Ω(log N). Consider the algorithm
which runs Algorithm 3 a constant number of times, as described above. This algorithm uses
O(ε−1k log(N/k)) measurements and runs in time O(Nk log(N/k)). If x = y + z, where y is an
arbitrary k-sparse vector and z is generated synchronously by an adversary with O(log(N)) space
streaming over the rows of Φ, then the algorithm returns x̂ so that ‖x− x̂‖2 ≤ O(ε)‖x− xk‖2 with
probability at least 2/3.

Proof. As above, it suffices to show that Mallory cannot succeed except with probability 1− δ for
δ bounded away from 0. The proof proceeds in two parts: When Mallory outputs an element zi of
z, she is looking at some row φ. We first control the entries of φ that are directly impacted by zi.
Second, we control all the other entries, using a communication complexity argument.

First, we control the worst-case entries. An inspection of the proof of Proposition 14 shows
the algorithm can recover against a constant fraction of worst case errors, in the following sense:
For each hash block of size b, if only a constant fraction αb of the measurements are ruined, the
algorithm will still work (after adjusting constants). Similarly, in Algorithm 3, the hash matrices
are organized into blocks of size t = O(log(N/k)). If only a constant fraction βt of the hashes
in any block are ruined, then (again after adjusting constants) the algorithm will still work. We
will show that the number of the measurements that Mallory might ruin in a worst case way fall
into these categories, and summarily ignore them. Let Ai be the set of indices j so that Mallory
outputs zj while looking at the ith row of Φ. There are at most α log(N/k) rows i which have
|Ai| > N/(α log(N/k)). Since each block has t ≥ O(log(N/k)) rows, at most βt of the rows in any
one block are ruined this way—we will give up on these rows. Fix one of the O(log N log k) hash
matrices which make up Φ, and suppose it has b buckets. A series of Chernoff bounds shows that
of the rows with |Ai| < N/(α log(N/k)), then at least αb of the rows i in any hash matrix with b
buckets have only a constant number of nonzero entries in Ai, with probability at least O

(
2−k

)
. A

union bound over the O(log N log k) hash matrices shows that at most αb rows in each hash matrix
have any entries that Mallory can control in a worst-case way. We also give up on these rows.

Next, we control the rest of the entries. Let Sj denote Mallory’s state when she outputs zj , and
suppose she is on row i when this occurs. Let sj

r be the sign associated with zj in the rth hash
matrix, and let sj = (sj

1, . . . , s
j
B). We will show that the distribution on sj , conditional on Sj , is

close to uniform.
Choose constants δ1 and δ2 so that (1 − δ1)(1/2 + δ2) = 1 − δ for δ small enough for Theorem

16 to apply. Consider the game of Ind2i−1 where Alice gets s1, s2, . . . , sN . Alice’s strategy will
be to send Bob S1, S2, . . . , Sm, where Si is Mallory’s state when she is on row i. As long as k =
o(N/(log(N) log(N/k)), the space this takes is O(k log N) = o(N). Suppose that with probability
at least 1 − δ2 over Φ, Pr (Φ|(S1, . . . , Sm)) > Pr (Φ) + δ1. If this is the case, then Bob, who gets
S1, . . . , Sm, i, and z ∈ {−1, 1}N , can determine the signs in the ith column with advantage δ1, and
thus can succeed with probability (1 − δ2)(1/2 + δ1), a contradiction of Theorem 16. Thus, with
probability at least δ2 over Φ, Pr (Φ(S1, . . . , Sm)) < Pr (Φ) + δ1. Let A be the set of all matrices
Φ that are bad for x, given the worst case errors handled in the previous part. Since Algorithm
3 succeeds with probability 1 − o(1) against an oblivious adversary with a constant fraction of
worst-case errors, the probability of A is o(1). Thus, in the favorable case (which happens with
probability at least δ2),

Pr (Φ ∈ A | S1, . . . , Sm) < Pr (Φ ∈ A) + δ1 = o(1) + δ1.

Since the output of Mallory depends only on the states, the probability that the algorithm fails
against Mallory in this favorable case is also o(1) + δ1, so the probability that Mallory succeeds is
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at most
(1− δ2) + δ2(o(1) + δ1) = 1− δ3

for some constant δ3.
By repeating the algorithm O(1/δ3) times and testing the answers, as discussed above, the

probability of failure can be made > 2/3.
!

5. Conclusions and Future Work

We present several new models for signal generation in combinatorial group testing and sparse
recovery. These models capture the many natural situations in which the signal has a weak de-
pendence on the measurement matrix, or when subsequent signals one observes have some weak
dependence on the measurement matrix or upon the measurements obtained. It is often more
natural to assume that the process generating this signal is either computationally bounded, or has
limited information about the measurement matrix Φ than to assume that this process conforms
to particular geometric requirements or follows a certain distribution. We show that there are sig-
nificant gains (in the minimum number of measurements required) to be had by relaxing the model
from adversarial to computationally or information-theoretically bounded, and not too much (in
some cases, nothing at all) is lost by assuming these models over oblivious or statistical models.
We also show that in the group testing case, there is a difference between information-theoretically
bounded and computationally bounded (streaming) models, which contrasts the situation in sparse
recovery.

One model we have not discussed is that of a polynomial-time bounded adversary, with crypto-
graphic assumptions, which is a natural next step. It is perhaps of more practical use to consider
sparse recovery or group testing against such an adversary.
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