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Abstract. Under the notion of list decoding, the decoder is allowed to
output a small list of codeword such that the transmitted codeword is
present in the list. Even though combinatorial limitations on list decod-
ing had been known since the 1970’s, there was essentially no algorith-
mic progress till the breakthrough works of Sudan [14] and Guruswami-
Sudan [11] in the mid to late 1990’s. There was again a lull in algorithmic
progress till a couple of recent papers [12,8] closed the gap in our knowl-
edge about combinatorial and algorithmic limitations of list decoding (for
codes over large alphabets). This article surveys these latter algorithmic
progress.

1 Introduction

Under the list decoding problem (introduced in [1,16]), given a code C C X", an
error parameter 0 < p < 1 and a received word y € X"; the decoder should out-
put all codewords in C that are within Hamming distance pn of y. Suppressing
the motivation for considering such an error recovery model for the time being,
let us consider the following natural trade-off: Given that one wants to correct
p fraction of errors via list decoding, what is the maximum rate R that a code
can have?

Before we address this question, let us formally define the notion of list
decoding we will consider in this survey. For a real 0 < p < 1 and an integer
L > 1, we will call a code C C X™ to be (p, L)-list decodable if for every received
wordy € X", |{c € C|A(c,y) < pn}| < L where A(c,y) denotes the Hamming
distance between the vectors ¢ and y. Note that the problem is interesting only
when L is small: in this survey L is considered to be small if it is polynomially
bounded in n.

Using a standard random coding argument it can be show that there exists
(p,O(1/¢)) list decodable codes over alphabets of size ¢ with rate R > 1 —

Hy(p) — o(1) where H,(z) = —zlog, (qf—l) — (1 —z)log,(1 — z) is the g-ary
entropy function (cf. [17,2]). Further, a simple counting argument shows that R

must be at most 1 — Hy(p) (for R > 1 — Hy(p) the list size L needs to be super-
polynomial in n). In other words, the maximum fraction of errors that can be



corrected (via list decoding) using a rate R code (or the list decoding capacity),
is given by the trade-off H;'(1 — R). For ¢ =29(/¢) H-'(1-R)>1-R—¢
(cf. [13]). In other words, for large enough alphabets, the list decoding capacity
is peap(R) =1—R.

Now is a good time to compare the list decoding capacity with what can be
achieved with “usual” notion of decoding for the worst-case noise model (called
unique decoding), where the decoder has to always output the transmitted word.
Note that list decoding is a relaxation where the decoder is allowed to output
a list of codewords (with the guarantee that the transmitted codeword is in
the list). It is well known that unique decoding can only correct up to half the
minimum distance of the code, which along with the Singleton bound implies the
following limit on the fraction of errors that can be corrected: py(R) = (1—R)/2.
In other words, list decoding has the potential to correct twice as many errors
than unique decoding.

However, in order to harness the real potential of list decoding, we need ex-
plicit codes along with efficient list decoding algorithms that can achieve the list
decoding capacity. For this survey, a list decoding algorithm with a polynomial
running time is considered to be efficient. (Note that this puts an a priori re-
quirement that the worst case list size needs to be bounded by a polynomial
in the block length of the code.) Even though the notion of list decoding was
defined in the late 1950’s, there was essentially no algorithmic progress in list
decoding till the breakthrough works of Sudan [14] and Guruswami-Sudan [11]
which can list decode Reed-Solomon codes up to the trade-off pgs(R) = 1—+v/R.
One can check that pgs(R) > py(R) for every rate R (with the gains being more
pronounced for smaller rates). This fact lead to a spurt of research activity in list
decoding including some surprising applications outside the traditional coding
domain: see for example [15], [4, Chap. 12]. However, this result failed to achieve
the list decoding capacity for any rate (with the gap being especially pronounced
for larger rates).

The bound of pgg resisted improvements for about seven years till in a recent
breakthrough paper [12], Parvaresh and Vardy presented codes that are list-
decodable beyond the 1 — /R radius for low rates R. For any m > 1, they
achieve the list-decoding radius pg@)(R) =1— ""/mmR™. For rates R — 0,
choosing m large enough, they can list decode up to radius 1 — O(Rlog(1/R)),
which approaches the capacity 1 — R. However, for R > 1/16, the best choice
of m is in fact m = 1, which reverts back to RS codes and the list-decoding
radius 1 — +/R. Building on works of Parvaresh and Vardy [12], Guruswami and
Rudra [8] present codes that get arbitrarily close to the list decoding capacity
Peap(R) for every rate. In particular, for every 1 > R > 0 and every ¢ > 0,
they give explicit codes of rate R together with polynomial time list decoding
algorithm that can correct up to a fraction 1 — R — € of errors. These are the
first explicit codes (with efficient list decoding algorithms) that get arbitrarily
close to the list decoding capacity for any rate. This article surveys the results
of [12,8] and some of their implications for list decoding of explicit codes over
small alphabets.



2 Folded Reed-Solomon Codes and the Main Results

The codes used in [8] are simple to state. They are obtained from the Reed-
Solomon code by careful bundling together of codeword symbols (and hence, are
called folded Reed-Solomon codes). We remark that the folded RS codes are a
special case of the codes studied by [12]. However, for the ease of presentation, we
will present all the results in terms of folded Reed-Solomon codes: this would be
sufficient to highlight the algorithmic techniques used in [12]. See the survey [5] in
these proceedings for a more detailed description of the Parvaresh-Vardy codes.

Consider a Reed-Solomon (RS) code C = RSgp-[n, k] consisting of evalua-
tions of degree k polynomials over some finite field F at the set F* of nonzero
elements of F. Let ¢ = |F| = n + 1. Let v be a generator of the multiplicative
group F*, and let the evaluation points be ordered as 1,7,72,...,7" 1. Using
all nonzero field elements as evaluation points is one of the most commonly used
instantiations of Reed-Solomon codes.

Let m > 1 be an integer parameter called the folding parameter. For ease of
presentation, it will assumed that m divides n = ¢ — 1.

Definition 1 (Folded Reed-Solomon Code). The m-folded version of the
RS code C, denoted FRSg .y m k, i a code of block length N = n/m over F™. The
encoding of a message f(X), a polynomial over F of degree at most k, has as its
§7th symbol, for 0 < j < n/m, the m-tuple (f(19™), f(3™H1), - , f(sim+m=1)).
In other words, the codewords of C' = FRSg,y.m,k are in one-one correspondence
with those of the RS code C' and are obtained by bundling together consecutive
m-tuple of symbols in codewords of C'.

The following is the main result of Guruswami and Rudra.

Theorem 1 ([8]). For every e > 0 and 0 < R < 1, there is a family of folded
Reed-Solomon codes that have rate at least R and which can be list decoded up
to a fraction 1 — R — € of errors in time (and outputs a list of size at most)
(N/EQ)O(EAIOE(I/R)) where N is the block length of the code. The alphabet size
of the code as a function of the block length N is (N/s2)o(1/52).

The result of [8] also works in a more general setting called list recovery,
which is defined next.

Definition 2 (List Recovery). A code C C X" is said to be (¢,1, L)-list re-
coverable if for every sequence of sets Si,...,S, where each S; C X has at most
l elements, the number of codewords ¢ € C for which c¢; € S; for at least (n
positions i € {1,2,...,n} is at most L.

A code C C X" is said to ((,1)-list recoverable in polynomial time if it is
(¢,1, L(n))-list recoverable for some polynomially bounded function L(-), and
moreover there is a polynomial time algorithm to find the at most L(n) code-
words that are solutions to any ((,1, L(n))-list recovery instance.

Note that when I = 1, ((, 1, -)-list recovery is the same as list decoding up to
a (1 — ¢) fraction of errors. Guruswami and Rudra have the following result for
list recovery.



Theorem 2 ([8]). For every integer ! > 1, for all R, 0 < R <1 and & > 0, and
for every prime p, there is an explicit family of folded Reed-Solomon codes over
fields of characteristic p that have rate at least R and which can be (R+¢,1)-list
recovered in polynomial time. The alphabet size of a code of block length N in
the family is (N/g2)O( ™" logl/(1=R))

Theorem 2 will be put to good use in Section 4.

3 Informal Description of the Algorithms

In this section, we will give an overview of the list decoding algorithms that are
needed to prove Theorem 1. Along the way we will encounter the main algorith-
mic techniques used in [14,11,12]. We start by stating more precisely the problem
that needs to be solved for Theorem 1. We need list-decoding algorithms for the
folded Reed-Solomon code FRSF, ., m k of rate R. More precisely, for every 1 <
s <mandd > 0, given areceived wordy = ((Yo,--->Ym—1),--+» (Yn—ms--->Yn—1))
(where recall n = ¢ — 1), we want to output all codewords in FRSF, . m,x that

. . . r |/t
disagree with y in at most 1 — (1 + §) (m’_"s+1>

polynomial time. In other words, we need to output all degree k polynomials

s/(s+1)
f(X) such that for at least (1 + ¢) ( mB )

m—s+1
F(¥™ ) = yimy; (for every 0 < j < m — 1). By picking the parameters m, s
and J carefully, we will get folded Reed-Solomon codes of rate R that can be list
decoded up to a 1 — R — ¢ fraction of errors (for any ¢ > 0). We will now present
the main ideas needed to design the required list-decoding algorithm.

For the ease of presentation we will start with the case when s = m. As a
warm up, let us consider the case when s = m = 1. Note that for m = 1, we
are interested in list decoding Reed-Solomon codes. More precisely, given the
received word y = (yo,...,Yn—1), We are interested in all degree k polynomials
f(X) such that for at least (1 + &)v/R fraction of positions 0 < i < n — 1,
f(v*) = yi- We now sketch the main ideas of the algorithms in [14,11]. The
algorithms have two main steps: the first is an interpolation step and the second
one is a root finding step. In the interpolation step, the list-decoding algorithm
finds a bivariate polynomial Q(X,Y") that fits the input. That is,

fraction of positions in

fraction of 0 < i < n/m—1,

for every position i, Q(y?,y;) = 0.

Such a polynomial Q(-,-) can be found in polynomial time if we search for
one with large enough total degree (this amounts to solving a system of linear
equations). After the interpolation step, the root finding step finds all factors of
Q(X,Y) of the form Y — f(X). The crux of the analysis is to show that

for every degree k polynomial f(X) that satisfies f(7!) = y; for at least
(146)V/R fraction of positions i, Y — f(X) is indeed a factor of Q(X,Y).

However, the above is not true for every bivariate polynomial Q(X,Y) that
satisfies Q(v*,y;) = O for all positions . The main ideas in [14,11] were to intro-
duce more constraints on Q(X,Y). In particular, the work of Sudan [14] added



the constraint that a certain weighted degree of Q(X,Y) is below a fixed up-
per bound. Specifically, Q(X,Y") was restricted to have a non-trivially bounded
(1, k)-weighted degree. The (1, k)-weighted degree of a monomial X*Y7 is i + jk
and the (1, k)-weighted degree of a bivariate polynomial Q(X,Y") is the maxi-
mum (1, k)-weighted degree among its monomials. The intuition behind defining
such a weighted degree is that given Q(X,Y) with weighted (1, k) degree of D,
the univariate polynomial Q(X, f(X)), where f(X) is some degree k polyno-
mial, has total degree at most D. The upper bound D is chosen carefully such
that if f(X) is a codeword that needs to be output, then Q(X, f(X)) has more
than D zeroes and thus Q(X, f(X)) = 0, which in turn implies that ¥ — f(X)
divides Q(X,Y). To get to the bound of 1 — (1 4 §)v/R, Guruswami and Sudan
in [11], added a further constraint on Q(X,Y’) that requires it to have r roots at
(7%, vi), where 7 is some parameter (in [14] » = 1 while in [11], 7 is roughly 1/6).

We now consider the next non-trivial case of m = s = 2 (the ideas for this
case can be easily generalized for the general m = s case). Note that now given
the received word ((yo,¥1), (¥2,Y3),-- - (Yn—2,Yn—1)) We want to find all degree
k polynomials f(X) such that for at least (1 + §)v/2R2 fraction of positions
0<i<n/2-1, f(v*) = yo; and f(y**1) = ya;41. As in the previous case,
we will have an interpolation and a root finding step. The interpolation step is
a straightforward generalization of m = 1 case: we find a trivariate polynomial
Q(X,Y,Z) that fits the received word, that is, for every 0 < i < n/2 — 1,
Q(7v*, y2i,y2i+1) = 0. Further, Q(X,Y, Z) has an upper bound on its (1, k, k)-
weighted degree (which is a straightforward generalization of the (1, k)-weighted
degree for the bivariate case) and has a multiplicity of r at every point. For
the root finding step, it suffices to show that for every degree k polynomial
f(X) that needs to be output Q(X, f(X), f(yX)) = 0. This, however does not
follow from weighted degree and multiple root properties of Q(X,Y, Z). Here we
will need two new ideas, the first of which is to show that for some irreducible
polynomial E(X) of degree ¢ —1, f(X)? = f(yX) mod (E(X)) [8]. The second
idea, due to Parvaresh and Vardy [12], is the following. We first obtain the
bivariate polynomial (over an appropriate extension field) T'(Y, Z) = Q(X,Y, Z)
mod (E(X)). Note that by the first idea, we are looking for solutions on the
curve Z = Y9 (Y corresponds to f(X) and Z corresponds to f(yX) in the
extension field). The crux of the argument is to show that all the polynomials
f(X) that need to be output correspond to (in the extension field) some root of
the equation T(Y,Y?) = 0.

As was mentioned earlier, the extension of the m = s = 2 case to the general
m = s > 2 case is fairly straightforward. To go from s = m to any s < m requires
another simple idea from [8]: We will reduce the problem of list decoding folded
Reed-Solomon code with folding parameter m to the problem of list decoding
folded Reed-Solomon code with folding parameter s. We then use the algorithm
outlined in the previous paragraph for the folded Reed-Solomon code with folding
parameter s. A careful tracking of the agreement parameter in the reduction,
brings down the final agreement fraction (that is required for the original folded
Reed-Solomon code with folding parameter m) from (1 + &) ™*/mR™ (which



can be obtained without the reduction and is the bound achieved by [12]) to
4 () e

4 Codes Over Small Alphabets

To get within € of capacity, the codes in Theorem 1 have alphabet size N1/ &)
where N is the block length. This leads to the following natural questions:

1. Can we achieve the list decoding capacity for smaller alphabets, say for
202(1/¢) (for which the list decoding capacity as we saw in the introduction
is1— R)?

2. Can we achieve list decoding capacity for codes over fixed alphabet sizes, for
example, binary codes?

The best known answers to both of the questions above use the notion of
code concatenation and Theorem 2. We now digress for a bit to talk about con-
catenated codes (and along the way motivate why list recovery is an important
algorithmic task).

Concatenated codes were defined in the seminal thesis of Forney [3]. Concate-

nated codes are constructed from two different codes that are defined over alpha-

bets of different sizes. Say we are interested in a code over [q] def {0,1,...,¢9—1}

(in this section, we will think of ¢ > 2 as being a fixed constant). Then the
outer code Coy; is defined over [Q], where Q = ¢F for some positive integer
k. The second code, called the inner code is defined over [¢] and is of dimen-
sion k (Note that the message space of C;, and the alphabet of C,,; have the
same size). The concatenated code, denoted by C' = Cyyt © Cip, is defined as
follows. Let the rate of C,,; be R and let the block lengths of C,,; and Cj;, be
N and n respectively. Define K = RN and r = k/n. The input to C is a vector
m = (my,...,mg) € ([q]*)X. Let Coui(m) = (z1,...,zn). The codeword in C
corresponding to m is defined as follows

C(m) = (Cm(ml),Cm(azg), .. ,C,n(.’le»

It is easy to check that C has rate rR, dimension £K and block length nN.

Notice that to construct a g-ary code C' we use another g-ary code Cj,.
However, the nice thing about C;, is that it has small block length. In particular,
since R and r are constants (and typically @ and N are polynomially related),
n = O(log N). This implies that we can use up exponential time (in n) to search
for a “good” inner code. Further, one can use the brute force algorithm to (list)
decode C;p,.

Finally, we motivate why we are interested in list recovery. Consider the
following natural decoding algorithm for the concatenated code C,y ;0 Cjy. Given
a received word in ([¢]")", we divide it into N blocks from [g]™. Then we use a
decoding algorithm for C;, to get an intermediate received word to feed into a
decoding algorithm for C,,;. Now one can use unique decoding for C;, and list



decoding for C,,;. However, this loses information in the first step. Instead, one
can use the brute force list-decoding algorithm for Cj, to get a sequence of lists

(each of which is a subset of [Q]). Now we use a list-recovery algorithm for Coy¢
to get the final list of codewords.

By concatenating folded RS codes of rate close to 1 (that are list recoverable
by Theorem 2) with suitable inner codes followed by redistribution of symbols
using an expander graph (similar to a construction for linear-time unique decod-

able codes in [6]), one can get within ¢ of capacity with codes over an alphabet
of size 20(c™"1os(1/2)) [g].

For binary codes, recall that the list decoding capacity is known to be
pbin(R) = H; *(1 — R). No explicit constructions of binary codes that approach
this capacity are known. However, concatenating the Folded RS codes with suit-
ably chosen inner codes, one can obtain polynomial time constructable binary
codes that can be list decoded up to the so called “Zyablov bound” [8]. Us-
ing a generalization of code concatenation to multilevel code concatenation, one
can achieve codes that can be list decoded up to the so called “Blokh-Zyablov”
bound [9]. See Figure 1 for a pictorial comparison of the different bounds.
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Fig. 1. Rate R of binary codes from [8,9] plotted against the list-decoding radius
p of their respective algorithms. The best possible trade-off, i.e., list-decoding
capacity, p = H; '(1 — R) is also plotted.



5 Concluding Remarks

The results in [8] could be improved with respect to some parameters. The
size of the list needed to 1perform list decoding to a radius that is within e of
capacity grows as NO( 108(1/R)) where N and R are the block length and
the rate of the code respectively. It remains an open question to bring this list
size down to a constant independent of N (recall that the existential random
coding arguments work with a list size of O(1/¢)). The alphabet size needed to
approach capacity was shown to be a constant independent of N. However, this
involved a brute-force search for a rather large (inner) code, which translates to a
construction time of about NO(~* lg(1/¢) (instead of the ideal construction time
where the exponent of N does not depend on ¢). Obtaining a “direct” algebraic
construction over a constant-sized alphabet, such as the generalization of the
Parvaresh-Vardy framework to algebraic-geometric codes in [7], might help in
addressing these two issues.

Finally, constructing binary codes (or g-ary codes for some fixed, small value
of q) that approach the respective list decoding capacity remains a challenging
open problem. In recent work [10], it has been shown that there ezist g-ary linear
concatenated codes that achieve list decoding capacity (in the sense that every
Hamming ball of radius H 1(1— R—e¢) has polynomially many codewords, where
R is the rate). In particular, this results holds when the outer code is a folded
RS code. This is somewhat encouraging news since concatenation has been the
preeminent method to construct good list-decodable codes over small alphabets.
But realizing the full potential of concatenated codes and achieving capacity
(or even substantially improving upon the Blokh-Zyablov bound) with explicit
codes and polynomial time decoding remains a huge challenge.
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