(©Copyright 2007
Atri Rudra

List Decoding and Property Testing of Error Correcting Codes

Atri Rudra

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2007

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Atri Rudra

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final
examining committee have been made.

Chair of the Supervisory Committee:

Venkatesan Guruswami

Reading Committee:

Paul Beame

Venkatesan Guruswami

Dan Suciu

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this dissertation
is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346,
1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies
of the manuscript in microform and/or (b) printed copies of the manuscript made from
microform.”

Signature

Date

University of Washington
Abstract
List Decoding and Property Testing of Error Correcting Codes
Atri Rudra

Chair of the Supervisory Committee:
Associate Professor Venkatesan Guruswami
Department of Computer Science and Engineering

Error correcting codes systematically introduce redundancy into data so that the original in-
formation can be recovered when parts of the redundant data are corrupted. Error correcting
codes are used ubiquitously in communication and data storage.

The process of recovering the original information from corrupted data is called decod-
ing. Given the limitations imposed by the amount of redundancy used by the error correct-
ing code, an ideal decoder should efficiently recover from as many errors as information-
theoretically possible. In this thesis, we consider two relaxations of the usual decoding
procedure: list decoding and property testing.

A list decoding algorithm is allowed to output a small list of possibilities for the original
information that could result in the given corrupted data. This relaxation allows for effi-
cient correction of significantly more errors than what is possible through usual decoding
procedure which is always constrained to output the transmitted information.

e We present the first explicit error correcting codes along with efficient list-decoding
algorithms that can correct a number of errors that approaches the information-theoretic
limit. This meets one of the central challenges in the theory of error correcting codes.

e We also present explicit codes defined over smaller symbols that can correct signifi-
cantly more errors using efficient list-decoding algorithms than existing codes, while
using the same amount of redundancy.

e We prove that an existing algorithm for a specific code family called Reed-Solomon
codes is optimal for “list recovery,” a generalization of list decoding.

Property testing of error correcting codes entails “spot checking” corrupted data to
quickly determine if the data is very corrupted or has few errors. Such spot checkers are
closely related to the beautiful theory of Probabilistically Checkable Proofs.

e We present spot checkers that only access a nearly optimal number of data symbols
for an important family of codes called Reed-Muller codes. Our results are the first
for certain classes of such codes.

e We define a generalization of the “usual” testers for error correcting codes by en-
dowing them with the very natural property of “tolerance,” which allows slightly
corrupted data to pass the test.

TABLE OF CONTENTS

Page

Listof Figures e v
Listof Tables vi
Chapter 1: Introduction 1
1.1 Basics of Error CorrectingCodes 2
1.1.1 Historical Background and Modeling the Channel Noise 3

1.2 ListDecoding e 4
1.2.1 Going Beyond Half the Distance Bound 6

1.2.2 Why is List Decoding Any Good ? 8

1.2.3 The Challenge of List Decoding (and What Was Already Known) . 9

1.3 Property Testing of Error Correcting Codes 9
1.3.1 A Brief History of Property Testing of Codes 10

1.4 Contributions of This Thesis 11
1.4.1 ListDecoding 11

1.42 Property Testing 13

1.43 Organization of the Thesis 14

Chapter 2: Preliminaries Lo 15
2.1 TheBasics. e 15
2.1.1 Basic Definitions for Codes 15

2.1.2 CodeFamilies, 16

2.1.3 LinearCodes 17

2.2 Preliminaries and Definitions Related to List Decoding 18
2.2.1 Ratevs. Listdecodability 19

2.2.2 Results Related to the g-ary Entropy Function 22

2.3 Definitions Related to Property Testing of Codes 25

24 Common Familiesof Codes 26

24.1 Reed-SolomonCodes 26

242 Reed-MullerCodes L. 27

2.5 Basic Finite Field Algebra 27
Chapter 3: List Decoding of Folded Reed-Solomon Codes 29
3.1 Introduction 29

3.2 Folded Reed-Solomon Codes 30
3.2.1 Description of Folded Reed-Solomon Codes 31

3.2.2 Why Might Folding Help? 32

3.2.3 Relation to Parvaresh Vardy Codes 33

3.3 Problem Statement and Informal Description of the Algorithms 34

3.4 Trivariate Interpolation Based Decoding 36
3.4.1 Facts about Trivariate Interpolation 37

3.4.2 Using Trivariate Interpolation for Folded RS Codes 38

343 Root-findingStep Lo 40

3.5 Codes Approaching List Decoding Capacity 42

3.6 ExtensiontoListRecovery 47

3.7 Bibliographic Notes and Open Questions 49
Chapter 4: Results via Code Concatenation 52
4.1 Introduction 52
4.1.1 Code Concatenation and List Recovery 53

4.2 Capacity-Achieving Codes over Smaller Alphabets 54
4.3 Binary Codes List Decodable up to the Zyablov Bound 57
4.4 Unique Decoding of a Random Ensemble of Binary Codes 58
4.5 List Decoding up to the Blokh ZyablovBound 59
4.5.1 Multilevel Concatenated Codes 61

4.5.2 Linear Codes with Good Nested List Decodability 63

4.5.3 List Decoding Multilevel Concatenated Codes 66

454 Puttingit Together 69

4.6 Bibliographic Notes and Open Questions 70
Chapter 5: List Decodability of Random Linear Concatenated Codes 72
5.1 Introduction 72

i1

5.2
5.3
54
55

5.6

Preliminaries
Overview of the Proof Techniques
List Decodability of Random Concatenated Codes
Using Folded Reed-Solomon Code as Outer Code
5.5.1 Preliminaries
552 TheMainResult
Bibliographic Notes and Open Questions

Chapter 6: Limits to List Decoding Reed-Solomon Codes

6.1
6.2

6.3

6.4

6.5

Introduction
Overview of theResults,
6.2.1 Limitations to List Recovery
6.2.2 Explicit “Bad” List Decoding Configurations
6.2.3 Proof Approach oL
BCH Codes and List Recovering Reed-Solomon Codes
6.3.1 MainResult.
6.3.2 Implications for Reed-Solomon List Decoding
6.3.3 Implications for List Recovering Folded Reed-Solomon Codes . . .
6.3.4 A Precise Description of Polynomials with Values in Base Field . .
6.3.5 Some Further Factson BCHCodes
Explicit Hamming Balls with Several Reed-Solomon Codewords
6.4.1 Existence of Bad List Decoding Configurations
6.4.2 Low Rate Reed-SolomonCodes
6.4.3 High Rate Reed-SolomonCodes
Bibliographic Notes and Open Questions

Chapter 7: Local Testing of Reed-Muller Codes

7.1

7.2

Introduction
7.1.1 Connection to Coding Theory
7.1.2 Overviewof OurResults
7.1.3 Overview of the Analysis
Preliminaries
7.2.1 Facts from Finite Fields

il

7.3 Characterization of Low Degree Polynomials over I, 118

7.4 A Tester for Low Degree Polynomials over F 123
741 TesterinlF, o 123

7.4.2 Analysis of Algorithm Zest-P, 124

743 Proofof Lemma7.11 127

744 Proofof Lemma7.12 131

745 Proofof Lemma7.13 L. 136

7.5 A Lower Bound and Improved Self-correction 137
75.1 ALowerBound. 137

7.5.2 Improved Self-correction 137

7.6 Bibliographics Notes 139
Chapter 8: Tolerant Locally Testable Codes 141
8.1 Introduction 141

8.2 Preliminaries 141

8.3 General Observations e 143

8.4 Tolerant Testers for Binary Codes 145
84.1 PCPofProximity 145

842 TheCode e 148

8.5 ProductofCodes 152
8.5.1 Tolerant Testers for Tensor Products of Codes 152

8.5.2 Robust Testability of Productof Codes 153

8.6 Tolerant Testing of Reed-Muller Codes 156
8.6.1 Bivariate Polynomial Codes 156

8.6.2 General Reed-Muller Codes 157

8.7 Bibliographic Notes and Open Questions 159
Chapter 9: ConcludingRemarks 161
9.1 Summary of Contributions 161
9.2 Directions for Future Work L. 161
9.2.1 ListDecoding 162

9.2.2 Property Testing 163
Bibliography 164

I\

LIST OF FIGURES

Figure Number Page
1.1 Bad Example for Unique Decoding 5
1.2 The Case for List Decoding 6
2.1 The g-ary Entropy Function 23
3.1 Rate vs List decodability for Various Codes 31
3.2 Folding of the Reed-Solomon Code with Parameterm =4. 32
3.3 Relation between Folded RS and Parvaresh Vardy Codes 34
4.1 List Decodability of Our Binary Codes 53
4.2 Capacity Achieving Code over Small Alphabet 56
4.3 Unique Decoding of Random Ensembles of Binary Codes 60
4.4 Different variables in the proof of Theorem4.5. 69
5.1 Geometric interpretations of functions as(-) and fzo(-). 74
7.1 Definition of aPseudoflato oo oL 116
8.1 The Reduction from Valiant’sResult 155

LIST OF TABLES

Table Number
4.1 Comparison of the Blokh Zyablov and Zyablov Bounds

vi

ACKNOWLEDGMENTS

I moved to Seattle from Austin to work with Venkat Guruswami and I have never re-
gretted my decision. This thesis is a direct result of Venkat’s terrific guidance over the last
few years. Venkat was very generous with his time and was always patient when I told him
about my crazy ideas (most of the time gently pointing out why they would not work), for
which I am very grateful. Most of the results in this thesis are the outcome of our collabora-
tions. I am also indebted to Don Coppersmith, Charanjit Jutla, Anindya Patthak and David
Zuckerman for collaborations that lead to portions of this thesis.

I would like to thank Paul Beame and Dan Suciu for agreeing to be on my reading
committee and their thoughtful and helpful comments on the earlier drafts of this thesis.
Thanks also to Anna Karlin for being on my supervisory committee.

I gratefully acknowledge the financial support from NSF grant CCF-0343672 and Venkat
Guruswami’s Sloan Research Fellowship.

My outlook on research has changed dramatically since my senior year at IIT Kharag-
pur when I was decidedly a non-theory person. Several people have contributed to this
wonderful change and I am grateful to all of them. First, I would like to thank my un-
dergraduate advisor P. P. Chakrabarti for teaching the wonderful course on Computational
Complexity that opened my eyes to the beauty of theoretical computer science. My passion
for theory was further cemented in the two wonderful years I spent at IBM India Research
Lab. Thanks to Charanjit Jutla and Vijay Kumar for nurturing my nascent interest in theo-
retical computer science for being wonderful mentors and friends ever since. Finally, I am
grateful to David Zuckerman for his wonderful courses on Graph theory and Combinatorics
and Pseudorandomness at Austin, which gave me the final confidence to pursue theory.

I have been very lucky to have the privilege of collaborating with many wonderful
researchers over the years. Thanks to all the great folks at IBM Research with whom I
had the pleasure of working as a full time employee (at IBM India) as well as an intern
(at IBM Watson and IBM Almaden). Thanks in particular to Nikhil Bansal, Don Cop-
persmith, Pradeep Dubey, Lisa Fleischer, Rahul Garg, T. S. Jayram, Charanjit Jutla, Robi
Krauthgamer, Vijay Kumar, Aranyak Mehta, Vijayshankar Raman, J.R. Rao, Pankaj Ro-
hatgi, Baruch Schieber, Maxim Sviridenko and Akshat Verma for the wonderful time I had
during our collaborations.

My stay at UT Austin was wonderful and I am grateful to Anna Gél, Greg Plaxton and
David Zuckerman for their guidance and our chats about sundry research topics. Thanks a
bunch to my room mate and collaborator Anindya Patthak for the wonderful times. Also
a big thanks to my friends in Austin for the best possible first one and a half years I could

vii

have had in the US: Kartik, Sridhar, Peggy, Chris, Kurt, Peter, Walter, Nick, Maria.

I thought it would be hard to beat the friendly atmosphere at UT but things were as nice
(if not better) at UW. A big thanks to Anna Karlin and Paul Beame for all their help and
advice as well as the good times we had during our research collaborations. Special thanks
to Paul and Venkat for their kind and helpful advice on what to do with the tricky situations
that cropped up during my job search. I had a great time collaborating with my fellow
students at UW (at theory night and otherwise): Matt Cary, Ning Chen, Neva Cherniavsky,
Roee Engelberg, Thach Nguyen, Prasad Raghavendra, Ashish Sabharwal, Gyanit Singh
and Erik Vee. Thanks to my office mate Eytan Adar and Chris Ré for our enjoyable chats.
The CSE department at UW is an incredibly wonderful place to work— thanks to everyone
for making my stay at UW as much as fun as it has been.

Thanks to my parents and sister for being supportive of all my endeavors. Finally,
the best thing about my move to Seattle was that I met my wife here. Carole, thanks for
everything: you are more than what this desi could have dreamed for in a wife.

viii

DEDICATION

To my family, in the order I met them: Ma, Baba, Purba and Carole

ix

Chapter 1
INTRODUCTION

Corruption of data is a fact of life. Error-correcting codes (or just codes) are clever
ways of representing data so that one can recover the original information even if parts of
it are corrupted. The basic idea is to judiciously introduce redundancy so that the original
information can be recovered even when parts of the (redundant) data have been corrupted.

Perhaps the most natural and common application of error correcting codes is for com-
munication. For example, when packets are transmitted over the Internet, some of the
packets get corrupted or dropped. To deal with this, multiple layers of the TCP/IP stack use
a form of error correction called CRC Checksum [87]. Codes are used when transmitting
data over the telephone line or via cell phones. They are also used in deep space commu-
nication and in satellite broadcast (for example, TV signals are transmitted via satellite).
Codes also have applications in areas not directly related to communication. For exam-
ple, codes are used heavily in data storage. CDs and DVDs work fine even in presence of
scratches precisely because they use codes. Codes are used in Redundant Array of Inex-
pensive Disks (RAID) [24] and error correcting memory [23]. Codes are also deployed in
other applications such as paper bar codes, for example, the bar code used by UPS called
MaxiCode [22].

In this thesis, we will think of codes in the communication scenario. In this framework,
there is a sender who wants to send (say) k£ message symbols over a noisy channel. The
sender first encodes the k message symbols into n symbols (called a codeword) and then
sends it over the channel. The receiver gets a received word consisting of n symbols.
The receiver then tries to decode and recover the original k£ message symbols. The main
challenge in coding theory is to come up with “good” codes along with efficient encoding
and decoding algorithms. In the next section, we will define more precisely the notion of
codes and the noise model.

Typically, the definition of a code gives the encoding algorithm “for free.” The decoding
procedure is generally the more challenging algorithmic task. In this thesis, we concentrate
more on the decoding aspect of the problem. In particular, we will consider two relaxations
of the “usual” decoding problem in which either the algorithm outputs the original message
that was sent or gives up (when too many errors have occurred). The two relaxations
are called list decoding and property testing. The motivations for considering these two
notions of decoding are different: list decoding is motivated by a well known limit on the
number of errors one can decode from using the usual notion of decoding while property

testing is motivated by a notion of “spot-checking” of received words that has applications
in complexity theory. Before we delve into more details of these notions, let us first review
the basic definitions that we will need.

1.1 Basics of Error Correcting Codes

We will now discuss some of the basic notions of error correcting codes that are needed to
put forth the contributions of this thesis.! These are the following.

e Encoding The encoding function with parameters k,n is a function E : ©¥ — ¥,
where ¥ is called the alphabet. The encoding function E takes a message m € X*
and converts it into a codeword E(m). We will refer to the algorithm that implements
the encoding function as an encoder.

e Error Correcting Code An error correcting code or just a code corresponding to an
encoding function F is just the image of the encoding function. In other words, it is
the collection of all the codewords. A code C with encoding function E : ¥*¥ — ¥»
is said to have dimension k and block length n. In this thesis, we will focus on codes
of large block length.

e Rate The ratio R = k/n is called the rate of a code. This notion captures the amount
of redundancy used in the code. This is an important parameter of a code which will
be used throughout this thesis.

e Decoding Consider the basic setup for communication. A sender has a message
that it sends as a codeword after encoding. During transmission the codeword gets
distorted due to errors. The receiver gets a noisy received word from which it has
to recover the original message. This “reverse” process of encoding is achieved via
a decoding function D : ¥ — ¥*. That is, given a received word, the decoding
function picks a message that it thinks was the message that was sent. We will refer
to the algorithm that implements the decoding function as a decoder.

e Distance The minimum distance (or just distance) of a code is a parameter that cap-
tures how much two different codewords differ. More formally, the distance between
any two codewords is the number of coordinates in which they differ. The (minimum)
distance of a code is the minimum distance between any two distinct codewords in
the code.

'We will define some more “advanced” notions later.

1.1.1 Historical Background and Modeling the Channel Noise

The notions of encoding, decoding and the rate appeared in the seminal work of Shan-
non [94]. The notions of codes and the minimum distance were put forth by Hamming [67].

Shannon modeled the noise probabilistically. For such a channel, he also defined a real
number called the capacity, which is an upper bound on the rate of a code for which one
can have reliable communication. Shannon also proved the converse result. That is, there
exist codes for any rate less than the capacity of the channel for which one can have reliable
communication. This striking result essentially kick-started the fields of information theory
and coding theory.

Perhaps an undesirable aspect of Shannon’s noise model is that its effectiveness depends
on how well the noise is modeled. In some cases it might not be possible to accurately
model the channel. In such a scenario, one option is to model the noise adversarialy. This
was proposed by Hamming. In Hamming’s noise model, we think of the channel as an
adversary who has the full freedom in picking the location as well as nature of errors to
be introduced. The only restriction is on the number of errors. We will consider this noise
model in the thesis.

Alphabet Size and the Noise Model

We would like to point out that the noise model is intimately tied with the alphabet. A
symbol in the alphabet is the “atomic” unit on which the noise acts. In other words, a
symbol that is fully corrupted and a symbol that is partially corrupted are treated as the
same. That is, the smaller the size of the alphabet, the more fine-grained the noise. This
implies that the decoder has to take care of more error patterns for a code defined over a
smaller alphabet. As a concrete example, say we want to design a decoder that can handle
50% of errors. Consider a code C' that is defined over an alphabet of size 4 (i.e., each
symbols consists of two bits). Now, let e be an error pattern in which every alternate bit of
a codeword in C is flipped. Note that this implies that all the symbols of the codeword have
been corrupted and hence the decoder does not need to recover from e. However, if C' were
defined over the binary alphabet then the decoder would have to recover from e. Thus, it is
harder to design decoders for codes over smaller alphabets.

Further, the noise introduced by the channel should be independent of the message
length. However, in this thesis, we will study codes that are defined over alphabets whose
size depends on the message length. In particular, the number of bits required to represent
any symbol in the alphabet would be logarithmic in the message length. The reason for
this is two-fold: As was discussed in the paragraph above, designing decoding algorithms
is strictly easier for codes over larger alphabets. Secondly, we will use such codes as a
starting point to design codes over fixed sized alphabets.

With the basic definitions in place, we now turn our attention to the two relaxations of
the decoding procedure that will be the focus of this thesis.

1.2 List Decoding

Let us look at the decoding procedure in more detail. Upon getting the noisy received
word, the decoder has to output a message (or equivalently a codeword) that it thinks was
actually transmitted. If the output message is different from the message that was actually
transmitted then we say that a decoding error has taken place. For the first part of the thesis,
we will consider decoders that do not make any decoding error. Instead, we will consider
the following notion called unique decoding. For any received word, a unique decoder
either outputs the message that was transmitted by the sender or reports a decoding failure.

One natural question to ask is how many errors such a unique decoder can tolerate.
That is, is there a bound on the number of errors (say pyn, so py is the fraction of errors)
such that for any error pattern with total error at most pyn, the decoder always outputs the
transmitted codeword?

We first argue that pyy < 1 — R. Note that the codeword of n symbols really contains
k symbols of information. Thus, the receiver should have at least £ uncorrupted symbols
among the n symbols in the received word to have any hope of recovering the transmitted
message. In other words, the information theoretic limit on the number of errors from
which one can recover is n — k. This implies that py < (n — k)/n = 1 — R. Can this
information theoretic limit be achieved ?

Before answering the question above, we argue that the limit also satisfies py < d/(2n),
where we assume that the distance of the code d is even. Consider two distinct messages
my, may such that the distance between E(mq) and E(ms) is exactly d. Now say that the
sender sends the codeword F(m1) over the channel and the channel introduces d/2 errors
and distorts the codeword into a received word y that is at a distance of d/2 from both
E(my) and E(my) (see Figure 1.1).

Now, when the decoder gets y as an input it has no way of knowing whether the original
transmitted codeword was E(m;) or E(my).? Thus, the decoder has to output a decoding
failure when it receives y and so we have py < d/(2n). How far is d/(2n) from the
information theoretic bound of 1 — R ? Unfortunately the gap is quite big. By the so called
Singleton bound, d < n — k + 1 or d/n < 1 — R. Thus, the limit of d/(2n) is at most
half the information theoretic bound. We note that even though the limits differ by “only a
small constant,” in practice the potential to correct twice the number of errors is a big gain.

Before we delve further into this gap between the information theoretic limit and half
the distance bound, we next argue that the the bound of d/2 is in fact tight in the following
sense. If pyn = d/2 — 1, then for an error pattern with at most pyn errors, there is
always a unique transmitted codeword. Suppose that this were not true and let E(m;) be
the transmitted codeword and let y be the received word such that y is within distance
pun from both E(m;) and E(mz). Then by the triangle inequality, the distance between
E(my) and E(my) is at most 2pyn = d — 2 < d, which contradicts the fact that d is the

2Throughout this thesis, we will be assuming that the only communication between the sender and the
receiver is through the channel and that they do not share any side information/channel.

E(m,)

E(mz)

| n—d vod2ydnr

Figure 1.1: Bad example for unique decoding. The picture on the left shows two codewords
E(m;) and E(msy) that differ in exactly d positions while the received word y differs from
both E(my) and E(my) in d/2 many positions. The picture on the right is another view
of the same example. Every n-symbol vector is now drawn on the plane and the distance
between any two points is the number of positions they differ in. Thus, E(m;) and E(my)
are at a distance d and y is at a distance d/2 from both. Further, note that any point that is
strictly contained within one of the balls of radius d/2 has a unique closest-by codeword.

minimum distance of the code (also see Figure 1.1). Thus, as long as pyn = d/2 — 1, the
decoder can output the transmitted codeword. So if one wants to do unique decoding then
one can correct up to half the distance of the code (but no further). Due to this “half the
distance barrier”, much effort has been devoted to designing codes with as large a distance
as possible.

However, all the discussion above has not addressed one important aspect of decoding.
We argued that for pyn = d/2 — 1, there exists a unique transmitted codeword. However,
the argument sheds no light on whether the decoder can find such a codeword efficiently.
Of course, before we can formulate the question more precisely, we need to state what we
mean by efficient decoding. We will formulate the notion more formally later on but for
now we will say that a decoder is efficient if its running time is polynomial in the block
length of the code (which is the number of symbols in the received word). As a warm up,
let us consider the following naive decoding algorithm. The decoder goes through all the
codewords in the code and outputs the codeword that is closest to the received word. The
problem with this brute-force algorithm is that its running time is exponential in the block
length for constant rate codes (which will be the focus of the first part of the thesis) and
thus, is not an efficient algorithm. There is a rich body of beautiful work that focuses on
designing efficient algorithms for unique decoding for many families of codes. These are
discussed in detail in any standard coding theory texts such as [80, 104].

We now return to the gap between the half the distance and the information theoretic
limit of n — k.

1.2.1 Going Beyond Half the Distance Bound

Let us revisit the bound of half the minimum distance on unique decoding. The bound
follows from the fact that there exists an error pattern for which one cannot do unique
decoding. However, such bad error patterns are rare. This follows from the nature of the
space that the codewords (and the received words) “sit” in. In particular, one can think of
a code of block length n as consisting of non-overlapping spheres of radius d/2, where the
codewords are the centers of the spheres (see Figure 1.2). The argument for half the distance
bound uses the fact that at least two such spheres touch. The touching point corresponds
to the received word y that was used in the argument in the last section. However, the way
the spheres pack in high dimension (recall the dimension of such a space is equal to the
block length of the code n), almost every point in the ambient space has a unique by closest
codeword at distances well beyond d/2 (see Figure 1.2).

Figure 1.2: Four close by codewords E(m1), E(msz), E(m3) and E(m,) with two possible
received words y and y'. E(my), E(mg) and y form the bad example of Figure 1.1. How-
ever, the bad examples lie on the dotted lines. For example, y’ is at a distance more than
d/2 from its (unique) closest codewords E(ms3). In high dimension, the space outside the
balls of radius d/2 contains almost the entire ambient space.

Thus, by insisting on always getting back the original codeword, we are giving up on

correcting from error patterns from which we can recover the original codeword. One
natural question one might ask is if one can somehow meaningfully relax this stringent
constraint.

In the late 1950s, Elias and Wozencraft independently proposed a nice relaxation of
unique decoding that gets around the barrier of half the distance bound [34, 106]. Under
list decoding, the (list) decoder needs to output a “small” list of answers with the guarantee
that the transmitted codeword is present in the list.> More formally, for a given error bound
pn and a received word y, the list-decoding algorithm has to output all codewords that are
at a distance at most pn from y. Note that when pn is an upper bound on the number of
errors that can be introduced by the channel, the list returned by the list-decoding algorithm
will have the transmitted codeword in the list.

There are two immediate questions that arise: (i) Is list decoding a useful relaxation of
unique decoding? (ii) Can we correct a number of errors that is close to the information
theoretic limit using list decoding ?

Before we address these questions, let us first concentrate on a new parameter that this
new definition throws into the mix: the worst case list size. Unless mentioned otherwise, we
will use L to denote this parameter. Note that the running time of the decoding algorithm
is Q(L) as the decoder has to output every codeword in the list. Since we are interested
in efficient, polynomial time, decoding algorithms, this puts an a priori requirement that
L be a polynomial in the block length of the code. For a constant rate code, which has
exponentially many codewords, the polynomial bound on L is very small compared to the
total number of codewords. This bound was what we meant by small lists while defining
list decoding.

Maximum Likelihood Decoding

We would like to point out that list decoding is not the only meaningful relaxation of unique
decoding. Another relaxation called maximum likelihood decoding (or MLD) has been
extensively studied in coding theory. Under MLD, the decoder must output the codeword
that is closest to the received word. Note that if the number of errors is at most (d — 1)/2,
then MLD and unique decoding coincide. Thus, MLD is indeed a generalization of unique
decoding.

MLD and list decoding are incomparable relaxations. On the one hand, if one can list
decode efficiently up to the maximum number of errors that the channel can introduce then
one can do efficient MLD. On the other hand, MLD does not put any restriction on the
number of errors it needs to tolerate (whereas such a restriction is necessary for efficient
list decoding). The main problem with MLD is that is turns out to be computationally in-
tractable in general [17, 79, 4, 31, 37, 91] as well as for specific families of codes [66]. In

3The condition on the list size being small is important. Otherwise, here is a trivial list-decoding algo-
rithm: output all codewords in the code. This, however is a very inefficient and more pertinently a useless
algorithm. We will specify more carefully what we mean by small lists soon.

fact, there is no non-trivial family of codes known for which MLD can be done in polyno-
mial time. However, list decoding is computationally tractable for many interesting families
of codes (some of which we will see in this thesis).

We now turn to the questions that we raised about list decoding.

1.2.2 Why is List Decoding Any Good ?

We will now devote some time to address the question of whether list decoding is a mean-
ingful relaxation of the unique decoding problem. Further, what does one do when the
decoder outputs a list ?

In the communication setup, where the receiver might not have any side information,
the receiver can still use a list-decoding algorithm to do “normal” decoding. It runs the
list-decoding algorithm on the received word. If the list returned has just one codeword
in it, then the receiver accepts that codeword as the transmitted codeword. If the list has
more than one codeword, then it declares a decoding failure. First we note that this is no
worse than the original unique decoding setup. Indeed if the number of errors is at most
d/2 — 1, then by the discussion in Section 1.2 the list is going to contain one codeword
and we would be back in the unique decoding regime. However, as was argued in the last
section, for most error patterns (with total number of errors well beyond d/2) there is a
unique closest by codeword. In other words, the list size for such error patterns would
be one. Thus, list decoding allows us to correct from more error patterns than what was
possible with unique decoding.

We now return to the question of whether list decoding can allow us to correct errors
up to the information theoretic limit of 1 — R ? In short, the answer is yes. Using random
coding arguments one can show that for any € > 0, with high probability a random code of
rate R, has the potential to correct up to 1 — R — ¢ fraction of errors with a worst case list
size of O(1/¢) (see Chapter 2 for more details). Further, one can show that for such codes,
the list size is one for most received words.*

Other Applications of List Decoding

In addition to the immense practical potential of correcting more than half the distance
number of errors in the communication setup, list decoding has found many surprising
applications outside of the coding theory domain. The reader is referred to the survey by
Sudan [98] and the thesis of Guruswami [49] (and the references therein) for more details
on these applications. A key feature in all these applications is that there is some side
information that one can use to sift through the list returned by the list-decoding algorithm
to pick the “correct” codeword. A good analogy is that of a spell checker. Whenever a word
is mis-spelt, the spell checker returns to the user a list of possible words that the user might
have intended to use. The user can then prune this list to choose the word that he or she had

“This actually follows using the same arguments that Shannon used to establish his seminal result.

intended to use. Indeed, even in the communication setup, if the sender and the receiver
can use a side channel (or have some shared information) then one can use list decoding to
do “unambiguous” decoding [76].

1.2.3 The Challenge of List Decoding (and What Was Already Known)

In the last section, we argued that list decoding is a meaningful relaxation of unique de-
coding. More encouragingly, we mentioned that random codes have the potential to correct
errors up to the information theoretic limit using list decoding. However, there are two
major issues with the random codes result. First, these codes are not explicit. In real world
applications, if one wants to communicate messages then one needs an explicit code. How-
ever, depending on the application, one might argue that doing a brute force search for such
a code might work as this is a “one-off” cost that one has to pay. The second and perhaps
more serious drawback is that the lack of structure in random codes implies that it is hard
to come up with efficient list decodable algorithms for such codes. Note that for decoding,
one cannot use a brute-force list-decoding algorithm.

Thus, the main challenge of list decoding is to come up with explicit codes along with
efficient list-decoding (and encoding) algorithms that can correct errors close to the infor-
mation theoretic limit of n — k.

The first non-trivial list-decoding algorithm is due to Sudan [97], which built on the
results in [3]. Sudan devised a list-decoding algorithm for a specific family of codes called
Reed-Solomon codes [90] (widely used in practice [105]), which could correct beyond half
the distance barrier for Reed-Solomon codes of rate at most 1/3. This result was then
extended to work for all rates by Guruswami and Sudan [63]. It is worthwhile to note that
even though list decoding was introduced in the late 1950s, these results came nearly forty
years later. There was no improvement to the Guruswami-Sudan result until the recent
work of Parvaresh and Vardy [85], who designed a code that is related to Reed-Solomon
codes and presented efficient list-decoding algorithms that could correct more errors than
the Guruswami-Sudan algorithm. However, the result of Parvaresh and Vardy does not meet
the information theoretic limit (see Chapter 3 for more details). Further, for list decoding
Reed-Solomon codes there has been no improvement over [63].

This concludes our discussion on the background for list decoding. We now turn to
another relaxation of decoding that constitutes the second part of this thesis.

1.3 Property Testing of Error Correcting Codes

Consider the following communication scenario in which the channel is very noisy. The
decoder, upon getting a very noisy received word, does its computation and ultimately
reports a decoding failure. Typically, the decoding algorithm is an expensive procedure and
it would be nice if one could quickly test if the received word is “far” from any codeword (in
which case it should reject the received word) or is “close” to some codeword (in which case

10

it should accept the received word). In the former case, we would not run our expensive
decoding algorithm and in the latter case, we would then proceed to run the decoding
algorithm on the received word.

The notion of efficiency that we are going to consider for such spot checkers is going
to be a bit different from that of decoding algorithms. We will require the spot checker
to probe only a few positions in the received word during the course of its computation.
Intuitively this should be possible as spot checking is a strictly easier task than decoding.
Further, the fact that the spot checkers need to make their decision based on a portion of
the received word should make spot checking very efficient. For example, if one could
design spot checkers that look at only constant many positions (independent of the block
length of the code), then we would have a spot checkers that run in constant time. However,
note that since the spot checker cannot look at the whole received word it cannot possibly
predict accurately if the received word is “far” from all the codewords or is “close” to some
codeword. Thus, this notion of testing is a relaxation of the usual decoding as one sacrifices
in the accuracy of the answer while gaining in terms of number of positions that one needs
to probe.

A related notion of such spot checkers is that of locally testable codes (LTCs). LTCs
have been the subject of much research over the years and there has been heightened activ-
ity and progress on them recently [46, 11, 74, 14, 13, 44]. LTCs are codes that have spot
checkers as those discussed above with one crucial difference: they only need to differenti-
ate between the cases when the received word is far from all codewords and the case when it
is a codeword. LTCs arise in the construction of Probabilistically Checkable Proofs (PCPs)
[5, 6] (see the survey by Goldreich [44] for more details on the interplay between LTCs and
PCPs). Note that in the notion of LTC, there is no requirement on the spot checker for input
strings that are very close to a codeword. This “asymmetry” in the way the spot checker
accepts and rejects an input reflects the way PCPs are defined, where the emphasis is on
rejecting “wrong” proofs.

Such spot checkers fall under the general purview of property testing (see for example
the surveys by Ron [92] and Fischer [38]). In property testing, for some property P, given
an object as an input, the spot checker has to decide if the given object satisfies the property
P or is “far” from satisfying P. LTCs are a special case of property testing in which the
property P is membership in some code and the objects are received words.

The ideal LTCs are codes with constant rate and linear distance that can be tested by
probing only constant many position in the received word. However, unlike the situation in
list decoding (where one can show the existence of codes with the “ideal” properties), it is
not known if such LTCs exist.

1.3.1 A Brief History of Property Testing of Codes

The field of codeword testing, which started with the work of Blum, Luby and Rubin-
feld [21] (who actually designed spot checkers for a variety of numerical problems), later
developed into the broader field of property testing [93, 45]. LTCs were first explicitly de-

11

fined in [42, 93] and the systematic study of whether ideal LTCs (as discussed at the end
of the last section) was initiated in [46]. Testing for Reed-Muller codes in particular has
garnered a lot of attention [21, 9, 8, 36, 42, 93, 7, 1, 74], as they were crucial building
blocks in the construction of PCPs [6, 5], Kaufman and Litsyn [73] gave a sufficient con-
dition on an important class of codes that imply that the code is an LTC. Ben-Sasson and
Sudan [13] built LTCs from a variant of PCPs called the Probabilistically Checkable Proof
of Proximity— this “method” of constructing LTCs was initiated by Ben-Sasson et al. [11].

1.4 Contributions of This Thesis

The contributions of this thesis are in two parts. The first part deals with list decoding while
the second part deals with property testing of codes.

1.4.1 List Decoding

This thesis advances our understanding of list decoding. Our results can be roughly divided
into three parts: (i) List decodable codes of optimal rate over large alphabets, (ii) List
decodable codes over small alphabets, and (iii) Limits to list decodability. We now look at
each of these in more detail.

List Decodable Codes over Large Alphabets

Recall that for codes of rate R, it is information theoretically not possible to correct beyond
1— R fraction of errors. Further, using random coding argument one can show the existence
of codes that can correct up to 1— R—e fraction of errors for any € > 0 (using list decoding).
Since the first non-trivial algorithm of Sudan [97], there has been a lot of effort in designing
explicit codes along with efficient list-decoding algorithms that can correct errors close to
the information theoretic limit. In Chapter 3, we present the culmination of this line of
work by presenting explicit codes (which are in turn extensions of Reed-Solomon codes)
along with polynomial time list-decoding algorithm that can correct 1 — R — ¢ fraction of
errors in polynomial time (for every rate 0 < R < 1 and any € > 0). This answers a
question that has been open for close to 50 years and meets one of the central challenges in
coding theory.

This work was done jointly with Venkatesan Guruswami and was published in the pro-
ceedings of the 38th Symposium on Theory of Computing (STOC), 2006 [58] and is under
review for the journal IEEE Transactions on Information Theory.

List Decodable Codes over Small Alphabets

The codes mentioned in the last subsection are defined over alphabets whose size increases
with the block length of the code. As discussed in Section 1.1.1, this is not a desirable
feature. In Chapter 4, we show how to use our codes from Chapter 3 along with known

12

techniques of code concatenation and expander graphs to design codes over alphabets of
size 207 that can still correct up to 1 — R — ¢ fraction of errors for any € > 0. To get to
within ¢ of the information theoretic limit of n — k, it is known that one needs an alphabet
of size 29¢™) (see Chapter 2 for more details).

However, if one were interested in codes over alphabets of fixed size, the situation is
different. First, it is known that for fixed size alphabets, the information theoretic limit
is much smaller than n — k£ (see Chapter 2 for more details). Again, one can show that
random codes meet this limit. In Chapter 4, we present explicit codes along with efficient
list-decoding algorithms that correct errors up to the so called Blokh-Zyablov bound. These
results are the currently best known via explicit codes, though the number of errors that can
be corrected is much smaller than the limit achievable by random codes.

This work was done jointly with Venkatesan Guruswami and appears in two different
papers. The first was published in in the proceedings of the 38th Symposium on Theory of
Computing (STOC), 2006 [58] and is under review for the journal IEEE Transactions on
Information Theory. The second paper will appear in the proceedings of the 11th Interna-
tional Workshop on Randomization and Computation (RANDOM) [60].

Explicit codes over fixed alphabets, considered in Chapter 4, are constructed using code
concatenation. However, as mentioned earlier, the fraction of errors that such codes can
tolerate via list decoding is far from the information theoretic limit. A natural question to
ask is whether one can use concatenated codes to achieve the information theoretic limit?
In Chapter 5 we give a positive answer to this question in following sense. We present a
random ensemble of concatenated codes that with high probability meet the information
theoretic limit: That is, they can potentially list decode as large a fraction of errors as
general random codes, though with larger lists.

This work was done jointly with Venkatesan Guruswami and is an unpublished
manuscript [61].

Limits to List Decoding Reed-Solomon Codes

The results discussed in the previous two subsections are of the following flavor. We know
that random codes allow us to list decode up to a certain number of errors, and that is
optimal. Can we design more explicit codes (maybe with efficient list-decoding algorithms)
that can correct close to the number of errors that can be corrected by random codes?
However, consider the scenario where one is constrained to work with a certain family of
codes, say Reed-Solomon codes. Under this restriction what is the most number of errors
from which one can hope to list decode?

The result of Guruswami and Sudan [63] says that one can efficiently correct up to
n — v/nk many errors for Reed-Solomon codes. However, is this the best possible? In
Chapter 6, we give some evidence that the Guruswami-Sudan algorithm might indeed be the
best possible. Along the way we also give some explicit constructions of “bad list-decoding
configurations.” A bad list-decoding configuration refers to a received word y along with an

13

error bound p such that there are super-polynomial (in n) many Reed-Solomon codewords
within a distance of pn from y.

This work was done jointly with Venkatesan Guruswami and appears in two different
papers. The first was published in in the proceedings of the 37th Symposium on Theory
of Computing (STOC), 2005 [56] as well as in the IEEE Transactions on Information The-
ory [59]. The second paper is an unpublished manuscript [62].

1.4.2 Property Testing

We now discuss our results on property testing of error correcting codes.

Testing Reed-Muller Codes

Reed-Muller codes are generalizations of Reed-Solomon codes. Reed-Muller codes are
based on multivariate polynomials while Reed-Solomon codes are based on univariate poly-
nomials. Local testing of Reed-Muller codes was instrumental in many constructions of
PCPs. However, the testers were only designed for Reed-Muller codes over large alpha-
bets. In fact, the size of the alphabet of such codes depends on the block length of the
codes. In Chapter 7, we present near-optimal local testers for Reed-Muller codes defined
over (a class of) alphabets of fixed size.

This work was done jointly with Charanjit Jutla, Anindya Patthak and David Zuckerman
and was published in the proceedings of the 45th Symposium on Foundation of Computer
Science (FOCS), 2005 [72] and is currently under review for the journal Random Structures
and Algorithms.

Tolerant Locally Testable Codes

Recall that the notion of spot checkers that we were interested in had to accept the received
word if it is far from all codewords and reject when it is close to some codeword (as opposed
to LTCs, which only require to accept when the received word is a codeword). Surprisingly,
such testers were not considered in literature before. In Chapter 8, we define such testers,
which we call tolerant testers. Our results show that in general LTCs do not imply tolerant
testability, though most LTCs that achieve the best parameters also have tolerant testers.

As a slight aside, we look at certain strong form of local testability (called robust testa-
bility) of certain product of codes. Product of codes are also special cases of certain con-
catenated codes considered in Chapter 4. We show that in general, certain product of codes
cannot be robustly testable.

This work on tolerant testing was done jointly with Venkatesan Guruswami and was
published in the proceedings of the 9th International Workshop on Randomization and
Computation (RANDOM) [57]. The work on robust testability of product of codes is joint
work with Don Coppersmith and is an unpublished manuscript [26].

14

1.4.3 Organization of the Thesis

We start with some preliminaries in Chapter 2. In Chapter 3, we present the main result
of this thesis: codes with optimal rate over large alphabets. This result is then used to de-
sign new codes in Chapters 4 and 5. We present codes over small alphabets in Chapter 4,
which are constructed by a combination of the codes from Chapter 3 and code concatena-
tion. In Chapter 5, we show that certain random codes constructed by code concatenation
also achieve the list-decoding capacity. In Chapter 6, we present some limitations to list
decoding Reed-Solomon codes. We switch gears in Chapter 7 and present new local testers
for Reed-Muller codes. We present our results on tolerant testability in Chapter 8. We
conclude with the major open questions in Chapter 9.

15

Chapter 2
PRELIMINARIES

In this chapter we will define some basic concepts and notations that will be used
throughout this thesis. We will also review some basic results in list decoding that will
set the stage for our results. Finally, we will look at some specific families of codes that
will crop up frequently in the thesis.

2.1 The Basics

We first fix some notation that will be used frequently in this work, most of which is stan-
dard.

For any integer m > 1, we will use [m] to denote the set {1,...,m}. Given positive
integers n and m, we will denote the set of all length n vectors over [m] by [m]™. Unless
mentioned otherwise, all vectors in this thesis will be row vectors. logx will denote the
logarithm of z in base 2. In z will denote the natural logarithm of z. For bases other than
2 and e, we will specify the base of the logarithm explicitly: for example logarithm of z in
base g will be denoted by log, .

A finite field with ¢ elements will be denoted by F, or GF'(q). For any real value z in
the range 0 < z < 1, we will use Hy(z) = zlog, (¢ — 1) —zlog, z — (1 —x)log, (1 —z) to
denote the g-ary entropy function. For the special case of ¢ = 2, we will simply use H(z)
for Hy(x). For more details on the g-ary entropy function, see Section 2.2.2.

For any finite set .S, we will use |S| to denote the size of the set.

We now move on to the definitions of the basic notions of error correcting codes.

2.1.1 Basic Definitions for Codes

Let ¢ > 2 be an integer.
Code, Blocklength, Alphabet size :

e An error correcting code (or simply a code) C is a subset of [g]™ for positive integers
q and n. The elements of C' are called codewords.

e The parameter q is called the alphabet size of C'. In this case, we will also refer to C'
as a g-ary code. When q = 2, we will refer to C' as a binary code.

e The parameter n is called the block length of the code.

16

Dimension and Rate :

e Fora g-ary code C, the quantity k = log, |C| is called the dimension of the code (this
terminology makes more sense for certain classes of codes called linear codes, which
we will discuss shortly).

log, |C|
—i=.

e For a g-ary code C with block length n, its rate is defined as the ratio R =

Often it will be useful to use the following alternate way of looking at a code. We will
think of a g-ary code C' with block length n and |C| = M as a function [M] — [g]". Every
element z in [M] is called a message and C(z) is its associated codeword. If M is a power
of g, then we will think of the message as length k-vector in [g]*. Viewed this way, C
provides a systematic way to add redundancy such that messages of length k over [g] are
mapped to n symbols over [g].

(Minimum) Distance and Relative distance : Given any two vectors v = (vy, ..., v,)
and u = (uy,...,u,) in [g|", their Hamming distance (or simply distance), denoted by
A(v,u), is the number of positions that they differ in. In other words, A(v,u) = |{i|u; #

’UZ'}.

e The (minimum) distance of a code C' is the minimum Hamming distance between
any two codewords in the code. More formally

dist(C) = Clrlclgiélc A(eq, c2).
c’1¢02 ,

e The relative distance of a code C of block length n is defined as § = di%(c).

2.1.2 Code Families

The focus of this thesis will be on the asymptotic performance of decoding algorithms. For
such analysis to make sense, we need to work with an infinite family of codes instead of
a single code. In particular, an infinite family of g-ary codes C is a collection {C;|i € Z},
where for every ¢, C; is a g-ary code of length n; and n; > n;_;. The rate of the family C is

defined as
log, | Cil }

n;

R(C) = liminf {

)

The relative distance of such a family is defined as

5(C) = lim inf {diSt(C") } .

From this point on, we will overload notation by referring to an infinite family of codes
simply as a code. In particular, from now on, whenever we talk a code C of length n, rate

17

R and relative distance §, we will implicitly assume the following. We will think of n as
large enough so that its rate R and relative distance § are (essentially) same as the rate and
the relative distance of the corresponding infinite family of codes.

Given this implicit understanding, we can talk about the asymptotics of different algo-
rithms. In particular, we will say that an algorithm that works with a code of block length
n is efficient if its running time is O(n°) for some fixed constant c.

2.1.3 Linear Codes

We will now consider an important sub-class of codes called linear codes.

Definition 2.1. Let q be a prime power. A q-ary code C of block length n is said to be linear
if it is a linear subspace (over some field Fy) of the vector space Fy.

The size of a g-ary linear code is obviously ¢* for some integer k. In fact, it is the
dimension of the corresponding subspace in Fy. Thus, the dimension of the subspace is
same as the dimension of the code. (This is the reason behind the terminology of dimension
of a code.)

We will denote a g-ary linear code of dimension k, length n and distance d as an
[n, k,d], code. (For a general code with the same parameters, we will refer to it as an
(n, k,d), code.) Most of the time, we will drop the distance part and just refer to the code
as an [n, k], code. Finally, we will drop the dependence on ¢ if the alphabet size is clear
from the context.

We now make some easy observations about g-ary linear codes. First, the zero vector is
always a codeword. Second, the minimum distance of a linear code is equal to the minimum
Hamming weight of the non-zero codewords, where the Hamming weight of a vector is the
number of positions with non-zero values.

Any [n, k], code C' can be defined in the following two ways.

e (C can be defined as a set {xG|x €]Fs} where G is an £ X n matrix over IF,. G is
called a generator matrix of C.

e C can also be characterized by the following subspace {c|c € F} and Hc" = 0},
where H is an (n — k) x n matrix over IF,. H is called the parity check matrix of
C. The code with H as its generator matrix is called the dual of C' and is generally
denoted by C*+.

The above two representations imply the following two things for an [n, k|, code C.
First, given the generator matrix G and a message x € [y, one can compute C (x) using
O(nk) field operations (by multiplying x” with G). Second, given a received word y € Iy
and the parity check matrix H for C, one can check if y € C using O(n(n — k)) operations
(by computing Hy and checking if it is the all zeroes vector).

18

Finally, given a g-ary linear code C, we can define the following equivalence relation.
x =¢ y if and only if x —y € C. It is easy to check that since C' is linear this indeed
is an equivalence relation. In particular, =¢ partitions Fy into equivalence classes. These
are called cosets of C (note that one of the cosets is the code C' itself). In particular, every
coset is of the form y + C, where eithery = 0 ory ¢ C and y + C is shorthand for
{y + clc e C}.

We are now ready to talk about definitions and preliminaries for list decoding and prop-
erty testing of codes.

2.2 Preliminaries and Definitions Related to List Decoding

Recall that list decoding is a relaxation of the decoding problem, where given a received
word, the idea is to output all “close-by” codewords. More precisely, given an error bound,
we want to output all codewords that lie within the given error bound from the received
word. Note that this introduces a new parameter into the mix: the worst case list size. We
will shortly define the notion of list decoding that we will be working with in this thesis.

Given integers ¢ > 2,n > 1,0 < e < n and a vector x € [¢]", we define the Hamming
ball around x of radius e to be the set of all vectors in [g]" that are at Hamming distance at
most e from x. That is,

By(x,e) = {yly € [q]" and A(y,x) < e}.
We will need the following well known result.

Proposition 2.1 ([80]). Let ¢ > 2 and e,n > 1 be integers such that e < (1 — 1/q)n.
Define p = e/n. Then the following relations are satisfied.

e n .
1=0
|B,(0, €)| > g"aloIn=olm), (2.2)

We will be using the following definition quite frequently.

Definition 2.2 (List-Decodable Codes). Let C be a g-ary code of block length n. Let
L > 1 be an integer and 0 < p < 1 be a real. Then C' is called (p, L)-list decodable if

every Hamming ball of radius pn has at most L codewords in it. That is, for everyy € F7,
|B(y,pn)NC| < L.

In the definitions above, the parameter L can depend on the block length of the code.
In such cases, we will explicitly denote the list size by L(n), where n is the block length.
We will also frequently use the notion of list-decoding radius, which is defined next.

19

Definition 2.3 (List-Decoding Radius). Let C be a g-ary code of block length n. Let
0 < p < 1 be a real and define e = pn. C'is said to have a list-decoding radius of p (or e)
with list size L if p (or e) is the maximum value for which C'is (p, L)-list decodable.

We will frequently use the term list-decoding radius without explicitly mentioning the
list size in which case the list size is assumed to be at most some fixed polynomial in
the block length. Note that one way to show that a code C' has a list-decoding radius of
at least p is to present a polynomial time list-decoding algorithm that can list decode C'
up to a p fraction of errors. Thus, by abuse of notation, given an efficient list-decoding
algorithm for a code that can list decode a p fraction (or e number) of errors, we will
say that the list-decoding algorithm has a list-decoding radius of p (or e). In most places,
we will be exclusively talking about list-decoding algorithms in which case we will refer
to their list-decoding radius as decoding radius or just radius. In such a case, the code
under consideration is said to be list decodable up to the corresponding decoding radius
(or just radius). Whenever we are talking about a different notion of decoding (say unique
decoding), we will refer to the maximum fraction of errors that a decoder can correct by
qualifying the decoding radius with the specific notion of decoding (for example unique
decoding radius).

We will also use the following generalization of list decoding.

Definition 2.4 (List-Recoverable Codes). Let C' be a q-ary code of block length n. Let
¢,L > 1 be integers and 0 < p < 1 be a real. Then C is called (p, £, L)-list recoverable if
the following is true. For every sequence of sets Si, ..., Sy, where S; C [q] and |S;| < £
forevery 1 < i < n, there are at most L codewords ¢ = (cy, ..., c,) € C such that ¢; € S;
for at least (1 — p)n positions i.

Further, code C is said to (p, £)-list recoverable in polynomial time if it is (p, ¢, L(n))-
list recoverable for some polynomially bounded function L(-), and moreover there is a
polynomial time algorithm to find the at most L(n) codewords that are solutions to any
(p, £, L(n))-list recovery instance.

List recovery has been implicitly studied in several works; the name itself was coined in
[52]. Note that a (p, 1, L)-list recoverable code is a (p, L)-list decodable code and hence, list
recovery is indeed a generalization of list decoding. List recovery is useful in list decoding
codes obtained by a certain code composition procedure. The natural list decoder for such
a code is a two stage algorithm, where in the first stage the “inner” codes are list decoded
to get a sequence of lists, from which one needs to recover codewords from the “outer”
code(s). For such an algorithm to be efficient, the outer codes need to be list recoverable.

We next look at the most fundamental tradeoff that we would be interested in for list
decoding.

2.2.1 Rate vs. List decodability

In this subsection, we will consider the following question. Given limits L > 1 and 0 <
p < 1 on the worst case list size and the fraction of errors that we want to tolerate, what

20

is the maximum rate that a (p, L)-list decodable code can achieve? The following results
were implicit in [110] but were formally stated and proved in [35]. We present the proofs
for the sake of completeness.

We first start with a positive result.

Theorem 2.1 ([110, 35]). Let g > 2 be an integer and 0 < § < 1 be a real. For any integer
L > 1andanyreal 0 < p < 1 — 1/q, there exists a (p, L)-list decodable q-ary code with
rate at least 1 — H,(p) — L%rl -5

Proof. We will prove the result by using the probabilistic method [2]. Choose a code C of
block length n and dimension k£ = [(1 — Hy(p) — L+r1)n — n17%] at random. That is, pick
each of the ¢* codewords in C uniformly (and independently) at random from [g]™. We will
show that with high probability, C' is (p, L)-list decodable.

Let |C| = M = g*. We first fix the received word y € [g]™. Consider an (L + 1)-tuple
of codewords (c!,...,c¢*) in C. Now if all these codewords fall in a Hamming ball of
radius pn around y, then C is not (p, L)-list decodable. In other words, this (L + 1)-tuple
forms a counter-example for C' having the required list decodable properties. What is the
probability that such an event happens ? For any fixed codeword ¢ € C, the probability
that it lies in B(y, pn) is exactly

|B(y, pn)|
.
Now since every codeword is picked independently, the probability that the tuple (c', ...,
ct*1) forms a counter example is

<|B(y, ,0n)|>L+1 < g~ ADR(=Hy(p))
q" h ’

where the inequality follows from Proposition 2.1 (and the fact that the volume of a Ham-

ming ball is translation invariant). Since there are (Lj‘fl) < ML+ different choices of L+1

tuples of codewords from C', the probability that there exists at least one L + 1-tuple that

lies in B(y, pn) is at most (by the union bound):

ML g IANR(=Hy(p)) — o=(EADn(1~Hy(p)~F)

where R = k/n is the rate of C. Finally, since there are at most ¢™ choices for y, the
probability that there exists some Hamming ball with L + 1 codewords from C' is at most

n . g (EAOR(-Hy(p) R) — o(LtDn(l-Holp) R-1/(L+1) < oon! =

q =4q

Y

where the last inequality follows as k/n > 1 — Hy(p) — 1/(L + 1) — 1/n®. Thus, with

probability 1 — ¢~™° > 0 (for large enough n), C is a (p, L)-list decodable code, as
desired. 0

The following is an immediate consequence of the above theorem.

21

Corollary 2.2. Let q > 2 be an integer and 0 < p < 1 — 1/q. For every € > 0, there exists
a q-ary code with rate at least 1 — H,(p) — ¢ that is (p, O(1/¢))-list decodable.

We now move to an upper bound on the rate of good list decodable codes.

Theorem 2.3 ([110, 35]). Let ¢ > 2 be an integer and 0 < p < 1 — 1/q. For every ¢ > 0,
there do not exist any q-ary code with rate 1 — H,(p) + € that is (p, L(n))-list decodable
for any function L(n) that is polynomially bounded in n.

Proof. The proof like that of Theorem 2.1 uses the probabilistic method. Let C' be any ¢-
ary code of block length n with rate R = 1 — H,(p) + €. Pick a received word y uniformly
at random from [g]|". Now, the probability that for some fixed ¢ € C, A(y,c) < pnis

|B(0, pn)| > g (Hale)-1)=o(n).
qn
where the inequality follows from Proposition 2.1. Thus, the expected number of code-
words within a Hamming ball of radius pn around y is at least
|C| - q"Halp)=1)—on) — gn(R-(1-Hy(p)))~o(n)
which by the value of R is ¢®™). Since the expected number of codewords is exponential,
this implies that there exists a received word y that has exponentially many codewords
from C within a distance pn from it. Thus, C' cannot be (p, L(n))-list decodable for any
polynomially bounded (in fact any subexponential) function L(-). 0

List decoding capacity

Theorems 2.1 and 2.3 say that to correct a p fraction of errors using list decoding with small
list sizes the best rate that one can hope for and can achieve is 1 — H,(p). We will call this
quantity the list-decoding capacity.

The terminology is inspired by the connection of the results above to Shannon’s theorem
for the special case of the g-symmetric channel (which we will denote by ¢SC),). In this
channel, every symbol (from [g]) remains untouched with probability 1 — p while it is
changed to each of the other symbols in [g] with probability qul- Shannon’s theorem states
that one can have reliable communication with code of rate less than 1 — H,(p) but not
with rates larger than 1 — Hy(p). Thus, Shannon’s capacity for ¢SC,, is 1 — Hy(p), which
matches the expression for the list-decoding capacity.

Note that in ¢SC,, the expected fraction of errors when a codeword is transmitted is p.
Further, as the errors on each symbol occur independently, the Chernoff bound implies that
with high probability the fraction of errors is concentrated around p. However, Shannon’s
proof crucially uses the fact that these (roughly) p fraction of errors occur randomly. What

Theorems 2.1 and 2.3 say is that even with a p fraction of adversarial errors' one can

"Where both the location and the nature of errors are arbitrary.

22

have reliable communication via codes of rate 1 — H,(p) with list decoding using lists of
sufficiently large constant size.

We now consider the list-decoding capacity in some more detail. First we note the fol-
lowing special case of the expression for list-decoding capacity for large enough alphabets.
When ¢ is 29(1/¢), 1 — p — g is a good approximation of H,(p) (see Proposition 2.2). Recall
that in Section 1.2, we saw that 1 — p is the information theoretic limit for codes over any
alphabet. The discussion above states that we match this bound for large alphabets.

The proof of Theorem 2.1 uses a general random code. A natural question to ask is if
one can prove Theorem 2.1 for special classes of codes: for example, linear codes. For
g = 2 it is known that Theorem 2.1 is true for linear codes [51]. However, unlike general
codes, where Theorem 2.1 (with § < 1) holds for random codes with high probability, the
result in [51] does not hold with high probability. For ¢ > 2, it is only known that random
linear codes (with high probability) are (p, L)-list decodable with rate at least 1 — H,(p) —

1
log,(L+1) o 0(1) .

Achieving List-Decoding Capacity with Explicit Codes

There are two unsatisfactory aspects of Theorem 2.1: (i) The codes are not explicit and (ii)
There is no efficient list-decoding algorithm. In light of Theorem 2.1, we can formalize the
challenge of list decoding that was posed in Section 1.2.3 as follows:

Grand Challenge. Let ¢ > 2 andlet0 < p < 1—1/qand e > 0 be reals. Give an explicit
construction® of a q-ary code C with rate 1 — H,(p) — ¢ that is (p, O(1/¢))-list decodable.
Further, design a polynomial time list-decoding algorithm that can correct p fraction of
errors while using lists of size O(1/¢).

We still do not know how to meet the above grand challenge in its entirety. In Chapter 3,
we will show how to meet the challenge above for large enough alphabets (with lists of
larger size).

2.2.2 Results Related to the q-ary Entropy Function

We conclude our discussion on list decoding by recording few properties of the g-ary en-
tropy function that will be useful later.

We first start with a calculation where the g-ary entropy function naturally pops up. This
hopefully will give the reader a feel for the function (and as a bonus will pretty much prove
the lower bound in Proposition 2.1). Let 0 < z < 1 and ¢ > 2. We claim that the quantity
()(g — 1) is approximated very well by ¢*«®" for large enough n. To see this, let us

nT

2By explicit construction, we mean an algorithm that in time polynomial in the block length of the code
can output some succinct description of the code. For a linear code, such a description could be the
generator matrix of the code.

23

first use Stirling’s approximation of m! by (m/e)™ (for large enough m)* to approximate

()

(n > n! ntenten—ne qn log, n

(’]’L.’L’)'('I’L — nm)‘ ~ (’I’I,.’L’)nm ('I’I/ — ,n/x)n—nmen - qn:z: logq(nm)qn(l—m) log, (n(1-z))

— q—n(z‘ log, z+(1—z) log,(1—z)))

Thus, we have

n nT —n(z 1o x —) 10, —T n 10 —)n
(nw)(q_l) r g (108, 2+ (1-2) og (1)) | gnology(a=1) — Mol

as desired.
Figure 2.1 gives a pictorial view of the g-ary function for the first few values of gq.

0 0.2 0.4 0.6 0.8 1

Figure 2.1: A plot of H,(z) for ¢ = 2,3 and 4. The maximum value of 1 is achieved at
r=1-1/q.

We now look at the g-ary entropy function for large q.

Proposition 2.2. For small enoughe, 1 — H,(p) > 1—p—cforevery0 < p<1—1/qif
and only if q is 200/2),

3There is a v/27n factor that we are ignoring.

24

Proof. We first note that Hy(p) = plog,(¢—1)—plog, p—(1—p)log,(1—p) = plog,(q—
1) + H(p)/logy q. Now if ¢ = 2'/¢, we get that Hy(p) < p + € as log,(¢ — 1) < 1 and
H(p) < 1. Next we claim that for small enough ¢, if ¢ > 1/ then log (¢ —1) > 1 —e.

Indeed, log,(¢—1) =1+ (1/Ing)In(1-1/q) =1-0 (ql—}lq), which is at least 1 — ¢ for

q > 1/&% Finally, if ¢ = 2°() (but g > 1/€?), then for fixed p, H(p)/logq = e-w(1). Then
plog,(g—1)+H(p)/logq > p—e+e-w(1l) > p+e, whichimplies that 1—H,(p) < 1—p—e,
as desired. O

Next, we look at the entropy function when its value is very close to 1.

Proposition 2.3. For small enough ¢ > 0,

1
Hq<1———e> <1—cq62,
q

cq is constant that only depends on q.

Proof. The intuition behind the proof is the following. Since the derivate of H,(z) is zero
atz = 1—1/g, in the Taylor expansion of H,(1 — 1/q — ¢) the € term will vanish. We will
now make this intuition more concrete. We will think of ¢ as fixed and 1/¢ as growing. In
particular, we will assume that ¢ < 1/¢. Consider the following equalities:

miron 9= = (13 () - (o 1)
= vy (1-57)) + (o) e (50
1o [(1=) - (G e m (A E0/= D))
= 1+o0(?) - ﬁ {—qg_q1 B 2(;—(11)2 - <$+6> <_q6—ql

2.2 2.2
_%_gﬁﬂ)} 23)

2(¢—1) 2
= 1+o0(e?) — ﬁ {—qg_q1 - 2(5—(121)2
> 23
)
= 1+0(e?) — ﬁ {_2(;2_‘121)2 q;_qi _ 6;%;(31)3)} (2.4)
_ ey + o(€?)

25

<1-_ ¢

4Ing(qg—1)
(2.5)
(2.3) follows from the fact that for |z| < 1, In(1+z) = z — 22/2 + 23/3 — ... and by
collecting the 3 and smaller terms in o(g2). (2.4) follows by rearranging the terms and by
absorbing the ¢ term in o(¢?). The last step is true assuming ¢ is small enough. U

We will also work with the inverse of the g-ary entropy function. Note that H,(-) on the
domain [0, 1 — 1/g] is an bijective map into [0, 1]. Thus, we define H_'(y) = « such that
H,(z) =yand 0 < z < 1— 1/q. Finally, we will need the following lower bound.

Lemma 2.4. For every 0 < y < 1 — 1/q and for every small enough € > 0,

H'(y-¢’/c) > H'(y) — ¢,

q q

where c; > 1 is a constant that depends only on q.

Proof. It is easy to check that H !(y) is a strictly increasing convex function in the range

y € [0,1]. This implies that the derivate of H,'(y) increases with y. In particular,

(H,Y)'(1) > (H,")(y) for every 0 < y < 1. In other words, for every 0 < y < 1,
H;1<y)—§1;1(y—6) < H"_l(l)_f"_

and (small enough) § > 0, 1(1_5). Proposition 2.3 along with
the facts that H'(1) = 1 — 1/q and H' is increasing completes the proof if one picks
¢, = max(1,1/c,) and § = £?/c,. O

2.3 Definitions Related to Property Testing of Codes

We first start with some generic definitions. Let ¢ > 2,n > 1 be integers and let 0 < ¢ < 1
be a real. Given a vector x € [g]™ and a subset S C [g]|", we say that X is e-close to S
if there exist ay € S such that §(x,y) < &, where §(x,y) = A(x,y)/n is the relative
Hamming distance between x and y. Otherwise, X is e-far from S.

Given a g-ary code C of block length n, an integer » > 1 and real 0 < € < 1, we say
that a randomized algorithm T¢ is an (r, ¢)-tester for C' if the following conditions hold:

e (Completeness) For every codewordy € C, Pr[T¢(y) = 1] = 1, that is, T always
accepts a codeword.

e (Soundness) For every y € [g]" that is e-far from C, Pr[T¢(y) = 1] < 1/3, that s,
with probability at least 2/3, T¢ rejects y.

¢ (Query Complexity) For every random choice made by T¢, the tester only probes at
most 7 positions in y.

26

We remark that the above definition only makes sense when C' has large distance. Oth-
erwise we could choose C' = [¢]” and the trivial tester that accepts all received words is
a (0,¢)-tester. For this thesis, we will adopt the convention that whenever we are taking
about testers for a code C, C' will have some non trivial distance (in most cases C' will have
linear distance).

The above kind of tester is also called a one-sided tester as it never makes a mistake
in the completeness case. Also, the choice of 2/3 in the soundness case is arbitrary in the
following sense. The probability of rejection can be made 1 — § for any 6 > 0, as long as
we are happy with O(r) many queries, which is fine for this thesis as we will be interested
in the asymptotics of the query complexity. The number of queries (or r) can depend on n.
Note that there is a gap in the definition of the completeness and soundness of a tester. In
particular, the tester can have arbitrary output when the received word y is not a codeword
but is still e-close to C. In particular, the tester can still reject (very) close-by codewords.
We will revisit this in Chapter 8.

We say that a (r,¢) tester is a local tester if it makes sub-linear number of queries®,
that is, 7 = o(n) and ¢ is some small enough constant. A code is called a Locally Testable
Code (or LTC), if it has a local tester. We also say that a local tester for a code C' allows for
locally testing C.

2.4 Common Families of Codes

In this section, we will review some code families that will be used frequently in this thesis.

2.4.1 Reed-Solomon Codes

Reed-Solomon codes (named after their inventors [90]) is a linear code that is based on
univariate polynomials over finite fields. More formally, an [n, k + 1], Reed-Solomon code
with £ < n and ¢ > n is defined as follows. Let oy, ..., o, be distinct elements from [,
(which is why we needed g > n). Every message m = (my, ..., my) €]Ff;Jrl is thought of
as a degree k polynomial over I, by assigning the £+ 1 symbols to the k + 1 coefficients of
a degree k polynomial. In other words, Pp(X) = mg+my X +- - - +my X*. The codeword
corresponding to m is defined as follows

RS(m) = (Pu(ar), .. ., Pa(an)).

Now a degree k polynomial can have at most k roots in any field. This implies that any two
distinct degree k polynomials can agree in at most k places. In other words,

Proposition 2.5. An [n, k + 1], Reed-Solomon code is an [n, k + 1,d = n — k], code.

“4Recall that in this thesis we are implicitly dealing with code families.

27

By the Singleton bound (see for example [80]), the distance of any code of dimension
k 4+ 1 and length n is at most n — k. Thus, Reed-Solomon codes have the optimal distance:
such codes are called Maximum Distance Separable (or MDS) codes. The MDS property
along with its nice algebraic structure has made Reed-Solomon code the center of a lot of
research in coding theory. In particular, the algebraic properties of these codes have been
instrumental in the algorithmic progress in list decoding [97, 63, 85]. In addition to their
nice theoretical applications, Reed-Solomon codes have found widespread use in practical
applications. In particular, these codes are used in CDs, DVDs and other storage media,
deep space communications, DSL and paper bar codes. We refer the reader to [105] for
more details on some of these applications of Reed-Solomon codes.

2.4.2 Reed-Muller Codes

Reed-Muller codes are generalization of Reed-Solomon codes. For integers ¢ > 1 and
m > 1, the message space is the set of all polynomials over I, in ¢ variables that have
total degree at most m. The codeword corresponding to a message is the evaluation of
the corresponding /-variate polynomial over n distinct points in IFf; (note that this requires
q* > n). Finally, note that when £ = 1 and m = k, we get an [n, k + 1], Reed-Solomon
code. Interestingly, Reed-Muller codes [82, 89] were discovered before Reed-Solomon
codes.

2.5 Basic Finite Field Algebra

We will be using a fair amount of finite field algebra in the thesis. In this section, we recap
some basic notions and facts about finite fields.

A field consists of a set of elements that is closed under addition, multiplication and
(both additive and multiplicative) inversion. It also has two special elements 0 and 1, which
are the additive and multiplicative identities respectively. A field is called a finite field if its
set of elements is finite. The set of integers modulo some prime p, form the finite field IF,,.

The ring of univariate polynomials with coefficients from F will be denoted by F[X].
A polynomial E(X) is said to be irreducible if for every way of writing E(X) = A(X) -
B(X), either A(X) or B(X) is a constant polynomial. A polynomial is called monic, if the
coefficient of its leading term is 1.

If £(X) is an irreducible polynomial of degree d over a field F, then the quotient ring
F[X]/(E(X)), consisting of all polynomials in F[X] modulo E(X) is itself a finite field
and is called field extension of IF. The extension field also forms a vector space of dimension
d over F.

All finite fields are either IF,, for prime p or is an extension of a prime field. Thus, the
number of elements in a finite field is a prime power. Further, for any prime power g there
exists only one finite field (up to isomorphism). For any ¢ that is a power of prime p, the
field IF, has characteristic of p. The multiplicative groups of non-zero elements of a field

28

FF,. denoted by F}, is known to be cyclic. In other words, F; = {1,7,7%,...,77*} for
some element y € I, \ {0}. 7 is also called the primitive element or generator of ;.

The following property of finite fields will be crucial. Any polynomial f(X) of degree
at most d in F[X] has at most d roots, where o € F is a root of f(X) if f(a) = 0. We
would be also interested in finding roots of univariate polynomials (over extension fields)
for which we will use a classical algorithm due to Berlekamp [16].

Theorem 2.4 ([16]). Let p be a prime. There exists a deterministic algorithm that on input
a polynomial in Fy: [X] of degree d, can find all the irreducible factors (and hence the roots)
in time polynomial in d, p and t.

29

Chapter 3
LIST DECODING OF FOLDED REED-SOLOMON CODES

3.1 Introduction

Even though list decoding was defined in the late 1950s, there was essentially no algorith-
mic progress that could harness the potential of list decoding for nearly forty years. The
work of Sudan [97] and improvements to it by Guruswami and Sudan in [63], achieved effi-
cient list decoding up to a pgg(R) = 1 — v/R fraction of errors for Reed-Solomon codes of
rate R. Note that 1 — /R > py(R) = (1 — R)/2 for every rate R, 0 < R < 1, so this result
showed that list decoding can be effectively used to go beyond the unique decoding radius
for every rate (see Figure 3.1). The ratio pgs(R)/puv(R) approaches 2 for rates R — 0,
enabling error-correction when the fraction of errors approaches 100%, a feature that has
found numerous applications outside coding theory, see for example [98], [49, Chap. 12].

Unfortunately, the improvement provided by [63] over unique decoding diminishes for
larger rates, which is actually the regime of greater practical interest. For rates R — 1, the
ratio ’;fUS—(If) approaches 1, and already for rate R = 1/2 the ratio is at most 1.18. Thus,
while the results of [97, 63] demonstrated that list decoding always, for every rate, enables
correcting more errors than unique decoding, they fell short of realizing the full quantitative
potential of list decoding (recall that the list-decoding capacity promises error correction
uptoal— R = 2py(R) fraction of errors).

The bound pgs(R) stood as the best known decoding radius for efficient list decoding
(for any code) for several years. In fact constructing (p, L)-list decodable codes of rate
R for p > pgs(R) and polynomially bounded L, regardless of the complexity of actually
performing list decoding to radius p, itself was elusive. Some of this difficulty was due to
the fact that 1 — v/R is the largest radius for which small list size can be shown generically,
via the so-called Johnson bound which argues about the number of codewords in Hamming
balls using only information on the relative distance of the code, cf. [48].

In a recent breakthrough paper [85], Parvaresh and Vardy presented codes that are list-
decodable beyond the 1 —+/R radius for low rates R. The codes they suggest are variants of
Reed-Solomon (or simply RS) codes obtained by evaluating m > 1 correlated polynomials
at elements of the underlying field (with m = 1 giving RS codes). For any m > 1, they
achieve the list-decoding radius pg?,)(R) = 1— "%/mm™Rm™. For rates R — 0, choosing
m large enough, they can list decode up to radius 1 — O(R1log(1/R)), which approaches
the capacity 1 — R. However, for R > 1/16, the best choice of m (the one that maximizes
pg?,)(R)) is in fact m = 1, which reverts back to RS codes and the list-decoding radius
1 — v/R. (See Figure 3.1 where the bound 1 — v/4R? for the case m = 2 is plotted

30

— except for very low rates, it gives a small improvement over pgs(R).) Thus, getting
arbitrarily close to capacity for some rate, as well as beating the 1 — v/R bound for every
rate, both remained open before our work!.

In this chapter, we describe codes that get arbitrarily close to the list-decoding capacity
for every rate (for large alphabets). In other words, we give explicit codes of rate R together
with polynomial time list decoding up to a fraction 1 — R — ¢ of errors for every rate R
and arbitrary € > 0. As mentioned in Section 2.2.1, this attains the best possible trade-
off one can hope for between the rate and list-decoding radius. This is the first result that
approaches the list-decoding capacity for any rate (and over any alphabet).

Our codes are simple to describe: they are folded Reed-Solomon codes, which are in
fact exactly Reed-Solomon codes, but viewed as codes over a larger alphabet by careful
bundling of codeword symbols. Given the ubiquity of RS codes, this is an appealing feature
of our result, and in fact our methods directly yield better decoding algorithms for RS codes
when errors occur in phased bursts (a model considered in [75]).

Our result extends easily to the problem of list recovery (recall Definition 2.4). The
biggest advantage here is that we are able to achieve a rate that is independent of the size of
the input lists. This is an extremely useful feature that will be used in Chapters 4 and 5 to
design codes over smaller alphabets. In particular, we will construct new codes from folded
Reed-Solomon codes that achieve list-decoding capacity over constant sized alphabets (the
folded Reed-Solomon codes are defined over alphabets whose size increases with the block
length of the code).

Our work builds on existing work of Guruswami and Sudan [63] and Parvaresh and
Vardy [85]. See Figure 3.1 for a comparison of our work with previous known list-decoding
algorithms (for various codes).

We start with the description of our code in Section 3.2 and give some intuition why
these codes might have good list decodable properties. We present the main ideas in our
list-decoding algorithms for the folded Reed-Solomon codes in Section 3.3. In Section 3.4,
we present and analyze a polynomial time list-decoding algorithm for folded RS codes of
rate R that can correct roughly 1 — +/R? fraction of errors . In Section 3.5, we extend
the results in Section 3.4 to present codes that can be efficiently list decoded up to the
list-decoding capacity. Finally, we extend our results to list recovery in Section 3.6.

3.2 Folded Reed-Solomon Codes

In this section, we will define a simple variant of Reed-Solomon codes called folded Reed-
Solomon codes. By choosing parameters suitably, we will design a list-decoding algorithm
that can decode close to the optimal fraction 1 — R of errors with rate R.

'Independent of our work, Alex Vardy (personal communication) constructed a variant of the code defined
in [85] which could be list decoded with fraction of errors more than 1 — V/R for all rates R. However, his
construction gives only a small improvement over the 1 —+/R bound and does not achieve the list-decoding
capacity.

31

List décoding capacity (thié chapter) ——
B Unique decoding radius ---=--
% Guruswami-Sudan ---©---
a Parvaresh-Vardy ---a
&
08 h
6;
P R
_ B
L o, i
& 0.6 LT,
£ 2 %
[Q.
(e] =1 A o
z g Sy
(¢] Bg_ - ‘6.
= 04 B.ga R i
(S) B, a
< E=N 6.
[. Beg e,
[Y B Q.
- B o,
. a |- O.G“O
A \ﬂ\ﬂ\ o..
0.2 | “a ‘El\g’gn i
“HI0.
a g
N “Bg.
, “Beg
- 8.
K Beg.
Bg)
0 ! ! s |] ~
0 0.2 0.4 0.6 0.8 1
R (RATE) --->

Figure 3.1: List-decoding radius p plotted against the rate R of the code for known algo-
rithms. The best possible trade-off;, i.e., list-decoding capacity, is p = 1 — R, and our work
achieves this.

3.2.1 Description of Folded Reed-Solomon Codes

Consider a [n, k + 1], Reed-Solomon code C consisting of evaluations of degree k polyno-
mials over F, at the set IF;. Note that ¢ = n + 1. Let -y be a generator of the multiplicative
group F7, and let the evaluation points be ordered as 1,7, 7%, ...,y L. Using all nonzero
field elements as evaluation points is one of the most commonly used instantiations of
Reed-Solomon codes.

Let m > 1 be an integer parameter called the folding parameter. For ease of presenta-
tion, we will assume that m divides n = ¢ — 1.

Definition 3.1 (Folded Reed-Solomon Code). The m-folded version of the RS code C,
denoted FRSx, ry ., is a code of block length N = n/m over Fy', where n = q — 1. The
encoding of a message f(X), a polynomial over F, of degree at most k, has as its j'th
symbol, for 0 < j < n/m, the m-tuple (f(v'™), f(¥™ 1), .-+, f(#™™ 1)), In other
words, the codewords of C' = FRSg, o m 1 are in one-one correspondence with those of

the RS code C' and are obtained by bundling together consecutive m-tuple of symbols in
codewords of C.

The way the above definition is stated the message alphabet is IF; while the codeword
alphabet is]F’,;’ whereas in our definition of codes, both the alphabets were the same. This

32

f(zo) |f(z1) |f(z2) |f(zs) |flze) |flzs) |f(ze) |f(z7) | """"""" I./(Inﬂt) f(zn-3) [f(zn-2) [f(Tn-1)
S(@o) | f(z4) If (zn-4)
fla1) | f(@s) (@n-3)
fw) |fe | (a-2)
flzs) | f(z7) (Tn-1)

Figure 3.2: Folding of the Reed-Solomon Code with Parameter m = 4.

can be easily taken care of by bundling m consecutive message symbols from [F, to make
the message alphabet to be F". We will however, state our results with the message symbols
as coming from [F, as this simplifies our presentation.

We illustrate the above construction for the choice m = 4 in Figure 3.2. The polyno-
mial f(X) is the message, whose Reed-Solomon encoding consists of the values of f at
Zg,T1,...,T,_1 Where z; = 4. Then, we perform a folding operation by bundling together
tuples of 4 symbols to give a codeword of length n/4 over the alphabet]F;l.

Note that the folding operation does not change the rate R of the original Reed-Solomon
code. The relative distance of the folded RS code also meets the Singleton bound and is at
least 1 — R.

Remark 3.1 (Origins of term ‘“folded RS codes’). The terminology of folded RS codes
was coined in [75], where an algorithm to correct random errors in such codes was pre-
sented (for a noise model similar to the one used in [27, 18]: see Section 3.7 for more de-
tails). The motivation was to decode RS codes from many random “phased burst” errors.
Our decoding algorithm for folded RS codes can also be likewise viewed as an algorithm
to correct beyond the 1 — /R bound for RS codes if errors occur in large, phased bursts
(the actual errors can be adversarial).

3.2.2 Why Might Folding Help?

Since folding seems like such a simplistic operation, and the resulting code is essentially
just a RS code but viewed as a code over a large alphabet, let us now understand why it can
possibly give hope to correct more errors compared to the bound for RS codes.

Consider the folded RS code with folding parameter m = 4. First of all, decoding the
folded RS code up to a fraction p of errors is certainly not harder than decoding the RS
code up to the same fraction p of errors. Indeed, we can “unfold” the received word of the
folded RS code and treat it as a received word of the original RS code and run the RS list-
decoding algorithm on it. The resulting list will certainly include all folded RS codewords

33

within distance p of the received word, and it may include some extra codewords which we
can, of course, easily prune.

In fact, decoding the folded RS code is a strictly easier task. To see why, say we want to
correct a fraction 1/4 of errors. Then, if we use the RS code, our decoding algorithm ought
to be able to correct an error pattern that corrupts every 4’th symbol in the RS encoding
of f(X) (i.e., corrupts f(z4;) for 0 < i < n/4). However, after the folding operation,
this error pattern corrupts every one of the symbols over the larger alphabet IF‘;, and thus
need not be corrected. In other words, for the same fraction of errors, the folding operation
reduces the total number of error patterns that need to be corrected, since the channel has
less flexibility in how it may distribute the errors.

It is of course far from clear how one may exploit this to actually correct more errors. To
this end, algebraic ideas that exploit the specific nature of the folding and the relationship
between a polynomial f(X) and its shifted counterpart f(yX) will be used. These will
become clear once we describe our algorithms later in the chapter.

We note that the above simplification of the channel is not attained for free since the
alphabet size increases after the folding operation. For folding parameter m that is an
absolute constant, the increase in alphabet size is moderate and the alphabet remains poly-
nomially large in the block length. (Recall that the RS code has an alphabet size that is
linear in the block length.) Still, having an alphabet size that is a large polynomial is some-
what unsatisfactory. Fortunately, existing alphabet reduction techniques, which are used in
Chapter 4, can handle polynomially large alphabets, so this does not pose a big problem.

3.2.3 Relation to Parvaresh Vardy Codes

In this subsection, we relate folded RS codes to the Parvaresh-Vardy (PV) codes [85], which
among other things will help make the ideas presented in the previous subsection more
concrete.

The basic idea in the PV codes is to encode a polynomial f of degree k by the evalu-
ations of s > 2 polynomials fo = f, f1,..., fs—1 where f;(X) = f;_1(X)¢ mod E(X)
for an appropriate power d (and some irreducible polynomial F(X) of some appropriate
degree) — let us call s the order of such a code. Our first main idea is to pick the irre-
ducible polynomial £(X) (and the parameter d) in such a manner that every polynomial f
of degree at most k satisfies the following identity: f(yX) = f(X)¢ mod E(X), where
v is the generator of the underlying field. Thus, a folded RS code with bundling using an
v as above is in fact exactly the PV code of order s = m for the set of evaluation points

{1,4™, 4%, ..., y(»/m=1)m1 This is nice as it shows that PV codes can meet the Singleton
bound (since folded RS codes do), but as such does not lead to any better codes for list
decoding.

We now introduce our second main idea. Let us compare the folded RS code to a PV
code of order 2 (instead of order m where m divides n) for the set of evaluation points
{1,7, ...y 2 ym ymtl L 42me2 g ognemtl Ane2) 0 We find that in the
PV encoding of f, forevery 0 < i < n/m — land every 0 < j < m — 1, f(y™*)

34

appears exactly twice (once as f(y™*7) and another time as f;(y~1y™ %)), whereas it ap-
pears only once in the folded RS encoding. (See Figure 3.3 for an example when m = 4
and s = 2.) In other words, the PV and folded RS codes have the same information, but the

------ fa) e | s
_______ F(yzo) Flyzo) | Flraa)
" s e R
L 1(°z0) FGPao)| Frea)
; ‘\l ‘\\\\‘“ ' o FRS codeword

Fl@o) | flyo) | F(¥Pzo)| fFlza) | F(vza) |F(7P2a)
F(vzo) | F(¥Pmo)| F(v3mo)| fvma) | F(Vma)| F(¥Pms)

PV codeword

Figure 3.3: The correspondence between a folded Reed-Solomon code (with m =
4 and z; = ~') and the Parvaresh Vardy code (of order s = 2) evaluated over
{17,927, ...,9"4,...,7y" 2}. The correspondence for the first block in the folded
RS codeword and the first three blocks in the PV codeword is shown explicitly in the left
corner of the figure.

rate of the folded RS codes is bigger by a factor of 22=2 = 2 — 2. Decoding the folded
RS codes from a fraction p of errors reduces to correcting the same fraction p of errors for
the PV code. But the rate vs. list-decoding radius trade-off is better for the folded RS code
since it has (for large enough m, almost) twice the rate of the PV code.

In other words, our folded RS codes are chosen such that they are compressed forms of
suitable PV codes, and thus have better rate than the corresponding PV code for a similar
error-correction performance. This is where our gain is, and using this idea we are able to
construct folded RS codes of rate R that are list decodable up to radius roughly 1 — *%/Rs
for any s > 1. Picking s large enough lets us get within any desired ¢ of list-decoding
capacity.

3.3 Problem Statement and Informal Description of the Algorithms

We first start by stating more precisely the problem we will solve in the rest of the chapter.
We will give list-decoding algorithms for the folded Reed-Solomon code FRSg, v m of
rate R. More precisely, for every 1 < s < m and § > 0, given a received word y =

35

(Yo, -+ sYUm—1),--+> (Yn—ms--->Un—1)) (Where recall n = ¢ — 1), we want to output all
codewords in FRSg, ,m that disagree with y in at most 1 — (1 + §) (2 +1) Re/(s+1)

fraction of positions in polynomial time. In other words, we need to output all degree
k polynomials f(X) such that for at least (1 4 §) (2 +1) R#/(s1) fraction of 0 < 7 <
n/m —1, f(7"™*) = yim,; (for every 0 < j < m — 1). By picking the parameters m, s
and ¢ carefully, we will get folded Reed-Solomon codes of rate R that can be list decoded
up to a1l — R — ¢ fraction of errors (for any € > 0).

We will now present the main ideas need to design our list-decoding algorithm. Readers
familiar with list-decoding algorithms of [97, 63, 85] can skip the rest of this section.

For the ease of presentation we will start with the case when s = m. As a warm up, let
us consider the case when s = m = 1. Note that for m = 1, we are interested in list decod-
ing Reed-Solomon codes. More precisely, given the received wordy = (yo, - .-, Yn_1), W€
are interested in all degree k polynomials f(X) such that for at least (1 + &§)+/R fraction
of positions 0 < 7 < n — 1, f(7*) = y;. We now sketch the main ideas of the algorithms
in [97, 63]. The algorithms have two main steps: the first is an interpolation step and the
second one is a root finding step. In the interpolation step, the list-decoding algorithm finds
a bivariate polynomial Q(X,Y") that fits the input. That is,

for every position 7, Q(v*, y;) = 0.

Such a polynomial Q(+,) can be found in polynomial time if we search for one with large
enough total degree (this amounts to solving a system of linear equations). After the inter-
polation step, the root finding step finds all factors of Q(X,Y) of the form Y — f(X). The
crux of the analysis is to show that

for every degree k polynomial f(X) that satisfies f(y") = y; for at least (1 +
6)v/R fraction of positions 4, Y — f(X) is indeed a factor of Q(X,Y).

However, the above is not true for every bivariate polynomial Q(X,Y’) that satisfies Q (7%, v;)
= 0 for all positions ¢. The main ideas in [97, 63] were to introduce more constraints on
Q(X,Y). In particular, the work of Sudan [97] added the constraint that a certain weighted
degree of Q(X,Y) is below a fixed upper bound. Specifically, Q(X,Y’) was restricted
to have a non-trivially bounded (1, k)-weighted degree. The (1, k)-weighted degree of a
monomial X*Y7 is i+ jk and the (1, k)-weighted degree of a bivariate polynomial Q(X,Y)
is the maximum (1, k)-weighted degree among its monomials. The intuition behind defin-
ing such a weighted degree is that given Q(X,Y') with weighted (1, k) of D, the univariate
polynomial Q(X, f(X)), where f(X) is some degree k polynomial, has total degree at
most D. The upper bound D is chosen carefully such that if f(X) is a codeword that needs
to be output, then Q(X, f(X)) has more than D zeroes and thus Q(X, f(X)) = 0, which
in turn implies that Y — f(X) divides Q(X,Y’). To get to the bound of 1 — (1 + §)V/R,
Guruswami and Sudan in [63], added a further constraint on Q(X,Y") that required it to
have r roots at (7%, y;), where r is some parameter (in [97] r = 1 while in [63], 7 is roughly

1/8).

36

We now consider the next non-trivial case of m = s = 2 (the ideas for this case
can be easily generalized for the general m = s case). Note that now given the received
word ((Yo,¥1), (Y2,Y3)s - - - (Yn_2,Yn_1)) We want to find all degree k polynomials f(X)
such that for at least 2(1 4+ §)v/R2 fraction of positions 0 < i < n/2 — 1, f(v%) =
yo; and f(7**1) = yg,1. As in the previous case, we will have an interpolation and
a root finding step. The interpolation step is a straightforward generalization of m = 1
case: we find a trivariate polynomial Q(X,Y, Z) that fits the received word, that is, for
every 0 < i < n/2—1, Q(v*, y2i,Y2i+1) = 0. Further, Q(X,Y, Z) has an upper bound
on its (1, k, k)-weighted degree (which is a straightforward generalization of the (1, k)-
weighted degree for the bivariate case) and has a multiplicity of r at every point. These
straightforward generalization and their various properties are recorded in Section 3.4.1.
For the root finding step, it suffices to show that for every degree k polynomial f(X) that
needs to be output Q (X, f(X), f(7X)) = 0. This, however does not follow from weighted
degree and multiple root properties of Q(X,Y, 7). Here we will need two new ideas,
the first of which is to show that for some irreducible polynomial F(X) of degree ¢ — 1,
f(X)? = f(yX) mod (E(X)) (this is Lemma 3.4). The second idea, due to Parvaresh and
Vardy [85], is the following. We first obtain the bivariate polynomial (over an appropriate
extension field) T(Y, Z) = Q(X,Y,Z) mod (E(X)). Note that by our first idea, we are
looking for solutions on the curve Z = Y9 (Y corresponds to f(X) and Z corresponds to
f(7yX) in the extension field). The crux of the argument is to show that all the polynomials
f(X) that need to be output correspond to (in the extension field) some root of the equation
T(Y,Y?) = 0. See Section 3.4.3 for the details.

As was mentioned earlier, the extension of the m = s = 2 case to the general m =
s > 2 case is fairly straightforward (and is presented in part as Lemma 3.6). To go from
s = mto any s < m requires another simple idea: We will reduce the problem of list
decoding folded Reed-Solomon code with folding parameter m to the problem of list de-
coding folded Reed-Solomon code with folding parameter s. We then use the algorithm
outlined in the previous paragraph for the folded Reed-Solomon code with folding param-
eter s. A careful tracking of the agreement parameter in the reduction, brings down the
final agreement fraction (that is required for the original folded Reed-Solomon code with
folding parameter m) from m(1+9) ™4/ R™ (which can be obtained without the reduction)
to (14 9) (-) */Rs. This reduction is presented in detail in Section 3.4 for the s = 2

m—s+1
case. The generalization to any s < m is presented in Section 3.5.

3.4 Trivariate Interpolation Based Decoding

As mentioned in the previous section, the list-decoding algorithm for RS codes from [97,
63] is based on bivariate interpolation. The key factor driving the agreement parameter ¢
needed for the decoding to be successful was the ((1, k)-weighted) degree D of the interpo-
lated bivariate polynomial. Our quest for an improved algorithm for folded RS codes will
be based on trying to lower this degree D by using more degrees of freedom in the interpo-

37

lation. Specifically, we will try to use trivariate interpolation of a polynomial Q(X,Y7,Y3)
through n points in FS. This enables us to perform the interpolation with D in O((k*n)'/?),

which is much smaller than the @(\/ﬁ) bound for bivariate interpolation. In principle,
this could lead to an algorithm that works for agreement fraction R?/3 instead of R'/2. Of
course, this is a somewhat simplistic hope and additional ideas are needed to make this ap-
proach work. We now turn to the task of developing a trivariate interpolation based decoder
and proving that it can indeed decode up to a 1 — R?/3 fraction of errors.

3.4.1 Facts about Trivariate Interpolation

We begin with some basic definitions and facts concerning trivariate polynomials.

Definition 3.2. For a polynomial Q(X,Y1,Ys) € F[X,Y1,Y5], its (1,k, k)-weighted de-
gree is defined to be the maximum value of {+kj,+kj taken over all monomials X*Y7'Y3?
that occur with a nonzero coefficient in Q(X,Y1,Y3). If Q(X,Y1,Ys2) = 0 then its (1, k, k)-
weighted degree is 0.

Definition 3.3 (Multiplicity of zeroes). A polynomial Q(X,Y1,Y3) over F, is said to have
a zero of multiplicity v > 1 at a point (o, By, B2) € Fo if Q(X + o, Y1 + 1, Y2 + B2) has
no monomial of degree less than r with a nonzero coefficient. (The degree of the monomial
Xil/'ljl}/éjz equals i + 71 + J2.)

Lemma 3.1. Let {(a, yi1, Yi2) }1y be an arbitrary set of n triples from]FZ. Let Q(X,Y1,Y3)
€ F,[X, Y1,Y3] be a nonzero polynomial of (1, k, k)-weighted degree at most D that has a
zero of multiplicity r at (o, Y1, Yie) for every i € [n]. Let f(X), g(X) be polynomials of
degree at most k such that for at least t > D /r values of i € [n|, we have f(«a;) = y;1 and
9(ci) = yi2. Then, Q(X, f(X),9(X)) = 0.

Proof. If we define R(X) = Q(X, f(X),g(X)), then R(X) is a univariate polynomial of
degree at most D, and for every i € [n] for which f(a;) = y;1 and g(a;) = yia, (X — ;)"
divides R(X). Therefore if r¢ > D, then R(X) has more roots (counting multiplicities)
than its degree, and so it must be the zero polynomial. U

Lemma 3.2. Given an arbitrary set of n triples {(, yi1, Yi2) iy from Fy and an integer
parameter T > 1, there exists a nonzero polynomial Q(X,Y1,Ys) over ¥, of (1,k, k)-
weighted degree at most D such that Q(X,Y1,Y3) has a zero of multiplicity r at («;, Ys1, Yi2)
. . 3 r e
for all i € [n], provided D5 > n(;2) Moreover, we can find such a Q(X,Y1,Y3) in time
polynomial in n,r by solving a system of homogeneous linear equations over IF,.

Proof. We begin with the following claims. (i) The condition that Q(X, Y7, Y5) has a zero
of multiplicity r at (o, Y1, yse) for all ¢ € [n] amounts to n(T?) homogeneous linear
conditions in the coefficients of); and (ii) The number of monomials in Q(X,Y7,Y3)

equals the number, say N3(k, D), of triples (i, j1,j2) of nonnegative integers that obey

38

1+ kj1+ kjo < Dis at least 2 6k2 Hence, if ¢ D oz > n(r+2) then the number of unknowns
exceeds the number of equations, and we are guaranteed a nonzero solution.

To complete the proof, we prove the two claims. To prove the first claim, it suffices to
show that for any arbitrary tuple (a, 3,), the condition that Q(X,Y, Z) has multiplicity r
at point (a, 3,) amounts to (T+2) many homogeneous linear constraints. By the definition
of multiplicities of roots, this amounts to setting the coefficients of all monomials of total
degree r in Q(X +a, Y+, Z+7) to be zero. In ,partllcular the coefficient of the monomial
XuY®2Zi s given by 211221 212212 Dt >is (:1) (Z) (za)q’l’ilz g ot~ l—ianti=is where
gt 18 the coefficient of X “WY*%Z% in Q(X,Y,Z). Thus, the condition on multiplici-
ties on roots of Q(X,Y, Z) at («, 3,7) follows if the following is satisfied by for every
triple (41, 12,43) such that iy + iy + i3 < 7:

/
=5 5 () (i

i 120 12212 13213

The2 claim follows by noting that the number of integral solutions to 77 + i3 + i3 < 7 is
T+

(’ "l)"o prove the second claim, following [85], we will first show that the number N3(k, D)
is at least as large as the volume of the 3-dimensional region P = {z + ky1 + ky, < D |
T,y1,Y2 = 0} C R3. Consider the correspondence between monomials in IF,[X,Y, Z] and
unit cubes in R3: X1Y2Z% — C(iy,19,13), where C(i1,42,13) = [i1,41 + 1) X [ig, 42+ 1) X
[i3,73 + 1). Note that the volume of each such cube is 1. Thus, N3(k, D) is the volume of
the union of cubes C(i1, iz, i3) for positive integers i1, i3, i3 such that i; + kis + kiz < D:
let U denote this union. It is easy to see that P C U. To complete the claim we will show

that the volume of P equals £ &%z Indeed the volume of P is

D (D—z)/k (D—z)/k—y1 D (D—z)/k D—z
// / dys dy: dx = // (? —y1> dy, dx
o Jo 0 o Jo
D N2
= / 7(1) z) dz
0 2k2

= % l 22 dz
D3
= o
where the third equality follows by substituting z = D — . 0]

3.4.2 Using Trivariate Interpolation for Folded RS Codes

Let us now see how trivariate interpolation can be used in the context of decoding the folded
RS code C' = FRSE, y,m,x of block length N = (g — 1)/m. (Throughout this section, we

39

denote n = ¢ — 1.) Given a received word z € (F*)" for C” that needs to be list decoded,
we define y € Fy to be the corresponding “unfolded” received word. (Formally, let the j°th
symbol of z be (2j0,...,2jm-1) for 0 < j < N. Then y is defined by y;m4; = z;j; for
0<j<NandO0<<Il<m)

Suppose that f(X) is a polynomial whose encoding agrees with z on at least ¢ locations
(note that the agreement is on symbols from [F7*). Then, here is an obvious but important
observation:

For at least t(m — 1) values of 7, 0 < i < n, both the equalities f(v*) = y; and
F(¥"*) = yiqa hold.

Define the notation g(X) = f(vX). Therefore, if we consider the n triples (v, y;, yi+1) €
F? for i = 0,1,...,n — 1 (with the convention y, = yo), then for at least ¢(m — 1)
triples, we have f(v*) = y; and g(v*) = y;1. This suggests that interpolating a polynomial
Q(X,Y1,Y3) through these n triples and employing Lemma 3.1, we can hope that f(X) will
satisfy Q(X, f(X), f(7X)) = 0, and then somehow use this to find f(X). We formalize
this in the following lemma. The proof follows immediately from the preceding discussion
and Lemma 3.1.

Lemma 3.3. Let z € (F}")Y and let'y € F} be the unfolded version of z. Let Q(X,Y1,Y>)
be any nonzero polynomial over F, of (1,k, k)-weighted degree at D that has a zero of
multiplicity v at (7', Yi, Yir1) fori = 0,1,...,n—1. Let t be an integer such that t > ﬁ.
Then every polynomial f(X) € F,[X] of degree at most k whose encoding according to
FRSF, y,m,x agrees with z on at least t locations satisfies Q(X, f(X), f(vX)) = 0.

Lemmas 3.2 and 3.3 motivate the following approach to list decoding the folded RS
code FRSp, y,m,x- Here z € (IF[I”)N is the received word and y = (yo,¥1,---,¥n-1) € Fy
is its unfolded version. The algorithm uses an integer multiplicity parameter » > 1, and is
intended to work for an agreement parameter 1 < ¢t < N.

Algorithm Trivariate-FRS-decoder:

Step 1 (Trivariate Interpolation) Define the degree parameter

D= |{/knr(r+1)(r+2)] +1. (3.1)

Interpolate a nonzero polynomial Q(X,Y7,Y>) with coefficients from I, with the
following two properties: (i) @ has (1, k, k)-weighted degree at most D, and (ii) @
has a zero of multiplicity 7 at (7%, y;, yi41) fori = 0,1,...,n — 1 (where y, = yo).
(Lemma 3.2 guarantees the feasibility of this step as well as its computability in time
polynomial in n, 7.)

Step 2 (Trivariate “Root-finding”) Find a list of all degree < & polynomials f(X) € F,[X]
such that Q(X, f(X), f(7X)) = 0. Output those whose encoding agrees with z on
at least ¢ locations.

40

Ignoring the time complexity of Step 2 for now, we can already claim the following
result concerning the error-correction performance of this algorithm.

Theorem 3.1. The algorithm Trivariate-FRS-decoder successfully list decodes the folded
Reed-Solomon code FRSg, y,m 1, up to a radius of N — {Nl \s/fl—z (1 + %) (1 + %)J —2.

m—1

Proof. By Lemma 3.3, we know that any f(X) whose encoding agrees with z on ¢ or more

locations will be output in Step 2, provided ¢ > ﬁ. For the choice of D in (3.1), this

condition is met for the choice t = 1 + H/(m’“i—’;)g 1+ (+2)+ mJ Indeed, we
have

D 1 o/
e < =) (\/k nr(r+1)(r +2) + 1)

1 1 2 1
- 1+4-) (142 -
m—1 kn(+r>(+r>+(m—1)r

{r%() @@pﬁj

:t’

where the first inequality follows from (3.1) and the fact that for any real z > 0, |z| < =
while the second inequality follows from the fact that for any real z > 0, x < |z] + 1. The
decoding radius is equal to N — ¢, and recalling that n = mV, we get bound claimed in the
lemma. 0

The rate of the folded Reed-Solomon code is R = (k+1)/n > k/n, and so the fraction
of errors corrected (for large enough r) is 1 — %RQ/ 3. Letting the parameter m grow, we
can approach a decoding radius of 1 — R?/3,

3.4.3 Root-finding Step

In light of the above discussion, the only missing piece in our decoding algorithm is an
efficient way to solve the following trivariate “root-finding” problem:

Given a nonzero polynomial Q(X,Y7,Ys) with coefficients from a finite field

F,, a primitive element y of the field IF;, and an integer parameter k < q — 1,

find the list of all polynomials f(X) of degree at most & such that Q(X, f(X), f(7X)) =
0.

The following simple algebraic lemma is at the heart of our solution to this problem.

Lemma 3.4. Let vy be a primitive element that generates I¥,. Then we have the following
two facts:

41

1. The polynomial E(X) def

X971t — v is irreducible over T,.
2. Every polynomial f(X) € F,[X] of degree less than q — 1 satisfies f(vX) = f(X)?
mod E(X).

Proof. The fact that E(X) = X% ! —~ is irreducible over FF, follows from a known, precise
characterization of all irreducible binomials, i.e., polynomials of the form X ¢ — ¢, see for
instance [77, Chap. 3, Sec. 5]. For completeness, and since this is an easy special case,
we now prove this fact. Suppose F(X) is not irreducible and some irreducible polynomial
f(X) € F,[X] of degree b, 1 < b < g — 1, divides it. Let ¢ be a root of f(X) in the
extension field F,». We then have (¢~ = 1. Also, f(¢) = 0 implies E(¢) = 0, which
b
implies (9~! = ~. These equations together imply qu—_ll = 1. Now, < is primitive in
IF,, so that v* = 1 iff a is divisible by (¢ — 1). We conclude that ¢ — 1 must divide

qu%ll = 1+q+q?+---+¢° L. Thisis, however, impossible since 1 +q+q>+---+¢* 1 =b
(mod (¢ — 1)) and 0 < b < ¢ — 1. This contradiction proves that £(X) has no such factor
of degree less than ¢ — 1, and is therefore irreducible.

For the second part, we have the simple but useful identity f(X)? = f(X9) that holds
for all polynomials in IF,[X]. Therefore, f(X)? — f(vX) = f(X?) — f(vX). Since
X7 = vX implies f(X?) = f(vX), f(X9) — f(yX) is divisible by X? — vX, and
thus also by X9 ! — «. Hence f(X)? = f(yX) (mod E(X)) which implies that f(X)?
mod F(X) = f(yX) since the degree of f(yX) is less than g — 1. O

Armed with this lemma, we are ready to tackle the trivariate root-finding problem.

Lemma 3.5. There is a deterministic algorithm that on input a finite field ¥, a primitive
element 7y of the field F,, a nonzero polynomial Q(X,Y1,Ys) € F,[X, Y1, Ys] of degree less
than q in Yy, and an integer parameter k < q — 1, outputs a list of all polynomials f(X) of
degree at most k satisfying the condition Q(X, f(X), f(7X)) = 0. The algorithm has run
time polynomial in q.

Proof. Let E(X) = X9 ! — . We know by Lemma 3.4 that E(X) is irreducible. We
first divide out the largest power of E(X) that divides Q(X, Y7, Y3) to obtain Qo (X, Y1, Y2)
where Q(X,Y1,Ys) = E(X)°Qo(X,Y1,Y3) for some b > 0 and E(X) does not divide
Qo(X,Y1,Y;). Note that as E(X) is irreducible, f(X) does not divide E(X). Thus, if
f(X) satisfies Q(X, f(X), f(7X)) = 0, then Qo(X, f(X), f(7X)) = 0 as well, so we
will work with @ instead of Q. Let us view Qo (X, Y1, Y2) as a polynomial Tp(Y7, Y2) with
coefficients from IF,[X]. Further, reduce each of the coefficients modulo E(X) to get a
polynomial 7'(Y7, Y2) with coefficients from the extension field Fy—1 (which is isomorphic
to F,[X]/(E(X)) as E(X) is irreducible over [F,). We note that 7'(Y3,Y5) is a nonzero
polynomial since Qo(X, Y, Y2) is not divisible by E(X).

In view of Lemma 3.4, it suffices to find degree < k polynomials f(X) satisfying
Qo(X, f(X), f(X)?) (mod E(X)) = 0. In turn, this means it suffices to find elements

42

I' € Fy1 satisfying T(I',I'?) = 0. If we define the univariate polynomial R(Y;) =

T(Y1,Yy"), this is equivalent to finding all T' € Fje-1 such that R(I") = 0, or in other words
the roots in Fg-1 of R(Y7).

Now R(Y;) is a nonzero polynomial since R(Y7) = 0 iff Y, — Y{? divides T'(Y1, Ya),
and this cannot happen as T'(Y7, Y5) has degree less than ¢ in Y;. The degree of R(Y;) is at
most dg where d is the total degree of Q(X,Y1,Y3). The characteristic of [Fe-1 is at most
q, and its degree over the base field is at most ¢ lg q. Therefore, by Theorem 2.4 we can find
all roots of R(Y7) by a deterministic algorithm running in time polynomial in d, . Each of
the roots will be a polynomial in F,[X] of degree less than ¢ — 1. Once we find all the roots,
we prune the list and only output those roots f(X) that have degree at most k and satisfy

Qo(X, f(X), f(vX)) = 0. O

With this, we have a polynomial time implementation of the algorithm Trivariate-FRS-
decoder. There is the technicality that the degree of Q(X, Y7, Y>) in Y7 should be less than
q. This degree is at most D /k, which by the choice of D in (3.1) is at most (7 +3) {/n/k <
(r 4+ 3)¢'/3. For a fixed r and growing g, the degree is much smaller than q. (In fact, for
constant rate codes, the degree is a constant independent of n.) By letting m,r grow in
Theorem 3.1, and recalling that the running time is polynomial in n, r, we can conclude the
following main result of this section.

Theorem 3.2. For every 6 > 0 and R, 0 < R < 1, there is a family of m-folded Reed-
Solomon codes for m in O(1/d) that have rate at least R and that can be list decoded up
to a fraction 1 — (1 + &) R?/3 of errors in time polynomial in the block length and 1/4.

Remark 3.2 (Optimality of degree ¢ of relation between f(X) and f(7X)). Let Fyo—
be the extension field F,[X|/(E(X)) — its elements are in one-one correspondence with
polynomials of degree less than g — 1 over Fq. Let I' : Fyo-1 — Fya1 be such that for
every f(X) € Fpo-1, T'(f(X)) = f(G(X)) for some polynomial G over F,. (In the above,
we had T'(f(X)) = f(X)? mod (E(X)) and G(X) = vX; as a polynomial over Fy-1,
['(Z) = Z9 and hence had degree q.) Any such map T is an Fy-linear function on Fy-1,
and is therefore a linearized polynomial, cf. [77, Chap. 3, Sec. 4], which has only terms
with exponents that are powers of q (including q¢° = 1). It turns out that for our purposes T’
cannot have degree 1, and so it must have degree at least q.

3.5 Codes Approaching List Decoding Capacity

Given that trivariate interpolation improved the decoding radius achievable with rate R
from 1 — RY? to 1 — R?/3, it is natural to attempt to use higher order interpolation to
improve the decoding radius further. In this section, we discuss the quite straightforward
technical changes needed for such a generalization.

Consider again the m-folded RS code C" = FRSF, ,,m,k- Let s be an integer in the range
1 < s < m. We will develop a decoding algorithm based on interpolating an (s+ 1)-variate

43

polynomial Q(X,Y7,Y3,...,Y;). The definitions of the (1, k, k, ..., k)-weighted degree
(with k repeated s times) of) and the multiplicity at a point (e, 81, B2, ..., Bs) € lFfI*l are
straightforward extensions of Definitions 3.2 and 3.3.

As before let y = (Yo, ¥1, - - -, Yn_1) be the unfolded version of the received word z €
(IF[I")N of the folded RS code that needs to be decoded. For convenience, define y; =
Yj mod n for j = n. Following algorithm Trivariate-FRS-decoder, for suitable integer
parameters D, r, the interpolation phase of the (s+1)-variate FRS decoder will fit a nonzero
polynomial Q(X,Y3,...,Y;) with the following properties:

1. Tthas (1, k,k, ..., k)-weighted degree at most D

2. It has a zero of multiplicity 7 at (7%, ¥;, Yir1, .- ., Yizs—1) fori =0,1,...,n — 1.

The following is a straightforward generalization of Lemmas 3.2 and 3.3.

Lemma 3.6. (a) Provided 225 > n(”s

G sJrl), a nonzero polynomial Q(X,Y1,...,Ys)
with the following properties exists. Q(X,Y1,...,Ys) has (1,k, ... k) weighted de-
gree at most D and has roots with multiplicity v at (Y, Yi, Yir1, - - - » Yirs_1) fOr every
i €{0,...,n—1}. Moreover such a Q(X,Y1,...,Y;) can be found in time polyno-

mial inn, r® and D1 | k°.

(b) Lett be an integer such that t > ﬁ. Then every polynomial f(X) € F,[X] of

degree at most k whose encoding according to ¥RSg, m x agrees with the received
word z on at least t locations satisfies Q(X, f(X), f(yX),..., f(¥* ' X)) =0,

Proof. The first part follows from (i) a simple lower bound on the number of monomials
X “Ylb1 . YSI’s with a+ k(b1 +bs+---+bs) < D, which gives the number of coefficients of
Q(X,Y1,...,Y;), and (ii) an estimation of the number of (s+ 1)-variate monomials of total
degree less than 7, which gives the number of interpolation conditions per (s+ 1)-tuple. We
now briefly justify these claims. By a generalization of the argument in Lemma 3.2, one
can lower bound the number of monomials X %Y, - - - Y?s such that a + k(by + - - - b,) < D
by the volume of Py p = {x + ky1 + kya + - - + kys < D|z,y1,¥2,...ys = 0}. We will
use induction on s to prove that the volume of P, p is %. The proof of Lemma 3.2
shows this for s = 2. Now assume that the volume of P,_; p is exactly s”?%. Note that the
subset of P; p where the value of y; = « is fixed is exactly P;_1, p_ko Thus, the volume of
Ps.p is exactly

/D/k (D _ kys)s dy _ 1 /D g Ds+l
0 slks—1 * o slks [, (s+ 1)lks’

where the second equality follows by substituting z = D — ky,. Further, a straightforward
generalization of the argument in the proof of Lemma 3.2, shows that the condition on the

44

multiplicity of the polynomial Q(X,Y7,...,Y;) is satisfied if for every i € {0,...,n — 1}
and every tuple (I, j1,...,Js) such that [+ j; + jo - - - + js < r the following is 0

! g .
ST X (D))) (st 0 i

ll>l],>J1 J’>]2 I>‘7

where qp ji ;1 i is the coefficient of the monomial Xl'Y]i Yj; in Q(X,Yy,...,Ys).
The number of positive integral solutions for i + ji + j - - - 4 js < 7 is exactly (11}). Thus,
the total number of constraints is n(7'}). Thus, the condition in part (a) of the lemma,
implies that the set of homogeneous linear equations have more variables than constraints.
Hence, a solution can be found in time polynomial in the number of variables (< D**! /k®)
and constraints (at most nr°()).

The second part is similar to the proof of Lemma 3.3. If f(X) has agreement on at least ¢

locations of z, then for at least ¢(m—s+1) of the (s+1)-tuples (Y, ¥s, Yit1, - - - Yitrs_1)s WE

have f(y**7) = y;4; for j = 0,1,...,s — 1. As in Lemma 3.1, we conclude that R(X) o

Q(X, f(X), f(vX),..., f(v*' X)) has a zero of multiplicity 7 at 7* for each such (s+1)-
tuple. Also, by design R(X) has degree at most D. Hence if ¢(m — s + 1)r > D, then
R(X) has more zeroes (counting multiplicities) than its degree, and thus R(X) =0. O

Note the lower bound condition on D above is met with the choice
D= |(knr(r+1) - (r+)/ | 1. (3.2)

The task of finding the list of all degree k polynomials f(X) € F,[X] satisfying
QX, f(X), f(vX), ..., f(»* X)) = 0 can be solved using ideas similar to the proof
of Lemma 3.5. First, by dividing out by F(X) enough times, we can assume that not all
coefficients of Q(X,Y7,...,Y), viewed as a polynomial in Y3, ..., Y, with coefficients in
[F,[X], are divisible by E(X). We can then go modulo E(X) to get a nonzero polynomial
T(Y1,Ya,...,Y;) over the extension field F-1 = F,[X]/(E(X)). Now, by Lemma 3.4,
we have f(77X) = f(X)? mod E(X) for every j > 1. Therefore, the task at hand
reduces to the problem of finding all roots I' € Fy-1 of the polynomial R(Y;) where
R(Y7) =T(W,Y{, ... ,qus_l). There is the risk that R(Y7) is the zero polynomial, but it
is easily seen that this cannot happen if the total degree of 7' is less than g. This will be the
case since the total degree is at most D /k, which is at most (r + s)(n/k)V/(+) <« q.

The degree of the polynomial R(Y7) is at most ¢°, and therefore all its roots in Fy—1
can be found in ¢°(*) time (by Theorem 2.4). We conclude that the “root-finding” step can
be accomplished in polynomial time.

The algorithm works for agreement ¢ > ﬁ
satisfied if

ks 1/(s+1)
t>(1+f)LlQ———+2.
r/ m—s+1

which for the choice of D in (3.2) is

45

Indeed,

D 1 s+1/7.s
e (m_8+1)r~(V(1) (r+5) +1)

< —1)T-((r—i-s) Vi +1)

(m—s+1
ks 1/(s+1) 1
= (1)
r/ m—s+1 r(m—s+1)

(3) (k) /(s+D)

14+ -
r/ m—s+1

+2
<t

where the first inequality follows from (3.2) along with the fact that for any real z > 0,
|z| < x while the second inequality follows by upper bounding r + by r+ s for every 0 <
1 < 8. We record these observations in the following, which is a multivariate generalization
of Theorem 3.1.

Theorem 3.3. For every integer m > 1 and every s, 1 < s < m, the (s + 1)-variate
FRS decoder successfully list decodes the m-folded Reed-Solomon code FRSr, 5 m. i up to
a radius n/m — t as long as the agreement parameter t satisfies

kS 1/(s+1)
f) (Bn) 70 (3.3)

t><1
Z 1T m—s+1

r
The algorithm runs in n°®) time and outputs a list of size at most |F|* = (n + 1)°.

Recalling that the block length of FRSE, y,m is N = n/m and the rate is (k + 1)/n,
the above algorithm can decode a fraction of errors approaching

1= (14 2) R/ (3.4)
r/m—s+1

using lists of size at most ¢°. By picking r, m large enough compared to s, the decoding

radius can be made larger than 1 — (1 4 §)R*¥/**1) for any desired § > 0. We state this

result formally below.

Theorem 3.4. For every 0 < § < 1, integer s > 1 and 0 < R < 1, there is a family of
m-folded Reed-Solomon codes for m < 4s/6 that have rate at least R and which can be
list decoded up to a 1 — (1 + 0)R**Y) fraction of errors in time (Nm)°®) and outputs a
list of size at most (Nm)©®®) where N is the block length of the code. The alphabet size of
the code as a function of the block length N is (Nm)°(™),

Proof. We first instantiate the parameters r and m in terms of s and §:

B R CE)

0 d

46

Note that as § < 1, m < 4s/4. With the above choice, we have

2
(1+%) —" - (Hé) <144
r/m—s+1 3

Together with the bound (3.4) on the decoding radius, we conclude that the (s + 1)-variate
decoding algorithm certainly list decodes up to a fraction 1 — (1 + &) R*/(**1) of errors.

The worst case list size is ¢° and the claim on the list size follows by recalling that
¢ =n+1and N = n/m. The alphabet size is ¢™ = (Nm)°(™). The running time
has two major components: (1) Interpolating the s 4+ 1-variate polynomial Q(-), which by
Lemma 3.6 is (nr*)°()); and (2) Finding all the roots of the interpolated polynomial, which

takes ¢©®) time. Of the two, the time complexity of the root finding step dominates, which
is (Nm)90), O

In the limit of large s, the decoding radius approaches the list-decoding capacity 1 — R,
leading to our main result.

Theorem 3.5 (Explicit capacity-approaching codes). Forevery)0 < R < 1land (0 < € <
R, there is a family of folded Reed-Solomon codes that have rate at least R and which can
be list decoded up to a 1 — R — ¢ fraction of errors in time (and outputs a list of size at

most) (N/2)9E ™ 18(1/R) yyhere N is the block length of the code. The alphabet size of the
code as a function of the block length N is (N/e2)0(/"),

Proof. Given g, R, we will apply Theorem 3.4 with the choice

log(1/R 1-R

_[loe/R)]y 5 S0 R) (35)
log(1+¢) R(1+¢)

Note that as ¢ < R, 0 < 1. Thus, the list-decoding radius guaranteed by Theorem 3.4 is at

least

1—(1+6)RYEHY) = 1 R(1+6)(1/R)Y D
> 1—R(1+4)(1+¢€) (by the choice of s in (3.5))
= 1— (R+¢) (using the value of §) .

We now turn our attention to the time complexity of the decoding algorithm and the
alphabet size of the code. To this end we first claim that m is O(1/&?). First we note that
by the choice of s,

2In(1/R) < 41In(1/R)
S n(l4e) e
where the second inequality follows from the fact that for 0 < z < 1, In(1 + z) > z/2.
Thus, we have

4s R(1+¢) R 32 RIn(1/R) _ 32
o =ds <8 ————— < o <
S =¥ AR>S A-R 2 1-R e

47

where for the last step we used In(1/R) < £ — 1 for 0 < R < 1. The claims on the running
time, worst case list size and the alphabet size of the code follow from Theorem 3.4 and the
facts that m is O(1/e?) and s is O(¢ "' log(1/R)). O

Remark 3.3 (Upper bound on ¢ in Theorem 3.5). A version of Theorem 3.5 can also be
proven for € > R. The reason it is stated for € < R, is that we generally think of € as much
smaller than R (this is certainly true when we apply the generalization of Theorem 3.5
(Theorem 3.6) in Chapters 4 and 5). However, if one wants € > R, first note that the
theorem is trivial fore > 1 — R. Then if R < € < 1 — R, can do a proof similar to the one
above. However, in this range § = ;f(ll_fg can be strictly greater than 1. In such a case we
apply Theorem 3.4 with 6 = 1 (note that applying Theorem 3.4 with a smaller § than what
we want only increases the decoding radius). This implies that we have m < 4s, in which

case both the worst case list and the alphabet size become (N log(1/R) /e)¢ ™ 108(1/R),

Remark 3.4 (Minor improvement to decoding radius). It is possible to slightly improve
s/(s+1)
the bound of (3.4) 101 — (1 + 2) (72£7)

m—s+1
not use only a fraction (m — s+ 1)/m of the n (s + 1)-tuples for interpolation. Specifically,
we omit tuples with +* for i mod m > m — s. This does not affect the number of (s + 1)-
tuples for which we have agreement (this remains at least t(m — s + 1)), but the number of
interpolation conditions is reduced to N(m — s + 1) = n(m — s + 1) /m. This translates
into the stated improvement in list-decoding radius. For clarity of presentation, we simply
chose to use all n tuples for interpolation.

with essentially no effort. The idea is to

Remark 3.5 (Average list size). Theorem 3.5 states that the worst case list size (over all
possible received words) is polynomial in the block length of the codeword (for fixed R
and €). One might also be interested in what is the average list size (over all the possible
received words within a distance pn from some codeword). It is known that for Reed-
Solomon codes of rate R the average list size is < 1 even for p close to 1 — R [81].
Since folded Reed-Solomon codes are just Reed-Solomon codewords with symbols bundled
together, the arguments in [81] extend easily to show that even for folded Reed-Solomon
codes, the average list size is < 1.

3.6 Extension to List Recovery

We now present a very useful generalization of the list decoding result of Theorem 3.5 to
the setting of list recovery. Recall that under the list recovery problem, one is given as input
for each codeword position, not just one but a set of several, say ¢, alphabet symbols. The
goal is to find and output all codewords which agree with some element of the input sets
for several positions. Codes for which this more general problem can be solved turn out to
be extremely valuable as outer codes in concatenated code constructions. In short, this is
because one can pass a set of possibilities from decodings of the inner codes and then list
recover the outer code with those sets as the input. If we only had a list-decodable code at

48

the outer level, we will be forced to make a unique choice in decoding the inner codes thus
losing valuable information.
This is a good time to recall the definition of list recoverable codes (Definition 2.4).
Theorem 3.5 can be generalized to list recover the folded RS codes. Specifically, for
a FRS code with parameters as in Section 3.5, for an arbitrary constant ¢ > 1, we can
(€, £)-list recover in polynomial time provided

N/ nlks

(1_C)N>(1+§)ma

r

(3.6)

where N = n/m. We briefly justify this claim. The generalization of the list-decoding
algorithm of Section 3.5 is straightforward: instead of one interpolation condition for each
symbol of the received word, we just impose |.S;| < ¢ many interpolation conditions for
each position ¢ € {1,2,...,n} (where S; is the i’th input set in the list recovery instance).
The number of interpolation conditions is at most n¢, and so replacing n by nf in the bound
of Lemma 3.6 guarantees successful decoding?. This in turn implies that the condition on
the number of agreement of (3.3) generalizes to the one in (3.6).* This simple generalization
to list recovery is a positive feature of all interpolation based decoding algorithms [97, 63,
85] beginning with the one due to Sudan [97].

Picking r > s and m > s in (3.6), we get ((, £)-list recoverable codes with rate R for
(<1- (ERS) V(41 Now comes the remarkable fact: we can pick a suitable s > ¢ and
perform (¢, £)-list recovery with (< 1 — R — ¢ which is independent of £ ! We state the
formal result below (Theorem 3.5 is a special case when £ = 1).

Theorem 3.6. For every integer £ > 1, forall R, 0 < R < 1and 0 < € < R, and
for every prime p, there is an explicit family of folded Reed-Solomon codes over fields of
characteristic p that have rate at least R and which are (1— R—¢, ¢, L(n))-list recoverable
in polynomial time, where L(n) = (N/e2)0 "18lt/R) The alphabet size of a code of
block length N in the family is (N/e2)0(™ logt/(1-R))

Proof. (Sketch) Using the exact same arguments as in the proof of Theorem 3.4 to the
agreement condition of (3.6), we get that one can list recover in polynomial time as long as
¢ <1—(1+6)(¢R*)Y) forany 0 < § < 1. The arguments to obtain an upper bound of
1 — R — ¢ are similar to the ones employed in the proof of theorem 3.5. However, s needs
to be defined in a slightly different manner:

-]

?In fact, this extension also works when the average size of the size is at most £, thatis Y ., |S;| < ¢n.

3We will also need the condition that (r + s)(nf/k)/(*+1) < ¢. This condition is required to argue that
in the “root finding” step, the “final” polynomial R(Y7) is not the zero polynomial. The condition is met
for constant rate codes if £ < ¢*® (recall that we think of ¢ as growing while and s are fixed). In all our
applications of list recovery for folded Reed-Solomon codes, the parameter £ will be a constant, so this is
not a concern.

49

Also this implies that m is O ((11—0%352) , which implies the claimed bound on the alphabet

size of the code as well as L(n). O

We also note that increasing the folding parameter m only helps improve the result (at
the cost of a larger alphabet). In particular, we have the following corollary of the theorem
above.

Corollary 3.7. For every integer £ > 1, for all constants 0 < ¢ < R, for all R, R’;
0 < R < R' < 1, and for every prime p, there is an explicit family of folded Reed-Solomon
codes, over fields of characteristic p that have rate at least R and which can be (1 — R —
e, 4, L(N))-list recovered in polynomial time, where for codes of block length N, L(N) =
(N /%) 108/ R) and the code is defined over alphabet of size (N /2)0(*logt/(1=R")

Note that one can trivially increase the alphabet of a code by thinking of every symbol
as coming from a larger alphabet. However, this trivial transformation decreases the rate
of the code. Corollary 3.7 states that for folded Reed-Solomon codes, we can increase the
alphabet while retaining the rate and the list recoverability properties. At this point this
extra feature is an odd one to state explicitly, but we will need this result in Chapter 4.

Remark 3.6 (Soft Decoding). The decoding algorithm for folded RS codes from Theorem
3.5 can be further generalized to handle soft information, where for each codeword posi-
tion 1 the decoder is given as input a non-negative weight w; , for each possible alphabet
symbol z. The weights w; , can be used to encode the confidence information concerning
the likelihood of the the i’th symbol of the codeword being z. For any € > 0, for suitable
choice of parameters, our codes of rate R over alphabet ¥ have a soft decoding algorithm

that outputs all codewords ¢ = {(c1, s, - . ., cn) that satisfy
N N 1/(s+1)
S > (o (3 u))
i=1 i=1 ze%

For s = 1, this soft decoding condition is identical to the one for Reed-Solomon codes in

[63].

3.7 Bibliographic Notes and Open Questions

We have solved the qualitative problem of achieving list-decoding capacity over large al-
phabets. Our work could be improved with some respect to some parameters. The size
of the list needed to perform list decoding to a radius that is within ¢ of capacity grows
as n?(1/¢) where n is the block length of the code. It remains an open question to bring
this list size down to a constant independent of n, or even to f(¢)n® with an exponent ¢
independent of € (we recall that the existential random coding arguments work with a list
size of O(1/¢)).

50

These results in this chapter were first reported in [58]. We would like to point out
that the presentation in this chapter is somewhat different from the original papers [85, 58]
in terms of technical details, organization, as well as chronology. Our description closely
follows that of a survey by Guruswami [50]. With the benefit of hindsight, we believe
this alternate presentation to be simpler and more self-contained than the description in
[58], which used the results of Parvaresh-Vardy as a black-box. Below, we discuss some
technical aspects of the original development of this material, in order to shed light on the
origins of our work.

Two independent works by Coppersmith and Sudan [27] and Bleichenbacher, Kiayias
and Yung [18] considered the variant of RS codes where the message consists of two (or
more) independent polynomials over some field I¥,, and the encoding consists of the joint
evaluation of these polynomials at elements of F, (so this defines a code over IF‘Z).4 A
naive way to decode these codes, which are also called “interleaved Reed-Solomon codes,”
would be to recover the two polynomials individually, by running separate instances of
the RS decoder. Of course, this gives no gain over the performance of RS codes. The
hope in these works was that something can possibly be gained by exploiting that errors
in the two polynomials happen at “synchronized” locations. However, these works could
not give any improvement over the 1 — y/R bound known for RS codes for worst-case
errors. Nevertheless, for random errors, where each error replaces the correct symbol by a
uniform random field element, they were able to correct well beyond a fraction 1 — v/R of
errors. In fact, as the order of interleaving (i.e., number of independent polynomials) grows,
the radius approaches the optimal value 1 — R. This model of random errors is not very
practical or interesting in a coding-theoretic setting, though the algorithms are interesting
from an algebraic viewpoint.

The algorithm of Coppersmith and Sudan bears an intriguing relation to multivariate
interpolation. Multivariate interpolation essentially amounts to finding a non-trivial linear
dependence among the rows of a certain matrix (that consists of the evaluations of appropri-
ate monomials at the interpolation points). The algorithm in [27], instead finds a non-trivial
linear dependence among the columns of this same matrix! The positions corresponding
to columns not involved in this dependence are erased (they correspond to error locations)
and the codeword is recovered from the remaining symbols using erasure decoding.

In [84], Parvaresh and Vardy gave a heuristic decoding algorithm for these interleaved
RS codes based on multivariate interpolation. However, the provable performance of these
codes coincided with the 1 — /R bound for Reed-Solomon codes. The key obstacle
in improving this bound was the following: for the case when the messages are pairs
(f(X), g(X)) of degree k polynomials, two algebraically independent relations were needed
to identify both f(X) and g(X). The interpolation method could only provide one such re-
lation in general (of the form Q (X, f(X), g(X)) = 0 for a trivariate polynomial Q(X,Y, Z)).
This still left too much ambiguity in the possible values of (f(X),g(X)). (The approach

“4The resulting code is in fact just a Reed-Solomon code where the evaluation points belong to the subfield
[, of the extension field over F, of degree two.

51

in [84] was to find several interpolation polynomials, but there was no guarantee that they
were not all algebraically dependent.)

Then, in [85], Parvaresh and Vardy put forth the ingenious idea of obtaining the extra al-
gebraic relation essentially “for free”” by enforcing it as an a priori condition satisfied at the
encoder. Specifically, instead of letting the second polynomial g(X) to be an independent
degree k polynomial, their insight was to make it correlated with f(X) by a specific alge-
braic condition, such as g(X) = f(X)¢ mod E(X) for some integer d and an irreducible
polynomial F(X) of degree k + 1.

Then, once we have the interpolation polynomial Q(X,Y, Z), f(X) can be obtained as
follows: Reduce the coefficients of Q(X,Y, Z) modulo E(X) to get a polynomial T'(Y, Z)
with coefficients from F,[X]/(E(X)) and then find roots of the univariate polynomial
T(Y,Y?). This was the key idea in [85] to improve the 1 — /R decoding radius for rates
less than 1/16. For rates R — 0, their decoding radius approached 1 — O(Rlog(1/R)).

The modification to using independent polynomials, however, does not come for free.
In particular, since one sends at least twice as much information as in the original RS code,
there is no way to construct codes with rate more than 1/2 in the PV scheme. If we use
s > 2 correlated polynomials for the encoding, we incur a factor 1/s loss in the rate. This
proves quite expensive, and as a result the improvements over RS codes offered by these
codes are only manifest at very low rates.

The central idea behind our work is to avoid this rate loss by making the correlated poly-
nomial g(X) essentially identical to the first (say g(X) = f(yX)). Then the evaluations
of g(X) can be inferred as a simple cyclic shift of the evaluations of f(X), so intuitively
there is no need to explicitly include those too in the encoding.

52

Chapter 4

RESULTS VIA CODE CONCATENATION

4.1 Introduction

In Chapter 3, we presented efficient list-decoding algorithms for folded Reed-Solomon
codes that can correct 1 — R — ¢ fraction of errors with rate R (for any ¢ > 0). One
drawback of folded Reed-Solomon codes is that they are defined over alphabets whose size
is polynomial in the blocklength of the code. This is an undesirable feature of the code and
we address this issue in this chapter.

First, we show how to convert folded Reed-Solomon codes to a related code that can still
be list decoded up to 1— R—¢ fraction of errors with rate R (for any € > 0). However, unlike
folded Reed-Solomon codes these codes are defined over alphabets of size 20(c ™" log(1/€))
Recall that codes that can be list decoded up to 1 — R — ¢ fraction of errors need alphabets
of size 227" (see section 2.2.1).

Next, we will show how to use folded Reed-Solomon codes to obtain codes over fixed
alphabets (for example, binary codes). We will present explicit linear codes over fixed
alphabets that achieve tradeoffs between rate and fraction of errors that satisfy the so
called Zyablov and Blokh-Zyablov bounds (along with efficient list-decoding algorithms
that achieve these tradeoffs). The codes list decodable up to the Blokh-Zyablov bound
tradeoff are the best known to date for explicit codes over fixed alphabets. However, unlike
Chapter 3, these results do not get close to the list-decoding capacity (see Figure 4.1). In
particular, for binary codes, if 1/2 — ~ fraction of errors are targeted, our codes have rate
Q(»?). By contrast, codes on list-decoding capacity will have rate Q(+?). Unfortunately (as
has been mentioned before), the only codes that are known to achieve list-decoding capac-
ity are random codes for which no efficient list-decoding algorithms are known. Previous
to our work, the best known explicit codes had rate ©(y*) [51] (these codes also had effi-
cient list-decoding algorithms). We choose to present the codes that are list decodable up
to the Zyablov bound (even though the code that are list decodable up to the Blokh Zyablov
have better rate vs. list decodability tradeoff) because of the following reasons (i) The con-
struction is much simpler and these codes give the same asymptotic rate for the high error
regime and (ii) The worst case list sizes and the code construction time are asymptotically
smaller.

All our codes are based on code concatenation (and their generalizations called multi-
level code concatenation). We next turn to an informal description of code concatenation.

53

1 T

List decodiné capacity
Zyablov bound (Section 4.3) - - - -
Blokh Zyablov bound (Section 4.4) -------

0.8 | i

>

06 b 4 g

R (RATE)

N \

04F NN -
\ .

02 | |

| -
0 0.1 0.2 0.3 0.4 0.5
p (ERROR-CORRECTION RADIUS) --->

Figure 4.1: Rate R of our binary codes plotted against the list-decoding radius p of our
algorithms. The best possible trade-off, i.e., list-decoding capacity, p = H (1 — R) is also
plotted.

4.1.1 Code Concatenation and List Recovery

Concatenated codes were defined in the seminal thesis of Forney [40]. Concatenated codes
are constructed from two different codes that are defined over alphabets of different sizes.
Say we are interested in a code over [g| (in this chapter, we will always think of ¢ > 2 as
being a fixed constant). Then the outer code Co,; is defined over [Q], where Q = ¢* for
some positive integer k. The second code, called the inner code is defined over [g] and is
of dimension k£ (Note that the message space of (', and the alphabet of C,,,; have the same
size). The concatenated code, denoted by C' = C,,; o Cy,, is defined as follows. Let the
rate of C,,; be R and let the blocklengths of C,,; and C;, be N and n respectively. Define
K = RN and r = k/n. The input to C is a vector m = (my,...,mg) € ([q]*)¥. Let
Cout(m) = (zq,...,zy). The codeword in C corresponding to m is defined as follows

C(m) = <Cm($1), Cin(ilfg), e ,Cm(ilfN»

It is easy to check that C' has rate r R, dimension kK and blocklength nNV.

Notice that to construct a g-ary code C' we use another g-ary code C;,. However, the
nice thing about C;, is that it has small blocklength. In particular, since R and r are con-
stants (and typically @) and N are polynomially related), n = O(log N). This implies that
we can use up exponential time (in n) to search for a “good” inner code. Further, one can
use the brute force algorithm to (list) decode Cj,.

54

Table 4.1: Values of rate at different decoding radius for List decoding capacity (Rcgp),
Zyablov bound (Rz) and Blokh Zyablov bound (Rpz) in the binary case. For rates above
0.4, the Blokh Zyablov bound is 0 up to 3 decimal places, hence we have not shown this.

p 0.01 | 0.02 | 0.03 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 030 | 0.35
Rcap | 0919 | 0.858 | 0.805 | 0.713 | 0.531 | 0.390 | 0.278 | 0.188 | 0.118 | 0.065
Rz | 057210452 | 0375 | 0.273 | 0.141 | 0.076 | 0.041 | 0.020 | 0.009 | 0.002
Rpz | 0.739 | 0.624 | 0.539 | 0.415 | 0.233 | 0.132 | 0.073 | 0.037 | 0.017 | 0.006

Finally, we motivate why we are interested in list recovery. Consider the following
natural decoding algorithm for the concatenated code C,; © C;,. Given a received word in
([g]™), we divide it into N blocks from [g]™. Then we use a decoding algorithm for C;, to
get an intermediate received word to feed into a decoding algorithm for C,,;. Now one can
use unique decoding for C, and list decoding for C,,,;. However, this loses information in
the first step. Instead, one can use the brute force list-decoding algorithm for C;, to get a
sequence of lists (each of which is a subset of [)]). Now we use a list-recovery algorithm
for Cl,; to get the final list of codewords.

The natural algorithm above is used to design codes over fixed alphabets that are list
decodable up to the Zyablov bound in Section 4.3 and (along with expanders) to design
codes that achieve list-decoding capacity (but have much smaller alphabet size as compared
to those for folded Reed-Solomon codes) in Section 4.2.

4.2 Capacity-Achieving Codes over Smaller Alphabets

Theorem 3.5 has two undesirable aspects: both the alphabet size and worst-case list size
output by the list-decoding algorithm are a polynomial of large degree in the block length.
We now show that the alphabet size can be reduced to a constant that depends only on the
distance ¢ to capacity.

Theorem 4.1. For every R, 0 < R < 1, every € > 0, there is a polynomial time con-
structible family of codes over an alphabet of size 20(~*10e(1/2)) that have rate at least R
and which can be list decoded up to a fraction (1 — R —) of errors in polynomial time.

Proof. The theorem is proved using the code construction scheme used by Guruswami
and Indyk in [54] for linear time unique decodable codes with optimal rate, with different
components appropriate for list decoding plugged in. We briefly describe the main ideas
behind the construction and proof below. The high level approach is to concatenate two
codes Coy and Cjy,, and then redistribute the symbols of the resulting codeword using an
expander graph. Assume that ¢ < (1 — R)/7 and let § = £2.

The outer code C,y;, Will be a code of rate (1 — 2¢) over an alphabet X of size n!
that can be (g, O(1/¢))-list recovered in polynomial time (to recall definitions pertaining to

1/8)°)

55

list recovery, see Definition 2.4), as guaranteed by Theorem 3.6. That is, the rate of Cyy;
will be close to 1, and it can be ((, [)-list recovered for large [and { — 0.

The inner code Cj, will be a ((1 — R — 4¢),0(1/¢))-list decodable code with near-
optimal rate, say rate at least (R + 3¢). Such a code is guaranteed to exist over an alphabet
of size O(1/&?) using random coding arguments. A naive brute-force for such a code, how-
ever, is too expensive, since we need a code with |X| = neM codewords. Guruswami and
Indyk [52], see also [49, Sec. 9.3], prove that there is a small (quasi-polynomial sized)
sample space of pseudolinear codes in which most codes have the needed property. Fur-
thermore, they also present a deterministic polynomial time construction of such a code
(using derandomization techniques), see [49, Sec. 9.3.3].

The concatenation of Coy and Cj, gives a code Ceoneat Of rate at least (1 — 2¢)(R +
3e) > R over an alphabet ¥ of size |X| = O(1/e?). Moreover, given a received word of
the concatenated code, one can find all codewords that agree with the received word on a
fraction R + 4¢ of locations in at least (1 — ¢) fraction of the inner blocks. Indeed, we can
do this by running the natural list-decoding algorithm, call it A, for Concay that decodes
each of the inner blocks to a radius of (1 — R — 4¢) returning up to [= O(1/¢) possibilities
for each block, and then (g, [)-list recovering Cyy in polynomial time.

The last component in this construction is a D = O(1/e*)-regular bipartite expander
graph which is used to redistribute symbols of the concatenated code in a manner so that
an overall agreement on a fraction R + 7¢ of the redistributed symbols implies a fractional
agreement of at least R + 4¢ on most (specifically a fraction (1 — ¢)) of the inner blocks
of the concatenated code. In other words, the expander redistributes symbols in a manner
that “smoothens” the distributions of errors evenly among the various inner blocks (except
for possibly a € fraction of the blocks). This expander based redistribution incurs no loss in
rate, but increases the alphabet size to O(1/g2)0(1/e") = 90(e™" log(1/¢))

We now discuss some details of how the expander is used. Suppose that the block length
of the folded Reed-Solomon code C,; is N; and that of C;, is Ny. Let us assume that N,
is a multiple of D, say Ny = nyD (if this is not the case, we can make it so by padding
at most D — 1 dummy symbols at a negligible loss in rate). Therefore codewords of Cj,,
and therefore also of Concat, can be thought of as being composed of blocks of D symbols
each. Let N = Njns, so that codewords of C.oneat can be viewed as elements in (ED)N .

Let G = (L, R, E) be a D-regular bipartite graph with N vertices on each side (i.e.,
|L| = |R| = N), with the property that for every subset Y C R of size at least (R + 7¢) N,
the number of vertices belonging to L that have at most (R + 6¢) D of their neighbors in Y
is at most N (for § = £2). It is a well-known fact (used also in [54]) that if G is picked
to be the double cover of a Ramanujan expander of degree D > 4/(d&?), then G will have
such a property.

We now define our final code C* = G(Croncat) C (XP)V formally. The codewords in
C* are in one-one correspondence with those of Ceypeas- Given a codeword ¢ € Coegpeags its
N D symbols (each belonging to X)) are placed on the N D edges of G, with the D symbols
in its 7’th block (belonging to X7, as defined above) being placed on the D edges incident

56

D»}%o% “/\,\::,m,b,c)
| ‘ b

L) U PIOMAPOD

]
YA

Codeword in Ciy

7]
ViR

Codeword in
Ceoncat

Figure 4.2: The code C* used in the proof of Theorem 4.1. We start with a codeword
(u1, ..., un,) in Cyy. Then every symbol is encoded by C;, to form a codeword in Ceopneas
(this intermediate codeword is marked by the dotted box). The symbols in the codeword
for Ceoncar are divided into chunks of D symbols and then redistributed along the edges of
an expander G of degree D. In the figure, we use D = 3 for clarity. Also the distribution
of three symbols a, b and ¢ (that form a symbol in the final codeword in C*) is shown.

on the 7’th vertex of L (in some fixed order). The codeword in C* corresponding to c has as
its 7’th symbol the collection of D symbols (in some fixed order) on the D edges incident
on the ¢’th vertex of R. See Figure 4.2 for a pictorial view of the construction.

Note that the rate of C* is identical to that Copncas, and is thus at least R. Its alphabet
size is | S|P = O(1/¢2)001/¢") = 20(e™"1o&(1/e)) a5 claimed. We will now argue how C* can
be list decoded up to a fraction (1 — R — 7¢) of errors.

Given a received word r € (ZP)¥, the following is the natural algorithm to find all
codewords of C* with agreement at least (R+7¢) N with r. Redistribute symbols according
to the expander backwards to compute the received word r’ for Ceoncas Which would result
in r. Then run the earlier-mentioned decoding algorithm A on r’.

We now briefly argue the correctness of this algorithm. Let ¢ € C* be a codeword with

57

agreement at least (R + 7¢)N with r. Let ¢’ denote the codeword of Cioneas that leads to ¢
after symbol redistribution by G, and finally suppose ¢” is the codeword of C,,; that yields
¢’ upon concatenation by Cj,. By the expansion properties of G, it follows that all but a ¢
fraction of N D-long blocks of r’" have agreement at least (R+6¢) D with the corresponding
blocks of ¢’. By an averaging argument, this implies that at least a fraction (1 — \/3) of the
Ny blocks of ¢’ that correspond to codewords of Cy, encoding the Ny symbols of ¢”, agree
with at least a fraction (1 — v/0)(R + 6¢) = (1 — &)(R + 6¢) > R + 4¢ of the symbols
of the corresponding block of r’. As argued earlier, this in turn implies that the decoding
algorithm A for Cionear When run on input r’ will output a polynomial size list that will
include c'. O

4.3 Binary Codes List Decodable up to the Zyablov Bound

Concatenating the folded Reed-Solomon codes with suitable inner codes also gives us
polytime constructible binary codes that can be efficiently list decoded up to the Zyablov
bound, i.e., up to twice the radius achieved by the standard GMD decoding of concate-
nated codes [41]. The optimal list recoverability of the folded Reed-Solomon codes plays
a crucial role in establishing such a result.

Theorem 4.2. Forall 0 < R,r < 1 and all € > 0, there is a polynomial time constructible
Sfamily of binary linear codes of rate at least R - r which can be list decoded in polynomial
time up to a fraction (1 — R)H (1 —r) — € of errors.

Proof. Let~y > 0 be a small constant that will be fixed later. We will construct binary codes
with the claimed property by concatenating two codes C; and Cs. For C;, we will use a
folded Reed-Solomon code over a field of characteristic 2 with block length nq, rate at least
R, and which can be (1— R—, [)-list recovered in polynomial time for [= [10/~]. Let the
alphabet size of C; be 2M where M is O(y~2log(1/v)(1 — R)~*logn,) (by Theorem 3.6,
such a C] exists). For C, we will use a binary linear code of dimension M and rate at least
r which is (p,1)-list decodable for p = H~'(1 — r — 7). Such a code is known to exist
via a random coding argument that employs the semi-random method [51]. Also, a greedy
construction of such a code by constructing its M basis elements in turn is presented in
[51] and this process takes 20(M) time. We conclude that the necessary inner code can be
constructed in 7110(7_2(1712)_1 108(1/7) time. The code C4, being a folded Reed-Solomon code
over a field of characteristic 2, is [F-linear, and therefore when concatenated with a binary
linear inner code such as Cs, results in a binary linear code. The rate of the concatenated
code is at least R - .

The decoding algorithm proceeds in a natural way. Given a received word, we break it
up into blocks corresponding to the various inner encodings by C;. Each of these blocks
is list decoded up to a radius p, returning a set of at most [possible candidates for each
outer codeword symbol. The outer code is then (1 — R — ~,[)-list recovered using these
sets, each of which has size at most [, as input. To argue about the fraction of errors this

58

algorithm corrects, we note that the algorithm fails to recover a codeword only if on more
than a fraction (1 — R — +y) of the inner blocks the codeword differs from the received word
on more than a fraction p of symbols. It follows that the algorithm correctly list decodes up
to aradius (1—R—7)p = (1— R—~)H'(1—r—~). If we pick an appropriate -y in ©(&?),
thenby Lemma2.4, H }(1—-r—v) > H (1—-r)—¢/3(and (1—R—7) > 1— R—¢/3),
which implies (1 — R—~)H (1 —r —~) > (1= R)H (1 —r) — ¢ as desired. O

Optimizing over the choice of inner and outer codes rates r, R in the above results, we
can decode up to the Zyablov bound, see Figure 4.1. For an analytic expression, see (4.2)
with s = 1.

Remark 4.1. In particular, decoding up to the Zyablov bound implies that we can correct a
fraction (1/2 — €) of errors with rate Q(&3) for small € — 0, which is better than the rate of
Q(e3/log(1/¢)) achieved in [55]. However, our construction and decoding complexity are
nOE *18(1/9)) \yhereas these are at most f (e)n® for an absolute constant c in [55]. Also,
we bound the list size needed in the worst-case by nO(e™" log(1/), while the list size needed
in the construction in [55] is (1/&)OUogles(1/¢)),

4.4 Unique Decoding of a Random Ensemble of Binary Codes

We will digress a bit to talk about a consequence of (the proof of) Theorem 4.2.

One of the biggest open questions in coding theory is to come up with explicit binary
codes that are on the Gilbert Varshamov (or GV) bound. In particular, these are codes that
achieve relative distance § with rate 1 — H(J). There exist ensembles of binary codes for
which if one picks a code at random then with high probability it lies on the GV bound.
Coming up with an explicit construction of such a code, however, has turned out to be an
elusive task.

Given the bleak state of affairs, some attention has been paid to the following prob-
lem. Give a probabilistic construction of binary codes that meet the GV bound (with high
probability) together with efficient (encoding and) decoding up to half the distance of the
code. Zyablov and Pinsker [110] give such a construction for binary codes of rate about
0.02 with subexponential time decoding algorithms. Guruswami and Indyk [53] give such
a construction for binary linear codes up to rates about 104 with polynomial time encoding
and decoding algorithms. Next we briefly argue that Theorem 4.2 can be used to extend
the result of [53] to work till rates of about 0.02. In other words, we get the rate achieved
by the construction of [110] but (like [53]) we get polynomial time encoding and decoding
(up to half the GV bound).

We start with a brief overview of the construction of [53], which is based on code
concatenation. The outer code is chosen to be the Reed-Solomon code (of say length N and
rate R) while there are N linear binary inner codes of rate r (recall that in the “usual” code
concatenation only one inner code is used) that are chosen uniformly (and independently)
at random. A result of Thommesen [102] states that with high probability such a code

59

lies on the GV bound provided the rates of the codes satisfy R < «(r)/r, where a(r) =
1 — H(1—2""'). Guruswami and Indyk then give list-decoding algorithms for such codes
such that for (overall) rate 7R < 107, the fraction of errors they can correct is at least
% - H7'(1 — rR) (that is, more than half the distance on the GV bound) as well as satisfy
the constraint in Thommesen’s result.

Given Theorem 4.2, here is the natural way to extend the result of [53]. We pick the
outer code of rate R to be a folded Reed-Solomon code (with the list recoverable properties
as required in Theorem 4.2) and the pick N independent binary linear codes of rate r as
the inner codes. It is not hard to check that the proof of Thommesen also works when the
outer code is folded Reed-Solomon. That is, the construction just mentioned lies on the
GV bound with high probability. It is also easy to check that the proof of Theorem 4.2 also
works when all the inner codes are different (basically the list decoding for the inner code
in Theorem 4.2 is done by brute-force, which of course one can do even if all the N inner
codes are different). Thus, if 7R < «(r), we can list decode up to (1 — R)H (1 —r)
fraction of errors and at the same time have the property that with high probability, the
constructed code lies on the GV bound. Thus, all we now need to do is to check what is
the maximum rate R one can achieve while at the same time satisfying R < «(r) and
(1—R)H '(1—r) > 1H'(1—rR). This rate turns out to be around 0.02 (see Figure 4.3).

Thus, we have argued the following.

Theorem 4.3. There is a probabilistic polynomial time procedure to construct codes whose
rate vs. distance tradeoff meets the Gilbert-Varshamov bound with high probability for all
rates up to 0.02. Furthermore, these codes can be decoded in polynomial time up to half
the relative distance.

One might hope that this method along with ideas of multilevel concatenated codes
(about which we will talk next) can be used to push the overall rate significantly up from
0.02 that we achieve here. However, the following simple argument shows that one cannot
go beyond a rate of 0.04. If we are targeting list decoding up to p fraction of errors (and
use code concatenation), then the inner rate » must be at most 1 — H(p) (see for example
(4.2)). Now by the Thommesen condition the overall rate is at most (7). It is easy to check
that «(+) is an increasing function. Thus, the maximum overall rate that we can achieve is
a(l — H(p))— this is the curve titled “Limit of the method” in Figure 4.3. One can see
from Figure 4.3, the maximum rate for which this curve still beats half the GV bound is at
most 0.04.

4.5 List Decoding up to the Blokh Zyablov Bound

We now present linear codes over any fixed alphabet that can be constructed in polynomial
time and can be efficiently list decoded up to the so called Blokh-Zyablov bound (Fig-
ure 4.1). This achieves a sizable improvement over the tradeoff achieved by codes from
Section 4.3 (see Figure 4.1 and Table 4.1).

60

0.5

Half the GV bound
Truncated Zyablov bound - - - -
Limit of the method -------- |

0.45 -

>

0.35 1

0.3 . E

p (FRACTION OF ERRORS)

0.05 L

Il Il
0 0.02 0.04 0.06 0.08 0.1
Ry (OVERALL RATE) --->

Figure 4.3: Tradeoffs for decoding certain random ensemble of concatenated codes. “Half
the GV bound” is the curve 1 - H'(1 — Rg) while “Truncated Zyablov bound” is the
limit till which we can list decode the concatenated codes (and still satisfy the Thommesen
condition, that is for inner and outer rates and R, rR = Ry < «(r)). “Limit of the
method” is the best tradeoff one can hope for using list decoding of code concatenation

along with the Thommesen result.

Our codes are constructed via multilevel concatenated codes. We will provide a formal
definition later on — we just sketch the basic idea here. For an integer s > 1, a multilevel

concatenated code C over F, is obtained by combining s “outer” codes C9 ,,CL C:.}
of the same block length , say V, over large alphabets of size say ¢®°, ¢*', ..., g% !, respec-
tively, with a suitable “inner” code. The inner code is of dimension ag+a; - - -+as 1. Given
messages m°, m!, ..., m*! for the s outer codes, the encoding as per the multilevel gener-

alized concatenation codes proceeds by first encoding each m? as per C2,,. Then for every
1 < i < N, the collection of the ith symbols of Cgut (m?) for 0 < j < s — 1, which can be
viewed as a string over I, of length ap + a1 + - - - + as_1, is encoded by the inner code. For
s = 1 this reduces to the usual definition of code concatenation.

We present a list-decoding algorithm for C, given list-recovery algorithms for the outer
codes and list-decoding algorithms for the inner code and some of its subcodes. What
makes this part more interesting than the usual code concatenation (like those in Section
4.3), is that the inner code in addition to having good list-decodable properties, also needs
to have good list-decodable properties for certain subcodes. Specifically, the subcodes of
dimension a; + aj4+1 + - - - + as—1 of the inner code obtained by arbitrarily fixing the first

61

ap + - -+ + aj—; symbols of the message, must have better list-decodability properties for
increasing j (which is intuitively possible since they have lower rate). In turn, this allows
the outer codes C? , to have rates increasing with 7, leading to an overall improvement in
the rate for a certain list-decoding radius.

To make effective use of the above approach, we also prove, via an application of the
probabilistic method, that a random linear code over [F, has the required stronger condi-
tion on list decodability. By applying the method of conditional expectation ([2]), we can
construct such a code deterministically in time singly exponential in the block length of the
code (which is polynomial if the inner code encodes messages of length O(log NV)). Note
that constructing such an inner code, given the existence of such codes, is easy in quasi-
polynomial time by trying all possible generator matrices. The lower time complexity is
essential for constructing the final code C' in polynomial time.

4.5.1 Multilevel Concatenated Codes

We will be working with multilevel concatenation coding schemes [33]. We start this sec-
tion with the definition of multilevel concatenated codes. As the name suggests, these are
generalizations of concatenated codes. Recall that for a concatenated code, we start with
a code C,,; over a large alphabet (called the outer code). Then we need a code C};, that
maps all symbols of the larger alphabet to strings over a smaller alphabet (called the inner
code). The encoding for the concatenated code (denoted by C,,,; o C},,) is done as follows.
We think of the message as being a string over the large alphabet and then encode it using
Cout- Now we use (', to encode each of the symbols in the codeword of C,,; to get our
codeword (in Cyy; o C;,,) over the smaller alphabet.

Multilevel code concatenation generalizes the usual code concatenation in the following
manner. Instead of there being one outer code, there are multiple outer codes. In partic-
ular, we “stack” codewords from these multiple outer codes and construct a matrix. The
inner codes then act on the columns of these intermediate matrix. We now formally define
multilevel concatenated codes.

There are s > 1 outer codes, denoted by C9 ,,CL C5.' Forevery 0 <i < s—1,
C: . 1s a code of block length N and rate R; and defined over a field F,. The inner code
Cin 1s code of block length n and rate r that maps tuples from Fg, x Fg, x --- X Fg, , to
symbols in [F,. In other words,

Ciut : (]FQz')RiN - (]FQi)Na

Cz'n :]FQO X]FQl X e X FQS—I — (]Fq)n

The multilevel concatenated code, denoted by (C%, x CL, x ...C%.") o Cy, is a map of
the following form:

(Cgut X Cl

ou

% e i) 0 Cin (Fgy)PoN ¢ (Fgy)PV x -+ x (Fqq_,)1V — (B,)™.

out

62

We now describe the encoding scheme. Given a message (m°, m!, ... m*™1) € (Fg,)N x
(Fo,)N x -+ x (Fgs_,) =1V, we first construct an s x N matrix M, whose i*" row is
the codeword C’;ut(“). Note that every column of M is an element from the set Fg, x
Fo, % --- x Fg,_,. Let the 5*" column (for 1 < j < N) be denoted by M;. The codeword

corresponding to the multilevel concatenated code c“ (C’out x CL, % ...C51) 0 Cip)
is defined as follows

C(mo, ml, e ,ms_l) == (Cm(Ml), C,m(Mg), e ;Czn(MN)) .

1

(The codeword can be naturally be thought of as an n X N matrix, whose 7’th column
corresponds to the inner codeword encoding the ¢’th symbols of the s outer codewords.)

For the rest of the chapter, we will only consider outer codes over the same alphabet,
that is, Qg = Q1 = = Qs_1 = Q. Further, () = ¢® for some integer a > 1. Note that if
co,,...,C:2 and C’m are all F, linear, then so is (C%,, X CL,, x -+ x C21) 0 Cy,.

The gain from using multﬂevel concatenated codes comes from looking at the inner
code Cj, along with its subcodes. For the rest of the section, we will consider the case
when C}, is linear (though the ideas can easily be generalized for general codes). Let
G € [Fg**™ be the generator matrix for Cin. Let 7o = as/n denote the rate of C;,. For
0 <j < s—1,definer; = ro(l —j/s), and let G; denote r;n x n submatrix of G
containing the last 7;n rows of G. Denote the code generated by G; by C’fn, the rate of C’j
is r;. For our purposes we will actually look at the subcode of Cj, where one fixes the first
0 < j < s — 1 message symbols. Note that for every j these are just cosets of C’ We will
be looking at Cy,,, which in addition to having good list decoding properties as a “whole,”
also has good list-decoding properties for each of its subcode C7, .

The multilevel concatenated code C (= (C%,, x --- x C5. 1) o Cyy,) has rate R(C) that

out
satisfies)
To —
= — R; . 4.1
, 2:; (4.1)

The Blokh-Zyablov bound is the trade-off between rate and relative distance obtained
when the outer codes meet the Singleton bound (i.e., C},; has relative distance 1 — R;), and
the various subcodes C7, of the inner code, including the whole inner code C;,, = C’Zon, lie on
the Gilbert-Varshamov bound (i.e., have relative distance §; > H;'(1—;)). The multilevel
concatenated code then has relative distance at least minggj<s 1(1 — R;)Hy 1 = ry).
Expressing the rate in terms of distance, the Blokh-Zyablov bound says that there exist

multilevel concatenated code C' with relative distance at least § with the following rate:

- 5
s (C)= max r—_ _ — 4.2)
’ S e

0<r<1—H,(5) s =2 r+ri/s)
7=

As s increases, the trade-off approaches the integral

Rpz(C)=1- -6 / (4.3)

1—37)'

63

The convergence of R%,(C) to Rpz(C) happens quite quickly even for small s such as
s = 10.

Nested List Decoding

We will need to work with the following generalization of list decoding. The definition
looks more complicated than it really is.

Definition 4.1 (Nested linear list decodable code). Given a linear code C' in terms of some
generator matrix G €]F’;X", an integer s that divides k, a vector L = (Lg, Ly, ..., Ls 1) of
integers L; (0 < j < s — 1), avector p = (po,p1--.,ps—1) with0 < p; < 1, and a vector
r = (rg,...,Ts_1) of reals where ro = k/nand 0 < ry_1 < --- < 1r; < ro, Cis called an
(r, p, L)-nested list decodable if the following holds:

For every 0 < j < s — 1, CY is a rate ; code that is (pj, L;)-list decodable, where C?
is the subcode of C generated by the the last rjn rows of the generator matrix G.

4.5.2 Linear Codes with Good Nested List Decodability

In this section, we will prove the following result concerning the existence (and con-
structibility) of linear codes over any fixed alphabet with good nested list-decodable prop-
erties.

Theorem 4.4. For any integer s > 1 and reals 0 < ry_1 < rs_ 9 < -+ <11 <719 < 1,
€ >0, let p; = H'(1 —r; — 2¢) forevery 0 < j < s — 1 Letr = (rg,...,rs_1),
p = (po,p1,.-.,ps_1) and L = (Lo, L1, ..., L,_1), where L; = q'/%. For large enough
n, there exists a linear code (over fixed alphabet F,) that is (r, p, L)-nested list decodable.
Further, such a code can be constructed in time q°™/).

Proof. We will show the existence of the required codes via a simple use of the proba-
bilistic method (in fact, we will show that a random linear code has the required properties
with high probability). We will then use the method of conditional expectation ([2]) to
derandomize the construction with the claimed time complexity.

Define k; = |r;n| forevery 0 < j < s—1. We will pick a random k x n matrix G with
entries picked independently from IF,. We will show that the linear code C' generated by G
has good nested list decodable properties with high probability. Let C;, for0 < j <s—1
be the code generated by the “bottom” k; rows of G. Recall that we have to show that
with high probability C; is (p;, ¢'/¢) list decodable for every 0 < j < s — 1 (C; obviously
has rate ;). Finally for integers J,k > 1, and a prime power ¢, let Ind(g, k, J) denote
the collection of subsets {z', 2%, ..., 27} C F¥ such that all vectors z', ...,z are linearly
independent over IF,.

We recollect the following two straightforward facts: (i) Given any L distinct vectors
from]F’;, for some k > 1, at least |'10gq L] of them are linearly independent; (ii) Any set
of linearly independent vectors in]F’; are mapped to independent random vectors in g by

64

arandom k x n matrix over IF,. The first claim is obvious. For the second claim, first note
that for any v €]F’; and a random k x n matrix G (where each of the kn values are chosen
uniformly and independently at random from ;) the values at the n different positions in
v - G are independent. Further, the value at position 1 < 7 < n, is given by v - G;, where
G, is the i** column of G. Now for fixed v, v - G; takes values from F, uniformly at
random (note that G; is a random vector from]F’;). Finally, for linearly independent vectors
vl ...,v™ by a suitable linear invertible map can be mapped to the standard basis vectors
ei,...,en,. Obviously, the values e; - G; ..., e,, - G; are independent.

We now move on to the proof of existence of linear codes with good nested list de-
codability. We will actually do the proof in a manner that will facilitate the derandom-
ization of the proof. Define J = [log,(¢"/¢ + 1)]. For any vector y € F7, integer
0<j<s—1,subsetT = {z',...,2/} € Ind(q, k;,J) and any collection S of subsets
S1,82,...,57 € {1,...,n} of size at most p;n, define an indicator variable I(j,y,T,S)
in the following manner. I(j,y,T,8) = 1 if and only if for every 1 < i < J, C(z*) differs
from y in exactly the set S;. Note that if for some 0 < 7 < s — 1, there are ql/ £4+1
codewords in Cj all of which differ from some received word y in at most p;n places, then
this set of codewords is a “counter-example” that shows that C' is not (y, p, L)-nested list
decodable. Since the ¢/¢ 4+ 1 codewords will have some set T' of .J linearly independent
codewords, the counter example will imply that I(j,y,7,S) = 1 for some collection of
subsets S. In other words, the indicator variable captures the set of bad events we would
like to avoid. Finally define the sum of all the indicator variables as follows:

Se = z_: oy > 1(3,y,T,S).

7=0 yEF"; TEInd(q,kj,J) 8§={S51,-.,+57},

Note that if S = 0, then C is (y, p, L)-nested list decodable as required. Thus, we can
prove the existence of such a C' if we can show that Ec[S¢| < 1. By linearity of expecta-
tion, we have

E[Sclzz_jz > > EIGy,T,S). (4.4)

7=0 yE]F(’;’ TEInd(q,kj,J) S:{Sl,...,SJ},

Fix some arbitrary j,y,T = {z!,2%,...,27},8 = {51, 5,,...,S;} (in their correspond-
ing domains). Then we have

ElI(j,y,T,S)| = Pr[I(4,y,T,S) =1]
= H Pr[C(z") differ from y in exactly the positions in S;]

zteT

J _ S n—|Si|
i1\ 4 q

65

I (g — 1)!s
= [(g (4.6)
=1

where the second and the third equality follow from the definition of the indicator variable,

the fact that vectors in 7' are linearly independent and the fact that a random matrix maps
linearly independent vectors to independent uniformly random vectors in [y, Using (4.6)
in (4.4), we get

s—1 |S1

Esel= Y3 % > H“

j=0 ye]Fg TEIIld(q,k]',J) S= {SI, aSJ}7 i=1
SiC{L,..,n},|Sil<pjn

<

,_.\

§—

DS > q()er

yG]F'" TeInd(‘]akjvJ) (21a£27 ,ZJ)E{O L. 7p]n}J i=1

“2 > (S()e)

y€Fg Telnd(q,kj,J) \£=0

Z S e

y€Fg Telnd(g,k;,J)

N

L[]

Cn K)
- O

(]

.
Il
= O

qn . q‘]kj . an(HQ(pj)_l)

(]

< anJ(l/J+rj+1—rj—2a—l)
j=0
< sqg . 4.7)

» S,
= o

The first inequality follows from Proposition 2.1. The second inequality follows by upper
bounding the number of J linearly independent vectors in]FZ" by ¢’*i. The third inequality
follows from the fact that k; = |r;n| and p; = H;'(1 — r; — 2¢), The final inequality
follows from the fact that J = [log,(¢"/¢ + 1)].

Thus, (4.7) shows that there exists a code C (in fact with high probability) that is
(y, p, L)-nested list decodable. In fact, this could have been proved using a simpler argu-
ment. However, the advantage of the argument above is that we can now apply the method
of conditional expectations to derandomize the above proof.

The algorithm to deterministically generate a linear code C that is (y, p, L)-nested list
decodable is as follows. The algorithm consists of n steps. At any step 1 < ¢ < n, we
choose the i** column of the generator matrix to be the value v¢ € % that minimizes the
conditional expectation E[S¢|G; = v,...,G;_; = v 1, G; = v'], where G; denotes
the i*" column of G and v!,...,vi~! are the column vectors chosen in the previous 7 — 1

66

steps. This algorithm would work if for any 1 < 7 < n and vectors v!,..., vi we can
exactly compute E[S¢|G; = v!,...,G; = v']. Indeed from (4.4), we have E[S¢|G; =

Vl,...,Gi:Vi]iS

iz Z Z]E[I(j’y,TaS”Gl:Vl,--.,G,’:Vi].

7=0 yEFg TEInd(q,kj,J) S:{Sl,...,SJ},
S;C{1,...,n},|Si|<pin

Thus, we would be done if we can compute the following for every value of j,y,T =
{z',...,27},S = {S,...,S;}: E[I(j,y,T,S) = 1|G; = v},...,G; = vi]. Note
that fixing the first < columns of G implies fixing the value of the codewords in the first ¢
positions. Thus, the indicator variable is 0 (or in other words, the conditional expectation we
need to compute is 0) if for some message, the corresponding codeword does not disagree
with y exactly as dictated by S in the first ¢ positions. More formally, I(j,y,7,S) = 0 if
the following is true for some 1 < £ < iand 0 < ¢’ < J: ey # yyo, if £ ¢ Sy and
z¥ - G, = y, otherwise. However, if none of these conditions hold, then using argument
similar to the ones used to obtain (4.6), one can show that

. T (g —1\I% 1\ milsd
E[I(j7Y7T)8)|G’1:Vl,...,Gi:VZ]: H<—> (_) :

q

where S; = Sp \ {1,2,...,i} forevery 1 < ¢ < J.

To complete the proof, we need to estimate the time complexity of the above algorithm.
There are n steps and at every step 7, the algorithm has to consider g* < ¢" different
choices of v*. For every choice of v¢, the algorithm has to compute the conditional ex-
pectation of the indicator variables for all possible values of j,y,7T,S. It is easy to check
that there are >_;_, " - ¢’% - 277 < sq"(1+2)) possibilities. Finally, the computation of the
conditional expected value of a fixed indicator variable takes time O(sn.J). Thus, in all the
total time taken is O(n - g™ - s¢"(1t27) . sp.J) = qO(/¢), as required. O

4.5.3 List Decoding Multilevel Concatenated Codes

In this section, we will see how one can list decode multilevel concatenated codes, pro-
vided the outer codes have good list recoverability and the inner code has good nested
list decodability. We have the following result, which generalizes Theorem 4.2 for regular
concatenated codes (the case s = 1).

Theorem 4.5. Let s > 1 and { > 1 be integers. Let 0 < Ry < Ry < --- < R, 1 < 1,
0 < rg < 1 be rationals and 0 < &y,--+ &1 < 1,0 < pg, -+ ,ps-1 < lande > 0 be
reals. Let q be a prime power and let () = q° for some integer a > 1. Further, let C’gut
(0 < j < s—1) be anFy-linear code over Fg of rate R; and block length N thatis (§;,¢, L)-
list recoverable. Finally, let C;,, be a linear (r, p,L)-nested list decodable code over IF, of

67

rate To and block length n = as/ro, where v = (rg,--- ,1,_1) with r; = (1 — i/s)rq,
p={po, -+ ,ps_1) and L= ({,£,--- £). Then C = (CO x -+ x Ci}") 0 Ciy, is a linear
(min; &; - p;, L*)-list decodable code. Further, if the outer code C?,, can be list recovered

in time T;(N) and the inner code C, can be list decoded in time t;(n) (for the " level),
then C can be list decoded in time O (Zj;(l] LI (Tj(N) + N - t; (n)))

Proof. Given list-recovery algorithms for C’gut and list-decoding algorithms for C;, (and
its subcodes CY), we will design a list-decoding algorithm for C'. Recall that the received
word is an n x N matrix over F,. Each consecutive “chunk” of n/s rows should be decoded
to a codeword in Cgut. The details follow.

Before we describe the algorithm, we will need to fix some notation. Define § =
min; §;p;. Let Y €]FZN be the received word, which we will think of as an n X N
matrix over I, (note that s divides n). For any n x N matrix M and forany 1 < ¢ < N, let
M; € Iy denote the i*" column of the matrix M. Finally, for every 0 < j < s — 1, let C7,
denote the subcode of C;,, generated by all but the first ja rows of the generator matrix of
Cin. We are now ready to describe our algorithm.

Recall that the algorithm needs to output all codewords in C' that differ from Y in at
most § fraction of positions. For the ease of exposition, we will consider an algorithm
that outputs matrices from C%, x --- x C5.!. The algorithm has s phases. At the end
of phase j (0 < j < s — 1), the algorithm will have a list of matrices (called £;) from
CO X -+ x C%,,, where each matrix in £; is a possible submatrix of some matrix that will
be in the final list output by the algorithm. The following steps are performed in phase 7
(where we are assuming that the list-decoding algorithm for C’fn returns a list of messages
while the list-recovery algorithm for C?,, returns a list of codewords).

out

1. Set L, to be the empty set.

2. Forevery ¢ = (%---,d™ ') € L;_4 repeat the following steps (if this is the first

phase, that is j = 0, then repeat the following steps once):

(a) Let G, be the first aj rows of the generator matrix of Cj,,. Let X = (G;)” - ¢,
where we think of ¢ as an ja x N matrix over Fy. Let Z =Y — X (forj =0
we use the convention that X is the all Os matrix). For every 1 < ¢ < N, use
the list-decoding algorithm for Cfn on column Z; for up to p; fraction of errors
to obtain list S C (Fg)*~7. Let T? C FFy be the projection of every vector in
S? on to its first component.

(b) Run the list-recovery algorithm for C?,, on set of lists {77 }; obtained from the
previous step for up to ; fraction of errors. Store the set of codewords returned
in g

(c) Add {(C,V)|V € IJ} to [’j~

68

At the end, remove all the matrices M € L;_;, for which the codeword (C;,, (M),
Cin(M3),- -+, Cin(My)) is at a distance more than ¢ from Y. Output the remaining matri-
ces as the final answer.

We will first talk about the running time complexity of the algorithm. It is easy to check
that each repetition of steps 2(a)-(c) takes time O(T;(N) + N -t;(n)). To compute the final
running time, we need to get a bound on number of times step 2 is repeated in phase j. It
is easy to check that the number of repetitions is exactly |£;_4|. Thus, we need to bound
|L; 1]. By the list recoverability property of CZ,,, we can bound |I;| by L. This implies

that |£;| < L|L£;_1], and therefore by induction we have
L] < LY fori=0,1,...,5—1. (4.8)

Thus, the overall running time and the size of the list output by the algorithm are as claimed
in the statement of the theorem.

We now argue the correctness of the algorithm. That is, we have to show that for every
M e CY, x - x C.1, such that (Ci, (M), Cin(Ms) - -+, Cir(My)) is at a distance at
most 0 from Y (call such an M a good matrix), M € L,_,. In fact, we will prove a stronger
claim: for every good matrix M and every 0 < j < s — 1, M’ € L;, where M7 denotes
the submatrix of M that lies in C2 , x --- x C?,, (that is the first j “rows” of M). For the
rest of the argument fix an arbitrary good matrix M. Now assume that the stronger claim
above holds for ;' — 1 (< s — 1). In other words, M-t e Lj_1. Now, we need to show

that M7 € L;.
0

For concreteness, let M = (m?,--- ,m*')T. As M is a good matrix and § < &;pjr,
Cin(M;) can disagree with Y; on at least a fraction p;» of positions for at most £; fraction
of column indices i. The next crucial observation is that for any column index i, C;, (M;) =
(G)T - (mf, - mi)+ (G\G)T - (md -+ ,ms™"), where G is as defined in step
2(a), G\ Gj is the submatrix of G obtained by “removing” G and mf i the 32 component
of the vector m?". Figure 4.5.3 might help the reader to visualize the different variables.
Note that G \ G, is the generator matrix of Cf,; Thus, for at most §;» fraction of column
indices 1, (mg’, coomiTY - (G \ Gyr) disagrees with Y; — X; on at least p;, fraction of
places, where X is as defined in Step 2(a), and X; denotes the ¢’th column of X. As Cf,;
is (pjr, £)-list decodable, for at least 1 — £ fraction of column index 4, M " will be in S? ’
(where Mij’ is M; projected on it’s last s — 5’ co-ordinates and Sf’ is as defined in Step
2(a)). In other words, m{’ is in T/ ' for at least 1 — &;» fraction of 7’s. Further, as |Sf'| </,
|Tijl| < £. This implies with the list recoverability property of Cg;t that m?" € I j7» where
I;: is as defined in step 2(b). Finally, step 2(c) implies that M i e L as required.

The proof of correctness of the algorithm along with (4.8) shows that C'is (4, L®)-list
decodable, which completes the proof. O

69

(mY m? m%
T T T m{I_l mgtl_l T mg\lr_l
1 i N
\ mi_l mf_l mjv_l
)))
]])

Figure 4.4: Different variables in the proof of Theorem 4.5.

4.5.4 Putting it Together

We combine the results we have proved in the last couple of subsections to get the main
result of this section.

Theorem 4.6. For every fixed field Fy, reals 0 < 6 < 1,0 < r < 1 — Hy(d),e > 0 and
integer s > 1, there exists linear codes C over Fy of block length N that are (6 — e, L(N))-
list decodable with rate R such that

s—1
r 0
R=r—- — — 4.9)
s iz_; H Y1 =7 +1i/s)

and L(N) = (N/52)0(35_35/(H‘1_1(l_r)_‘s)). Finally, C can be constructed in time
(N/e2)0/) and list decoded in time polynomial in N.

Proof. Let v > 0 (we will define its value later). For every 0 < j < s — 1 define

ri=r(l—j/s)and R; = 1— m. The code C' is going to be a multilevel concatenated

code (CO, x---xC% 1oC;,, where Cgut is the code from Corollary 3.7 of rate R; and block
length N’ (over Fya) and C;,, is an ((ro, . .., rs_1), p, L)-nested list decodable code as guar-
anteed by Theorem 4.4, where for 0 < j < s—1,p; = Hy'(1—r;—27%) and L; = gt
Finally, we will use the property of C7,, that itis (1— R;—~,¢"/?", (N'/~2)00*log(1/E))).
list recoverable for any 0 < v < R;. Corollary 3.7 implies that such codes exist with (where
we apply Corollary 3.7 with R’ = max; R; =1 —0/H,'(1—r/s))

¢ = (N//,YQ)O('y*‘lH;l(1—r/s)/5). (4.10)

70

Further, as codes from Corollary 3.7 are F -linear, C is a linear code.

The claims on the list decodability of C' follows from the choices of R; and r;, Corol-
lary 3.7 and Theorems 4.4 and 4.5. In particular, note that we invoke Theorem 4.5 with
the following parameters: §; = 1 — R; — v and p; = H;'(1 — r; — 29%) (which by
Lemma 2.4 implies that that £;p; > 6 — € as long as v = O(¢)), { = ¢/ and L =
(N'/~2)00 " 1oe(t/R}) The choices of £ and «y imply that L = (N/e2)0 " 1eg(1/R;) Now
log(1/R;) < 10g(1/Rpmin). where Rpin, = min; R; = 1—6/H_ ' (1—r). Finally, we use the
fact that forany 0 < y < 1,1In(1/y) < 1/y — 1 to get thatlog(1/R;) < O(1/Rpmin — 1) =
O(6/(H;'(1 —) — 0)). The claimed upper bound of L(N) follows as L(N) < L* (by
Theorem 4.5).

By the choices of R; and r; and (4.1), the rate of C'is as claimed. The construction time
for C is the time required to construct C,,, which by Theorem 4.4 is 20/ 7) where n is
the block length of C;,,. Note that n = as/r, which by (4.10) implies that the construction
time is (IN/£2)0 *sHy '(1=r/$)/(r9)) The claimed running time follows by using the bound
H'(1-r/s)<1.

We finally consider the running time of the list-decoding algorithm. We list decode
the inner code(s) by brute force, which takes 2°(™) time, that is, ¢;(n) = 2°(®. Thus,
Corollary 3.7, Theorem 4.5 and the bound on L(N) implies the claimed running time com-
plexity. 0

Choosing the parameter r in the above theorem so as to maximize (4.9) gives us linear
codes over any fixed field whose rate vs. list-decoding radius tradeoff meets the Blokh-
Zyablov bound (4.2). As s grows, the trade-off approaches the integral form (4.3) of the
Blokh-Zyablov bound.

4.6 Bibliographic Notes and Open Questions

We managed to reduce the alphabet size needed to approach capacity to a constant inde-
pendent of n. However, this involved a brute-force search for a rather large code. Ob-
taining a “direct” algebraic construction over a constant-sized alphabet (such as variants of
algebraic-geometric codes, or AG codes) might help in addressing these two issues. To this
end, Guruswami and Patthak [55] define correlated AG codes, and describe list-decoding
algorithms for those codes, based on a generalization of the Parvaresh-Vardy approach to
the general class of algebraic-geometric codes (of which Reed-Solomon codes are a special
case). However, to relate folded AG codes to correlated AG codes like we did for Reed-
Solomon codes requires bijections on the set of rational points of the underlying algebraic
curve that have some special, hard to guarantee, property. This step seems like a highly
intricate algebraic task, and especially so in the interesting asymptotic setting of a family
of asymptotically good AG codes over a fixed alphabet.

Our proof of existence of the requisite inner codes with good nested list decodable
properties (and in particular the derandomization of the construction of such codes using

71

conditional expectation) is similar to the one used to establish list decodability properties
of random “pseudolinear” codes in [52] (see also [49, Sec. 9.3]).

Concatenated codes were defined in the seminal thesis of Forney [40]. Its generaliza-
tions to linear multilevel concatenated codes were introduced by Blokh and Zyablov [20]
and general multilevel concatenated codes were introduced by Zinoviev [108]. Our list-
decoding algorithm is inspired by the argument for “unequal error protection” property of
multilevel concatenated codes [109].

The results on capacity achieving list decodable codes over small alphabets (Section 4.2)
and binary linear codes that are list decodable up to the Zyablov bound (Section 4.3) ap-
peared in [58]. The result on linear codes that are list decodable up to the Blokh Zyablov
bound (Section 4.5) appeared in [60].

The biggest and perhaps most challenging question left unresolved by our work is the
following.

Open Question 4.1. For every 0 < p < 1/2 and every € > 0 give explicit construction of
binary codes that are (p,O(1/¢))-list decodable with rate 1 — H(p) — €. Further, design
polynomial time list decoding algorithms that can correct up to p fraction of errors.

In fact, just resolving the above question for any fixed p (even with an exponential time
list-decoding algorithm) is widely open at this point.

72

Chapter 5

LIST DECODABILITY OF RANDOM LINEAR CONCATENATED
CODES

5.1 Introduction

In Chapter 2, we saw that for any fixed alphabet of size ¢ > 2 there exist codes of rate R
that can be list decoded up to H,'(1 — R — ¢) fraction of errors with list of size O(1/e).
For linear codes one can show a similar result with lists of size ¢°(/¢). These results are
shown by choosing the code at random. However, as we saw in Chapter 4 the explicit
constructions of codes over finite alphabets are nowhere close to achieving list-decoding
capacity.

The linear codes in Chapter 4 are based on code concatenation. A natural question to
ask is whether linear codes based on code concatenation can get us to list-decoding capacity
for fixed alphabets.

In this chapter, we answer the question above in the affirmative. In particular, in Sec-
tion 5.4 we show that if the outer code is random linear code and the inner codes are also
(independent) random linear codes, then the resulting concatenated codes can get to within
¢ of the list-decoding capacity with list of constant size depending on ¢ only. In Section 5.5,
we also show a similar result when the outer code is the folded Reed-Solomon code from
Chapter 3. However, we can only show the latter result with polynomial-sized lists.

The way to interpret the results in this chapter is the following. We exhibit an ensemble
of random linear codes with more structure than general random (linear) codes that achieve
the list-decoding capacity. This structure gives rise to the hope of being able to list decode
such a random ensemble of codes up to the list-decoding capacity. Furthermore, for design-
ing explicit codes that meet the list-decoding capacity, one can concentrate on concatenated
codes. Another corollary of our result is that we need fewer random bits to construct a code
that achieves the list-decoding capacity. In particular, a general random linear code requires
number of random bits that grows quadratically with the block length. On the other hand,
random concatenated codes with outer codes as folded Reed-Solomon code require number
of random bits that grows quasi-linearly with the block length.

The results in this chapter (and their proofs) are inspired by the following results due to
Blokh and Zyablov [19] and Thommesen [102]. Blokh and Zybalov show that random con-
catenated linear binary codes (where both the outer and inner codes are chosen uniformly
at random) have with high probability the same minimum distance as general random lin-
ear codes. Thommesen shows a similar result when the outer code is the Reed-Solomon
code. The rate versus distance tradeoff achieved by random linear codes satisfies the so

73

called Gilbert-Varshamov (GV) bound. However, like list decodability of binary codes,
explicit codes that achieve the GV bound are not known. Coming up with such explicit
constructions is one of the biggest open questions in coding theory.

5.2 Preliminaries

We will consider outer codes that are defined over Fg, where) = ¢* for some fixed ¢ > 2.
The outer code will have rate and block length of R and N respectively. The outer code
Cour Will either be a random linear code over Fg or the folded Reed-Solomon code from
Chapter 3. In the case when C,,; is random, we will pick C,,; by selecting K = RN
vectors uniformly at random from Fg to form the rows of the generator matrix. For every
position 1 < ¢ < N, we will choose an inner code C;, to be a random linear code over
[F, of block length n and rate » = k/n. In particular, we will work with the corresponding
generator matrices G;, where every G; is a random £ X n matrix over [F,. All the generator
matrices G; (as well as the generator matrix for C,,;, when we choose a random C,,;) are
chosen independently. This fact will be used crucially in our proofs.

Given the outer code C,,; and the inner codes C? , the resulting concatenated code C' =
Cout © (CL,...,CN) is constructed as follows.! For every codeword u = (uy,...,uy) €
Cout, the following codeword is in C":

uG déf (ulGl, u2G2, . ,UNGN),

where the operations are over IF,.

We will need the following notions of the weight of a vector. Given a vector v € IFZN ,
its Hamming weight is denoted by wt(v). Given a vector y = (y1,...,yn) € (Fp)V
and a subset S C [N], we will use wtg(y) to denote the Hamming weight over I, of the
subvector (y;)ics. Note that wt(y) = win(y).

We will need the following lemma due to Thommesen, which is stated in a slightly

different form in [102]. For the sake of completeness we also present its proof.

Lemma 5.1 ([102]). Given a fixed outer code C,; of block length N and an ensemble of
random inner linear codes of block length n given by generator matrices G, ..., Gy the
following is true. Lety €]FZN . For any codeword u € Cy;, any non-empty subset S C [N]

such that u; # 0 for all i € S and any integer h < n|S]| - (1 — %)

Pr[wtg(uG — y) < h] < q_n|s|(1_H‘1(ﬁ))

Y

where the probability is taken over the random choices of Gy, ..., Gy.

Note that this is a slightly general form of code concatenation that is considered in Chapter 4. We did
consider the current generalization briefly in Section 4.4.

74

Proof. Let |S| = s and w.l.o.g. assume that S = [s]. As the choices for Gy,..., Gy are
made independently, it is enough to show that the claimed probability holds for the random
choices for Gy,...,G,. Forany 1 < ¢ < sand any y € [y, since u; # 0, we have
Prg,[u;G; = y| = ¢~ ™. Further, these probabilities are independent for every i. Thus, for
any y = (y1,...,¥s) € (F?)°, Pra,,..q,[wiG; = y; forevery 1 < i < s] = ¢ ™. This
implies that:

h
Prg,, .c.[wts(uG —y) nsZ(> g-1y

j=0

The claimed result follows from the Proposition 2.1. O]

Figure 5.1: Geometric interpretations of functions as(-) and f;2(+).

For 0 < z < 1 define
a,(z) =1—H,(1—¢"). (5.1)

We will need the following property of the function above.
Lemma 5.2. Let ¢ > 2 be an integer. For every 0 < z < 1,

ay(z) < 2.

75

Proof. The proof follows from the subsequent sequence of relations:
ag(z) =1— Hy(1—¢*7")
=1-(1—¢" loglg—1)+(1—¢" "log,(1 —¢*) + ¢ (¢ — 1)

-1
— Zqul + (1 . qul) <1 — logq <1q_7qz—1>>

< 7,

where the last inequality follows from the facts that ¢! < land 1 — ¢*~! < 1 - 1/g,
which implies that log, (1_{%{1) > 1. 0

We will consider the following function

fog@)=(1-06)""" H_l(l — 0z),
where 0 < 6,z < 1. We will need the following property of this function.?
Lemma 5.3 ([102]). Let g > 2 be an integer. For any x > 0 and 0 < y < ay()/x,

min fq(0) = (1—y)" H; ' (1 - xy).

00y

Proof. The proof follows from the subsequent geometric interpretations of f,(-) and
a4(+). See Figure 5.1 for a pictorial illustration of the arguments used in this proof (for
q=2).

First, we claim that for any 0 < 29 < 1, oy (2) satisfies the following property: the line
segment between (a(20), H, ' (1 — ag(20))) and (2, 0) is tangent to the curve H_ (1 — z)
at aq(2p).

Thus, we need to show that

—H7 (1 — og(20))
20 — aq(20)

-1y _ -1 _ —1
One can check that (Hy) (1-2) = == = gt 1)—1og, (7 (o)) Hogy (-3 10

= (H,")'(1 — ag(20))- (5.2)

Now,
20— 0g(20) = 20— 14+ (1 — ¢ ") log,(¢—1) — (1 — ¢ ") log, (1 — g 1)
o qzo—l(zo o 1)
= (1—¢* ") (log,(g— 1) —log,(1— g™ ') + 20— 1)
= H,'(1— ag(20)) - (logy(q — 1) — log,(H, (1 — ag(20)))
+log, (1 — H;l(l - aq(zo))))
—H; (1 - ay(x))
(H;')'(1— ag(20))’

2 Lemma 5.3 was proven in [102] for the ¢ = 2 case. Here we present the straightforward extension of
the result for general q.

76

which proves (5.2) (where we have used the expression for ag(2) and (H;')'(1 — z) and
the fact that 1 — ¢* ' = H_ (1 — ag(2))).
We now claim that f ,(6) is the intercept of the line segment through (z, 0) and

(fz, H;'(1—6z)) on the “y-axis.” Indeed, the “y-coordinate” increases by H, ' (1 —6z) in
the line segment from x to fz. Thus, when the line segment crosses the “y-axis”, it would
cross at an intercept of 1/(1 —) times the “gain” going from z to fz. The lemma follows
from the fact that the function H 1(1 — r) is a decreasing (strictly) convex function of r
and thus, the minimum of f ,(#) would occur at = y provided yz < ay(z). O

5.3 Overview of the Proof Techniques

In this section, we will highlight the main ideas in our proofs. Our proofs are inspired by
Thommesen’s proof of the following result [102]. Binary linear concatenated codes with
an outer Reed-Solomon code and independently and randomly chosen inner codes meet the
Gilbert-Varshamov bound®. Given that our proof builds on the proof of Thommesen, we
start out by reviewing the main ideas in his proof.

The outer code Cl,y; in [102] is a Reed-Solomon code of length N and rate R (over
Fg) and the inner codes (over IF, such that) = q"* for some k > 1) are generated by N
randomly chosen k x n generator matrices G = (Gy,...,Gy), where r = k/n. Note
that since the final code will be linear, to show that with high probability the concatenated
code will have distance close to H~'(1 — rR), it is enough to show that the probability
of the Hamming weight of uG over F, being at most (H~'(1 — rR) —)nN (for some
Reed-Solomon codeword u = (uy,...,uy)), is small. Let us now concentrate on a fixed
codeword u € C,,;. Now note that if for some 1 < ¢ < N, u; = 0, then for every
choice of G;, u;G; = 0. Thus, only the non-zero symbols of u contribute to wt(uG).
Further, for a non-zero u;, u;G; takes all the values in F} with equal probability over
the random choices of G;. Also for two different non-zero positions i; # i3 in u, the
random variables u;, G;, and u;, G;, are independent (as the choices for G;, and G,, are
independent). This implies that uG takes each of the possible ¢™**™) values in]F[;N with
the same probability. Thus, the total probability that uG has a Hamming weight of at most

his S ("'wjj(“)) g i) q_"'wt(“)(l_H(#ﬂu))). The rest of the argument follows by
doing a careful union bound of this probability for all non zero codewords in C,,; (using
the known weight distribution of Reed-Solomon codes®).

Let us now try to extend the idea above to show a similar result for list decoding of a

code similar to the one above (the inner codes are the same but we might change the outer

3 A binary code of rate R satisfies the Gilbert-Varshamov bound if it has relative distance at least H ~*(1—

“In fact, the argument works just as well for any code that has a weight distribution that is close to that
of the Reed-Solomon code. In particular, it also works for folded Reed-Solomon codes— we alluded to this
fact in Section 4.4.

77

code). We want to show that for any Hamming ball of radius at most h = (H (1 —rR) —
e)nN has at most L codewords from the concatenated code C' (assuming we want to show
that L is the worst case list size). To show this let us look at a set of L+ 1 codewords from C'
and try to prove that the probability that all of them lie within some ball of radius A is small.
Let ul,...,uf*! be the corresponding codewords in Coy;. As a warm up, let us try and
show this for a Hamming ball centered around 0. Thus, we need to show that all of the L+1
codewords u'G, ..., u’"'G have Hamming weight at most h. Note that L = 0 reverts
back to the setup of Thommesen, that is, any fixed codeword has weight at most h with
small probability. However, we need all the codewords to have small weight. Extending
Thommesen’s proof would be straightforward if the random variables corresponding to
each of u‘G having small weight were independent. In particular, if we can show that for
every position 1 < i < N, all the non-zero symbols in {u},u?, ..., u’**} are linearly
independent® over F, then the generalization of Thommesen’s proof is immediate.

Unfortunately, the notion of independence discussed above does not hold for every
L + 1 tuple of codewords from C,,;. A fairly common trick to get independence when
dealing with linear codes is to look at messages that are linearly independent. It turns out
that if Cyy is a random linear code over [F then we have a good approximation of the the
notion of independence above. Specifically, we show that with very high probability for a
linearly independent (over Fg) set of messages® m', ... mX*!, the set of codewords u! =
Cour(m?), ... u” = Cby(m”) have the following approximate independence property.
For most of the positions 1 < 7 < N, most of the non-zero symbols in {u},...,uMN} are
linearly independent over I,. It turns out that this approximate notion of independence is
enough for Thommesen’s proof to go through. Generalizing this argument to the case when
the Hamming ball is centered around an arbitrary vector from]FZN is straightforward.

We remark that the notion above crucially uses the fact that the outer code is a random
linear code. However, the argument is bit more tricky when C,,; is fixed to be (say) the
Reed-Solomon code. Now even if the messages m!, ..., m**! are linearly independent
it is not clear that the corresponding codewords will satisfy the notion of independence
in the above paragraph. Interestingly, we can show that this notion of independence is
equivalent to showing good list recoverability properties for C,,;. Reed-Solomon codes
are however not known to have optimal list recoverability (which is what is required in our
case). In fact, the results in Chapter 6 show that this is impossible for Reed-Solomon codes
in general. However, as we saw in Chapter 3, folded Reed-Solomon codes do have optimal
list recoverability and we exploit this fact in this chapter.

*Recall that F« is isomorphic to IF"qc and hence, we can think of the symbols in Fg as vectors over [Fg.

Again any set of L + 1 messages need not be linearly independent. However, it is easy to see that some
subset of J = [logq (L + 1)] of messages are indeed linearly independent. Hence, we can continue the
argument by replacing L + 1 with J.

78

5.4 List Decodability of Random Concatenated Codes

In this section, we will look at the list decodability of concatenated codes when both the
outer code and the inner codes are (independent) random linear codes.
The following is the main result of this section.

Theorem S5.1. Let q be a prime power and let 0 < r < 1 be an arbitrary rational. Let
0 < € < a4(r) be an arbitrary real, where o,(r) is as defined in (5.1), and 0 < R <
(aq(r) — €)/r be a rational. Then the following holds for large enough integers n, N such
that there exist integers k and K that satisfy k = rn and K = RN. Let C,y; be a random
linear code over F . that is generated by a random K x N matrix over Fy.. Let CL,, ..., C}

be random linear codes over F,, where C, is generated by a random k x n matrix G; and
the random choices for Cyyy, Gy, . . ., Gy are all independent. Then the concatenated code

C = Cout © (C'l . ,Cﬁ) isa (Hq_l(l — Rr) —¢, qo(sz(zn—m)> -list decodable code with

m "

probability at least 1 — ¢~ "N) over the choices of Cout, G1, . .., Gy. Further, with high
probability, C has rate r R.

In the rest of this section, we will prove the above theorem.

Define Q) = ¢*. Let L be the worst-case list size that we are shooting for (we will fix its
value at the end). The first observation is that any L+1-tuple of messages (m?, ..., mi*!) €
(F5)™ contains at least J = [log,(L + 1)] many messages that are linearly independent
over Fg. Thus, to prove the theorem it suffices to show that with high probability, no

Hamming ball over F of radius (H,'(1 — rR) — e)nN contains a J-tuple of codewords

(C(m?'),...,C(m7)), where m!, ... m’ are linearly independent over Fg.
Define p = H/ (1 — Rr) — e. For every J-tuple of linearly independent messages
(m',...,m7) e (F§)’ and received word y € F?V, define an indicator random variable

I(y,m!,...,m7) as follows. I(y,m',..., m’) = 1if and only if for every 1 < j < J,
wt(C'(m?) —y) < pnN. That is, it captures the bad event that we want to avoid. Define

Xc = Z Z I(y,m',..., m’)

ye]FELN (ml ,...,mJ)EInd(Q,K,J)

where Ind(Q, K, J) denotes the collection of subsets of Fg-linearly independent vectors
from Fg of size J. We want to show that with high probability X = 0. By Markov’s
inequality, the theorem would follow if we can show that:

EXc]=) > E[I(y,m!,...,m’)]is ¢~ M) (5.3)

yEFN (ml,...,m7)end(Q,K,J)

Note that the number of distinct possibilities for y, m?, ..., m’ is upper bounded by g™V -
QENJ = gnN(+7RJ) Fix some arbitrary choice of y,m', ..., m’. To prove (5.3), we will
show that

¢"NOFR) CR[I(y, mt, ..., m7)] is g7, (5.4)

79

Before we proceed, we need some more notation. Given vectors ul, ..., u’ € Iﬂ‘g , we
define Z(u',...,u’) = (Z,..., Zy) as follows. For every 1 < i < N, Z; C [J] denotes
the largest subset such that the elements (u]);ez, are linearly independent over IF, (in case
of a tie choose the lexically first such set), where u? = (uj,...,u%). A subset of Fg is
linearly independent over IF, if its elements, when viewed as vectors from]F’; (recall that

Fgx is isomorphic to IF’;) are linearly independent over F,. If uf € Z; then we will call uf
a good symbol. Note that a good symbol is always non-zero. We will also define another
partition of all the good symbols, T(ul,...,u’) = (Ty,...,Ty) by setting T; = {i|j € Z;}

for1 <5< J.

Since m!, ..., m’ are linearly independent over Fg, the corresponding codewords in
Cout are distributed uniformly in Ffy . In other words, for any fixed (u',...,u’) € (Fg)’,
J
Prc,., L/\ Cout(m?) = uJ] — QN = g NI, (5.5)
=1

Recall that we denote the (random) generator matrices for the inner code C}, by G; for
every 1 <@ < N. Also note that every (u',...,u’) € (Fy)” has a unique Z(u', ..., u”).
In other words, the 27 choices of Z partition the tuples in (]Fg).

Let h = pnN. Consider the following calculation (where the dependence of Z and T

onul,..., u’ have been suppressed for clarity):
J
E[I(y,m',...,m”)] = > Pre—@i..cw [/\ wi(WG —y) < h] (5.6)
(ul,...,uJ)e(Fg)J =1

J
- Prg,,, L/\ Coput(m?) = uj]
=1

J
=¢™ Y Pre—@i..em | [\ wt(0G -y) < h]

(ul,...,u’)E(FY)” [j=1
(5.7)
[J
< g™V Z Prg—(a,,..cn) /\ WtTj(ujG —y) < h]
(ul,...;u’)e(FY)’ [j=1
(5.8)
J
= ¢ Y []Pre [wtr, (WG —y) <A (5.9)

(ul,...,ul)e(Fy)7 =1

In the above (5.6) follows from the fact that the (random) choices for C,,; and G =
(G, ..., Gy) are all independent. (5.7) follows from (5.5). (5.8) follows from the simple

80

fact that for every y € (F7)" and T C [N], wtr(y) < wt(y). (5.9) follows from the subse-
quent argument. By definition of conditional probability, Prg /\j:1 wir, (WG —y) < h]
is the same as)

J-1 J—1
Prg |wtr, (/G —y) < h| /\ wtr, (WG —y) < h] - Prg /\ wtr, (WG —y) < h] :
j=1 | j=1
Now as all symbols corresponding to 7’; are good symbols, for every ¢ € T, the value
of u/G; is independent of the values of {u}G;,...,u/ *G;}. Further since each of
G1, ..., Gy are chosen independently (at random), the event wir, (u‘] G —y) < hisin-

dependent of the event /\j;ll wtr, (WG —y) < h. Thus, Prg [/\;.]:1 wtr, (WG —y) < h]
is
J-1
Prg [wtr, (/G —y) < h] - Prg [/\ wtr, (WG —y) < h] :
7j=1

Inductively applying the argument above gives (5.9).

Further,
J
E[I(y,m?!,...,m7)] = Y e Pre [wtr (WG —y) < A (5.10)
(ul,...,u’)e(FY)7 j=1
Z Z HPI‘G th u]G y) h]
- rnN
(15,5)€{0,..., N} (ul,...,u”)e(Fg)7, j=1
(|T1| d17 7|TJ| dJ)
(5.11)
IN+(rnt+J) S0, d; d Prg [thj(ujG —-y) < h}
< Z q = H rnN
(d1 dJ) Jj=1, q
€{0,....N}’ IT;|=d;
(5.12)
T Prg [wir, (WG —y) < Al
— > H i % (5.13)
(d1y0eydy)E{0,..., N}/ 1, qn(—T(J_)—T_?)
|T] =d;

In the above (5.10), (5.11), (5.13) follow from rearranging and grouping the summands.
(5.12) uses the following argument. Given a fixed Z = (Z4, ..., Zy), the number of tuples
(u',...,u’) such that Z(u',...,u’) = Z is at most U = [, g%l . g/Zl(/=1Z:D where
the ¢/%i* is an upper bound on the number of | Z;| linearly independent vectors from IF’; and

g%l =1ZD) follows from the fact that every bad symbol {u?} ¢z, has to take a value that is a

81

linear combination of the symbols {u/} ez,. Now U < [[1, ¢l%lk+)) — gt EL, 12:) —

g*) E-1 1551 Finally, there are 27V < ¢’V distinct choices for Z.
(5.13) implies the following

J
g NArRI) E[I(y,m!,...,m’)] < Z H B,
(d1,-..,ds)€{0,...,N}J j=1

where
Jd;

F-5-%) - Prg [wir,(u;G —y) < h].

We now proceed to upper bound E; by q M) for every 1 < j < J. Note that this
will imply the claimed result as there are at most (N + 1)7 = ¢°®") choices for different
values of d;’s.

We first start with the case when d; < d*, where

d*=N(1-R-7),

for some parameter 0 < v < 1 — R to be defined later. In this case we use the fact that
Prg [th]_ (0;G —y) < h} < 1. Thus, we would be done if we can show that

1 N Jd; N ,
—<r(dj—N(1—R))+——|—J +—)<—5 <0,

N J n n

for some &’ > 0 that we will choose soon. The above would be satisfied if

d; 1 /1 Jd; 1\ &
'} 1— (D2
N<(R) r<J+nN+n> r’

r

which is satisfied if we choose v > 2 (% + % + %) + 57' as d; < d*. Note that if n >

2J (% + 1) and if we set §' = %, it is enough to choose v = %.
We now turn our attention to the case when d; > d*. The arguments are very similar to
the ones employed by Thommesen in the proof of his main theorem in [102]. In this case,

by Lemma 5.1 we have

cndi (1 (-2 — 1_M)_L_1_A>
E. <q ”1(q(ndj> T(; 47" n " ndj)

nN(1-R—7))

The above implies that we can show that E; is q*X provided we show that for

everyd* <d < N,

h/(nd)gﬂq—l(l—r(kw> N_J ﬁ)_é,

82

fJor 5N: e/3. Now if n > 2J2, then both % < % and % < %. In other words,
n

+ = < %. Using the fact that H . ! is increasing, the above is satisfied if

h/(nd) < H,' (1—7« <1 — w> 2N> — 4,

By Lemma 5.4, as long as J > 4c,/(6*(1 — R)) (and the conditions on 1 are satisfied), the
above can be satisfied by picking

h/(nN) =H;'(1-rR)— 35 = p,

as required. We now verify that the conditions on v in Lemma 5.4 are satisfied by our
2
choice of ¥ = <. Note that if we choose J = 4c, /(6%(1 — R)), we will have y = FO-FR)

cr

Now, as R < 1, we also have vy < 6?/(rc}). Finally, we show that v < (1 — R)/2. Indeed

#(1-R) _(1—R) _c(1-R) _oa,)1-F) 1-R

cpr Icpr or Or 2 7

’y:

where the first inequality follows from the facts that ¢; > 1 and ¢ < 1. The second
inequality follows from the assumption on €. The third inequality follows from Lemma 5.2.

Note that J = O (), which implies L = QO(/((1-R)*) a5 claimed in the state-

ment of the theorem.

We still need to argue that with high probability the rate of the code C' = C,y; ©
(CL,...,CN)is rR. One way to argue this would be to show that with high probabil-
ity all of the generator matrices have full rank. However, this is not the case: in fact, with
some non-negligible probability at least one of them will not have full rank. However, we
claim that with high probability C has distance > 0. Note that as C' is a linear code, this
implies that for every distinct pair of messages m' # m? € Fg are mapped to distinct
codewords, which implies that C' has ¢"*F" codewords, as desired. We now briefly argue
why C has distance > 0. The proof above in fact implies that with high probability C' has
distance about H 1(1 — rR)nN. It is easy to see that to show that C has distance at least
h, it is enough to show that with high probability Zmng I(0,m) = 0. Note that this is

a special case of our proof, with J = 1 and y = 0 and hence, with probability at least
1 — ¢®¥™N) the code C has large distance. The proof is complete.

1
G=R)?

Remark 5.1. In a typical use of concatenated codes, the block lengths of the inner and
outer codes satisfy n = ©(log N), in which case the concatenated code of Theorem 5.1 is
list decodable with lists of size NO(E_2(1_R)_1). However, the proof of Theorem 5.1 also
works with smaller n. In particular as long as n is at least 3J?, the proof of Theorem 5.1
goes through. Thus, with n in ©(J?), one can get concatenated codes that are list decodable

up to the list-decoding capacity with lists of size qo(e_ﬁ(lfR)_s).

83

Lemma 5.4. Let q be a prime power, and 1 < n < N be integers. Let 0 < r,R < 1 be
rationals and 6 > 0 be a real such that R < (ay(r) — 0)/r and § < ay(r), where a,(r)

is as defined in (5.1). Let v > 0 be a real such that v < min (ﬂ, ‘3—2), where c is the

2 cgr
constant that depends only on q from Lemma 2.4. Then for all integers J > % and
h < (H;'(1—rR) —26)nN the following is satisfied. For every integer (1 — R —)N <

d< N,
h _ N(1-R—-7)\ 2N
— K 1 — -) - —). .
nd\Hq <1 r<1 y) Jd) (5.14)

Proof. Using the fact H ! is an increasing function, (5.14) is satisfied if the following is
true (where d* = (1 — R — y)N):

h) d _ N1—-R—v) 2N
< — . L1 — — — .
A R e (e A)

Define a new variable # = 1— N(1— R—+)/d. Note thatasd* = (1— R—~y)N < d< N,
0<0< R+7.Alsod/N = (1 — R—+)(1—0)L. Thus, the above inequality would be
satisfied if

h _ iy 2
on SU-R- ’Y)o&lﬁﬂ{(l_g) He (1_T9_(1—R—7)J)}'

Again using the fact that H ! is an increasing function along with the fact that v < (1 —
R)/2, we get that the above is satisfied if

h . 11 4
N S <(1-R-)oggg}%lﬂ{(l_o) H, <1—7‘0—7(1_R)J>}.
> H;'(1—r6)— 0. Since

By Lemma 2.4, if J > 52(1 ok then’ H (1 re — ﬁ) >
forevery 0 < 0 < R+, (1— R—7)(1—6)71§ < 4, the above equation would be satisfied
if
LS (-R—n) min foy(6) -5
nN 7 o<gillr%l+ "~ '
Note that the assumptions v < 52/(7“011) < d0/r(asd < 1and c, = D and R <
(aq(r) — &)/r, we have R + v < aq(r)/r. Thus, by using Lemma 5.3 we get that
(1 — R —) mingcg<piy frg(0) = Hy'(1 — rR — rvy). By Lemma 2.4, the facts that
v < 6°/(rc,) and H; ' is increasing, we have H, ' (1—rR—7v) > H;'(1—rR)—d. This
implies that (5.14) is satisfied if o/(nN) < H,*(1 — rR) — 24, as desired. O

"We also use the fact that H ! is increasing.

84

5.5 Using Folded Reed-Solomon Code as Outer Code

In this section, we will prove a result similar to Theorem 5.1, with the outer code being
the folded Reed-Solomon code from Chapter 3. The proof will make crucial use of the list
recoverability of folded Reed-Solomon codes. Before we begin we will need the following
definition and results.

5.5.1 Preliminaries

We will need the following notion of independence.

Definition 5.1 (Independent tuples). Let C be a code of block length N and rate R defined
overFu. Let J > 1and0 < dy,...,d; < N beintegers. Letd = (dy, ... ,d;). Anordered
tuple of codewords (c',...,c’), ¢ € C is said to be (d,F,)-independent if the following
holds. d; = wt(c') and for every 1 < j < J, d; is the number of positions i such that c] is
F,-independent of the vectors {c}, ..., cl '}, where ¢ = (¢}, ..., c4).

)

Note that for any tuple of codewords (c,. .., c’) there exists a unique d such that it is
(d, F,)-independent.
The next result will be crucial in our proof.

Lemma 5.5. Let C be a folded Reed-Solomon code of block length N that is defined over
Fo with Q@ = ¢* as guaranteed by Theorem 3.6. For any L-tuple of codewords from C,

where L > J - (N/az)o(silJlog(q/R)) (where € > 0 is same as the one in Theorem 3.6),
there exists a sub-tuple of J codewords such that the J-tuple is (d, F,)-independent, where
d = (di,...,dy) such that forevery1 < j < J,d; > (1 — R —¢)N.

Proof. The proof is constructive. In particular, given an L-tuple of codewords, we will con-
struct a J sub-tuple with the required property. The correctness of the procedure will hinge
on the list recoverability of the folded Reed-Solomon code as guaranteed by Theorem 3.6.

We will construct the final sub-tuple iteratively. In the first step, pick any non-zero
codeword in the L-tuple- call it ¢!. Note that as C has distance (1 — R)N (and 0 € C),
c! is non-zero in at least d; > (1 — R)N > (1 — R —)N many places. Note that c! is
vacuously independent of the “previous” codewords in these positions. Now, say that the
procedure has chosen codewords ¢, ..., ¢® such that the tuple is (d’, F,)-independent for
d' = (dy,...,ds), where forevery 1 < j < s,d; > (1—R—¢)N. Forevery1 <i < N,
define S; to be the Fy-span of the vectors {c;,...,c{} in F;. Note that |S;| < ¢°. Call
c=(c1,...,cn) € Ctobe abad codeword, if there does not exist any ds11 > (1—R—¢e)N
such that (¢!, ..., %, ¢) is (d, F,)-independent for d = (dy, . . .,ds+1). In other words, cis a
bad codeword if and only if some 7' C [N] with |T'| = (R + ¢)N satisfies ¢; € S; for every
1 € T'. Put differently, c satisfies the condition of being in the output list for list recovering
C with input Sy, ..., Sy and agreement fraction R + ¢. Thus, by Theorem 3.6, the number

of such bad codewords is U = (N/62)O(6_131°g(q/R)) < (N/62)O(5_1J1°g(q/3)), where J is

85

the number of steps for which this greedy procedure can be applied. Thus, as long as at
each step there are strictly more than U codewords from the original L-tuple of codewords
left, we can continue this greedy procedure. Note that we can continue this procedure J
times, as long as J < L/U. The proof is complete. 0

Finally, we will need a bound on the number of independent tuples for folded Reed-
Solomon codes.

Lemma 5.6. Let C be a folded Reed-Solomon code of block length N and rate 0 < R < 1
that is defined over Fg, where Q = ¢*. Let J > 1and 0 < dy, ...,d; < N be integers and
defined = (dy, ..., ds). Then the number of (d,F,)-independent tuples in C' is at most

J
qNJ(J—H) H Qmax(dj—N(l—R)H,o)_

j=1

Proof. Given a tuple (c!,...,¢’) that is (d, F,)-independent, define T; C [N] with |Tj| =
d;, for 1 < j < J to be the set of positions 7, where cZ is linearly independent of the
values {c!,...,cI"'}. We will estimate the number of (d, IF,)-independent tuples by first
estimating a bound U; on the number of choices for the j** codeword in the tuple (given a
fixed choice of the first j — 1 codewords). To complete the proof, we will show that

U; < gV . Qmax(di—N(A-R)+1,0)

A codeword ¢ € C can be the ;' codeword in the tuple in the following way. Now for every
position in [N] \ T}, c can take at most ¢’ ! < ¢” values (as in these position the value has
to lie in the I, span of the values of the first j — 1 codewords in that position). Since C'is
folded Reed-Solomon, once we fix the values at positions in [N]\ T}, the codeword will be
completely determined once any max(RN — (N —d;)+1,0) = max(d; —N(1—R)+1,0)
positions in T} are chosen (w.l.0.g. assume that they are the “first” so many positions). The
number of choices for Tj is ((]i\]’) < 2¥ < ¢V. Thus, we have

UJ < qN . (q‘])N_dj . Qmax(dj—N(l—R)—l-l,O) < qN(J+1) . Qmax(dj—N(l—R)-i-l),O),

as desired. m

5.5.2 The Main Result

We will now prove the following result.

Theorem 5.2. Let q be a prime power and let 0 < r < 1 be an arbitrary rational. Let 0 <
£ < a,(r) an arbitrary real, where a,(r) is as defined in (5.1), and 0 < R < (ay(r) —¢)/r
be a rational. Then the following holds for large enough integers n, N such that there exist
integers k and K that satisfy k = rn and K = RN. Let C,y; be a folded Reed-Solomon

86

code over . of block length N and rate R. Let CL....,CN be random linear codes over
F,, where C;, is generated by a random k x n matrix G; over IF, and the random choices for

Gy, ..., Gy are all independent. Then the concatenated code C' = Clyy © (C'.1 .. ,C{X)

ml

isa (Hq_l(l — Rr)—¢,(%) ofma-R=? log(l/R))> -list decodable code with probability at

least 1 — ¢~ ¥*N) over the choices of G, ..., Gy. Further, with high probability, C has
rate rR.

In the rest of this section, we will prove the above theorem.

Define Q = ¢*. Let L be the worst-case list size that we are shooting for (we will fix
its value at the end). By Lemma 5.5, any L + 1-tuple of C,y; codewords (u?,...,u") €
(Cous)¥*! contains at least J = {(L +1)/(N/42)°0 log(q/R))J codewords that form an
(d, F,)-independent tuple, for some d = (dy,...,ds), withd; > (1 — R —)N (we will
specify 7, 0 < 7 < 1 — R, later). Thus, to prove the theorem it suffices to show that
with high probability, no Hamming ball in FV of radius (H,'(1 — rR) — €)nN contains
a J-tuple of codewords (u'G, ..., u’G), where (u',...,u’) is a J-tuple of folded Reed-
Solomon codewords that is (d, F,)-independent. For the rest of the proof, we will call a
J-tuple of C,,; codewords (ul, ..., u’) a good tuple if it is (d, F,)-independent for some
d=(di,...,d;s), whered; > (1 — R—)N forevery 1 < j < J.

Define p = H;'(1 — Rr) — e. For every good J-tuple of Coy; codewords (u', ..., u”)
and received word y €]FZN , define an indicator variable I(y,ul,...,u’) as follows.
I(y,ul,...,u’) = 1if and only if for every 1 < j < J, wt(w/G —y) < pnN. That
is, it captures the bad event that we want to avoid. Define

Xc = Z Z I(y,ul,...,u’).

yEeFRN good (ul,...,u’)e(Cout)’

We want to show that with high probability X = 0. By Markov’s inequality, the theorem
would follow if we can show that:

ElXc]=) > E[l(y,u',...,u’)] < ¢ . (5.15)

yEFRN good (ul,...,u?)e(Cout)”’

Before we proceed, we need a final bit of notation. For a good tuple (ul,..., u’)
and every 1 < j < J, define Tj(u',...,u’) C [N] to be the set of positions ¢ such
that u/ is F,-independent of the set {u},...,u/ '}. Note that since the tuple is good,
T;(ul,...,u’)| > (1-— R—~)N.

Let h = pnN. Consider the following sequence of inequalities (where below we have
suppressed the dependence of T} on (u', ..., u’) for clarity):

J
E[X¢] = Z Z Prg—(a,,...an) L/\ wt(W!'G —y) < h] (5.16)
=1

YEFRN good (ul,...,ut)e(Cout)’

87

J

> > PIG—(Gi,..Gx) L/\ wtr, (WG —y) < h (5.17)

ye]FELN gOOd (ulr“auJ)e(COUt)J j=1

YEF2N good (ul,...,ut)e(Cout)’ =1

) IED DI | (Rt

yEFRN good (ul,...,u’)e(Cout)’ =1

N

)) (5.19)

N

h

= > > > f[q_ndj (1= (%)) (5.20)

yEFgN (dla"'7dJ) gOOd (ul,_,,,u'])G(Caut)J, J
e{(lfRf'Y)Nv"'aN}J (|T1|:d1""’|TJ|:dJ)

Z PMPLECARY f[Qmax(di—(1-R)N+1,0) ﬁ q*ndj <1*Hq (%))

<
(d1ye-ydy) j=1 j=1
€{(1-R—¥)N,..,N}’/
(5.21)
< 3 gV - VI f[Q= (-F=)N ﬁ " (1-ma(5))
(d1ye-dy) j=1 j=1
€{(1—-R—v)N,..,N}’/
(5.22)
R T I T B IR G B D S

(d1,--rdy) Jj=1
e{(1-R—y)N,...,.N}’

In the above (5.16) follows from the definition of the indicator variable. (5.17) follows
from the simple fact that for every vector u of length N and every T' C [N], wtr(u) <
wt(u). (5.18) follows by an argument similar to the one used to argue (5.9) from (5.8)
in the proof of Theorem 5.1. Basically, we need to write out the probability as a product
of conditional probabilities (with 7 = J “taken out” first) and then using the facts that
the tuple (ul,...,u’) is good and the choices for Gy, ..., Gy are independent.® (5.19)
follows from Lemma 5.1. (5.20) follows from rearranging the summand and using the
fact that the tuple is good (and hence d; > (1 — R — y)N). (5.21) follows from the
fact that there are ¢"V choices’ for y and Lemma 5.6. (5.22) follows from the fact that

8In Theorem 5.1, the tuple of codewords were not ordered while they are ordered here. However, it is easy
to check that the argument in Theorem 5.1 also works for ordered tuples as long as the induction is applied
in the right order.

9 As the final code C will be linear, it is sufficient to only look at received words that have Hamming
weight at most pnN. However, this gives a negligible improvement to the final result and hence, we just
bound the number of choices for y by ¢g™¥".

88

di—(1-RN+1<d;j—(1-—R—~v)N (for N > 1/v) and thatd; > (1— R—~)N.
(5.23) follows by rearranging the terms.

Now, as long as n > J(J + 1), we have N(Z;Ll) < %. (5.23) will imply (5.15) (along
with the fact that H ! is increasing) if we can show that for every (1— R—~)N <d < N,

h qu1<1—r<1—M)—ﬁ>—5,

nd d

for § = /3. Thus, by Lemma 5.4 (and using the arguments used in the proof of The-
orem 5.1 to show that the conditions of Lemma 5.4 are satisfied), we can select J in

© (52(117_3)) (and v in ©(2(1 — R)/r)), and pick
h/(nN) =H,;'(1—-rR) — e =p,
as desired. This along with Lemma 5.5, implies that we can set
L = (N/e2)0(e *(0=R) *logla/R))

as required.
Using arguments similar to those in the proof of Theorem 5.1, one can show that the
code Coys 0 (C} ..., CN) with high probability has rate rR.

mi

Remark 5.2. The idea of using list recoverability to argue independence can also be used
to prove Theorem 5.1. That is, first show that with good probability, a random linear outer
code will have good list recoverability. Then the argument in this section can be used to
prove Theorem 5.1. However, this gives worse parameters than the proof presented in Sec-
tion 5.4. In particular, by a straightforward application of the probabilistic method, one can
show that a random linear code of rate R over Fg is (R + v, ¢, Q*/")-list recoverable [49,
Sec 9.3.2]. In proof of Theorem 5.2, £ is roughly q”, where J is roughly 1/g% Thus, if we
used the arguments in the proof of Theorem 5.2, we would be able to prove Theorem 5.1

o(e=2(-r)~! _ B
but with lists of size of Q) (e), which is worse than the list size ono(6 21-R))
guaranteed by Theorem 5.1.

5.6 Bibliographic Notes and Open Questions

The material presented in this chapter appears in [61].

Theorem 5.1 in some sense generalizes the following result of Blokh and Zyablov [19].
Blokh and Zyablov show that the concatenated code where both the outer and inner codes
are chosen to be random linear codes with high probability lies on the Gilbert-Varshamov
bound of relative minimum distance is (at least) H, (1 — R) for rate R.

The arguments used in this chapter also generalize Thommesen’s proof that concate-
nated codes obtained by setting Reed-Solomon codes as outer codes and independent ran-
dom inner code lie on the Gilbert-Varshamov bound [102]. In particular by using y to be

89

the all zero vector and J = L = 1 in proof of Theorem 5.2, one can recover Thommesen’s
proof. Note that when J = 1, a codeword c is ((w), F,)-independent if wt(w) = w. Thus,
the proof of Thommesen only required a knowledge of the weight distribution of the Reed-
Solomon code. However, for our purposes, we need a stronger form of independence in the
proof of Theorem 5.2 for which we used the strong list-recoverability property of folded
Reed-Solomon codes.

Theorem 5.2 leads to the following intriguing possibility.

Open Question 5.1. Can one list decode the concatenated codes from Theorem 5.2 up to
the fraction of errors for which Theorem 5.2 guarantees it to be list decodable (with high
probability)?

Current list-decoding algorithms for concatenated codes work in two stages. In the
first stage, the inner code(s) are list decoded and in the second stage the outer code is list
recovered (for example see Chapter 4). In particular, the fact that in these algorithms the
first phase is oblivious to the outer codes seems to be a bottleneck. Somehow “merging”
the two stages might lead to a positive resolution of the question above.

90

Chapter 6
LIMITS TO LIST DECODING REED-SOLOMON CODES

6.1 Introduction

In Chapters 3 and 4 we were interested in the following question: Can one construct explicit
codes along with efficient list-decoding algorithms that can correct errors up to the list-
decoding capacity ? Note that in the question above, we have the freedom to pick the code.
In this chapter, we will turn around the question by focusing on a fixed code and then asking
what is the best possible tradeoff between rate and fraction of errors (that can be corrected
via efficient list decoding) for the given code.

In this chapter, we will primarily focus on Reed-Solomon codes. Reed-Solomon codes
are an important and extensively studied family of error-correcting codes. The codewords
of a Reed-Solomon code (henceforth, RS code) over a field [F are obtained by evaluating low
degree polynomials at distinct elements of [F. The rate versus distance tradeoff for Reed-
Solomon codes meets the Singleton bound, which along with the code’s nice algebraic
properties, give RS codes a prominent place in coding theory. As a result the problem of
decoding RS codes has received much attention.

As we already saw in Section 3.1, in terms of fraction of errors corrected, the best
known polynomial time list algorithm today can, for Reed-Solomon codes of rate R, correct
uptoal— V'R ([97, 63]) fraction of errors. The performance of the algorithm in [63]
matches the so-called Johnson bound (cf. [64]) which gives a general lower bound on the
number of errors one can correct using small lists in any code, as a function of the distance
of the code. As we saw in Chapter 3, there are explicit codes known that have better
list decodable properties than Reed-Solomon codes. However, Reed-Solomon codes have
been instrumental in all the algorithmic progress in list decoding (see Section 3.1 for more
details on these developments). In addition, Reed-Solomon codes have important practical
applications. Thus, given the significance (both theoretical and practical) of Reed-Solomon
codes, it is an important question to pin down the optimal tradeoff between the rate and list
decodability of Reed-Solomon codes.

This chapter is motivated by the question of whether the Guruswami-Sudan result is
the best possible (i.e., whether the Johnson bound is “tight” for Reed-Solomon codes).
By this we mean whether attempting to decode with a larger error parameter might lead
to super-polynomially large lists as output, which of course will preclude a polynomial
time algorithm. While we don’t quite show this to be the case, we give evidence in this
direction by demonstrating that in the more general setting of list recovery (to which also
the algorithm of Guruswami and Sudan [63] applies) its performance is indeed the best

91

possible.
We also present constructions of explicit “bad list-decoding configurations” for Reed-
Solomon codes. The details follow.

6.2 Overview of the Results

6.2.1 Limitations to List Recovery

The algorithm in [63] in fact solves the following more general polynomial reconstruction
problem in polynomial time: Given n’ distinct pairs (3;,;) € IF? output a list of all polyno-
mials p of degree k that satisfy p(53;) = ~y; for more than v/kn’ values of i € {1,2,...,n'}
(we stress that the 3;’s need not be distinct). In particular, the algorithm can solve the
list recovery problem (see Definition 2.4). As a special case, it can solve the following
“error-free” or “noiseless” version of the list recovery problem.

Definition 6.1 (Noiseless List Recovery). For a g-ary code C' of block length n, the noise-
less list recovery problem is the following. We are given a set S; C F, of possible symbols
for the i’th symbol for each position i, 1 < 1 < n, and the goal is to output all codewords
¢ = {c1,...,Cn) such that ¢; € S; for every i. When each S; has at most £ elements, we
refer to the problem as noiseless list recovery with input lists of size /.

Note that if a code C'is (0, £, L)-list recoverable then L is the worst case output list size
when one solves the noiseless list recovery problem on C' with input lists of size .

Guruswami and Sudan algorithm [63] can solve the noiseless list recovery problem for
Reed-Solomon codes with input lists of size £ < [7] in polynomial time. That is, Reed-
Solomon codes are (0, [%]—1, L(n))-list recoverable for some polynomially bounded func-
tion L(n). In Section 6.3, we demonstrate that this latter performance is the best possible
with surprising accuracy — specifically, we show that when £ = [7], there are settings of
parameters for which the list of output polynomials needs to be super-polynomially large
in n (Theorem 6.3). In fact, our result also applies to the model considered by Ar et al. [3],
where the input lists are “mixtures of codewords.” In particular, in their model the lists at
every position take values from a collection of ¢ fixed codewords.

As a corollary, this rules out an efficient solution to the polynomial reconstruction al-
gorithm that works even under the slightly weaker condition on the agreement parameter:
t > Vkn' —k /2.1 In this respect, the “square root” bound achieved by [63] is optimal,
and any improvement to their list-decoding algorithm which works with agreement frac-
tion t/n < /R where R = (k + 1)/n is the rate of the code, or in other words that works
beyond the Johnson bound, must exploit the fact that the evaluation points (3; are distinct
(or “almost distinct”™).

I"This in turn rules out, for every € > 0, a solution to the polynomial reconstruction algorithm that works

aslongast > /(1 —e)kn'.

92

While this part on tightness of Johnson bound remains speculative at this stage, for the
problem of list recovery itself, our work proves that RS codes are indeed sub-optimal, as
we describe below. By our work Reed-Solomon codes for list recovery with input lists of
size £ must have rate at most 1/£. On the other hand, Guruswami and Indyk [52] prove that
there exists a fixed R > 0 (in fact R can be close to 1) such that for every integer ¢ there
are codes of rate R which are list recoverable given input lists of size ¢ (the alphabet size
and output list size will necessarily grow with £ but the rate itself is independent of £). Note
that in Chapter 3, we showed that folded Reed-Solomon codes are explicit list recoverable
codes with optimal rate.

6.2.2 Explicit “Bad” List Decoding Configurations

The result mentioned above presents an explicit bad list recovery configuration, i.e., an
input instance to the list recovery problem with a super-polynomial number of solutions.
To prove results on limitations of list decoding, such as the tightness of the Johnson bound,
we need to demonstrate a received word y with super-polynomially many codewords that
agree with y at ¢ or more places. A simple counting argument establishes the existence
of such received words that have agreement ¢ with (’Z) /=% many codewords [70, 25].
In particular, this implies the following for n = ¢. For k = n® (in which case we say
that the Reed-Solomon code has low rate), one can get t = % for any 6 > 0 and for k£
in Q(n) (in which case we say that the Reed-Solomon code has high rate), one can get

t=k+0 (@) In Section 6.4.2, we demonstrate an explicit construction of such a

received word with super-polynomial number of codewords with agreement ¢t up to (2—¢)k
(for any € > 0), where k = n% for any 6 > 0. Note that such a construction is trivial for
t = k since we can interpolate degree k polynomials through any set of k£ points. In
Section 6.4.3, we demonstrate an explicit construction of such a received word with super-
polynomial number of codewords with agreement ¢ up to k + log“’+)n’ when £ is in Q(n).

In general, the quest for explicit constructions of this sort (namely small Hamming balls
with several codewords) is well motivated. If achieved with appropriate parameters they
will lead to a derandomization of the inapproximability result for computing the minimum
distance of a linear code [32]. However, for this application it is important to get gn)
codewords in a ball of radius p times the distance of the code for some constant p < 1.
Unfortunately, neither of our explicit constructions achieve p smaller than 1 — o(1).

As another motivation, we point out that the current best trade-off between rate and
relative distance (for a code over constant sized alphabet) is achieved by a non-linear code
comprising of precisely a bad list-decoding configuration in certain algebraic-geometric
codes [107]. Unfortunately the associated received word is only shown to exist by a count-
ing argument and its explicit specification will be required to get explicit codes with these
parameters.

93

6.2.3 Proof Approach

We show our result on list recovering Reed-Solomon codes by proving a super-polynomial
(in m = ¢™) bound on the number of polynomials over F,~ of degree k that take values
in FF, at every point in F =, for any prime power g where k is roughly ¢™'. Note that
this implies that there can be a super-polynomial number of solutions to list recovery when
input list sizes are [7]. We establish this bound on the number of such polynomials by
exploiting a folklore connection of such polynomials to a classic family of cyclic codes
called BCH codes, followed by an (exact) estimation of the size of BCH codes with certain
parameters. We also write down an explicit collection of polynomials, obtained by taking
[F,-linear combinations of translated norm functions, all of which take values only in IF,.
By the BCH bound, we conclude that this in fact is a precise description of the collection
of all such polynomials.

Our explicit construction of a received word y with several RS codewords (for low rate
RS codes) with non-trivial agreement with y is obtained using ideas from [25] relating to
representations of elements in an extension finite field by products of distinct linear factors.
Our explicit construction for high rate RS codes is obtained by looking at cosets of certain
prime fields.

6.3 BCH Codes and List Recovering Reed-Solomon Codes

6.3.1 Main Result

We will work with polynomials over Fgm of characteristic p where g is a power of p, and
m 2= 1. Our goal in this section is to prove the following result, and in Section 6.3.2 we
will use it to state corollaries on limits to list decodability of Reed-Solomon codes. (We
will only need a lower bound on the number of polynomials with the stated property but
the result below in fact gives an exact estimation, which in turn is used in Section 6.3.4 to
give a precise characterization of the concerned polynomials.)

Theorem 6.1. Let q be a prime power, and m > 1 be an integer. Then, the number of

univariate polynomials in Fym [2] of degree at most q;”_—ll which take values in ¥, when

evaluated at every point in Fgm is exactly q*". That is,

m

1 m
{P(2) € Fyn[2] | deg(P) < 2 = andVa € Fyn, P(a) € F,}| = ¢*

In the rest of this section, we prove Theorem 6.1. The proof is based on a connection of
polynomials with the stated property to a family of cyclic codes called BCH codes, followed
by an estimation of the size (or dimension) of the associated BCH code. Now, the latter
estimation itself uses basic algebra. In particular one can prove Theorem 6.1 using finite
field theory and Fourier transform without resorting to coding terminology. However, the
connection to BCH codes is well known and we use this body of prior work to modularize
our presentation.

94

We begin with the definition of BCH codes?. We point the reader to [80], Ch. 7, Sec. 6,
and Ch. 9, Secs. 1-3, for detailed background information on BCH codes.

Definition 6.2. Let o be a primitive element of Fym, and let n = q™ — 1. The BCH code
BCHg m 4, of designed distance d is a linear code of block length n over I, defined as:

BCHym,d,a = {(co,C1,---,cn 1) € Fy lc(a’) = 0fori=1,2,...,d — 1, where

c(z) =co+ 1+ -+ cpo12™ ! € Fylz]}.

We will omit one or more the subscripts in BCHg , 4o for notational convenience when
they are clear from the context.

In our proof, we will use the following well-known result. For the sake of completeness,
we present its proof here.

Lemma 6.1 (BCH codes are subfield subcodes of RS codes). Let g be a prime power and
m > 1 an integer. Let n = q™ — 1, d be an integer in the range 1 < d < n, and o be a
primitive element of Fym. Then the set of codewords of BCH , 4. maybe written as

{(P(a®),P(a'),...,P(a" ")) € F2 | P € Fyn[2],deg(P) < n —d,
and P(y) € F,Vy € Fym }.

Proof. Our goal is to prove that the two sets

Sy ={{co,c1y...,cn 1) |c(a’) =0fori=1,2,...,d— 1, where
c(z)=co+e1x+-+cp 12" P €Fz] },

Sy = {(P(a),P(a'),...,P(a™ ")) | P € Fynlz], deg(P) < n—d, and P(y) € F,

\V/")/ € qu} y
are identical. We will do so by showing both the inclusions Sy C S7 and S; C S,.
We begin with showing Sy C S;. Let P(z) = ;”:_g a;2? € Fym|2] be a polynomial of
degree at most (n — d) that takes values in F,. Then, forr = 1,2,...,d — 1, we have
n—1 . ' n—1 n—d B ' n—d n-1 o
ZP(az)(ar)z — Z(Z aja”)a” — a; (ar-l-])z =0,
i=0 i=0 =0 =0 =0

n—

where in the last step we use that 37 ' v = 0 for every y € Fym \ {1} and "t/ # 1 since

1 <r+j <n—1and« is primitive. Therefore, (P(a?), P(a'),..., P(a™!)) € 5.

What we define are actually referred to more specifically as narrow-sense primitive BCH codes, but we
will just use the term BCH codes for them.

95

We next proceed to show the inclusion S; C S,. Suppose (cg, c1, . .., ¢r_1) € Sy. For
0 < j < n — 1, define (this is the “inverse Fourier transform™)

where by %, we mean the multiplicative inverse of n - 1 in the field Fgm. Note that a; =
le(@7) = Le(am7) where c(z) = 377 ;at. So, by the definition of S, it follows that
a; = 0 for j > n — d. Therefore the polynomial P(z) € Fym defined by

n—1 n—d
P(z2) = E ajz’ = E a;?’
j=0 Jj=0

has degree at most (n — d).
We now claim that for P(a®) = ¢, for 0 < s < n — 1. Indeed,

Pla®) = T.Haja ni(%nz_lca)

-1

3

i=0 3:0

where in the last step we used the fact that 3 7~ 1(a*%)7 = 0 whenever i # s, and equals
n when i = s. Therefore, (co,c1,...,¢p 1) = ((a%),..., P(a™')). We are pretty much
done, except that we have to check also that P(0) € F, (smce we wanted P(y) € F, for
all y € Fm, including = 0). Note that P(0) = aq = i Sl Sincen = ¢™ — 1, we
have n + 1 = 0 in Fgm and so = = —1 € F,. This together with the fact that ¢; € F, for
every ¢ implies that P(0) € F, as well, completing the proof. O

In light of the above lemma, in order to prove Theorem 6.1, we have to prove that
IBCH,mdal =¢*" whend = (g™ —1)(1— q—) We turn to this task next. We begin with
the following bound on the size of BCH codes [15, Ch. 12]. For the sake of completeness,
we also give a proof sketch.

Lemma 6.2 (Dimension of BCH Codes). For integer i, n, let |i|,, be a shorthand for i
mod n. Then |BCH .| = ¢7@™ 9 where

I(gm,d)={i|0<i<n—1,li¢ |, <n—dforall j0<j<m~—1} (6.1)
for n = q™ — 1. (Note that for this value of n, if i = ig + i1q + -+ im_1q™ ", then

liq|n = tm_1 + i0q + 11¢> + -+ + im_oq™ ", and so |iq|, is obtained by a simple cyclic
shift of the q-ary representation of i.)

96

Proof. 1t follows from Definition 6.2 that the BCH codewords are simply polynomials ¢(x)
over IF, of degree at most (n — 1) that vanish at o’ for 1 < ¢ < d. Note that if ¢(z), ¢/ () are
two such polynomials, then so is ¢(x)+c’(z). Moreover, since o = 1, zc(z) mod (z™—1)
also vanishes at each designated o*. It follows that if ¢(z) is a codeword, then so is () c(x)
mod (z™ — 1) for every polynomial r(z) € F,[z].

In other words BCH, ,,, 4 is an ideal in the quotient ring R = F,[z]/(z™ — 1). It is well
known that R is a principal ideal ring, i.e., a ring in which every ideal is generated by one
element [77, Chap. 1, Sec. 3]. Therefore there is a unique monic polynomial g(z) € Fy|[z]
such that

BCHgm.aa = {9(2)h(z) | h(z) € Fyla]; deg(h) <n —1 —deg(g)}

It follows that |[BCH, ,,, g.0| = ¢" 98, and so it remains to prove that deg(g) = n —
|I(q, m,d)| where I(q, m,d) is defined as in (6.1).

It is easily argued that the polynomial g(x) is the monic polynomial of lowest degree
over IF, that has o' for every ¢, 1 <14 < d, as roots. It is well known ([80, Chap. 7, Sec. 5])
that g(x) is then given by

BEM (a)UM (a?)--UM (ad—1)

where M () is the cyclotomic coset’of ot. Further for the ease of notation, define My, =
M(a)U M(a?)---UM(a®1). To complete the proof we will show that

| Md,a |: n— | I(q7m7 d) | . (62)

To prove (6.2), we claim that for every 0 < ¢ < n— 1, o € Mg if and only if
(n —1i) & I(m,q,d). To see that this is true note that (n — i) ¢ I(q, m,d) if and only
if there is a 0 < j; < m such that |(n — i)¢% |, = n —i* > n — d. In other words,
lig% |, = i*, where 0 < i* < d. This implies that (n — 1) & I(q,m,d) if and only if
ot € M(a'") C My ,, which proves the claim. O

Let’s now use the above to compute the size of BCH, , 4. Where d = (g™ —1) — ‘121:11.
We need to compute the quantity |I(g,m, d)|, i.e., the number of 7, 0 < 7 < ¢"™ — 1 such
that |ig? | gm—_1 < q;n:ll =1+4+q+---+g™foreachj =0,1,...,m — 1. This condition
is equivalent to saying that if i = 49 + 4,q + + - + i, _1¢™ ! is the g-ary expansion of i,
then all the m integers whose g-ary representations are cyclic shifts of (ig,i1,...,%m 1)
are < 1+ g+ --- + g™ '. Clearly, this condition is satisfied if and only if for each
j=0,1,...,m—1,4; € {0,1}. There are 2™ choices for ¢ with this property, and hence

we conclude |I(q,m,d)| = 2™ whend = (¢™ — 1) — q;n:ll-

3In other words M(af) = {af,aliln, ... ali@™ ' In} where m; is the smallest integer such that
lig™i |n = 1.

97

Together with Lemma 6.1, we conclude that the number of polynomials of degree at
most q;n__11 over F,m which take on values only in F, at every point in F m is precisely ¢>".
This is exactly the claim of Theorem 6.1.

Before moving on to state implications of the above result for Reed-Solomon list de-

coding, we state the following variant of Theorem 6.1.

Theorem 6.2. Let q be a prime power, and m > 1 be an integer. Then, for each s, 1 < s <
m, the number of univariate polynomials in Fym 2] of degree at most 25:1 q™ 7 which take

values in Fy, when evaluated at every point in Fgm is at least q2;=0 (7;) And the number

of such polynomials of degree strictly less than g™ is exactly q (namely just the constant

polynomials, so there are no polynomials with this property for degrees between 1 and
m—1

g = 1)

Since the proof of the theorem above is similar to the proof of Theorem 6.1, we will
just sketch it here. By Lemmas 6.1 and 6.2, to count the number of univariate polynomials
in Fym [2] of degree at most g™ + - - - + ¢™ * which take values in [F,, we need to count
the number of integers 7 = g + 41q + - - - + 4,,_1¢™ ! such that all integers corresponding
to cyclic shifts of (g, . .., %, 1) are at most g™ ! 4 - - - + g™ %. It is easy to see all integers
i such that ; € {0,1} for all j and i; = 1 for at most s values of j, satisfy the required
condition. The number of such integers is ijo (’]") , which implies the bound claimed in
the theorem. The argument when degree is < ¢™ ! is similar. In this case we have to count
the number of integers 7o + 71q + « - - + 4,,_1¢™ ' such that all integers corresponding to
all cyclic shifts of (ig, ... ,%y,_1) is < ¢™'. Note that if 7; # 0 forsome 0 < j < m — 1,
then the (m — 1 — j)th shift with be at least g™ . Thus, only 7 = 0 satisfies the required
condition, which implies claimed bound in the theorem.

6.3.2 Implications for Reed-Solomon List Decoding

In the result of Theorem 6.1, if we imagine keeping ¢ > 3 fixed and letting m grow, then for
the choice n = ¢™ and k = (¢™ — 1)/(¢ — 1) (so that [] = ¢), Theorem 6.1 immediately
gives us the following “negative” result on polynomial reconstruction algorithms and Reed-
Solomon list decoding.*

Theorem 6.3. For every prime power q > 3, there exist infinitely many pairs of integers
k,n such that [] = q for which there are Reed-Solomon codes of dimension (k + 1) and
block length n, such that noiselessly list recovering them with input lists of size [7| requires

nl/lgq

super-polynomial (in fact q) output list size.

The above result is exactly tight in the following sense. It is easy to argue combinatori-
ally (via the “Johnson type” bounds, cf. [64]) that when £ < [2], the number of codewords

“We remark that we used the notation n = ¢™ — 1 in the previous subsection, but for this Subsection we
will take n = ¢™.

98

is polynomially bounded. Moreover [63] presents a polynomial time algorithm to recover
all the solution codewords in this case. As was mentioned in the introduction, our results
also show the tightness of noiselessly list recovering Reed-Solomon codes in the special
setting of Ar, Lipton, Rubinfeld and Sudan [3]. One of the problems considered in [3] is
that of noiselessly list recovering Reed-Solomon codes with list size ¢, when the set S; at
every position ¢ is the set of values of fixed ¢ codewords at position 7. Note that our lower
bound also works in this restricted model if one takes the g fixed codewords to be the ¢
constant codewords.

The algorithm in [63] solves the more general problem of finding all polynomials of
degree at most k which agree with at least ¢ out of n' distinct pairs (5;,;) whenever t >
Vkn'. The following corollary states that, in light of Theorem 6.3, this is essentially the
best possible trade-off one can hope for from such a general algorithm. We view this as
providing the message that a list-decoding algorithm for Reed-Solomon codes that works
with fractional agreement ¢ /n that is less than V'R where R is the rate, must exploit the fact
that the evaluation points [; are distinct or almost distinct (by which we mean that no ;
is repeated too many times). Note that for small values of R (close to 0), our result covers
even an improvement of the necessary fractional agreement by O(R) which is substantially
smaller than v/R.

Corollary 6.4. Suppose A is an algorithm that takes as input n' distinct pairs (3;,7;) € F?
for an arbitrary field F and outputs a list of all polynomials p of degree at most k for which
p(Bi) = 7 for more than Vkn' — Y pairs. Then, there exist inputs under which A must
output a list of super-polynomial size.

Proof. Note that in the list recovery setting of Theorem 6.3, the total number of pairs n’ =
nf =n[2] <n(% + 1), and the agreement parameter ¢ = n. Then

k
<n(1 —) Y n=t
S ”(Tom) 27"
Therefore there can be super-polynomially many candidate polynomials to output even
when the agreement parameter ¢ satisfies t > vVkn' — k/2. 0

6.3.3 Implications for List Recovering Folded Reed-Solomon Codes

In this subsection, we will digress a bit and see what the ideas in Section 6.3.1 imply
about list recoverability of folded Reed-Solomon codes. Recall that a folded Reed-Solomon
code with folding parameter m is just a Reed-Solomon code with m consecutive evalua-
tion pointsbundled together (see Chapter 3). In particular, if we start with an [n, k] Reed-
Solomon code, then we get an (N = n/m, K = k/m) folded Reed-Solomon code.

99

Itis not too hard to check that the one can generalize Theorem 6.1 to show the following.
Let @ > 1 be an integer and ¢ be a prime power. Then there are ¢>* codewords from an

(%, 7:(2__11)) folded Reed-Solomon code such that every symbol of such a codeword takes

a value in (F,)™. The set of ¢*>* folded Reed-Solomon codewords are just the ¢** BCH
codewords from Theorem 6.1, with m consecutive positions in the BCH codeword “folded”
into one symbol. Thus, this shows that an (N, K) folded Reed-Solomon code (with folding
parameter m) cannot be noiselessly list recovered with input lists of size (%)m

Let us now recall the algorithmic results for (noiselessly) list recovering folded Reed-
Solomon codes. From (3.6) it follows that an (NN, K') folded Reed-Solomon code (with
folding parameter m) can be noiselessly list recovered with input lists of size £ if

N (142) () VAR,
r m—s+1
where 1 < s < m, and r > s are parameters that we can choose. Thus for any ¢ > 0 if
r = £, then we can satisfy the above condition if

s s+1
1< (1—e)t (%) (m) . 6.3)

m

The bound above unfortunately is much smaller than the bound of (NV/K)™, unlike the
case of Reed-Solomon codes where the two bounds were (surprisingly) tight. For the case
when K = o(N), however one can show that for any ¢ > 0, the bound in (6.3) is at least
(N/K)™(1-9)_ Indeed, one can choose s = m(1 — §/2), in which case the bound in (6.3)
is (N/K)™1=0) . (N/K)™/2(§/2)m(1=9/2)+1(1 — g)m(1=8/2)+1 The claimed expression
follows by noting that N/K = w(1) while §, e and m are all O(1).

6.3.4 A Precise Description of Polynomials with Values in Base Field

We proved in Section 6.3.1, for () = q;n__ll, there are exactly ¢>” polynomials over Fym

of degree () or less that evaluate to a value in [F, at every point in Fym. The proof of this
obtains the coefficients of such polynomials using a “Fourier transform” of codewords of an
associated BCH code, and as such gives little insight into the structure of these polynomials.
One of the natural questions to ask is: Can we say something more concrete about the
structure of these ¢2” polynomials? In this section, we answer this question by giving an
exact description of the set of all these g2 polynomials.

We begin with the following well-known fact which simply states that the “Norm”
function of Fgm over I, takes only values in IF,.

Lemma 6.3. Forall 7 € Fyn, 2’1 € F,.

Theorem 6.5. Let q be a prime power, and let m > 1. Let o be a primitive element of Fym.

Then, there are exactly ¢*" univariate polynomials in Fym [z] of degree at most Q = q;n%ll

100

that take values in ¥, when evaluated at every point in Fym, and these are precisely the
polynomials in the set

2m—1
N={> Biz+a)? | Bo,Br,...,Bam-1 €F,}.
=0

Proof. By Lemma 6.3, clearly every polynomial P in the set N satisfies P(y) € F, for
all v € Fym. The claim that there are exactly ¢*" polynomials over F,m of degree @ or
less that take values only in IF;, was already established in Theorem 6.1. So the claimed
result that NV precisely describes the set of all these polynomials follows if we show that
IN|=¢*".

Note that by definition, | N| < ¢®". To show that |[N| > ¢*", it clearly suffices to show
(by linearity) that if

9m_1
Y Bilz+a)? =0 (6.4)
i=0

as polynomials in Fym [2], then By = 81 = -+ = fam_1 = 0. We will prove this by setting

up a full rank homogeneous linear system of equations that the ;’s must satisfy. For this
we need Lucas’ theorem, stated below.

Lemma 6.4 (Lucas’ Theorem, cf. [47]). Let p be a prime. Let a and b be positive integers
with p-ary expansions ag + a1p + - -+ + a,p" and by + byp + - - - + b,.p" respectively. Then
(‘Z) = (Zg) (Z:) (‘Z:) mod p, which gives us (Z) # 0 mod p if and only if a; > b; for
all j € {0,1,--- ,r}.

Define the set
j€S
Applying Lemma 6.4 with p being the characteristic of the field F,, we note that when
operating in the field [F;m , the binomial coefficient of 27 in the expansion of (z + af)? is 1
if j € T and 0 otherwise. It follows that (6.4) holds if and only if 3.7 (a!)@~74; = 0 for
all j € T, which by the definition of T" and the fact that Q = 1+ q+¢>+--- + g™ lis
equivalent to

2m_1
D (e?)iB; =0 forallj €T. (6.5)
i=0
Let us label the 2™ elements {a’ | j € T'} as ag, a1, . . ., aam_1 (note that these are distinct
elements of Fym since « is primitive in [Fgm). The coefficient matrix of the homogeneous
system of equations (6.5) with unknowns [y, . . ., fem 1 is then the Vandermonde matrix
1 a2 oo ad" Tt
1 o a2 ... adnt
Y
gm_1

1 Quom_q Oé%mfl et Ogm

101

which has full rank. Therefore, the only solution to the system (6.5)is g = 1 = -+ =
Bom 1 = 0, as desired.]

6.3.5 Some Further Facts on BCH Codes

The results in the previous subsections show that a large number (¢2™) of polynomials over
Fgm take on values in [F, at every evaluation point, and this proved the tightness of the
“square-root” bound for agreement t = n = ¢ and total number of points n’ = nq (recall
Corollary 6.4). It is a natural question whether similarly large list size can be shown at other
points (¢, n’), specifically for slightly smaller n’ and ¢. For example, what if n’ = n(q — 1)
and we consider list recovery from lists of size ¢ — 1. In particular, how many polynomials
of degree at most @ = (¢™ — 1)/(g — 1) take on values in F, \ {0} at ¢ points in Fym. It
is easily seen that when ¢t = n = ¢™, there are precisely (¢ — 1) such polynomials, namely
the constant polynomials that equal an element of I, . Indeed, by the Johnson bound, since
t > +/Qn’ for the choice t = n and n’ = n(g — 1), we should not expect a large list size.
However, even for the slightly smaller amount of agreementt = n — 1 = |/Qn’], there
are only about a linear in n number of codewords, as Lemma 6.5 below shows. Hence
obtaining super-polynomial number of codewords at other points on the square-root bound
when the agreement ¢ is less than the block length remains an interesting question, which
perhaps the BCH code connection just by itself cannot resolve.

Lemma 6.5. Let g be a prime power and let m > 1. For any polynomial P(z) over Fym[z],
let its Hamming weight be defined as |{f € Fym|P(B) # 0}|. Then, there are exactly
(g — 1)¢™ univariate polynomials in Fym 2] of degree at most Q = %
in F, when evaluated at every point in Fym and that have Hamming weight (g™ — 1).
Furthermore, these are precisely the polynomials in the set W = {\z + B)? | B €

Fgm, A € F2).

that take values

Proof. 1t is obvious that all the polynomials in W satisfy the required property and are
distinct polynomials. We next show that any polynomial of degree at most () that satisfies
the required properties belongs to W completing the proof.

Let P(z) be a polynomial of degree at most) that satisfies the required properties.
We must show that P(z) € W. Let v € F;m be such that P(y) = 0. Clearly, for each
B € (Fem \ {7}). P(8)/(B —~)? € F;. By a pigeonhole argument, there must exist some
A € F; such that P(8) = X(B —)@ for at least % = @ values of § in Fm \ {7}.
Since P(v) = 0, we have that the degree @ polynomials P(z) and \(z — 7)? agree on at
least () + 1 field elements, which means that they must be equal to each other. Thus the
polynomial P(z) belongs to W and the proof is complete. U

102

6.4 Explicit Hamming Balls with Several Reed-Solomon Codewords

Throughout this section, we will be concerned with an [g, k + 1] Reed-Solomon code
RS[g, k + 1] over F,. We will be interested in a received word y € F¢ such that a super-
polynomial number of codewords of RS[q, k£ + 1] agree with y on ¢ or more positions, and
the aim would be to prove such a result for ¢ non-trivially larger than k. We start with the
existential result.

6.4.1 Existence of Bad List Decoding Configurations

It is easy to prove the existence of a received word y with at least (‘g) /g% codewords with
agreement at least ¢ with y. One way to see this is that this quantity is the expected number
of such codewords for a received word that is the evaluation of a random polynomial of
degree t [70].°

We have the following lower bound on (‘Z) /gt *:

qt—k = ttqt—k: - tt

q t k
(t) > 4q _ q_ — 2klogq—tlogt

Now when k = ¢° for some § > 0 and t = %, then klogq — tlogt is Q(q°logq),

which implies that the number of RS codewords with agreement ¢ with the received word
is g@)
risgq .

On the other hand, if £ = Q(q) lett = k + A, where A = %gq (we also assume

t < q/2). Now, klogq —tlogt > klogq— (k+ A)(logg—1) =k+ A — Alogq > k/2.

Thus, we get 2%(9 RS codewords with agreement t = k + O lo‘éq with the received word
r.

In the remainder of the chapter, we will try to match these parameters with explicit
received words. We will refer to Reed-Solomon codes with constant rate as high rate Reed-
Solomon codes and to Reed-Solomon codes with inverse polynomial rate as low rate Reed-
Solomon codes.

6.4.2 Low Rate Reed-Solomon Codes

Another argument for the existence of a bad list-decoding configuration (from the previous
subsection), as suggested in [25], is based on an element 8 in F,n = Fy(a), for some
positive integer h, that can be written as a product [[, (a4 a) for at least (‘i) /q" subsets
T C F, with |T| = t — the existence of such a 3 again follows by a trivial counting
argument. Here we use the result due to Cheng and Wan [25] that for certain settings of
parameters and fields such a 3 can be explicitly specified with only a slight loss in the
number of subsets 7', and thereby get an explicit received word y with several close-by
codewords from RS|q, k + 1].

>The bound can be improved slightly to (‘z) / ¢*~'~* by using a random monic polynomial.

103

Theorem 6.6 ([25]). Let € > 0 be arbitrary. Let q be a prime power, h be a positive integer
and a be such that ¥y () = Fgn. For any B € F,, let Ny(B) denote the number of t-tuples

(a9, ..., as) of distinct a; € Fy such that B = [[i_j(a +a;). Ift > (4 +2)(h+ 1),
e <t—2andq > max(t? (h — 1)%), then for all B € Fy,, Ny(B) > (t — 1)gt=h1
Proof. From the proof of Theorem 3 in [25], we obtain Ny(3) > E; — E,, where E; =
qt_q(h;# and B> = (1+ (3))(h— 1)’q. Observe that from the choice of g, (2) = % —:
q—t

2

N

We first give a lower bound on Ej. Indeed, using (}) < L% and ¢" — 1 < ¢", we have

2¢"—(q—t)g¢"' _ g* |t t-h1
Ey > 24" =5 T34 :

Note that from our choice of £, we have ¢t > (‘;1 + 2)h, thatis, t — h > (44:256)15. Further,
from our choice of ¢, (h — 1)! < qzt?_l. We now bound E, from above. From our
4+4¢
bgl,llnds on (;) and (h — 1)!, we have B < (1 + qT_t)q(MrLzs)t_l < (14 LhHg ! =
- — (% — 1)g*~"~1, where the second inequality comes from our bound on t — h.

Combining the bounds on E; and Es proves the theorem. U

We now state the main result of this section concerning Reed-Solomon codes:

Theorem 6.7. Let ¢ > 0 be arbitrary real, q a prime power, and h any positive integer.
(2+€)t

Ift > (2+2)(h+1)and ¢ > max(t?,(h — 1):=@+) then for every k in the range

t—h < k< t—1, there exists an explicit received wordy €]Fg such that there are at least

% codewords of RS[q, k + 1] that agree with y in at least t positions.

t

We will prove the above theorem at the end of this section. Ase — 0, and ¢, k, h — o0
in the above, we can get super-polynomially many codewords with agreement (1 + §)k for
some § = §(g) > 0 for a Reed-Solomon code of dimension tending to ¢*/2. As & — 0o, we
can get super-polynomially many codewords with agreement tending to 2k with dimension
still being ¢(1). We record these as two corollaries below (for the sake of completeness, we
sketch the proofs). We note that the non-explicit bound (‘i) /q*~* gives a super-polynomial
number of codewords for agreement ¢ > k/§ for dimension about k& = ¢%—°(!), where as
our explicit construction can give agreement at most 2k (or dimension at most ,/q).

Corollary 6.8. For all 0 < v < 1, and primes p, there exists § > 0 such that for any
power of p (call it q) that is large enough, there exists an explicit'y € FZ such that the
Reed-Solomon code RS|q,k + 1 = ¢° + 1] contains a super-polynomial (in q) number of
codewords with agreement at least (2 —)k with y.

Proof. For any integer h, choose €, t and k such thatt = (£ 42)(h+1),k=t—h+1and
t = (2 — 7)k. These relations imply that

104

Note that in the limit as h goes to infinity, ¢ = @. Further, choose g to be a prime
24¢ .
power such that pgy > ¢ > qo, where go = (h — 1)™@+97. Finally note that as ¢ goes
2(2—7)
to infinity, go = (h — 1) 7 *. For the rest of the proof we will assume that h is large
4(1 ,Y) 2(2—7) 2(2—7)

enough so that & = ==, g = (h—1)" > and(h—1) v > t2 Note that now § =
log,(h—1)—log,(1—7) > @ —log, p—log,(1—+) > 0. As all conditions of Theorem

6.7 are satisfied, we have that the relevant number of codewords is at least B = (t?i——kl)!‘ Now
as t ~ (f%:’/) (h+ 1) and h is large enough, we can assume that ¢ < (f:—z) (2h). Thus,

tt < (2h)(%)(2h) . (f:—z)(%)@h). To finish the proof we will show that B > g;—z where ¢
and d are constants which depend on ~y. Indeed as (¢t + 1)! < ¢!, and k > h, we have

q* q"

(t+1)! > (2D@h) | (227 \(FED@Eh)
(2h) =70 () 1=

2(2—v)

Since h is large enough, ¢ > (h/2) » , which along with the above inequality implies

that 2o o
ph(25) 1 N R (25) (1-15)

~ CEeh) 2™ gD 2y) (e ~ 2dh
-

@=mh _ 2- -
where d is chosen such that 29" > 275 h2(?7_3)(2h)(f:—3)(i_3)(2h). Note that such d exists
and it only depends on . Finally, if v < 1/2, then there exists a value c¢ that depends only
2(2—7)
on + such that ph(F52)(1-15) > q°". Thus, we have proved the theorem for 0 < v < 1/2.

Since having an agreement of 2 — « implies an agreement of 2 — ~' for any v/ > +, the
proof of the theorem for 0 < v < 1 follows. 0]

Corollary 6.9. Forall 0 < v < % and primes p, there exists § > 0, such that for any power
of p (call it q) that is large enough, there is an explicit’y € FZ such that the Reed-Solomon
code RS|q, k + 1 = ¢/~ + 1] contains a super-polynomial (in q) number of codewords
with agreement at least (1 + §)k with y.

Proof. The proof is similar to the proof of Corollary 6.8 and hence, most details are
skipped. Choose t and k such that t = (2 + 3)(h — 1) and k = t — h + 1. Note that
for h > g +5,t> (% + 2)(h + 1). Also let ¢ be a prime power such that ¢o < ¢ < pqo,

where go = (h — 1)% As in Corollary 6.8, we consider h to be very large and we
have gg ~ (h — 1)ﬁ, t~ 1+T'Y(h —1)and k ~ % Recalling that t = (1 + §)k, we have
0 ~ 7. Again using arguments as in the proof of Corollary 6.8, we have a lower bound of
Q(Q%) where d is a constant which depends on 7. O

(Proof of Theorem 6.7). In what follows, we fix E(z) to be a polynomial of degree h that
is irreducible over IF,. For the rest of this proof we will denote IFy[z]/(E(x)) by F . Also

note that for any root o of E, Fy(a) = Fn.

105

Pick any £ where 0 < ¢ < h — 1 and note that g and ¢ satisfy the conditions of Theo-

rem 6.6. For any B = (bg, b1, - ,b;), where b; € [, with at least one non zero b;; define

Lg(z) o Zf:o b;z'. Fix r(z) to be an arbitrary non-zero polynomial of degree at most

h — 1. By their definitions, r(a) and Lp(c) are elements of F,.
We will set the received word y to be (E(())>a€ﬂ3‘q. Note that since E(z) is an irreducible
polynomial, E(a) # 0 for all a € F,, and y is a well-defined element of Fi.

We now proceed to bound from below the number of polynomials of degree & g
¢ — h that agree with y on ¢ positions. For each non-zero tuple B € IFf;“, define Qp(z) =

— L’EZ). Clearly, Qp(a) € F;h. For notational convenience we will use N to denote

Ny(Qp(c)). Then, for j =1,--- , Np there exist A(p j) where A(p j) C Fqand | A)| =t
such that PY)(a) & [lacay, (@ +a) = @p(a). By Theorem 6.6, we have Np > (t —
1)qt="~! for every B — let us denote by N this latter quantity. Recalling the definition of
@, we have that for any (B, j), L:;‘E‘i) = —Pl(gj) (c), or equivalently 7"(04)+P](3j) (a)Lp(a) =
0. Since E is the irreducible polynomial of a over F,, this implies that E(z) divides

P9 (2)Lg(z) + r(x) in F,[x].
Finally we define Tg) (z) to be a polynomial of degree k = t + ¢ — h such that

T3 (2)E(z) = PY (z)Lp(z) + r(x). (6.6)

Clearly T(j)(—a) equals r(—a)/E(—a) for each a € A(p,j) and thus the polynomial T(j)
agrees with y on at least ¢ positions. To complete the proof we will give a lower bound
on the number of distinct polynomials in the collection {T(}. For a fixed B, out of the
Npg choices for pY) , t! choices of] would lead to the same® polynomial of degree t. Since

Np > N, there are at least @)N 1) choices of pairs (B, j). Clearly for j; # js the

polynomials P](;l)() and sz)() are distinct, however we could have Pgll)(m)L B, (T) =
P(”)()Lg,(x) (both are equal to say S(z)) leading to ng)(x) = Té?)(z:). However the
degree of S'is at most t+¢ = k+ h, and hence S can have at most &+ h roots, and therefore
atmost (**) factors of the form [],_,(z+a) with |T| = ¢. It follows that no single degree

k polynomial is counted more than (k+h) times in the collection {T(J }, and hence there
must be at least
(q€+1 _ 1) N qk:

>
TCUNRTCL

distinct polynomials among them, where we used N = (t—1)g'~""1and (¢*"1—1)(t—1) >
¢t =gl gince k=t +¢—h. O

SIf {a1,--- ,a,) is a solution of the equation 8 = []i_, (e + a;) then so is (@g(1)s*** » Qo)) for any
permutation o on {1, - -- , t}.

106

6.4.3 High Rate Reed-Solomon Codes

We now consider the case of constant rate Reed-Solomon codes. We start with the main
result of this subsection.

Theorem 6.10. Let L > 2 be an integer. Let p = aL + 1 be a prime and define t = bL
forany 1 < b < a — 1. Let the received word r be the evaluation of R(X) = X" over .
Then there are () many codewords in RS[n = p,k = (b— 1)L + 1]g, that agree with t in
at least t places.

To get some interesting numbers, let’s instantiate the parameters in the above theorem.
First we need the following result (we will prove this later in the subsection):

Lemma 6.6. For every 0 < & < 1/(cp — 1), where 1 < ¢y, < 6, there exists infinitely many
L with prime p = aL + 1 such that a is ©(L*).

Corollary 6.11. Let p be a prime that satisfies Lemma 6.6 for some €. Then there exists
at least 220/ codewords in RS[n = p,k = Q(n),d = n — k + 1]r, with agreement
t =k + ©(nt/1+e),

Proof. Setb = |(1 — d)a] + 1 for some 6 > 0. Thus, k = (b— 1)L > [(1 — d)aL]| =
O(aL) = ©(n). Further, t = bL. = k + L = k + O(n'/(1+9)). The last part follows from
the fact that n = ©(L'**). Finally, the number of codewords is at least (b%l)b_1 = 2%a) —
2Q(ne/(1+9)) O

If one is satisfied with super polynomially many codewords, say 2*“(®) for some w(n) =
w(logn), then choosing & = —82(")__ (for some suitable constant ¢), gives an agree-

log n—clogw(n)
mentt =k + © (W)

Proof of Theorem 6.10. The basic idea is to find a “lot” of ¢-tuples (y1,y2,---,¥:) €]thv

(where for every i # j, y; # y;) such that the polynomial P, ..)(X) = HEZI(X —y;) is
actually of the form

t—L
X4 e Xd
j=1
where ¢;_1, can be 0.7 The above is equivalent to showing that (y1,...,y;) satisfy the
following equations
yit+ys+-y;, =0 s=1,2...L—-1 (6.7)
We give an “explicit” description of at least (‘Z) distinct (y1, - . ., y:) such tuples.

"Then R(X) — P, y(X) is of degree t — L = k — 1 as needed.

107

Let I, be generated by vy and set @ = ~“. Note that the order of « is exactly L.
Now consider the “orbits” in F} under the action of a. It is not too hard to see that for
0 < i < a, the i*" orbit is the set v A, where A = {1,a,a?,...,a""1}. We will call ¢
the “representative” of the i*" orbit. Consider all subsets {4, ...,% 1} C {0,1,...,a—1}
of size b. Each such subset corresponds to a tuple (yi,...,y;) in the following manner
(recall that t = bL). For subset {ig, . .., 751}, define yq ., = y*4a”, where 0 < d < b and
0 < r < L. Note that each such subset {4, ...,7_1 } implies a distinct tuple (y1,. .., y:).
Thus, there are (}) such distinct tuples.

To complete the proof, we will now verify that (6.7) holds for every such tuple (y1, . .., ¥;)-

Indeed by construction, fors =1,...,L — 1:
t b—1 aLs—l
> - Yo (o) =S () o
j=1 d=0

where the last inequality follows from the the fact that the order of o is L. [
We now turn to the proof of Lemma 6.6. First we need the following result, which is a
special case of Linnik’s theorem:

Theorem 6.12 ([78]). There exists a constant cy, 1 < cp < 6, such that for all sufficiently
large d, there exists a prime p such that p < d° andp =1 mod d.

Proof of Lemma 6.6. Fix any 0 < ¢ < .

distribute” the product bd as aL, where a = O(L?).

Let d = 2" be sufficiently large so that it satisfies the condition of Theorem 6.12. Thus,
by Theorem 6.12, p = bd + 1 is prime for some 1 < b < 27¢2=1_ Let 28 < b < 2¢*! for
some ¢ € [0,7(c,—1)—1]. Now we consider two cases depending on whether i < ig = |re]|
or not.

First consider the case when 7 < 7g. Here define z; = L” ‘J Finally, let @ = 2% and
L = 2" First note that 0 < z; < r and thus, a and L are Well defined. Also note that

a b2
Le 2:(r—a) 2
where the inequality follows from the fact that for all positive reals |y| > y—1and b > 2
Similarly, one can show that a/L¢ < 4 and thus, a = ©(L¢) as required.

Now we consider the case when 7 > 4. In this case define z; = |- J::l |. Finally, let
a = 2""% and L = b2%. Note that z; < r. Also note thatas i + 1 < r(c, — 1), z; > 0 and
thus, a and L are well defined. As before, we first lower bound

— 2r—(1+s)a:q;—s(i+1) >1

a B 21‘—1‘1‘ 27’—:1:1;
E - bEQETS > 92¢e(it+1)+ez; o = &

The basic idea of the proof is to “re-

— po(ite)mi=re 5 gig(i+e) () —re—1 _ 1

where the first inequality follows from b < 2*! and the second follows from the fact
that for all positive y, |y] < y. Similarly one can show that £ < 4, which implies that
= ©(L®) as required. [

108

Smooth Variation of the Agreement

In this section, we will see how to get rid of the “restriction” that ¢ has to be a multiple of
L in Theorem 6.10.

Theorem 6.13. Let L > 2 and 0 < e < L be integers. Let p = aL+1 be a prime and define
t =bL+eforanyl < b < a— 1. Let the received word r be the evaluation of R(X) = X*
over F.. Then there are (azl) many codewords in RS[n = p,k = (b— 1)L + 1+ €|, that
agree with r in at least t places.

Since the proof is very similar to that of Theorem 6.10, we will just sketch the main
ideas here. The basic argument used earlier was that every ¢-tuple (y1,y2, - - ., y;) was cho-
sen such that the polynomials Py, . ,,)(X) and R(X) agreed on the first t — k co-efficients
and the RS codewords were simply the polynomials R(X) — Py, ,..4,)(X). Now the simple
observation is that for any fixed polynomial D(X) of degree e we can get RS codewords of
dimension k' = k + e by considering the polynomials D(X) (R(X) — P,....4)(X)). The
new agreement t' is with the new received word R'(X) = R(X)D(X). Now t' — ¢ is the
number of roots of D(X) that are not in the set {y1, ..., y:}.

Thus, we can now vary the values of k by picking the polynomial D(X) of differ-
ent degrees. However, the difference ¢’ — k&’ might go down (as an arbitrary polynomial
D(X) of degree e might not have e roots and even then, some of them might be in the set
{y1,--.,y:}). To get around this, while choosing the tuples (yi, ...,¥;), we will not pick
any elements from one of the a cosets (recall that the tuples (y1, . . ., y;) are just a collection
of b out of the a cosets formed by the orbits of o = 7, where y generates F}). This reduces
the number of tuples from (§) to (*,'). Now we pick an arbitrary subset of that coset of
size 0 < e < L—say the subset is {1, . .., 2. }. Finally, pick D(X) = [[;_,;(X — 2;). Note
that this implies that t' = ¢ + e as desired.

6.5 Bibliographic Notes and Open Questions

Results in Section 6.3 and Section 6.4.2 appeared in [59] while those in Section 6.4.3 are
from [62].

Our work, specifically the part that deals with precisely describing the collection of
polynomials that take values only in [F, bears some similarity to [51] which also exhibited
limits to list recoverability of codes. One of the simple yet powerful ideas used in [51],
and also in the work on extractor codes [101], is that polynomials which are r’th powers
of a lower degree polynomial take only values in a multiplicative subgroup consisting of
the r’th powers in the field. Specifically, the construction in [101, 51] yields roughly nn
codewords for list recovery where £ is the size of the S;’s in Definition 6.1. Note that this
gives super-polynomially many codewords only when the input lists are asymptotically
bigger than n/k.

In our work, we also use r’th powers, but the value of r is such that the r’th powers
form a subfield of the field. Therefore, one can also freely add polynomials which are r’th

109

powers and the sum still takes on values in the subfield. This lets us demonstrate a much
larger collection of polynomials which take on only a small possible number of values at
every point in the field. Proving bounds on the size of this collection of polynomials used
techniques that were new to this line of study.

The technique behind our results in Section 6.4.2 is closely related to that of the result of
Cheng and Wan [25] on connections between Reed-Solomon list decoding and the discrete
logarithm problem over finite fields. However, our aim is slightly different compared to
theirs in that we want to get a large collection of codewords close by to a received word. In
particular in Theorem 6.6, we get an estimate on N;(3) while Cheng and Wan only require
N;(B) > 0. Also Cheng and Wan consider equation (6.6) only with the choice Lg(z) = 1.

Ben-Sasson, Kopparty and Radhakrishnan in [12], exploiting the sparsity of linearized
polynomials, have shown the following. For every 6 € (0, 1) there exits Reed-Solomon
code of block length n and dimension n® + 1, which contains super-polynomial many code-
words that agree with a received word in at least nvé positions. Also they show for constant
rate Reed-Solomon codes (where the rate is R > 0), there exists a received word that has
agreement R'N (where R’ > R) with roughly N®(°8(1/F) codewords. The received word
in the above constructions, however, is not explicit. Ben-Sasson et al. also construct an ex-
plicit received word that agrees with super-polynomially many Reed-Solomon codewords
in w(k) many places, where k = n® + 1 is the dimension of the code. However, their results
do not give an explicit bad list decoding configurations for constant rate Reed-Solomon
codes. The results in [12] do not work for prime fields while the results on explicit received
words in this chapter do work for prime fields.

We conclude with some open questions.

Open Question 6.1. We have shown that RS codes of rate 1/{ cannot be list recovered with
input lists of size £ in polynomial time when £ is a prime power. Can one show a similar
result for other values of £?

Using the density of primes and our work, we can bound the rate by O(1/¢), but if it is
true it will be nice to show it is at most 1// for every £.

We have shown that the v/kn’ bound for polynomial reconstruction is the best possible
given n’ general pairs (83;,7;) € F? as input. It remains a big challenge to determine
whether this is the case also when the 3;’s are all distinct, or equivalently

Open Question 6.2. Is the Johnson bound is the true list decoding radius of RS codes?

We conjecture this to be the case in the following sense: there exists a field IF and a
subset of evaluations points S such that for the Reed-Solomon code defined over IF and S,
the answer to the question above is yes. One approach that might give at least partial results
would be to use some of our ideas (in particular those using the norm function, possibly
extended to other symmetric functions of the automorphisms of F,= over IF,) together with
ideas in the work of Justesen and Hoholdt [70] who used the Trace function to demonstrate
that a linear number of codewords could occur at the Johnson bound. Further, the work of

110

Ben-Sasson et al. [12] gives evidence for this for RS codes of rate n~° for constant ¢ close
to 0.

Open Question 6.3. Can one show an analog of Theorem 6.6 on products of linear factors
for the case when t is linear in the field size q (the currently known results work only for t
up to q*/%)?

This is an interesting field theory question in itself, and furthermore might help to-
wards showing the existence of super-polynomial number of Reed-Solomon codewords
with agreement ¢ > (1+ ¢)k for some € > 0 for constant rate (i.e. when k is linear in n)? It
is important for the latter, however, that we show that N,(3) is very large for some special
field element 3 in an extension field, since by a trivial counting argument it follows that
there exist § € %, for which N,(8) < (§)/(¢" — 1).

t

111

Chapter 7
LOCAL TESTING OF REED-MULLER CODES

From this chapter onwards, we will switch gears and talk about property testing of
codes.

7.1 Introduction

A low degree tester is a probabilistic algorithm which, given a degree parameter ¢ and
oracle access to a function f on n arguments (which take values from some finite field FF),
has the following behavior. If f is the evaluation of a polynomial on n variables with total
degree at most £, then the low degree tester must accept with probability one. On the other
hand, if f is “far” from being the evaluation of some polynomial on n variables with degree
at most ¢, then the tester must reject with constant probability. The tester can query the
function f to obtain the evaluation of f at any point. However, the tester must accomplish
its task by using as few probes as possible.

Low degree testers play an important part in the construction of Probabilistically Check-
able Proofs (or PCPs). In fact, different parameters of low degree testers (for example, the
number of probes and the amount of randomness used) directly affect the parameters of the
corresponding PCPs as well as various inapproximability results obtained from such PCPs
([36, 5]). Low degree testers also form the core of the proof of MIP = NEXPTIME in [9].

Blum, Luby, and Rubinfeld designed the first low degree tester, which handled the
linear case, i.e., t = 1 ([21]), although with a different motivation. This was followed by
a series of works that gave low degree testers that worked for larger values of the degree
parameter ([93, 42, 7]). However, these subsequent results as well as others which use low
degree testers ([9, 43]) only work when the degree is smaller than size of the field F. Alon
et al. proposed a low degree tester for any nontrivial degree parameter over the binary field
Fy [1].

A natural open problem was to give a low degree tester for all degrees for finite fields of
size between two and the degree parameter. In this chapter we (partially) solve this problem
by presenting a low degree test for multivariate polynomials over any prime field I,.

7.1.1 Connection to Coding Theory

The evaluations of polynomials in 7 variables of degree at most ¢ are well known Reed-
Muller codes (note that when n = 1, we have the Reed-Solomon codes, which we con-
sidered in Chapter 6). In particular, the evaluation of polynomials in n variables of degree

112

at most ¢ over F, is the Reed-Muller code or RM, (¢, n) with parameters ¢ and n. These
codes have length ¢" and dimension (") (see [28, 29, 69] for more details). Therefore,
a function has degree ¢ if and only if (the vector of evaluations of) the function is a valid
codeword in RM,(n, t). In other words, low degree testing is equivalent to locally testing
Reed-Muller codes.

7.1.2 Overview of Our Results

It is easier to define our tester over [F3. To test if f has degree at most ¢, set k = [%1 , and
leti = (¢ + 1) (mod 2). Pick k-vectors yi, - - - , yx and b from Fj, and test if

k
Yo dfb+ Z ¢jy;) =0,

CG]F’g je=(c1, ,ck)

where for notational convenience we use 0° = 1 (and we will stick to this convention

throughout this chapter). We remark here that a polynomial of degree at most ¢ always

passes the test, whereas a polynomial of degree greater than ¢ gets caught with non-negligible
probability «.. To obtain a constant rejection probability we repeat the test ©(1 /) times.

The analysis of our test follows a similar general structure developed by Rubinfeld and
Sudan in [93] and borrows techniques from [93, 1]. The presence of a doubly-transitive
group suffices for the analysis given in [93]. Essentially we show that the presence of a
doubly-transitive group acting on the coordinates of the dual code does indeed allow us
to localize the test. However, this gives a weaker result. We use techniques developed in
[1] for better results, although the adoption is not immediate. In particular the interplay
between certain geometric objects described below and their polynomial representations
plays a pivotal role in getting results that are only about a quadratic factor away from
optimal query complexity.

In coding theory terminology, we show that Reed-Muller codes over prime fields are
locally testable. We further consider a new basis of Reed-Muller code over prime fields that
in general differs from the minimum weight basis. This allows us to present a novel exact
characterization of the multivariate polynomials of degree ¢ in n variables over prime fields.
Our basis has a clean geometric structure in terms of flats [69], and unions of parallel flats
but with different weights assigned to different parallel flats!. The equivalent polynomial
and geometric representations allow us to provide an almost optimal test.

Main Result

Our results may be stated quantitatively as follows. For a given integer t > (p — 1) and a
given real € > 0, our testing algorithm queries f at O (% +t- pz%“) points to determine

!The natural basis given in [28, 29] assigns the same weight to each parallel flat.

113

whether f can be described by a polynomial of degree at most ¢. If f is indeed a polynomial
of degree at most ¢, our algorithm always accepts, and if f has a relative Hamming distance
at least ¢ from every degree ¢ polynomial, then our algorithm rejects f with probability
at least % (In the case t < (p — 1), our tester still works but more efficient testers are
known). Our result is almost optimal since any such testing algorithm must query f in at

least (1 + p%) many points (see Corollary 7.5).

We extend our analysis also to obtain a self-corrector for f (as defined in [21]), in case
the function f is reasonably close to a degree ¢ polynomial. Specifically, we show that the
value of the function f at any given point x € F;; may be obtained with good probability
by querying f on ©(p/?) random points. Using pairwise independence we can achieve
even higher probability by querying f on p®(/P) random points and using majority logic
decoding.

7.1.3 Overview of the Analysis

The design of our tester and its analysis follows the following general paradigm first for-
malized by Rubinfeld and Sudan [93]. The analysis also uses additional ideas used in [1].
In this section, we review the main steps involved.

The first step is coming up with an exact characterization for functions that have low
degree. The characterization identifies a collection of subsets of points and a predicate
such that an input function is of low degree if and only if for every subset in the collection,
the predicate is satisfied by the evaluation of the function at the points in the subset. The
second step entails showing that the characterization is a robust characterization, that is,
the following natural tester is indeed a local tester (see section 2.3 for a formal definition):
Pick one of the subsets in the collection uniformly at random and check if the predicate is
satisfied by the evaluation of the function on the points in the chosen subset. Note that the
number of queries made by the tester is bounded above by the size of the largest subset in
the collection.

There is a natural characterization for polynomials of low degree using their alternative
interpretation as a RM code. As RM code is a linear code, a function is of low degree if
and only if it is orthogonal to every codeword in the dual of the corresponding RM code.
The problem with the above characterization is that the resulting local tester will have to
make as many queries as the maximum number of non-zero position in any dual codeword,
which can be large. To get around this problem, instead of considering all codewords in the
dual of the RM code, we consider a collection of dual codewords that have few non-zero
positions. To obtain an exact characterization, note that this collection has to generate the
dual code.

We use the well known fact that the dual of a RM code is a RM code (with different
parameters). Thus, to obtain a collection of dual codewords with low weight that generate
the dual of a RM code it is enough to find low weight codewords that generate every RM
code. To this end we show that the characteristic vector of any affine subspace (also called a

114

flat in RM terminology [69]) generates certain RM codes. To complete the characterization,
we show that any RM code can be generated by flats and certain weighted characteristic
vectors of affine subspaces (which we call pseudoflats). To prove these we look at the affine
subspaces as the intersection of (a fixed number of) hyperplanes and alternatively represent
the characteristic vectors as polynomials.

To prove that the above exact characterization is robust we use the self-correcting ap-
proach ([21, 93]). Given an input f we define a related function g as follows. The value
of g(x) is defined to be the most frequently occurring value, or plurality, of f at correlated
random points. The major part of the analysis is to show that if f disagrees from all low
degree polynomials in a lot of places then the tester rejects with high probability.

The analysis proceeds by first showing that f and g agree on most points. Then we show
that if the tester rejects with low enough probability then g is a low degree polynomial. In
other words, if f is far enough from all low degree polynomials, then the tester rejects with
high probability. To complete the proof, we take care of the case when f is close to some
low degree polynomial separately.

7.2 Preliminaries

Throughout this chapter, we use p to denote a prime and g to denote a prime power (p®
for some positive integer s) to be a prime power. In this chapter, we will mostly deal with
prime fields. We therefore restrict most definitions to the prime field setting.

For any ¢ € [n(q — 1)], let P; denote the family of all functions over IF} that are poly-
nomials of total degree at most ¢ (and w.l.o.g. individual degree at most ¢ — 1) in n vari-
ables. In particular f € P, if there exists coefficients a,,) € Iy, for every i € [n],
e; €{0,--- ,¢—1},> " e; < t, such that

f= > ey, en) | | 25 (7.1)
=1

(elv"' 7671)6{0,“' 7¢1—1}";0<Ei":1 eigt

The codeword corresponding to a function will be the evaluation vector of f. We recall the
definition of the (Primitive) Reed-Muller code as described in [69, 29].

Definition 7.1. Let V' = Iy be the vector space of n-tuples, for n > 1, over the field F,.
For any k such that 0 < k < n(q — 1), the k™ order Reed-Muller code RM,(k,n) is the
subspace of]FLV| of all n-variable polynomial functions (reduced modulo © — ;) of degree
at most k.

This implies that the code corresponding to the family of functions P; is RM,(¢,n).
Therefore, a characterization for one will simply translate into a characterization for the
other.

We will be using terminology defined in Section 2.3. We now briefly review the defi-
nitions that are relevant to this chapter. For any two functions f, g : Fy — F,, the relative

115

distance 6(f,g) € [0,1] between f and g is defined as 6(f, g) def Proem [f(z) # g(2)].
For a function g and a family of functions F' (defined over the same domain and range), we
say g is e- close to F, for some 0 < ¢ < 1, if, there exists an f € F, where §(f,g) < e.
Otherwise it is e- far from F'.

A one sided testing algorithm (one-sided tester) for P, is a probabilistic algorithm that
is given query access to a function f and a distance parameter e, 0 < ¢ < 1. If f € P, then
the tester should always accept f (perfect completeness), and if f is e-far from P;, then
with probability at least % the tester should reject f.

For vectors z, y € I}, the dot (scalar) product of z and y, denoted z - y, is defined to be
> | z;y;, where w; denotes the " co-ordinate of w.

To motivate the next notation which we will use frequently, we give a definition.

Definition 7.2. For any k > 0, a k-flat in ¥} is a k-dimensional affine subspace. Let
Y1, , Yx € I be linearly independent vectors and b € I, be a point. Then the subset

k
L= {Z CiY; + b|\V/Z S [k] c; €]Fp}
i=1
is a k-dimensional flat. We will say that L is generated by y,,--- ,yr at b. The incidence

vector of the points in a given k-flat will be referred to as the codeword corresponding to
the given k-flat.

Given a function f : F) — Ty, for yq,--- , 41, b € Fy we define
def
TP(y1,- -y, b) = S f+D] cw), (7.2)
c=(c1,- ,cl)G]Fi, 1€(l]
which is the sum of the evaluations of function f over an [-flat generated by yq,--- , ¥y, at
b. Alternatively, as we will see later in Observation 7.4, this can also be interpreted as the
dot product of the codeword corresponding to the [-flat generated by y1, - - - , y; at b and that

corresponding to the function f.
While k-flats are well-known, we define a new geometric object, called a pseudoflat. A
k-pseudoflat is a union of (p — 1) parallel (k — 1)-flats.

Definition 7.3. Let Ly, Ly, - -+ , L, 1 be parallel (k — 1)-flats (k > 1), such that for some
y € Fy andallt € [p— 2|, Liy1 = y + Ly, where for any set S C Fy and y € Ty,

y+ 8 L {z+ylz € SY. We define a k-pseudoflat to be the union of the set of points
Ly to L, 1. Further, given an r (where 1 < r < p — 2) and a k-pseudoflat, we define
a (k,r)pseudoflat vector as follows. Let I; be the incidence vector of L; for j € [p — 1].
Then the (k,r)-pseudoflat vector is defined to be Z;’: J"I;. We will also refer to the (k,r)-
pseudoflat vector as a codeword.

Let L be a k-pseudofiat. Also, for j € [p — 1], let L; be the (k — 1)-flat generated by
Y1, ,Yr_1 atb+j-y, where yy,--- ,yp_1 are linearly independent. Then we say that the

116

(k,r)-pseudoflat vector corresponding to L as well as the pseudoflat L, are generated by
Y, Y1, "+ ,Ye—1 at b exponentiated along y.

See Figure 7.1 for an illustration of the Definition 7.3.

o o o o o 0 0 0 0 0
Lle e e o :T} 4 |4 |4 |4 |4
| b e e e e - |
i Iy [} 777777 . 5 77777 ° . ji 3 |3 |3 |3 |3
ELZ[;”:”;”;”?‘T: 2 |2 |2 |2 |2
Llo...ojTy 1|1 |1 |1 |1
L__ Y-z z-z-z-z-z-—z-zZZ-zZz-zZz=-zZI

(2, 1)-pseudoflat vector corresponding to L

Figure 7.1: Illustration of a k-pseudoflat L defined over IF) with k = 2,p = 5 and n = 5.
Picture on the left shows the points in L (recall that each of L, ..., L, are 1-flats or lines).
Each L; (for 1 < 4 < 4) has p*~! = 5 points in it. The points in L are shown by filled
circles and the points in F§ \ L are shown by unfilled circles. The picture on the right is the
(2, 1)-pseudoflat corresponding to L.

Given a function f : Fy — Ty, for yy,--- ,y1,b € Fp, forall i € [p — 2], we define
i def i
Ti(y1, - ,y,0) = Z ci- f(b+ chyj). (7.3)
C:(Cla“'acl)E]Fé .76[”

As we will see later in Observation 7.5, the above can also be interpreted as the dot product
of the codeword corresponding to the (I,)-pseudoflat vector generated by yy,--- ,y; at b
exponentiated along y, and the codeword corresponding to the function f.

7.2.1 Facts from Finite Fields

In this section we spell out some facts from finite fields which will be used later. We begin
with a simple lemma.

Lemma 7.1. Foranyt € [q— 1], 37,z o' # Oifand only ift = ¢ — 1.

Proof. First note that 37, a' = 3> p a'. Observing that for any a € F;, a?™' = 1, it
q
follows that Y, p a9 ' =3 1=—1#0.
q q

117

Next we show that forall ¢ # ¢—1, >, a’ = 0. Let a be a generator of [The sum
q
atla—1)_q
at—1

thus, the fraction is well defined. The proof is complete by noting that o9~ = 1. 0

can be re-written as) i, 2 it . The denominator is non-zero for t # ¢ — 1 and

This immediately implies the following lemma.

Lemma 7.2. Let ty,--- ,t; € [q — 1]. Then

Z ey cf’ # 0ifandonlyif t; =ty =--- =t =q— 1. (7.4)
(c1, 7cl)e(lF<1)l
Proof. Note that the left hand side can be rewritten as Hie[l] (ZCiE]Fq cf’)) d

We will need to transform products of variables to powers of linear functions in those
variables. With this motivation, we present the following identity.

Lemma 7.3. For each k, s.t. 0 < k < (p — 1) there exists ¢y € Iy, such that

k
Cr Hm, = Z k =S, where S;= Z <Z xj) . (7.5)

i=1 OAICIK];|I|=i \jET

Proof. Consider the right hand side of the (7.5). Note that all the monomials are of degree
exactly k. Also note that Hle x; appears only in the Sy and nowhere else. Now consider
any other monomial of degree k that has a support of size j, where 0 < j < k: w.l.o.g.
assume that this monomial is M = z%'z2 . .. x;j such that ¢y + - - - 4+ ¢; = k. Now note that

for any I D [j], M appears with a coefficient of (; . k

“,w’._.’i]‘) in the expansion of (3 ,.; z,)".

Further for every ¢ > 7, the number of choices of I D [4] with |I| = 4 is exactly (£_7).
Therefore, summing up the coefficients of M in the various summands S; (along with the
(—l)k_i factor), we get that the coefficient of M in the right hand side of (7.5) is

(ol) (B (o) - <> <z<>)
0.

Moreover, it is clear that ¢, = (1 lk 1) = k! (mod p) and ¢, # 0 for the choice of k.]

118

7.3 Characterization of Low Degree Polynomials over I,

In this section we present an exact characterization for the family P; over prime fields.
Specifically we prove the following:

Theorem 7.1. Lett = (p—1)-k+7r. (Note0 <r <p—2.) Leti=p—2—r. Thena
function f belongs to Py, if and only if for every y1,- -+ , yx41,b € F}, we have

Ti(y1,* Yks1,b) =0 (7.6)

As mentioned previously, a characterization for the family P; is equivalent to a char-
acterization for RM,(¢,n). It turns out that it is easier to characterize P; when viewed as
RM,(¢,n). Therefore our goal is to determine whether a given word belongs to the RM
code. Since we deal with a linear code, a simple strategy will then be to check whether
the given word is orthogonal to all the codewords in the dual code. Though this yields a
characterization, this is computationally inefficient. Note however that the dot product is
linear in its input. Therefore checking orthogonality with a basis of the dual code suffices.
To make it computationally efficient, we look for a basis with small weights. The above
theorem essentially is a clever restatement of this idea.

We recall the following useful lemma which can be found in [69].

Lemma 7.4. RM,(k, n) is a linear code with block length q™ and minimum distance (R +
1)g® where R is the remainder and Q the quotient resulting from dividing (¢ — 1) -n — k
by (g — 1). Then RM,(k,n)* =RM,((¢ — 1) -n — k — 1,n).

Since the dual of a RM code is again a RM code (of appropriate order), we therefore
need the generators of RM code (of arbitrary order). We first establish that flats and pseud-
oflats (of suitable dimension and exponent) indeed generate the Reed-Muller code. We then
end the section with a proof of Theorem 7.1 and a few remarks.

We begin with few simple observations about flats. Note that an [-flat L is the inter-
section of (n — [) hyperplanes in general position. Equivalently, it consists of all points
v that satisfy (n — [) linear equations over I, (i.e., one equation for each hyperplane):
Vi € [n—1] Y7 cyz; = b where cij,b; defines the i** hyperplane (i.e., v satisfies
> i1 Cijvj = by). General position means that the matrix {c;;} has rank (n — [). Note that
then the characteristic function (and by abuse of notation the incidence vector) of L can be

written as
l

_ (1-— (Z CijTj — b)P~1) = {1 if (vy,---,v) € L o)
j=1

i 0 otherwise

3

We now record a lemma here that will be used later in this section.

Lemma 7.5. For k > [, the incidence vector of any k-flat is a linear sum of the incidence
vectors of l-flats.

119

Proof. Letk = [+ and let W be an k-flat. We want to show that it is generated by a linear
combination of [flats.
Let W be generated by y1,- - ,y—1, w1, ,w,41 at b. For each non-zero vector ¢; =
(cit, - -+ Cirr1y) in Fp+1 define:
r+1

V; = E Cij’w]'.
Jj=1

Clearly there are (p™™' — 1) such v;. Now for each i € [p"™! — 1], define an I-flat L;

generated by yy,--- ,y;—1,v; at b. Denote the incidence vector of a flat V' by 1y, then we
claim that
pr+171
lw=@p-1)) 1. (7.8)
i=1
Since the vectors yy, ..., Y;—1, W1, ..., W,y are all linearly independent, we can divide the

proof in three sub cases:

e v € W is of the form b + Zi;i e;y;, for some ey, ...,e;1 € IF,: Then each flat
L; contributes 1 to the right hand side of (7.8), and therefore, the right hand side is
(p—1)(ptt—1)=1inTF,.

e v € W is of the form b + Z:ill d;w; for some dy, ...,d, 11 € [F,: Then the flats L;
that contribute have V; = a - Z:;rll d;w;, fora = 1,...,p — 1. Therefore, the right
hand side of (7.8) is (p — 1)2 = 1in F,.

e v € W is of the form b + Zi: eiy; + Z:ill d;w;: Then the flats L; that contribute
have V; = a- Z:;Lll d;w;, fora = 1,...,p— 1. Therefore, the right hand side of (7.8)
is(p—1)2=1inF,.

O

As mentioned previously, we give an explicit basis for RM,(r, n). For the special case
of p = 3, our basis coincides with the min-weight basis given in [29].? However, in general,
our basis differs from the min-weight basis provided in [29].

The following Proposition shows that the incidence vectors of flats form a basis for the
Reed-Muller code of orders that are multiples of (p — 1).

Proposition 7.6. RM,,((p—1)(n—1), n) is generated by the incidence vectors of the l-flats.

2The equations of the hyperplanes are slightly different in our case; nonetheless, both of them define the
same basis generated by the min-weight codewords.

120

Proof. We first show that the incidence vectors of the {-flats are in RM,((p — 1)(n —), n).
Recall that L is the intersection of (n — [) independent hyperplanes. Therefore using (7.7),
L can be represented by a polynomial of degree at most (n — I)(p — 1) in zy,- - , Zy.
Therefore the incidence vectors of {-flats are in RM,,((p — 1)(n — 1), n).

We prove that RM,((p — 1)(n — [),n) is generated by {-flats by induction on n — .
When n — [= 0, the code consists of constants, which is clearly generated by n-flats i.e.,
the whole space.

To prove for an arbitrary (n — [) > 0, we show that any monomial of total degree
d < (p— 1)(n —[) can be written as a linear sum of the incidence vectors of [-flats. Let
the monomial be z{" - - - z¢. Rewrite the monomials as zq - -z - -+ zs - - - ;. Group into

—— ——

ey times es times
products of (p — 1) (not necessarily distinct) variables as much as possible. Rewrite each
group using (7.5) with &k = (p — 1). For any incomplete group of size d’, use the same
equation by setting the last (p — 1 — d’) variables to the constant 1. After expansion, the
monomial can be seen to be a sum of products of at most (n — [) linear terms raised to
the power of p — 1. We can add to it a polynomial of degree at most (p — 1)(n — 1 — 1)
so as to represent the resulting polynomial as a sum of polynomials, each polynomial as
in (7.7). Each such non-zero polynomial is generated by a ¢ flat, ¢ > [. By induction, the
polynomial we added is generated by (I+1) flats. Thus, by Lemma 7.5 our given monomial
is generated by [-flats. 0J

This leads to the following observation:

Observation 7.4. Consider an [-flat generated by y,,--- ,y; at b. Denote the incidence
vector of this flat by I. Then the right hand side of (7.2) may be identified as I - f, where
I and f denote the vector corresponding to respective codewords and - is the dot (scalar)
product.

To generate a Reed-Muller code of any arbitrary order, we need pseudoflats. Note that
the points in a k-pseudoflat may alternatively be viewed as the space given by the union
of intersections of (n — k — 1) hyperplanes, where the union is parameterized by another
hyperplane that does not take one particular value. Concretely, it is the set of points v which
satisfy the following constraints over [, :

Vi€ [n—k—1] Zc,-jxj = b;; and ch_k’jxj # by_p.
j=1 j=1

Thus the values taken by the points of a k-pseudoflat in its corresponding (k, 7)-pseudoflat
vector is given by the polynomial

n—k—1 n

H (1- (Z CijLj — bz’)p_l) : (Z Cn—k,jTj — bn—k)" (7.9)
. ‘=

i=1 j=1

121

Remark 7.1. Note the difference between (7.9) and the basis polynomial in [29] that (along
with the action of the affine general linear group) yields the min-weight codewords:

k—1 T
(o) = [[(1= (2 —wi)?™) [[(@6 — w)),
i=1 j=1
where wy, - -+, Wr—1,U1," - , Uy € .

The next lemma shows that the code generated by the incidence vectors of [-flats is a
subcode of the code generated by the (I, r)-pseudoflats vectors.

Claim 7.7. The (l,r)-pseudoflats vectors, where l > 1 and r € [p — 2], generate a code
containing the incidence vectors of l-flats.

Proof. Let W be the incidence vector of an [-flat generated by y4, - - - , y; at b. Since pseud-
oflat vector corresponding to an [-pseudoflat (as well as a flat) assigns the same value to all
points in the same (I — 1)-flat, we can describe W (as well as any (I, -)-pseudoflat vector) by
giving its values on each of its p [—1-flats. In particular, W = (1,...,1). Let L, be a pseud-
oflat generated by y, - - - ,y; exponentiated along y; at b+ j - y;, for each j € I, and let V}
be the corresponding (I, r)- pseudoflat vector. By Definition 7.3, V; assigns a value i" to the
(I —1)-flat generated by ys, - - - , y; at b+ (j +4)y. Rewriting them in terms of the values on
its [—1-flats yields that V; = ((p—4)", (p—j+1)",- -+ , (p—j+9)",- -+, (p—j—1)") € F¥.
Let A; denote p variables for 7 = 0,1,--- ,p — 1, each taking values in IF,,. Then a solution
to the following system of equations

1:2)\j(z’—j)r forevery 0 <l <p—1

J€Fp

implies that W = Z?;(l) A;V;, which suffices to establish the claim. Consider the identity

L= () G+

J€EFp

which may be verified by expanding and applying Lemma 7.1. Setting \; to (—1)(—5)? 1"
establishes the claim. O

The next Proposition complements Proposition 7.6. Together they say that by choosing
pseudoflats appropriately, Reed-Muller codes of any given order can be generated. This
gives an equivalent representation of Reed-Muller codes. An exact characterization then
follows from this alternate representation.

Proposition 7.8. For every r € [p — 2|, the linear code generated by (l,r)-pseudoflat
vectors is equivalent to RMp,((p — 1)(n — 1) + 7, n).

122

Proof. For the forward direction, consider an [-pseudoflat L. Its corresponding (I,7)-
pseudoflat vector is given by an equation similar to (7.9). Thus the codeword corresponding
to the evaluation vector of this flat can be represented by a polynomial of degree at most
(p — 1)(n — 1) + r. This completes the forward direction.

Since monomials of degree at most (p—1)(n—1) are generated by the incidence vectors
of [-flats, Claim 7.7 will establish the proposition for such monomials. Thus, to prove the
other direction of the proposition, we restrict our attention to monomials of degree at least
(p—1)(n—1)+1 and show that these monomials are generated by (I, r)-pseudoflats vectors.
Now consider any such monomial. Let the degree of the monomial be (p—1)(n—1)+r' (1 <
r’ < r). Rewrite it as in Proposition 7.6. Since the degree of the monomial is (p — 1)(n —
[) + ', we will be left with an incomplete group of degree . We make any incomplete
group complete by adding 1’s (as necessary) to the product. We then use Lemma 7.3 to
rewrite each (complete) group as a linear sum of r* powered terms. After expansion, the
monomial can be seen to be a sum of product of at most (n — [) degree (p — 1) powered
linear terms and a r‘® powered linear terms. Each such polynomial is generated either by
an (I, r)-pseudoflat vector or an [-flat. Claim 7.7 completes the proof. 0

The following is analogous to Observation 7.4.

Observation 7.5. Consider an l-pseudoflat, generated by y1,--- ,y; at b exponentiated
along yy. Let E be its corresponding (l,r)-pseudoflat vector. Then the right hand side of
(7.3) may be interpreted as FE - f.

Now we prove the exact characterization.
Proof of Theorem 7.1: The proof directly follows from Lemma 7.4, Proposition 7.6,
Proposition 7.8 and Observation 7.4 and Observation 7.5. Indeed by Observation 7.4, Ob-
servation 7.5 and (7.6) are essentially tests to determine whether the dot product of the
function with every vector in the dual space of RM,,(¢, n) evaluates to zero. [J

Remark 7.2. One can obtain an alternate characterization from Remark 7.1 which we state
here without proof.

Lett=(p—1)-k+ R(note0 < R< (p—2)). Letr =p— R—2. Let W C F, with
def

\W| = r. Define the polynomial g(z) = [[,cw(x — a) if W is non-empty; and g(x) = 1
otherwise. Then a function belong to Py if and only if for every y1,- -+ ,yrs1,b € F}, we
have
k+1
Yo ogle) DY fO+D cw) =0
c1€EF\W (c2, yer41)EFE =1

Moreover, this characterization can also be extended to certain degrees for more general
fields, i.e., Fys (see the next remark).

Remark 7.3. The exact characterization of low degree polynomials as claimed in [42] may
be proved using duality. Note that their proof works as long as the dual code has a min-
weight basis (see [29]). Suppose that the polynomial has degree d < q — q/p — 1, then

123

the dual of RM,(d,n) is RM,((¢ — 1)n — d — 1,n) and therefore has a min-weight basis.
Note that then the dual code has min-weight (d + 1). Therefore, assuming the minimum
weight codewords constitute a basis (that is, the span of all codewords with the minimum
Hamming weight is the same as the code), any d + 1 evaluations of the original polynomial
on a line are dependent and vice-versa.

7.4 A Tester for Low Degree Polynomials over

In this section we present and analyze a one-sided tester for P;. The analysis of the algo-
rithm roughly follows the proof structure given in [93, 1]. We emphasize that the general-
ization from [1] to our case is not straightforward. As in [93, 1] we define a self-corrected
version of the (possibly corrupted) function being tested. The straightforward adoption of
the analysis given in [93] gives reasonable bounds. However, a better bound is achieved
by following the techniques developed in [1]. In there, they show that the self-corrector
function can be interpolated with overwhelming probability. However their approach ap-
pears to use special properties of 5 and it is not clear how to generalize their technique for
arbitrary prime fields. We give a clean formulation which relies on the flats being repre-
sented through polynomials as described earlier. In particular, Claims 7.14, 7.15 and their
generalizations appear to require our new polynomial based view.

7.4.1 TesterinIF,

In this subsection we describe the algorithm when underlying field is I,.
Algorithm Test-P; in I,

0.Lett=(p—1)-k+R, 0K R<p—1. Denoter =p—2—R.
1. Uniformly and independently at random select yy, -+ - , Yg+1,b € F.
2.1 TF(y1,+** ,Ykt1,b) # O, then reject, else accept.

Theorem 7.2. The algorithm Test-P;, in [, is a one-sided tester for P, with a success

probability at least min(c(p**e), W)for some constant ¢ > 0.

Corollary 7.3. Repeating the algorithm Test-P; in F,, for O(pk+15 + kpF) times, the prob-

ability of error can be reduced to less than 1/2.

We will provide a general proof framework. However, for the ease of exposition we
prove the main technical lemmas for the case of 3. The proof idea in the general case is
similar and the details are omitted. Therefore we will essentially prove the following.

Theorem 7.4. The algorithm Test-P; in Fs is a one-sided tester for P; with success prob-

ability at least min(c(3F+1¢), 2(Hnﬁ)]‘or some constant ¢ > 0.

124

7.4.2 Analysis of Algorithm Test-P;

In this subsection we analyze the algorithm described in Section 7.4.1. From Claim 7.1 it
is clear that if f € P;, then the tester accepts. Thus, the bulk of the proof is to show that if
f is e-far from P;, then the tester rejects with significant probability. Our proof structure
follows that of the analysis of the test in [1]. In particular, let f be the function to be tested
for membership in P;. Assume we perform Test T} for an appropriate ¢ as required by the
algorithm described in Section 7.4.1. For such an 7, we define g; : F; — F, as follows:

For Yy € F}?’ o € IFP’ denote Py = Pryl,'--,yk+1[f(y) - T}(y — Y1, Y2, 7yk+1ay1) = O[].
Define g;(y) = o such that V3 # o € Fp, p, o > p, g With ties broken arbitrarily. With this
meaning of plurality, for all i € [p — 2] U {0}, g; can be written as:

9i(y) = plurality, . . [f@W) = THy — y1, 92, Yk, 41)] - (7.10)

Further we define

def i
M = Pryg e g plT5(Y1, -+ Yrr1,0) # 0] (7.11)

The next lemma follows from a Markov-type argument.

Lemma 7.9. For a fixed f : ¥y — Iy, let g;,n; be defined as above. Then, §(f, g;) < 21;.

Proof. 1f for some y € B, Pry, .y o [F(1) = F(1) = Ty — 1,920+ syt 1)) > 1/2,
then g(y) = f(y). Thus, we only need to worry about the set of elements y such that

Pry1,~~-,yk+1[f(y) = f(y) - T}(y —Y1,Y2," " 5 Yk+1, yl)] < 1/2 If the fraction of such
elements is more than 27; then that contradicts the condition that

i = Pryl,"' 7yk+17b[T; (yl, Yk, b) # 0]
= Pry1,y2,---,yk+1,b[T} (yl - b7 Y2, 5 Yk+1, b) 7é 0]
= Pryvyla“' sYk+1 [f(y) # f(y) - T}(y - y17 y27 Tt 7yk+17 yl)]

Therefore, we obtain §(f, g;) < 2n;. O

Note that Pry,[9:(y) = f(y) — T}(y — Y, Y2, Ykt1,Y1)] = %. We now show
that this probability is actually much higher. The next lemma gives a weak bound in that
direction following the analysis in [93]. For the sake of completeness, we present the proof.

Lemma 7.10. Vy € Fy, Pry, .y em0i(y) = f(y) — THY — Y1, 02,7 5 Ypr1, Y1) 2
1 — 2pFtiy,.

125

Proof. We willuse I, J,I', J' to denote (k+ 1) dimensional vectors over F,. Now note that

k+1
TEFET1£(1,0,-,0) t=2

= Plurality, 0, eeml >, (LD f(h(y—u)

TeFE+1:1:£(0,--- ,0)
k+1

+> Ly +)]

t=2
k+1

= Plurality,, . . er[Y, (L+1)FO Ly +y)] (7.12)
I€F§+1;I¢<07"'10> t=1

LetY = (y1, -+ ,Yks1) and Y' = (y1,- -+ ,yp,q). Also we will denote (0, - - ,0) by
0. Now note that
1—1 < Pry ey nTF W1, -+ 5 Ypr1, b) = 0]
= Pryla"'ayk-i-lab[Z I{f(b + '[. Y) = 0]

IEFI;+1

= Pryl,-",yk+1,b[f(b + yl) + Z Iif(b +1- Y) = 0]

I€FETL1#£(1,0,-- ,0)

= Pry1,~~~,yk+1,y[f(y) + Z Iif(y —yi+1I- Y) = 0]

TeFE+1,1£(1,0,--,0)

= Py, yenlf () + Y (L+1D)fy+I-Y)=0

TeFE+L;1£(0,--,0)

Therefore for any given I # 0 we have the following:

Pryylfy+1-Y)= > —(h+1)fy+1-Y+J-Y)]>1-n
JeFEtL g0

and for any given J # 0,

Pryy [fly+J-Y)= > —(L+1)fly+1-Y+J-Y)]>1-n.
I€FETY 140

126

Combining the above two and using the union bound we get,

Pryy | Y (h+1)fly+1-Y)
TeFEt1 140

=) Y V(A D) fy+T Y +T-Y)

TeFEtY 120 JeFE+Y 740

= Y (h+Dfy+J-Y)

JeFE+L, 40
>1-20"" = 1)n>1-2p"y, (7.13)

The lemma now follows from the observation that the probability that the same object
is drawn from a set in two independent trials lower bounds the probability of drawing the
most likely object in one trial: Suppose the objects are ordered so that p; is the probability
of drawing object 7, and p; > py = ---. Then the probability of drawing the same object

twiceis >_.p? < . pipi < ;- -

However, when the degree being tested is larger than the field size, we can improve the
above lemma considerably. The following lemma strengthens Lemma 7.10 whent > p—1
or equivalently £ > 1. We now focus on the F5 case. The proof appears in Section 7.4.3.

Lemma 7.11. vy € IF{’:’ Pryl,---,yk+1€F§‘ [gl(y) = f(y) - T}(y — Y1, Y2, - 7yk+17y1)] >

Lemma 7.11 will be instrumental in proving the next lemma, which shows that suffi-
ciently small n; implies g; is the self-corrected version of the function f (the proof appears
in Section 7.4.4).

Lemma 7.12. Over F3, if n; <
kE>1)

m, then the function g; belongs to P; (assuming

By combining Lemma 7.9 and Lemma 7.12 we obtain that if f is Q(1/(k3F))-far from
P, then n; is at least (1/(k3¥)). We next consider the case in which 7; is small. By Lemma
7.9, in this case, the distance § = 6(f, g) is small. The next lemma shows that in this case
the test rejects f with probability that is close to 3**1§. This follows from the fact that in
this case, the probability over the selection of yy, -« , Yx41, b, that among the 3% points
> ¢y +b(where ci, ..., cry1 € Fy), the functions f and g differ in precisely one point,
is close to 3F*1 . §. Observe that if they do, then the test rejects.

Lemma 7.13. Suppose 0 < n; < m. Let O denote the relative distance between

f and g and ¢ = 3**1. Then, when yy,--- ,yry1,b are chosen randomly, the probability
that for exactly one point v among the { points) .. ¢;y; + b (where (c1, . .., cry1) €]F’?fJrl),
f(v) # g(v) is at least (L‘r—ﬁ‘;) 23

127

Observe that 7; is at least Q(3**1§). The proof of Lemma 7.13 is deferred to Sec-
tion 7.4.5.
Proof of Theorem 7.4: Clearly if f belongs to P;, then by Claim 7.1 the tester accepts f
with probability 1.

Therefore let §(f,P;) > €. Letd = 6(f,g,), where r is as in algorithm Test-P,. If

n < m then by Lemma 7.12 g, € P; and, by Lemma 7.13, n; is at least Q(3**1.d),
which by the definition of ¢ is at least Q(3**1¢). Hence 1; > min (c(3k+15),

for some fixed constant ¢ > 0. [J

1
(4k+14)3k+1) ’

Remark 7.4. Theorem 7.2 follows from a similar argument.

7.4.3 Proof of Lemma 7.11

Observe that the goal of Lemma 7.11 is to show that at any fixed point y, if g; is interpolated
from a random hyperplane, then w.h.p. the interpolated value is the most popular vote. To
ensure this we show that if g; is interpolated on two independently random hyperplanes,
then the probability that these interpolated values are the same, that is the collision prob-
ability, is large. To estimate this collision probability, we show that the difference of the
interpolation values can be rewritten as a sum of T} on small number of random hyper-
planes. Thus if the test passes often (that is, T evaluates to zero w.h.p.), then this sum (by
a simple union bound) evaluates to zero often, which proves the high collision probability.

The improvement will arise because we will express differences involving T}(-+)asa
telescoping series to essentially reduce the number of events in the union bound. To do this
we will need the following claims. We note that a similar claim for p = 2 was proven by
expanding the terms on both sides in [1]. However, the latter does not give much insight
into the general case i.e., for [, We provide proofs that have a much cleaner structure
based on the underlying geometric structure, i.e., flats or pseudoflats.

Claim 7.14. Foreveryl € {2,--- | k+1}, foreveryy(=y1), 2,w, b, Y2, , Y11, Y11, " ,
Yr+1 € Fg, let let

S}(ya Z) = T;)(yay?a L Y-L 25 Y1y 5 Ykt b)
The the following holds:

Si(y,w) — Si(y,2) = Z [S%(y + ew, 2) — Sh(y + ez, w)] .

ecFy

Proof. Assume y, z, w are independent. If not then both sides are equal to 0 and hence the
equality is trivially satisfied. To see why this claim is true for the left hand side, recall the
definition of TJ‘?(-) and note that the sets of points in the flat generated by y, y2, - - - , y1—1, w,
Yie1,** ,Yrsr1 at b and the flat generated by y,ys, -+ , Yi—1, 2, Y141, * , Yk+1 at b are the
same. A similar argument works for the expression on the right hand side of the equality.

128

We claim that it is enough to prove the result for K = 1 and b = 0. A linear transform
(or renaming the co-ordinate system appropriately) reduces the case of kK = 1 and b # 0
to the case of Kk = 1 and b = 0. We now show how to reduce the case of £ > 1 to
the k£ = 1 case. Fix some values cs,-- ,¢1,¢141,* , Cky1 and note that one can write
ay + cys+ - qi1yio1 + qw + et + CriYre1 + b as iy + qw + O, where b =
Zje{2,~-~,l—1,l+1,-~~,k+1} ¢jy; + b. Thus,

k-1

S}(y,w) = Z Z flay + qw + V).

(027"' sCl—1,Cl4-1,"" 7ck+1)€]Fp (Cl 7Cl)€]F;2;

One can rewrite the other S%(-) terms similarly. Note that for a fixed vector (ca,- -+, ¢ 1,
Cl+1,°* »Cre1), the value of &' is the same. Finally note that the equality in the general case
is satisfied if p* ! similar equalities hold in the k = 1 case.

Now consider the space ‘H generated by y, z and w at (0. Note that S}(y, w) (with
b= 0)isjust f-1;, where 1y, is the incidence vector of the flat given by the equation z = 0.
Therefore 1y, is equivalent to the polynomial (1—27~") over F,.. Similarly S(y, z) = f-1.
where L’ is given by the polynomial (1 — wP™!) over F,. We use the following polynomial
identity (in I,,)

wPt — P = Z [[1—(ew+y)P '] —[1—(ez+y)P '] (7.14)

eE]F;;

Now observe that the polynomial (1 — (ew + y)P~!) is the incidence vector of the flat
generated by y — e w and 2. Similarly, the polynomial (1 — (ez + y)P~1) is the incidence
vector of the flat generated by y — e~!z and w. Therefore, interpreting the above equation
in terms of incidence vectors of flats, Observation 7.4 completes the proof assuming (7.14)
is true.

We complete the proof by proving (7.14). Consider the sum: Y___p. (ew + y)? 1. Ex-

panding the terms and rearranging the sums we get Z;’;(l, (”;1) wP Iy 3 P71
P

eE]F;;

By Lemma 7.1 the sum evaluates to (—w?™' — y?~1). Similarly, . (ez + y)P™! =
(—2zP~t — yP~1) which proves (7.14). O

We will also need the following claim.

Claim 7.15. Foreveryi € {1,--- ,p— 2}, foreveryl € {2,--- |k + 1} and for every
y(: yl),z,w, b7 Y2, Y- Y410 5 Ykl € Fz’ denote

Sj‘,l(ya'w) d:E/T}(yvy% y Y11, W, Yiy1, " - ’yk+1’b)'

Then there exists c; such that

S}’l(y, w) — 5}’1(2/, z) = ¢ Z [S;’l(y +ew,z) — Sj"l(y + ez’w)] '

ecFy

129

Proof. As in the proof of Claim 7.14, we only need to prove the claim for £ = 1 and
b = 0. Observe that S}’l(y, z) = f - Er,, where Er, denotes the (2,17)-pseudoflat vector
of the pseudoflat L generated by y, z at b exponentiated along y. Note that the polynomial
defining Fr, isjusty*(wP~'—1). Similarly we can identify the other terms with polynomials
over [F,. To complete the proof, we need to prove the following identity (which is similar
to the one in (7.14)):

Yt =) =) [(y+ew) [l —(y—ewf '] (y+ex) L - (y—ez) ']

(7.15)
where ¢; = 2¢. Before we prove the identity, note that (—1) (”;1) = 1in F,. This is

because for 1 < m < j, m = (—1)(p — m). Therefore j! = (—1)7 (pr 1)) holds in F,.
Substitution yields the desired result. Also note that Y, p. (y + ew)’ = —y* (expand and

apply Lemma 7.1). Now consider the sum

dyrewily—ewpt = DY D ((> (p ;l 1) Y m g m

eG]F;‘, eG]F;‘, 02;1,]<<p7/)
_ b=) p—1+i—j—m, j+m Z j+m
= w (&
0<]<z, <‘7> (ecFy
0<m<p—1
i 1 -1 i, p—1
—- y P) e
]:0 J (. _ _j 7
:1
= (D' + y'w'2] (7.16)

Similarly one has 3~ cp. (y + ez)(y — ez)P ! = (=1)[y* + y'2P 12']. Substituting and
simplifying one gets (7.15). O
Finally, we will also need the following claim.
Claim 7.16. Foreveryi € {1,--- ,p — 2}, foreveryl € {2,--- |l + 1} and for every
Y(=), 2, w, 0,2, Y11, Yis1, 0 5 Yrtr € By, there exists ¢; € By, such that
S}’l(w,y) — S}’l(z, y) = Z [S}’l(y +ew,y —ew) — Sj;l(w +ey,w — ey)+
CE]F;

S}’l(z +ey,z—ey) — S}’l(y +ez,y—ez)

+c; [S}’l (y +ew,z) — S}’l(y + ez, w)“
Proof. As in the proof of Claim 7.15, the proof boils down to proving a polynomial identity

over [,,. In particular, we need to prove the following identity over [F,,:

w(1=2"") =2 (1=w) = (w' =y) (1=2"7") = (¢ =) (1w ™) +y' (WP —2"7).

130

We also use that Y, g (w + ey)’ = —w* and Claim 7.15 to expand the last term. Note that
) p
c; = 2* as before.]

We need one more simple fact before we can prove Lemma 7.11. For a probabil-
o = Maxiep{or} > Maxiep{n - (S 0) = S0, vi

2
Maxieg {vi} > Xy o = o]
def

Proof of Lemma 7.11: We first prove the lemma for go(y). We fix y € Fy and let v =

Pry, .. yerierr[90(y) = fly) — T}’(y —Y1,Y2,"** ,Yks1,¥1)]. Recall that we want to lower
bound 7y by 1 — (4k + 14)n. In that direction, we bound a slightly different but related

probability. Define

ity vector v € [0, 1]",

M= Pryl,---,yk+1,z1,---,Zk+1€1F§‘ [T]?(y — Y1, Y2, s Yk+1, yl) = T})(y — 21,R2, """ 5 Rk+1, 21)]
Denote Y = (y1,- -+ ,Yr+1) and similarly Z. Then by the definitions of x and y we have,
v = u. Note that we have
B = Pryl,--~,yk+1,21,-~- 12k4+1€F3 [T](‘)(y_yla Y2, 5 Yk+1, yl)_T](‘)(y_zla 22y Bk+1, Zl) = O]

We will now use a hybrid argument. Now, for any choice of yy, -+ ,yx+1 and 27, -,
Zk+1 wWe have:
T](‘](y — Y, Y2, 7yk+1ay1) - T]g(y T R1,%22; " 5 Rkt Zl)
= T})(y — YL Y2, Ykt Y1) — T]?(y — Y1, Y2 5 Yk 2kt 1, Y1)
+ T](‘](y — Y92, 5 Yk k41,5 yl) - T]("](y — Y1, Y2, Yk—1) Rk Rk+1; yl)
+ T}J(y — YL,y Yk—1) 2k Zht 1y Y1) — T})(y — YL,y Yk-2, Zk—1, Zhs Zk4+1, Y1)

+ T_)?(y —Y1,22,23," " ,Zk+1,y1) -

T_)?(y_zl722>"' 7zk+17y1)
+ TPy — 21,22, 23, -+, 2rs1, Y1) — TR(Y — Y1, 22, 5 2kt 21)
+Tj9(y_y1,22723;"' 7Zk+1721) _T_?(y_zlaz%'” ,Zk+1,21)

Consider any pair T})(y — Y, Y2, YL R,)Zk+17y1) - T;)(y — Y1, Y2, Y11, 2,

-, Zk+1,Y1) that appears in the first £ “rows” in the sum above. Note that T})(y —
Y1,Y2, Y 241,000 Zhy1, Y1) and TJQ(?J — Y1, Y2, Y1, 21, Zkt1, Y1) differ only
in a single parameter. We apply Claim 7.14 and obtain:

T2y =Y, Y2, 5 U 241, 5 21, Y1) = TR (Y= Y1, Y2, U1, 2150 2k, Y1) =
Tjg(y—y1+yz,y2,"' yYi—-1, 215" ,Zk+1,y1)+T,9(y—y1—yl,y2,"' YL 1520, 2kt Y1)
_T})(y—y1+zl,y2,"' y YLy 2141y ,Zk+1,y1)—T,9(y—yz—Zl,y2,'" yUL 214150 2kt Y1)

Recall that y is fixed and vy, , Yk+1,22, "+ ,2k+1 € Iy are chosen uniformly at
random, so all the parameters on the right hand side of the equation are independent and

131

uniformly distributed. Similarly one can expand the pairs T}’ (Yy—y1, 22,23, » Zks1,Y1) —
T})(y—zl, 2yt ,Zk+1,y1) and T}J(y—yl, 22523, " 5 Rk+1 21)—T]9(y—21, 2250y Rk41, 21)
into four T}’ with all parameters being independent and uniformly distributed®. Finally no-
tice that the parameters in both T]9 (y—2z1, 22,23, ** , Zp11, Y1) and TJQ (y—2z1,22,* "+ 4 Zk41, Y1)
are independent and uniformly distributed. Further recall that by the definition of 7q,
Pro ;e [T})(rl, -+ 1rey1) # 0] < mp for independent and uniformly distributed r;s.
Thus, by the union bound, we have:

Pry, o yornmr el (L7 W, yern) = T7 (21, 2k41) 7 0] < (4k +10)mo. (7.17)

Therefore v > u > 1 — (4k 4+ 10)no. A similar argument proves the lemma for g (y). The
only catch is that T, (.) is not symmetric— in particular in its first argument. Thus, we use
another identity as given in Claim 7.16 to resolve the issue and get four extra terms than in
the case of go, which results in the claimed bound of (4% + 14)n;. O

Remark 7.5. Analogously, in the case IF, we have: for everyy € By, Pry, 4, ... 4.1 epn [9:(Y)

= fy) = Tiy — v, %2, ks, 1) + (@) = 1=2((p— Dk +6(p—1) +).
The proof is similar to that of Lemma 7.11 where it can be shown p; > 1 —2((p — 1)k +

6(p — 1) + 1)m;, for each p; defined for g;(y).

7.4.4 Proof of Lemma 7.12

From Theorem 7.1, it suffices to prove that if 7; < m then Tg’; Y1y Yk,

b) = 0 for every yi1,- -+ ,Yr+1,b € F%. Fix the choice of y1,--- ,ygi1,b. Define Y =
(y1,-*+ ,Yry1). We will express T}, (Y, b) as the sum of T;(-) with random arguments. We
uniformly select (k+1)? random variables z; ; over F§ for1 < ¢ < k+1,and 1 < j < k+1.
Define Z; = (2,1, -+ , zik+1). We also select uniformly (k + 1) random variables r; over
I3 for1 <7 < k+1. Weuse z; ; and r;’s to set up the random arguments. Now by Lemma
7.11, for every I € F5*! (i.e. think of I as an ordered (k + 1)-tuple over {0, 1,2}), with

probability at least 1 — (4k + 14)n; over the choice of z; ; and 7;,

gi(I-Y+b) = f(I.Y+b)=T3(I-Y +b—1-Zy—r1, - Zo+7a,- - - , I Zpa+7h41, I - Z1+11),

(7.18)
where for vectors X, Y € FA™ Y . X = Zf:ll Y; X;, holds.
Let E; be the event that (7.18) holds for all I € F&™. By the union bound:
Pr[E;] > 1 — 3. (4k + 14)n;. (7.19)
Assume that F; holds. We now need the following claims. Let J = (Jy, -, Jgy1) be a

(k + 1) dimensional vector over F3, and denote J' = (Jy, -+ |, Ji41).

3Since T{(-) is symmetric in all but its last argument.

132

Claim 7.17. If (7.18) holds for all I € FE™, then

[k+1 k+1 k+1
T, (Y,b) = Z —T7 (31 + Z ez, Y1 + Z Jizi,(k+1), 0 + Z Jﬂ’t)]
07'5]’6]17’; B t=2 t=2 t=2
[k+1 k+1
+ Z —T]?(le — 211+ Z Jeze,t 2Uk41 — 21,(kt1) T Z Jezt,(k41),
Jrerk L t=2 t=2
k+1
2b — 1+ Z Jtrt)
t=2
k+1 k+1 k+1
+ TJE) (211 + Z Jeze1, 5 21 + Z Jez, k1), T1 + Z Jtrt)]
t=2 t=2 t=2
(7.20)
Proof.
To (V) = > go(I-Y +b)
IeFst!
= > [-TI-Y+b—I-Zy—r1,I-Zo+ra, I+ Zjr + i,
IeFs™!
I-Zy+r)+f(I-Y +0)]
k+1 k+1
= = > | D T Y +b+D AI-Z+D Jire)
IeFsth | | 0#J'€Fs t=2 t=2
k+1 k+1
+1 > (f(ZI-Y+2b—I-Zl —ri+ Y ST Zi+ Y Jire)
J'eFk =2 t=2
k+1 k+1
+f(I-Zy + 1 +ZJtI-Zt+ZJtrt)>”
=2 1=2
k+1 k+1
= = > | D] FUY +b+ D> T+ I Z)
0£J'E€F% | TRkt t=2 t=2
k+1 k+1
S S fer oy -1 Zv i+ ST Zi+ Y T
Jle]F’g IE]FI3°+1 t=2 t=2
k+1 k+1

+ Z f(I-Z1+T1+ZJtI'Zt+ZJt7't)
t=2

IeFstt =2

- ¥

0£J' cFk

2

J'€FE

133

Claim 7.18. If (7.18) holds for all I € FE*, then

T, (Y,h)= >

0#£J' €F%

D

J' €Fk

k+1 k+1 k+1
TPy + > Jzg, Uk + 3 Sz, b+ Jtrt)]
=2 =2 t=2
k+1 k+1
—T]?(le — 211+ Z Jize1s 5 2k — 21, (k1) Z Ji2t (k1))
t=2 t=2
k+1
2b — 1+ Z Jtrt)
=2
k+1 k+1 k+1
+ TJQ(Z1,1 + Z Jezea, 0 2kt + Z Jizt k1), 1+ Z Jtﬁ)]
=2 =2 t—2
[
[~ k+1 k+1 k+1
_T} (1 + Z Jezep, o Yk + Z Jiz (k+1), b + Z Jﬂ’t)]
i t—2 =2 =2
[k+1 k+1
T}(2y1 —z11+ Z Jize1, 02Ukl — 21, (kt1) T Z 12t (k+1)5
i t=2 t=2
k+1
2—ri+ Y Jiry)| (7.21)
t—2

Proof.

T (Y,b) =)

IEF§+1

>

IeFsT!

L[-T;(I-Y+b—1-Zy—ri,1-Zy+ray--- I+ Zpyy + Thp,

I-Zy+r)+ f(I-Y +0)]

k+1 k+1
IeFs+! 0#J' €F% t=2 t=2
k+1 k+1
+ Zf(2IY+2b_Izl_T1+ZJtIZt+z<]trt)
J'eF} t=2 =2
k+1 k+1

= = Y Y nfa v +o+ Y dir+ S A Z,)

0~ G]Flsc IE]F§+1 t=2 t=2

134

k+1 k+1
_Z Z Ilf(QI'Y+2b_I'Zl_rl+ZJtI'Zt+ZJtTt)
J'€Fs IE]F’SH'1 t=2 t=2
kt1 k+1 k+1
= > ST+ D Tz e + Y Sz, b+ D i)
0#J'cFk t=2 =2 t—2
k1 k+1
+ Z TJ} (22/1 — Zl,l + Z Jtzt,l, cee 2yk+l - Zl,(k+1) + Z Jtzt,(k—l—l),
J'€F% t=2 i—2

k+1
2b — T -+ Z Jt’l‘t)]

t=2

Let E, be the event that for every J' € F%, T}(yﬁ—zt Jeze 1y Uk Je2 k1), b+
Yok 1Im) = 0. TH2y— 2114205 Jizits e+ s W1 — 20 ks1+ gy Ji2e,(ka1)s 2b—

A+ Jyry) = 0, and TJQ(zl,l—i—Zf;l T2ty 2kt Yoty JiZpr1s T1 S i) =
0. By the definition of n; and the union bound, we have:

Pr[Ey] > 1 — 3y, (7.22)

Suppose that 7; < m holds. Then by (7.19) and (7.22), the probability that £
and Ej hold is strictly positive. In other words, there exists a choice of the z; ;’s and ;s
for which all summands in either Claim 7.17 or in Claim 7.18, whichever is appropriate, is
0. This implies that Ty, (y1,- - ,Yk+1,0) = 0. In other words, if 7; < m, then g;
belongs to P,. [

Remark 7.6. Over F, we have: if n; < then g; belongs to Py (if
kE>1).
In case of F,, we can generalize (7.18) in a straightforward manner. Let E{ denote the

event that all such events holds. We can similarly obtain

1
2((p—1)k+6(p—1)+1)pk+1’

PrE] > 1—p"" - 2((p— Dk +6(p— 1)+ L)n;. (7.23)

135

Claim 7.19. Assume equivalent of (7.18) holds for all I € IF’;“, then

k+1 k+1 k+1
T;-(Ya b) = Z _T;(yl + Z iz, Yk + Z Jizt,(k+1), b+ Z JtTt)]
0£J'€Fk =2 t=2 t=2
k+1
+ > D> Ty — (W= Daa+ D iz, Jigei—
J'eFE | J1€Fp;J1#1 =2

k+1 k+1
(Jl — 1)21,(k+1) —+ Z Jtzt,(k+1), Jib — (Jl — 1)7“1 + Z Jﬂ't)]]

t=2 t=2
(7.24)
Proof.
T:(YV,b) = > Iig(I-Y +b)
IeFE+!
= > L[-TyI-Y+b—1-Zi—r,I-Zy+ra, T Zsr + 1o,
IeFE+!

I-Zi+m)+ fU-Y +0)

k+1 k+1
= - S || Y sy 4o+ aI 2+ dr)
IEF’;+1 @75‘]’ E]Fz t=2 t=2

+ | X Y A Y + b (=D 2y~ (- D)
J1€Fp, J17#1 J'E€FE
k+1 k+1

+ E JtI Zt + E JtT't)
t=2 t=2
k+1 k+1

= -~ Y | Y Bray+o+Y g+ > Al Z)
t=2

O#J’G]F’; IelF’;"‘l t=2

= > 0 Y A D BAAI-Y+Ib— (=1 Zy— (J - 1)y

J'eFk | J1€Fp;J1#£1 IeFs+!
k+1 k+1
+ Z Jt] . Zt + Z Jtrt)]
t=2 t=2
k+1 k+1 k+1

— Z —T} (y1 + Z Jeziay 0 Ykt + Z Jizt,(k+1), b+ Z Jirs)

0#J' €Fk t=2 t=2 t=2

136

k+1
+ Z Z Ji _T;(lel = (/1= Dza+ thzt,l, oy Sk
J'eFk | J1€Fp;J1#1 t=2
k+1 k+1
_(J1 — 1)21,(]94_1) + Z Jtzt,(k-i-l)a Jlb — (J1 — 1)7’1 + Z Jt’f’t)]]
t=2 t=2

O

Let EY be the event analogous to the event Ey in Claim 7.18. Then by the definition of
n; and the union bound, we have

Pr[EY] > 1 — 2p" ;. (7.25)

2((p—1)k+6(;—1)+1)pk+1’ then the probability that E} and F)

hold is strictly positive. Therefore, this implies Tgii (Y1, s Yks1,0) = 0.

Then if we are given that n; <

7.4.5 Proof of Lemma 7.13

For each C € F’g“, let X be the indicator random variable whose value is 1 if and only if
f(C-Y+0b)#g(C-Y+b),whereY = (y1,...,ygs1). Clearly, Pr[X¢ = 1] = § for every
C. It follows that the random variable X =), X which counts the number of points v
of the required form in which f(v) # g(v) has expectation E[X] = 3*T1§ = £ - §. It is not
difficult to check that the random variables X are pairwise independent, since for any two
distinct C; = (0171, . . ,Cz',k—l—l) and Cy = (0271, .. ,Cg,lﬂ_l), the sums Zfill Cl,iyi +0b
and ijll Cs;y; + b attain each pair of distinct values in [F; with equal probability when
the vectors are chosen randomly and independently. Since X ’s are pairwise independent,
Var[X] =)", Var[X(]. Since X¢’s are boolean random variables, we note

Var[Xc] = E[X¢] — (E[Xc])* = E[Xc] - (E[Xc])® < E[Xc].

Thus we obtain Var[X] < E[X], so E[X?] < E[X]?> + E[X]. Next we use the following
well known inequality which holds for a random variable X taking nonnegative, integer
values,

(B[X])?

E[X?]

Indeed if X attains value ¢ with probability p;, then we have

(E[X])* = <lez> = (ZZ\/@\/E) < (Zzpz> <Zp;) = E[X] - Pr[X > 0],

Pr[X > 0] >

>0 >0 >0 i>0
where the inequality follows by the Cauchy-Schwartz inequality. In our case, this implies
(EXD* _ BX]D* _ EX]

PriX > 01> gy 2 B + (EX)? 14 EIXT

137

Therefore,
EX] >Pr[X =1]+2Pr[X > 2] = Pr[X =1]+2 _EX] Pr[X = 1]
- N - N 1+ E[X] N
2E[X]
=———— — Pr[X =1].
T Ex] X =
After simplification we obtain,
1 —E[X]
Pr[X =1] > ——— - E[X].
=12y B

The proof is complete by recalling that E[X]| = £-§. O

7.5 A Lower Bound and Improved Self-correction

7.5.1 A Lower Bound

The next theorem is a simple modification of a theorem in [1] and essentially implies that
our result is almost optimal.

Proposition 7.20. Let F be any family of functions f : F; — F, that corresponds to
a linear code C. Let d denote the minimum distance of the code C and let d denote the
minimum distance of the dual code of C.

Every one-sided testing algorithm for the family F must perform Q(d) queries, and if the
distance parameter ¢ is at most d/p™ 1, then Q(1/¢) is also a lower bound for the necessary
number of queries.

Lemma 7.4 and Proposition 7.20 gives us the following corollary.

Corollary 7.5. Every one-sided tester for testing P, with distance parameter € must per-
t+1
form Q(max(L, (1 + ((t + 1) mod (p — 1)))p1%)) queries.

7.5.2 Improved Self-correction
From Lemmas 7.9, 7.11 and 7.12 the following corollary is immediate:

Corollary 7.6. Consider a function f : ¥y — 5 that is e-close to a degree-t polynomial
g : Fy — 3, where ¢ < m. (Assume k > 1.) Then the function f can be
self-corrected. That is, for any given x € F%, it is possible to obtain the value g(z) with
probability at least 1 — 3¥e by querying f on 3¥*1 points on IF3.

An analogous result may be obtained for the general case. We, however, improve the
above corollary slightly. The above corrector does not allow any error in the 3¥*1 points it
queries. We obtain a stronger result by querying on a slightly larger flat /A, but allowing
some errors. Errors are handled by decoding the induced Reed-Muller code on H.

138

Proposition 7.21. Consider a function f : ¥ — T, that is e-close to a degree-t polynomial
g : By — . Then the function f can be self-corrected. That is, assume K > (k + 1),
then for any given x € Ty, the value of g(x) can be obtained with probability at least

1- m - p~(E=2k=3) yyith pK queries to f.

Proof. Our goal is to correct the RM,,(¢,n) at the point z. Assume t = (p — 1) - k + R,
where 0 < R < (p — 2). Then the relative distance of the code § is (1 — R/p)p *. Note
that 2p %! < § < p*. Recall that the local testability test requires a (k + 1)-flat, i.e., it
SIS D2, o rcF, E R f(yo + M i) = 0, where y; € .

We choose a slightly larger flat, i.e., a K-flat with K > (k + 1) to be chosen later.
We consider the code restricted to this /K -flat with point z being the origin. We query f
on this K-flat. It is known that a majority logic decoding algorithm exists that can decode
Reed-Muller codes up to half the minimum distance for any choice of parameters (see [99]).
Thus if the number of errors is small we can recover g(z).

Let the relative distance of f from the code be € and let S be the set of points where it
disagrees with the closest codeword. Let the random K-flat be H = {x + Zfil tiug|t; €
F,u; €g FZ} Let the random variable Yy, ... 1, take the value 1 if x+ Zfil u;t; € Sand 0
otherwise. Let D = F¥ \ {0} and U = (u1,- -+ ,uk). Define Y =37, \cp Yo, i)
and £ = (p¥ — 1). We would like to bound the probability

Pry[|Y — el > (6/2 — e)].

Since Pry[Yy, ... 1 = 1] = ¢, by linearity we get By [Y] = el. Let T = (t1,--- ,tk). Now

VarlY]=) Var[Yrl+) Cov[Yr, Yy
TeFK —{0} T#T"
= le — &%)+ Z Cov|Yr, Y] + Z Cov|Yr, Y|
TH#NT" T=AT";1#AEF*

< Ll(e—)+L-(p—2)(e—€?)
=le—e)(p-1)

The above follows from the fact that when T" £ AT” then the corresponding events Y7 and
Y7+ are independent and therefore Cov[Y7, Yv] = 0. Also, when Y7 and Y7+ are dependent
then CO’U[YT, YTI] = Ey [YTYTI] — Ey [YT]EU [YTI] Le— g2,

Therefore, by Chebyshev’s inequality we have (assuming & < p~*+1)

te(1-¢)(p—1)

PI‘UHY—Sél = (5/2_5)6] < (5/2_8)2£2

139

Now note (6/2 —¢) > (p7* 1 —¢) = (1 —e - p*1)p~*~L. We thus have

(=) (p—1)
Pry[lY —el] > (/2 — e)f] < (1— e phti)zp26-2¢

< i

S (1 —e-prtl)2p2k-2(0 4 1)
& -2y
1—c pri2 P :

7.6 Bibliographics Notes

The results presented in this chapter appear in [72].

As was mentioned earlier, the study of low degree testing (along with self-correction)
dates back to the work of Blum, Luby and Rubinfeld ([21]), where an algorithm was re-
quired to test whether a given function is linear. The approach in [21] later naturally ex-
tended to yield testers for low degree polynomials over fields larger than the total degree.
Roughly, the idea is to project the given function on to a random line and then test if the
projected univariate polynomial has low degree. Specifically, for a purported degree ¢ func-
tion f : Fy — IFy, the test works as follows. Pick vectors y and b from Fy (uniformly at
random), and distinct sq, - - - , 5,41 from I, arbitrarily. Query the oracle representing f at
the ¢ + 1 points b+ s; and extrapolate to a degree ¢ polynomial P, in one variable s. Now
test for a random s € I, if

Pb,y(s) = f(b + Sy)
(for details see [93],[42]). Similar ideas are also employed to test whether a given function
is a low degree polynomial in each of its variable (see [36, 8, 6]).

Alon et al. give a tester over field Fy for any degree up to the number of inputs to the
function (i.e., for any non-trivial degree) [1]. In other words, their work shows that Reed-
Muller codes are locally testable. Under the coding theory interpretation, their tester picks
a random minimum-weight codeword from the dual code and checks if it is orthogonal to
the input vector. It is important to note that these minimum-weight code words generate
the Reed-Muller code.

Specifically their test works as follows: given a function f : {0,1}" — {0, 1}, to test if
the given function f has degree at most ¢, pick (¢ + 1)-vectors y1, -+ ,y;+1 € {0,1}™ and

test if
>, O w=o.

0ASClt+1] ieS
Independent of [72], Kaufman and Ron, generalizing a characterization result of [42],
gave a tester for low degree polynomials over general finite fields (see [74]). They show
that a given polynomial is of degree at most ¢ if and only if the restriction of the polyno-
mial to every affine subspace of suitable dimension is of degree at most £. Following this

140

idea, their tester chooses a random affine subspace of a suitable dimension, computes the
polynomial restricted to this subspace, and verifies that the coefficients of the higher degree
terms are zero*. To obtain constant soundness, the test is repeated many times. An advan-
tage of the approach presented in this chapter is that in one round of the test (over the prime
field) we test only one linear constraint, whereas their approach needs to test multiple linear
constraints.

A basis of RM consisting of minimum-weight codewords was considered in [28, 29].
We extend their result to obtain a different exact characterization for low-degree polyno-
mials. Furthermore, it seems likely that their exact characterization can be turned into a
robust characterization following analysis similar to our robust characterization. However,
our basis is cleaner and yields a simpler analysis. We point out that for degree smaller than
the field size, the exact characterization obtained from [28, 29] coincides with [21, 93, 42].
This provides an alternate proof to the exact characterization of [42] (for more details, see
Remark 7.3 and [42]).

In an attempt to generalize our result to more general fields, we obtain an exact char-
acterization of low degree polynomials over general finite fields [71] (see [86] for more
details). This provides an alternate proof to the result of Kaufman and Ron [74] described
earlier. Specifically the result says that a given polynomial is of degree at most ¢ if and
only if the restriction of the polynomial to every affine subspace of dimension [qf;}p] (and
higher) is of degree at most ¢.

Recently Kaufman and Litsyn ([73]) show that the dual of BCH codes are locally
testable. They also give a sufficient condition for a code to be locally testable. The con-
dition roughly says that if the number of fixed length codewords in the dual of the union
of the code and its e-far coset is suitably smaller than the same in the dual of the code,
then the code is locally testable. Their argument is more combinatorial in nature and needs
the knowledge of weight-distribution of the code and thus differs from the self-correction
approach used in this work.

4Since the coefficients can be written as linear sums of the evaluations of the polynomial, this is equivalent
to check several linear constraints

141

Chapter 8
TOLERANT LOCALLY TESTABLE CODES

In this chapter, we revisit the notion of local testers (as defined in Section 2.3) that was
the focus of Chapter 7.

8.1 Introduction

In the definition of LTCs, there is no requirement on the tester for input strings that are
very close to a codeword (it has to reject “far” away received words). This “asymmetry” in
the way the tester accepts and rejects an input reflects the way Probabilistically Checkable
Proofs (or PCPs) [6, 5] are defined, where we only care about accepting perfectly correct
proofs with high probability. However, the crux of error-correcting codes is to tolerate and
correct a few errors that could occur during transmission of the codeword (and not just
be able to detect errors). In this context, the fact that a tester can reject received words
with few errors is not satisfactory. A more desirable (and stronger) requirement in this
scenario would be the following— we would like the tester to make a quick decision on
whether or not the purported codeword is close to any codeword. If the tester declares that
there is probably a close-by codeword, we then use a decoding algorithm to decode the
received word. If on the other hand, the tester rejects, then we assume with high confidence
that the received word is far away from all codewords and not run our expensive decoding
algorithm.

In this chapter, we introduce the concept of tolerant testers. These are testers which
reject (w.h.p) received words far from every codeword (like the “standard” local testers)
and accept (w.h.p) close-by received words (unlike the “standard” ones which only need to
accept codewords). We will refer to codes that admit a tolerant tester as tolerant LTCs. In
particular we get tolerant testers that (i) make O(1) queries and work with codes of near
constant rate codes and (ii) make sub-linear number of queries and work with codes of
constant rate.

8.2 Preliminaries

Recall that for any two vectors u, v € [q]™, 6(u, v) denotes the (relative) Hamming distance
between them. We will abuse the notation a bit and for any S C [¢]", use d(u, S) to denote
min,es 6(u, v). We now formally define a tolerant tester.

Definition 8.1. For any linear code C over I, of block length n and distance d, and 0 <
¢1 < ¢a < 1, a (e, ca)-tolerant tester T for C with query complexity p(n) (or simply p when

142

the argument is clear from the context) is a probabilistic polynomial time oracle Turing
machine such that for every vector v € Fy:

1. If6(v,C) < %i, T upon oracle access to v accepts with probability at least % (toler-
ance),

cod . . .- 9
2. If§(v,C) > 22, T rejects with probability at least 5 (soundness),
3. T makes p(n) probes into the string (oracle) v.

A code is said to be (cy, ca, p)-testable if it admits a (c1, ca)-tolerant tester of query com-
plexity p(-).

A tester has perfect completeness if it accepts any codeword with probability 1. As
pointed out earlier, local testers are just (0, c)-tolerant testers with perfect completeness.
We will refer to these as standard testers henceforth. Note that our definition of tolerant
testers is per se not a generalization of standard testers since we do not require perfect
completeness for the case when the input v is a codeword. However, all our constructions
will inherit this property from the standard testers we obtain them from.

Recall one of the applications of tolerant testers mentioned earlier: a tolerant tester is
used to decide if the expensive decoding algorithm should be used. In this scenario, one
would like to set the parameters c; and ¢y such that the tester is tolerant up to the decoding
radius. For example, if we have an unique decoding algorithm which can correct up to ¢
errors, a particularly appealing setting of parameters would be ¢; = % and c; as close to %
as possible. However, we would not be able to achieve such large c;. In general we will
aim for positive constants ¢; and ¢y with z'—f being as small as possible while minimizing
p(n).

One might hope that the existing standard testers could also be tolerant testers. We give
a simple example to illustrate the fact that this is not the case in general. Consider the tester
for the Reed-Solomon (RS) codes of dimension k+-1: pick k+2 points uniformly at random
and check if the degree k univariate polynomial obtained by interpolating on the first k£ 4 1
points agrees with the input on the last point. It is well known that this is a standard tester
[96]. However, this is not a tolerant tester. Assume we have an input which differs from a

degree k polynomial in only one point. Thus, for (Z:) choices of k + 2 points, the tester

n—1
would reject, that is, the rejection probability is % = % which is greater than % for
high rate RS codes. o

Another pointer towards the inherent difficulty in coming up with a tolerant tester is the
work of Fischer and Fortnow [39] which shows that there are certain boolean properties
which have a standard tester with constant number of queries but for which every tolerant
tester requires at least n(!) queries.

In this chapter, we examine existing standard testers and convert some standard testers
into tolerant ones. In Section 8.3 we record a few general facts which will be useful in

143

performing this conversion. The ultimate goal, if this can be realized at all, would be to
construct tolerant LTCs of constant rate which can be tested using O(1) queries (we remark
that such a construction has not been obtained even without the requirement of tolerance).
In this work, we show that we can achieve either constant number of queries with slightly
sub-constant rate (Section 8.4) as well as constant rate with sub-linear number of queries
(Section 8.5.1). That is, something non-trivial is possible in both the domains: (a) constant
rate, and (b) constant number of queries. Specifically, in Section 8.4 we discuss binary
codes which encode k bits into codewords of length n = k - exp(log® k) for any ¢ > 0, and
can be tolerant tested using O(1/¢) queries. In Section 8.5.1, following [14], we will study
the simple construction of LTCs using products of codes — this yields asymptotically good
codes which are tolerant testable using a sub-linear number n” of queries for any desired
v > 0. An interesting common feature of the codes in Section 8.4 and 8.5.1 is that they
can be constructed from any code that has good distance properties and which in particular
need not admit a local tester with sub-linear query complexity. In Section 8.6 we discuss
the tolerant testability of Reed-Muller codes, which were considered in Chapter 7.

The overall message from this chapter is that a lot of the work on locally testable code
constructions extends fairly easily to also yield tolerant locally testable codes. However,
there does not seem to be a generic way to “compile” a standard tester to a tolerant tester
for an arbitrary code.

8.3 General Observations

In this section we will spell out some general properties of tolerant testers and subsequently
use them to design tolerant testers for some existing codes. All the testers we refer to are
non-adaptive testers which decide on the locations to query all at once based only on the
random choices. The motivation for the definition below will be clear in Section 8.4.

Definition 8.2. Ler 0 < o < 1. A tester T is ({s1, q1), (S2, @2), &)-smooth if there exists a
set A C [n] where |A| = an with the following properties:

e T queries at most q; points in A, and for every x € A, the probability that each of
these queries equals location x is at most ﬁ, and

e T queries at most qs points in [n] \ A, and for every x € [n]\ A, the probability that

each of these queries equals location x is at most —3.
n—lA]

As a special case a ((1,¢), (0,0),1)-smooth tester makes a total of ¢ queries each of
them distributed uniformly among the n possible probe points. The following lemma fol-
lows easily by an application of the union bound.

Lemma 8.1. Forany 0 < a < 1, a ({s1,q1), (s2,q2), &)-smooth (0, c3)-tolerant tester T
na(l—a)
3dmax{qis1(1—a), g2s2a}"

with perfect completeness is a (c1, cz)-tolerant tester T', where ¢; =

144

Proof. The soundness follows from the assumption on 7. Assume 6(v,C) < Cle and let
f € C be the closest codeword to v. Suppose that f differs from v in a set A’ of yd places
among locations in A, and a set B” of (8 — y)d places among locations in [n] \ A, where
we have f < ¢; and 0 < y < B. The probability that any of the at most ¢; (resp. go)
queries of T into A (resp. [n] \ A) falls in A’ (resp. B’) is at most %i (resp. %).
Clearly, whenever 1" does not query a location in A’ U B’, it accepts (since 7" has perfect
completeness). Thus, an easy calculation shows that the probability that 7' rejects v is at

most

ad 5191 S2Q2
— max{—, }
a 1—«

which is 1/3 for the choice of ¢; stated in the lemma. O

The above lemma is not useful for us unless the relative distance and the number of
queries are constants. Next we sketch how to design tolerant testers from existing robust
testers with certain properties. We first recall the definition of robust testers from [14].

A standard tester 7" has two inputs: an oracle for the received word v and a random
string s. Depending on s, T' generates g query positions 1, - - - , 14, fixes a circuit C and
then accepts if Cs(vs(s)) = 1 where vs(s) = (v, -+ ,v;,). The robustness of T on inputs
v and s, denoted by p (v, s), is defined to be the minimum, over all strings y such that
Cs(y) = 1, of 6(vs(s),y). The expected robustness of 7' on v is the expected value of
p” (v, s) over the random choices of s and would be denoted by p” (v).

A standard tester 7' is said to be c-robust for C if for every v € C, the tester accepts with
probability 1, and for every v € F, 6(v,C) < ¢ p" (v).

The tolerant version 7" of the standard c-robust tester 7" is obtained by accepting an
oracle v on random input s, if p? (v, s) < 7 for some threshold 7. (Throughout the chapter
7 will denote the threshold.) We will sometimes refer to such a tester as one with threshold
7. Recall that a standard tester T accepts if p? (v, s) = 0. We next show that 7" is sound.

The following lemma follows from the fact that 7" is c-robust:

Lemma 8.2. Let 0 < 7 < 1, and let ¢y = (ﬁ;%. For any v € IFp, if 6(v,C) > ”Td, then

the tolerant tester T' with threshold T rejects v with probability at least %
Proof. Letv € Iy be such that §(v,C) > C%d. By the definition of robustness, the expected
robustness, p”(v) is at least 224, and thus at least (7 + 2)/3 by the choice of c. By the
standard averaging argument, we can have pZ (v, s) < 7 on at most a fraction 1/3 of the of
the random choices of s for T' (and hence T"). Therefore, p” (v, s) > 7 with probability at
least 2/3 over the choice of s and thus 7" rejects v with probability at least 2/3. [J

We next mention a property of the query pattern of 7" which would make 7" tolerant.
Let S be the set of all possible choices for the random string s. Further for each s, let pT(s)
be the set of positions queried by T'.

Definition 8.3. A rester T has a partitioned query pattern if there exists a partition s; U
-+« U S, of the random choices of T' for some m, such that for every 1,

145

d UsESz‘pT(S) = {17 2, 7n}’ and
e Foralls,s' € S;, p"(s)NpT(s) =0 ifs+#s.

Lemma 8.3. Let T have a partitioned query pattern. For any v € F?, if §(v,C) < %’l,

where ¢ = 37, then the tolerant test T" with threshold T rejects with probability at most %

Proof. Let Sy, --- ,S,, be the partition of S, the set of all random choices of the tester 7.
For each j, by the properties of S;, > . s; p'(v,s) < 6(v,C). By an averaging argument
and by the assumption on é(v,C) and the value of ¢y, at least % fraction of the choices of s
in S; have p” (v, s) < 7 and thus, T" accepts. Recalling that Sy, - - - , S,,, was a partition of
S, for at least % of the choices of s in S, T" accepts. This completes the proof. [

8.4 Tolerant Testers for Binary Codes

One of the natural goals in the study of tolerant codes is to design explicit tolerant binary
codes with constant relative distance and as large a rate as possible. In the case of stan-
dard testers, Ben-Sasson et al [11] give binary locally testable codes which map k bits to
k - exp(log® k) bits for any ¢ > 0 and which are testable with O(1/¢) queries. Their con-
struction uses objects called PCPs of Proximity (PCPP) which they also introduce in [11].
In this section, we show that a simple modification to their construction yields tolerant
testable binary codes which map k bits to k - exp(log® k) bits for any € > 0. We note that a
similar modification is used by Ben-Sasson et al to give a relaxed locally decodable codes
[11] but with worse parameters (specifically they gives codes with block length k%),

8.4.1 PCP of Proximity

We start with the definition' of of a Probabilistic Checkable proof of Proximity (PCPP).
A pair language is simply a language whose elements are naturally a pair of strings, i.e.,
it is some collection of strings (z,y). A notable example is CIRCUITVAL = {(C,a) |
Boolean circuit C' evaluates to 1 on assignment a}.

Definition 8.4. Fix 0 < v < 1. A probabilistic verifier V is a PCPP for a pair language L
with proximity parameter y and query complexity q(-) if the following conditions hold:

e (Completeness) If (x,y) € L then there exists a proof w such that V accepts by
accessing the oracle y o m with probability 1.

e (Soundness) If y is y-far from L(z) = {y|(z,y) € L}, then for all proofs m, V
accepts by accessing the oracle y o m with probability strictly less than i.

I'The definition here is a special case of the general PCPP defined in [11] which would be sufficient for
our purposes.

146

e (Query complexity) For any input x and proof w, V. makes at most q(|z|) queries in
yoT.

Note that a PCPP differs from a standard PCP in that it has a more relaxed soundness
condition but its queries into part of the input y are also counted in its query complexity.
Ben-Sasson et. al. give constructions of PCPPs with the following guarantees:

Lemma 8.4 ([11]). Let € > 0 be arbitrary. There exists a PCP of proximity for the pair
language CIRCUITVAL = {(C,2)|C is a boolean circuit and C(x) = 1} whose proof
length, for inputs circuits of size s, is at most s - exp(logs/ 2 s) and for t = % the
verifier of proximity has query complexity O(max{%, é) for any proximity parameter -y
that satisfies v > % Furthermore, the queries of the verifier are non-adaptive and each of
the queries which lie in the input part x are uniformly distributed among the locations of .

The fact that the queries to the input part are uniformly distributed follows by an exam-
ination of the verifier construction in [11]. In fact, in the extended version of that paper, the
authors make this fact explicit and use it in their construction of relaxed locally decodable
codes (LDCs). To achieve a tolerant LTC using the PCPP, we will need all queries of the
verifier to be somewhat uniformly or smoothly distributed. We will now proceed to make
the queries of the PCPP verifier that fall into the “proof part” 7 near-uniform. This will
follow a fairly general method suggested in [11] to smoothen out the query distribution,
which the authors used to obtain relaxed locally decodable codes from the PCPP. We will
obtain tolerant LTCs instead, and in fact will manage to do so without a substantial increase
in the encoding length (i.e., the encoding length will remain k - 2!°8°¥). On the other hand,
the best encoding length achieved for relaxed LDCs in [11] is k™€ for constant £ > 0. We
begin with the definition of a mapping that helps smoothen out the query distribution.

Definition 8.5. Given any v € F} and p' = (p;)i-, with p; > 0 for all i € [n] and
Y ov 1 pi = 1, we define the mapping Repeat(-,-) as follows: Repeat(v,p) € Fg' such that
v; is repeated | 4np;| times in Repeat(v, p) andn' =" |4np;].

We now show why the mapping is useful. A similar fact appears in [11], but for the
sake of completeness we present its proof here.

Lemma 8.5. For any v € Iy let a non-adaptive verifier T' (with oracle access to v) make
q(n) queries and let p; be the probability that each of these queries probes location i € [n).
Let ¢; = 5 + % and & = (c;)}7. Consider the map Repeat(v,c) : F? — IFZ'. Then there
exists another tester T' for strings of length n' with the following properties:

1. T' makes 2q(n) queries on v' = Repeat(v,¢) each of which probes location j, for
any j € [n'], with probability at most % and

2. for every v € Ty, the decision of T' on v' is identical to that of T on v. Further,
3n <n' <4n.

147

Proof. We first add ¢ dummy queries to T each of which are uniformly distributed, and
then permute the 2q queries in a random order. Note that each of the 2¢ queries is now
identically distributed. Moreover, any position in v is probed with probability at least %
for each of the 2q queries. For the rest of the proof we will assume that 7" makes 2¢ queries
for each of which any ¢ € [n] is probed with probability ¢; = & + 5-. Let r; = |4nc;].
Note that r; < 4nc; and r; > 4nc; — 1. Recalling that n’ = ", r;and > ¢; = 1, we
have 3n < n' < 4n.

T just simulates 7T in the following manner: if T' queries v; for any i € [n], T' queries
one of the r; copies of v; in v’ uniformly at random. It is clear that the decision of 7" on
v' = Repeat(v, €) is identical to that of 7" on v. We now look at the query distribution of
T'. T' queries any j € [n'], where v} = v;, with probability p}; = ¢; - :—1 Recalling the lower

Ci

bound on r;, we have p;- < which is at most % since clearly ¢; > % We showed

4nc;—1
earlier that n’ < 4n which implies p}; < % as required. O

One might wonder if we can use Lemma 8.5 to smoothen out the queries made by the
verifier of an arbitrary LTC to obtain a tolerant LTC. That is, whether the above allows one
to compile the verifier for any LTC in a black-box manner to obtain a tolerant verifier. We
will now argue (informally) that this technique alone will not work. Let C; be an [n, k, d,
LTC with a standard tester 7 that makes q identically distributed queries with distribution
pi» 1 < i < n, such that p; > 1/2n for each i. Create a new [n + 1, k, d], code Cy whose
(n + 1)’th coordinate is just a copy of the n’th coordinate, i.e., corresponding to each
codeword (c1, ¢, ... ,¢,) € F? of Cy, we will have a codeword (c1, ¢, . . . , Cn, Cn) € Fit!
of (5. Consider the following tester Ty for Cy: Given oracle access to v € FZ“, with
probability 1/2 check whether v,, = v,,;1, and with probability 1/2 run the tester 7} on the
first n coordinates of v. Clearly, 75 is a standard tester for Cs.

Now, consider what happens in the conversion procedure of Lemma 8.5 to get (C',T")
from (Cy, Ty). Note that by Lemmas 8.5 and 8.3, 7" is tolerant. Let § = (g1, - -, ¢n+1) be
the query distribution of T5. Since T5 queries (v, U,+1) With probability 1/2, the combined
number of locations of v' = Repeat(v, ¢) corresponding to v, v, 11 Will be about 1/2 of
the total length n’. Now let v’ be obtained from a codeword of C’ by corrupting just these
locations. The tester 7" will accept such a v’ with probability at least 1/2, which contradicts
the soundness requirement since v’ is 1/2-far from C’. Therefore, using the behavior of the
original tester 75 as just a black-box, we cannot in general argue that the construction of
Lemma 8.5 maintains good soundness.

Applying the transformation of Lemma 8.5 to the proximity verifier and proof of prox-
imity of Lemma 8.4, we conclude the following.

Proposition 8.6. Let ¢ > 0 be arbitrary. There exists a PCP of proximity for the pair lan-
guage CIRCUITVAL = {(C, z)|C is a boolean circuit and C(x) = 1} with the following

properties:

1. The proof length, for inputs circuits of size s, is at most s - exp(loga/ 2 s), and

148

2. fort = % the verifier of proximity has query complexity O(max{%, 1Y) for
1

any proximity parameter vy that satisfies vy = ;.
Furthermore, the queries of the verifier are non-adaptive with the following properties:

1. Each query made to one of the locations of the input x is uniformly distributed among
the locations of x, and

2. each query to one of the locations in the proof of proximity w probes each location
with probability at most 2/|n| (and thus is distributed nearly uniformly among the
locations of).

8.4.2 The Code

We now outline the construction of the locally testable code from [11]. The idea behind the
construction is to make use of a PCPP to aid in checking if the received word is a codeword
is far away from being one. Details follow.

Suppose we have a binary code Cy : {0,1}* — {0,1}™ of distance d defined by a
parity check matrix H € {0, 1}(™~*)x™ that is sparse, i.e., each of whose rows has only an
absolute constant number of 1’s. Such a code is referred to as a low-density parity check
code (LDPC). For the construction below, we will use any such code which is asymptoti-
cally good (i.e., has rate k/m and relative distance d/m both positive as m — o0o). Explicit
constructions of such codes are known using expander graphs [95]. Let V' be a verifier of a
PCP of proximity for membership in Cj; more precisely, the proof of proximity of an input
string w € {0,1}™ will be a proof that Co(w) = 1 where C is a linear-sized circuit which
performs the parity checks required by H on w (the circuit will have size O(m) = O(k)
since H is sparse and Cy has positive rate). Denote by 7(x) be the proof of proximity
guaranteed by Proposition 8.6 for the claim that the input Cy(z) is a member of Cjy (i.e.,
satisfies the circuit Cy). By Proposition 8.6 and fact that the size of Cy is O(k), the length
of 7(x) can be made at most k exp(log*/? k).

The final code is defined as Ci(z) = (Co(z)*, m(x)) where t = M%%W. The
repetition of the code part Cy(z) is required in order to ensure good distance, since the
length of the proof part 7(x) typically dominates and we have no guarantee on how far
apart 7w(x1) and (o) for z1 # x4 are.

For the rest of this section let £ denote the proof length. The tester 7' for C; on an input
w = (wy, - ,wg,m) € {0,1}™ picks i € [t] at random and runs the PCPP verifier V on
w; o . It also performs a few rounds of the following consistency checks: pick i1,y € [t]
and ji, jo € [m] at random and check if w;, (j1) = w;,(j2). Ben-Sasson et al in [11] show
that 77 is a standard tester. However, 77 need not be a tolerant tester. To see this, note that
the proof part of C; forms a @ fraction of the total length. Now consider a received word
Wree = (wo, - -+, wp, ') where wg € Cy but 7’ is not a correct proof for wq being a valid

149

codeword in ¢y. Note that w.. is close to C;. However, T} is not guaranteed to accept Wy,
with high probability.

The problem with the construction above was that the proof part was too small: a natural
fix is to make the proof part a constant fraction of the codeword. We will show that this is
sufficient to make the code tolerant testable. We also remark that a similar idea was used by
Ben-Sasson et. al. to give efficient constructions for relaxed locally decodable codes [11].

Construction 8.1. Let 0 < 3 < 1 be a parameter, Cy : {0,1}* — {0,1}™ be a good *
binary code and V' be a PCP of proximity verifier for membership in Cy. Finally let m(x)
be the proof corresponding to the claim that Cy(x) is a codeword in Cy. The final code is

defined as Cy(z) = (Co(x)™, m(z)™) with ry = w and ry = (logk.’

For the rest of the section the proof length |7 (z)| will be denoted by ¢. Further the
proximity parameter and the number of queries made by the PCPP verifier V' would be
denoted by 7y, and g, respectively. Finally let py denote the relative distance of the code Cj.

The tester T for C, is also the natural generalization of 7. For a parameter g, (to be
instantiated later) and input w = (wy,-** , Wy, T, ,Tp,) € {0, 1}l Ty does the
following:

1. Repeat the next two steps twice.
2. Pick ¢ € [r1] and j € [rs] randomly and run V' on w; o ;.

3. Do g, repetitions of the following: pick 41,4y € [r1] and ji, jo € [m] randomly and
check if W;, (]1) = Wi, (]2)

The following lemma captures the properties of the code Cs and its tester 7.

Lemma 8.7. The code Cy in Construction 8.1 and the tester Ty (with parameters [3 and q,
respectively) above have the following properties:

1. The code Cs has block length n = logk - { with minimum distance d lower bounded
by (1 — B)pon.

2. Ts makes a total of ¢ = 2q, + 4q, queries.

3. Tyis ((1,9),(2,2q,),1 — B)-smooth.

2This means that . = O(k) and the encoding can be done by circuits of nearly linear size s = O(k).

3The factor log k overhead is overkill, and a suitably large constant will do, but since the proof length
|(x)| will anyway be larger than |z| by more than a polylogarithmic factor in the constructions we use,
we can afford this additional log k factor and this eases the presentation somewhat.

150

nB(1-pB)
6d max{(2¢r+gp)B, 2(1—F)gp}

4. Ty is a (c1, ca)-tolerant tester with ¢, =

=+ B).

and cy = %(yp +

Proof. From the definition of Cy, it has block length n = rym + rof = (lfﬁ)# -m +
Blogk-¢ =logk - ¢. Further as C has relative distance pg, Cy has relative distance at least
% = (1 = B)po-

T, makes the same number of queries as V' which is g, in Step 2. In Step 3, 75 makes
2q, queries. As T; repeats Steps 2 and 3 twice, we get the desired query complexity.

To show the smoothness of 75 we need to define the appropriate subset A C [n] such
that |A| = (1 — B)n. Let A be the set of indices with the code part: ie. A = [rym].
T, makes 2q, queries in A in Step 3 each of which is uniformly distributed. Further by
Proposition 8.6, T in step 2 makes at most g, queries in A which are uniformly distributed
and at most ¢, queries in [n] \ A each of which are within a factor 2 of being queried
uniformly at random. To complete the proof of property 3 note that 75 repeats step 2 and 3
twice.

The tolerance of 75 follows from property 3 and Lemma 8.1. For the soundness part
note that if w = (w1, -+ ,wp, T, ,7r,,2) € {0,1}rm+r2l ig ~-far from Cy then w' =
(wr, -+ ,wy,) is at least 7"””"7 = m=bBn — ~ _ 3 far from the repetition code C! =
{Co(z)|z € {0,1}*}. For v = C2d/n with the choice of ¢y in the lemma, we have
¥ — B = v + 4/q.. The rest of the proof just follows the proof in [11] (also see [68,
Chap. 12]) of the soundness of the tester 77 for the code C;— for the sake of completeness
we complete the poof here. We will show that one invocation of Steps 2 and 3 results in
T, accepting w with probability strictly less than % The two repetitions of Steps 2 and 3
reduces this error to at most i.

Let u € {0,1}™ be the string such that u* is the “repetition sequence” that is closest to
w’, that is one that minimizes A(w', u*) = >/ | A(w;, u). We now consider two cases:

e Case 1: A(w',u') > rym/q,. In this case, a single execution of the test in Step 3
rejects with probability

E’h 42€[r1] [A(wuawzz)/m] = rl 2 Z Z A wuawzz

l2 11

mzzzw

i2 11

—_— E A(wg,,u
mrq

11=1

V

= A(w',u")/(mry)
> 1/q,

where the first inequality follows from the choice of w and the second inequality

151

follows from the case hypothesis. Thus, after g, repetitions the test will accept with
probability (1 — 1/¢,)" < 1/e < 1/2.

e Case 2: A(w',u*) < rym/q,. In this case we have the following (where for any
subset S of vectors and a vector u, we will use A(u, S) = min,eg A(u, v)):

A(u, C A, C _ A, C") — A(w',ut
(0): ()2 () ()2’7p+4/Q7‘_1/Q7':’7p+3/q“
T1 rm rm (8 1)

where the first inequality follows from the triangle inequality and the last inequality
follows from the case hypothesis (and the fact that w’ is -y, + 4/g,-far from C”). Now
by the case hypothesis, for an average i, A(w;,u) < m/q,. Thus, by a Markov
argument, at most one thirds of the w;’s are 3/g,-far from u. Since u is 7, + 3/¢,-far
from Cy (by (8.1)), this implies (along with triangle inequality) that for at least two
thirds of the w;’s are 7,-far from Cy. Thus, by the property of the PCPP, for each
such w; the test in Step 2 should accept with probability at most 1/4. Thus the total
1

acceptance probability in this case is at most % 14 % = %, as desired.

Thus, in both cases the tester accepts w with probability at most 1/2, as required. U
Fixany 0 <y < landlet8 = 3,7, = §. ¢ = 17—2 With these settings we get

Yp + % + 08 =~and g, = O(%) from Proposition 8.6 with the choice ¢ = 2v. Finally,

q=2q,+4qg, = O(%) Substituting the parameters in ¢ and c;, we get co = % and

ad g _
n 24 m&X{rY(QT + qP/2)a (2 - V)QP}

Q%) .

Also note that the minimum distance d > (1 — 8)pon = (1 — 3)pon > %n. Thus, we have
the following result for tolerant testable binary codes.

Theorem 8.1. There exists an absolute constant ag > 0 such that for every v, 0 < v < 1,
there exists an explicit binary linear code C : {0,1}* — {0,1}" where n = k - exp(log” k)
with minimum distance d > agn which admits a (ci, cz)-tolerant tester with co = O(7),
c1 = Q(v?) and query complexity O(%)

The claim about explicitness follows from the fact that the PCPP of Lemma 8.4 and
hence Proposition 8.6 has an explicit construction. The claim about linearity follows from
the fact that the PCPP for CIRCUITVAL is a linear function of the input when the circuit
computes linear functions — this aspect of the construction is discussed in detail in Chapter
9 in [68].

152

8.5 Product of Codes

Tensor product of codes (or just product of codes) is simple way to construct new codes
from existing codes such that the constructed codes have testers with sub-linear query com-
plexity even though the original code need not admit a sub-linear complexity tester [14].
We start with the definition of product of codes.

Definition 8.6 (Tensor Product of Codes). Given C; and Cs that are [ki,n1,d;| and
[k2,na, ds] codes, their tensor product, denoted by C; @ Ca, consists of ny X ny matri-
ces such that every row of the matrix is a codeword in Cy and every column is a codeword
in CQ.

It is well known that C; ® Cs is an [n1na, k1 k2, d1ds] code.

A special case in which we will be interested is when C; = C» = C. In such a case, given
an [n, k, d], code C, the product of C with itself, denoted by C?, is a [n?, k?, d?], code such
that a codeword (viewed as a n X n matrix) restricted to any row or column is a codeword in
C. It can be shown that this is equivalent to the following [100]. Given the k X n generator
matrix M of C, C? is precisely the set of matrices in the set {M” - X - M | X € F}**}.

8.5.1 Tolerant Testers for Tensor Products of Codes

A very natural test for C? is to randomly choose a row or a column and then check if the
restriction of the received word on that row or column is a codeword in C (which can be
done for example by querying all the n points in the row or column). Unfortunately, as we
will see in Section 8.5.2, this test is not robust in general.

Ben-Sasson and Sudan in [14] considered the more general product of codes C* for
t > 3 (where C* denotes C tensored with itself £ — 1 times) along with the following general
tester: Choose at random b € {1,--- ,t} and i € {1,--- ,n} and check if b** coordinate of
the received word (which is an element of]th) when restricted* to 7 is a codeword in Ct~ 1.
It is shown in [14] that this test is robust, in that if a received word is far from C?, then many
of the tested substrings will be far from C*~1. This tester lends itself to recursion: the test
for Ct~1 can be reduced to a test for C*~2 and so on till we need to check whether a word in
ng is a codeword of C2. This last check can done by querying all the n? points, out of the
n’ points in the original received word, thus leading to a sub-linear query complexity. As
shown in [14], the reduction can be done in logt stages by the standard halving technique.

Thus, even though C might not have a tester with a small query complexity, we can test
C* with a polylogarithmic number of queries.

We now give a tolerant version of the test for product of codes given by Ben-Sasson and
Sudan [14]. In what follows ¢ > 4 will be a power of two. As mentioned above the tester T’
for the tensor product C* reduces the test to checking if some restriction of the given string
belong to C2. For the rest of this section, with a slight abuse of notation let v; € Ff denote

“For the t = 2 case b signifies either row or column and 4 denotes the row/column index.

153

the final restriction being tested. In what follows we assume that by looking at all points in
any v € " one can determine if §(v,C?) < 7 in time polynomial in n?.

The tolerant version of the test of [14] is a simple modification as mentioned in Section
8.3: reduce the test on C! to C? as in [14] and then accept if v 7 1s T-close to C2.

First we make the following observation about the test in [14]. The test recurses logt
times to reduce the test to C2. At step [, the test chooses an random coordinate b; (this will

just be a random bit) and fixes the value of the b!" coordinate of the current C 2 {0 an index
1; (where 7; takes values in the range 1 < 7; < nt/ 2l). The key observation here is that for
each fixed choice of by, - - , biogy, distinct choices of 41, -+ ,716g; cOrrespond to querying
disjoint sets n? points in the original v €]F(’;t string, which together form a partition of all
coordinates of v. In other words, 7" has a partitioned query pattern, which will be useful to
argue tolerance. For soundness, we use the results in [14], which show that their tester is
C'&t_robust for C' = 232

Applying Lemmas 8.2 and 8.3, therefore, we have the following result:

Theorem 8.2. Lett > 4 be a power of two and 0 < 7 < 1. There exist 0 < c; < ca < 1
with 2 = C'°8'(1 + 2/7) such that the proposed tolerant tester for C' is a (c1, cz)-tolerant

tester with query complexity N*/* where N is the block length of Ct. Further, ¢, and cy are
constants (independent of N) if t is a constant and C has constant relative distance.

Corollary 8.3. For every v > (0, there is an explicit family of asymptotically good binary
linear codes which are tolerant testable using n” queries, where n is the block length of the
concerned code. (The rate, relative distance and thresholds cy, cs for the tolerant testing
depend on 7.)

8.5.2 Robust Testability of Product of Codes

Recall that a standard tester for a code is robust if for every received word which is far from
being a codeword, the tester not only rejects the codeword with high probability but also
with high probability the tester’s local view of the received word is far from any accepting
view (see Section 8.3 for a more formal definition).

As was mentioned before for the product code C; ® Cs, there is a natural tester (which
we call T, gc,)— flip a coin; if it is heads check if a random row is a codeword in Cy; if
it is tails, check if a random column is a codeword in C,. This test is indeed robust in a
couple of special cases— for example, when both C; and C, are Reed-Solomon codes (see
Section 8.6.1 for more details) and when both C; and C, are themselves tensor product of a
code [14].

P. Valiant showed that there are linear codes C; and Cs such that C; ® C5 is not robustly
testable [103]. Valiant constructs linear codes Cy, C2 and a matrix v such that every row
(and column) of v is “close” to some codeword in C; (and Cy) while v is “far” from every
codeword in C; ® Cy (where close and far are in the sense of hamming distance).

154

However, Valiant’s construction does not work when C; and C, are the same code. In
this section, we show a reduction from Valiant’s construction to exhibit a code C such that
C? is not robustly testable.

Preliminaries and Known Results

C is said to be robustly testable if it has a €(1)-robust tester. For a given code C of block
length n over I, and a vector v € I, the (relative) Hamming distance of v to the closest
codeword in C is denoted by d¢(v).

Asking whether T¢, »c, 1s a robust tester has the following nice interpretation. The g
queries 7y, - - - , 4 are either rows or columns of the received word v. Let the row or column
corresponding to the random seed s be denoted by v°. Then the robustness of T¢, gc, On
inputs (v, s), pT€18¢ (v, s) is just ¢, (v*) when 4, corresponds to a row and d¢, (v*) when i,
corresponds to a column. Therefore the expected robustness of T¢, ¢, On v is the average
of the following two quantities: the average relative distance of the rows of v from C; and
the average relative distance of the columns of v from Cs.

In particular, if T¢, g¢, is ©2(1)-robust then it implies that for every received word v such
that all rows (and columns) of v are o(1)-close to Cy (and Cz), v is o(1)-close to C; ® Cs. P.
Valiant proved the following result.

Theorem 8.4 ([103]). There exist linear codes [n,,ky,dy = n1/10] and [ny = n?, ky, dy =
n2/10] (call them Cy and C3) and a ny X ny received word v such that every row of v is
1/nq-close to Cy and every column of v is a codeword Cq but v is 1/20-far from Cy X C.

Note that in the above construction, ny # ny and in particular C; and Cs are not the
same code.

Reduction from the Construction of Valiant

In this section, we prove the following result.

Theorem 8.5. Let Cy # Co be [ny, ky1,dy = Q(ny)] and [ng, ko, dy = Q(n2)] codes respec-
tively (with no > n1) and let v be a ny X ny matrix such that every row (and column) of v is
g(nq)-close to Cy (g(ng)-close to C3) but v is p-far from C; ® Co. Then there exists a linear
code C with parameters n, k,d = Q(n) and a received word v' such that such that every
row (and column) of v' is g(ny)/2-close (and g(n3)/2-close) to C but v' is p/4-far from C2.

n2

Proof. We will first assume that n; divides ny and let m = . For any z € ¥* and

y € ¥F2 let
C((z,y)) = ((Ci(z))™, C2(y))
Thus, k = k1 + ke and n = mny + ns. Also as d; = Q(ny) and dy = Q(n3), d = Q(n).
We now construct the n x n matrix v’ from v. The lower left ny X mn; sub-matrix of v’
contains the matrix v™ where v™ is the horizontal concatenation of m copies of v (which is
ang X mp matrix). Every other entry in v’ is 0. See figure 8.1 for an example with m = 2.

155

4a

2a

.
i

Figure 8.1: The construction of the new received word v’ from v for the case when n; = a,
ng = 2a and m = 2. The shaded boxes represent v and the unshaded regions has all Os.

Let w be the codeword in C; ® Cy closest to v and construct w’ in the same manner
as v’ was constructed from v. We first claim that w’ is the codeword in> C? closest to v'.
For the sake of contradiction, assume that there is some other codeword w” in C? such that
A, w") < A(v',w'). For any 2n’ x 2n' matrix u let uy; denote the lower left n' x n'/
sub-matrix of u. Note that by definition of C, wj; = =™ where z € C; ® C,. Further, as
v’ (necessarily) has 0 everywhere other than v}, and A(v',w"”) < A(v',w’), it holds that
A(v,w) > A(v, z) which contradicts the definition of w.

Finally, it is easy to see that

Se2(v)) = AW, w') /n? = A(v,w)m/(mny + ng)? = A(v,w)/(4ning) = g

and if for any row (or column), the relative distance of v restricted to that row (or column)
from C; (C5) is at most « then for every row (or column), the relative distance of v’ restricted
to that row (or column) from C is at most a/2.

This completes the proof for the case when n; divides ny. For the case when ny does

not divide 75 a similar construction works if one defines C in the following manner (for any
z € ¥F and z, € XF2)

C((z,)) = ((Cu())"™, (Ca(y))"™)

where £ = lem(ny,ns). The received word v in this case would have its lower left £ x ¢
matrix as v(¢/71:4/72) (where v("™1™2) is the matrix obtained by vertically concatenating m.
copies of v™1) and it has Os everywhere else. U

SNote that w’ € C? as the all zeros vector is a codeword in both C; and Cs and w € C; ® Cs.

156

Theorem 8.4 and 8.5 imply the following result.

Corollary 8.6. There exist a linear code C with linear distance such that the tester Te2 is
not Q(1)-robust for C2.

8.6 Tolerant Testing of Reed-Muller Codes

In this section, we discuss testers for codes based on multivariate polynomials.

8.6.1 Bivariate Polynomial Codes

As we saw in Section 8.5.2, one cannot have a robust standard testers for C2 in general. In
this subsection, we consider a special case when C = RS[n,k + 1,d = n — k], that is,
the Reed—Solomon code based on evaluation of degree k£ polynomials over F, at n distinct
points in the field. We show that the tester for C? considered in Section 8.5.2 is tolerant
for this special case. It is well-known (see, for example, Proposition 2 in [88]) that in this
case C? is the code with codewords being the evaluations of bivariate polynomials over F,
of degree k in each variable. The problem of low-degree testing for bivariate polynomials
is a well-studied one: in particular we use the work of Polishchuk and Spielman [88] who
analyze a tester using axis parallel lines. Call a bivariate polynomial to be one of degree
(k1, k2) if the maximum degrees of the two variables are k; and ky respectively. In what
follows, we denote by Q' € ;" the received word to be tested (thought of as an n x n
matrix), and let Q(z, y) be the degree (k, k) polynomial whose encoding is closest to @'

We now specify the tolerant tester 7”. The upper bound of 1 — 1/1 — d/n on 7 comes
from the fact that this is largest radius for which decoding an RS[n, k + 1, d] code is known
to be solvable in polynomial time [63].

l. Fix T where0 <7< 1—4/1—d/n.
2. With probability % chooseb=0orb=1.

e If b = 0, choose a row r randomly and reject if 6(Q'(r,), P(-)) > 7 for every
univariate polynomial P of degree k and accept otherwise.

e If b = 1, choose a column ¢ randomly and reject if §(Q'(-,c), P(-)) > 7 for
every univariate polynomial P of degree k and accept otherwise.

The following theorem shows that 7" is a tolerant tester.

Theorem 8.7. There exists an absolute constant ¢y > 0 such that for T < 1—+/1 — d/n, the
tester T' with threshold 7 is a (cy, ¢z, v/ N)-tolerant tester for C* (where C = RS[n, k+1,d))

where ¢y = 37, ¢2 = W and N is the block length of C2.

157

Proof. To analyze T' let R*(r,-) be the closest degree k univariate polynomial (breaking
ties arbitrarily) for each row r. Similarly construct C*(-,c). We will use the following
refinement of the Bivariate testing lemma of [88]:

Lemma 8.8 ([88, 13]). There exists an universal constant co < 128 such that the following
holds. If8k < n then 6(Q',C?) = 6(Q', Q) < co - (3(R*, Q') + 6(C*, Q).

The following proposition shows that the standard tester version of 7" (that is 7" with
7 = 0) is a robust tester—

Proposition 8.9. T with 7 = 0 is a 2¢y robust tester, where cy is the constant from Lemma
8.8.

Proof. By the definition of the row polynomial R, for any row index r, the robustness of
the tester with b = 0 and r, p(@’, (b,7)) = 6(Q'(r,-), R*(r,-)). Similarly for b = 1, we
have p(Q', (b,c)) = 6(Q'(-,¢),C*(-,c)). Now the expected robustness of the test is given
by

p(Q) = Prlb=0]) Prlr=i-6(Q(r,), R*(r,)) +
Prfb=1])_Prle =j]-8(Q'(-,¢),C*(¢))

= 0@, B)+8@,C7).

Using Lemma 8.8, we get 6(Q’, Q) < 2¢cop(Q’), as required. [J

From the description of 7", it is clear that it has a partitioned query pattern. There
are two partitions: one for the rows (corresponding to the choice b = 0) and one for the
columns (corresponding to the choice b = 1).

Lemmas 8.2 and 8.3 prove Theorem 8.7 where ¢ is the constant from Lemma 8.8. [

8.6.2 General Reed-Muller Codes

We now turn our attention to testing of general Reed-Muller codes. Recall that RM,(k, m)
the linear code consisting of evaluations of m-variate polynomials over I, of total degree at
most k at all points in Fy". % To test codewords of RM,(k, m), we need to, given a function
J: Fy — [y as a table of values, test if f is close to an m-variate polynomial of total
degree k. We will do this using the following natural and by now well-studied low-degree
test which we call the lines test: pick a random line in F* and check if the restriction of
f on the line is a univariate polynomial of degree at most k. In order to achieve tolerance,

5The results of the previous section were for polynomials which had degree in each individual variable
bounded by some value; here we study the total degree case.

158

we will modify the above test to accept if the restriction of f on the picked line is within
distance 7 from some degree k univariate polynomial, for a threshold 7. Using the analysis
of the low-degree test from [42], we can show the following.

Theorem 8.8. For 0 < 7 < 1 — \/k/q and g = Q(k), RM,(k,m) is (c1,c2,p) testable
with ¢y = 55, ¢p = 3(T+2)n and p = n'=Y"™ where n = ¢™ and d are the block length and

the distance of the code

Proof. Recall that our goal is to test if a given function f : F;* — T, is close to an m-variate
polynomial of total degree k. For any x,h € F}", a line passing through z in direction h
is given by the set L, = {z + th|t € F,}. Further define Pg’ ,(+) to be the univariate
polynomial of degree at most k£ which is closest (in Hamming distance) from the restriction
of f on L, ;. We will use the following result.

Theorem 8.9 ([42]). There exists a constant c such that for all k, if q is a prime power that
is at least ck, then given a function f : F* — F, with

p = Epnerp Pricy, [P, (1) # f(z + th)] <

colr—u

there exists an m-variate polynomial g of total degree at most k such that dist(f,g) < 2p.

The above result clearly implies that the line test is robust which we record in the
following corollary.

Corollary 8.10. There exists a constant ¢ such that the line test for RM,(k, m) with ¢ > ck
is 9-robust.

The line test picks a random line by choosing and h randomly. Consider the case
when h is fixed. It is not hard to check that for there is a partition of Fi* = X3 U --- U X,
where each X; has size ¢™ ! such that U, X, Lzp =]F;”. In other words:

Proposition 8.10. The line test has a partitioned query pattern.

The proposed tolerant tester for RM,(k,m) is as follows: pick z, h € Fy* uniformly at
random and check if the input restricted to L, is 7-close to some univariate polynomial of
degree k. If so accept, otherwise reject. When the threshold 7 satisfies 7 < 1 — \/m the
test can be implemented in polynomial time [63]. From Corollary 8.10, Proposition 8.10,
Lemmas 8.2 and 8.3, the above is indeed a tolerant tester for RM,(k, m), and Theorem 8.8
follows. 0

159

8.7 Bibliographic Notes and Open Questions

The results in this chapter (other than those in Section 8.5.2) were presented in [57]. Results
in Section 8.5.2 appear in [26].

In the general context of property testing, the notion of tolerant testing was introduced
by Parnas et al. [83] along with the related notion of distance approximation. Parnas et
al. also give tolerant testers for clustering. We feel that codeword-testing is a particularly
natural instance to study tolerant testing. (In fact, if LTCs were defined solely from a
coding-theoretic viewpoint, without their relevance and applications to PCPs in mind, we
feel that it is likely that the original definition itself would have required tolerant testers.)

The question of whether the natural tester for Cy ® Cy is a robust one was first explicitly
asked by Ben-Sasson and Sudan [14]. P. Valiant showed that in general, the answer to the
question is no. Dinur, Sudan and Wigderson [30] further show that the answer is positive
if at least one of C'y or C5 is a smooth code, for a certain notion of smoothness. They also
show that any non-adaptive and bi-regular binary linear LTC is a smooth code. A bi-regular
LTC has a tester that in every query probes the same number of positions and every bit in
the received word is queried by the same number of queries. The latter requirement (in the
terminology of this chapter) is that the tester is ((1, ¢), (0,0}, 1)-smooth, where the tester
makes ¢ queries. The result of [30] however only works with constant query complexity.
Note that for such an LTC, Lemma 8.1 implies that the code is also tolerant testable.

Obtaining non-trivial lower bounds on the the block length of codes that are locally
testable with very few (even 3) queries is an extremely interesting question. This problem
has remained open and resisted even moderate progress despite all the advancements in
constructions of LTCs. The requirement of having a tolerant local tester is a stronger re-
quirement. While we have seen that we can get tolerance with similar parameters to the best
known LTCs, it remains an interesting question whether the added requirement of tolerance
makes the task of proving lower bounds more tractable. In particular,

Open Question 8.1. Does there exists a code with constant rate and linear distance that
has a tolerant tester that makes constant number of queries ?

This seems like a good first step in making progress towards understanding whether
locally testable codes with constant rate and linear distance exist, a question which is ar-
guably one of the grand challenges in this area. For interesting work in this direction which
proves that such codes, if they exist, cannot also be cyclic, see [10].

The standard testers for Reed-Muller codes considered in Section 8.6 (and hence, the
tolerant testers derived from them) work only for the case when the size of the field is larger
than the degree of the polynomial being tested. Results in Chapter 7 and those in [74]
give a standard tester for Reed-Muller codes which works for all fields. These testers do
have a partitioned query pattern— however, it is not clear if the testers are robust. Thus, our
techniques to convert it into a tolerant tester fail. It will be interesting to show the following
result.

160

Open Question 8.2. Design tolerant testers for RM codes over any finite field.

161

Chapter 9
CONCLUDING REMARKS

9.1 Summary of Contributions

In this thesis, we looked at two different relaxation of the decoding problems for error
correcting codes: list decoding and property testing.

In list decoding we focused on the achieving the best possible tradeoff between the
rate of a code and the fraction of errors that could be handled by an efficient list decod-
ing algorithm. Our first result was an explicit construction of a family of code along with
efficient list decoding algorithm that achieves the list decoding capacity. That is, for any
rate 0 < R < 1, we presented folded Reed-Solomon codes of rate R along with poly-
nomial time list decoding algorithms that can correct up to 1 — R — ¢ fraction of errors
(for any € > 0). This was the first result to achieve the list decoding capacity for any rate
(and over any alphabet) and answered one of the central open questions in coding theory.
We also constructed explicit codes that achieve the tradeoff above with alphabets of size
90(=™*1og(1/ 6)), which are not that much bigger than the optimal size of 2%(1/¢),

For alphabets of fixed size, we presented explicit codes along with efficient list decoding
algorithms that can correct a fraction of errors up to the so called Blokh-Zyablov bound.
In particular, these give binary codes of rate Q(¢®) that can be list decoded uptoa 1/2 — ¢
fraction of errors. These codes have rates that come close to the optimal rate of ©(g?) that
can be achieved by random codes with exponential time list decoding algorithms.

A key ingredient in designing codes over smaller alphabets was to come up with optimal
list recovery algorithms. We also showed that the list recovery algorithm for Reed-Solomon
codes due to Guruswami and Sudan is the best possible. We also presented some explicit
bad list decoding configurations for list decoding Reed Solomon codes.

Our contributions in property testing of error correcting codes are two-fold. First, we
presented local testers for Reed-Muller codes that use near optimal number of queries to
test membership in Reed-Muller codes over fixed alphabets. Second, we defined a natu-
ral variation of local testers called tolerant testers and showed that they had comparable
parameters with those of the best known LTCs.

9.2 Directions for Future Work

Even though we made some algorithmic progress in list decoding and property testing of
error correcting codes, there are many questions that are still left unanswered. We have

162

highlighted the open questions throughout the thesis. In this section, we focus on some of
the prominent ones (and related questions that we did not talk about earlier).

9.2.1

List Decoding

The focus of this thesis in list decoding was on the optimal tradeoff between the rate and
list decodability of codes. We first highlight the algorithmic challenges in this vein (most
of which have been highlighted in the earlier chapters).

The biggest unresolved question from this thesis is to come up with explicit codes
over fixed alphabets that achieve the list decoding capacity. In particular is there a
polynomial time construction of a binary codes of rate Q(¢?) that be list decoded in
polynomial time up to 1/2 — ¢ fraction of errors? (Open Question 4.1)

A less ambitious goal than the one above would be to give a polynomial time con-
struction of a binary code with rate §2(¢) that can be list decoded up to 1 — ¢ fraction
of erasures? Erasures are a weaker noise model that we have not considered in this
thesis. In the erasure noise model, the only kind of errors that are allowed is the
“dropping” of a symbol during transmission. Further, it is assumed that the receiver
knows which symbols have been erased. For this weaker noise model, one can show
that for rate R the optimal fraction of errors that can be list decoded is 1 — R.

Another less ambitious goal would be to resolve the following question. Is there a
polynomial time construction of a code that can be list decoded up to 1/2 — ¢ fraction
of errors with rate that is asymptotically better than £3?

Even though we achieved list decoding capacity for large alphabets (that is, for rate
R code, list decode 1 — R — ¢ fraction of errors), the worst case list size was nf/e),
which is very far from the O (1/¢) worst case list size achievable by random codes.
A big open question is to come up with explicit codes that achieve the list decoding
capacity with constant worst case list size. As a less ambitious goal would be to
reduce the worst case list size to n¢ for some constant c that is independent of €. (See
Section 3.7)

We now look at some questions that relate to the combinatorial aspects of list decoding.

For a rate R Reed-Solomon code, can one list decode more than 1 — v/R fraction of
errors in polynomial time? (Open Question 6.2)

To get to within ¢ of list decoding capacity can one prove a lower bound on the worst
case list size? For random codes it is known that list of size O(1/¢) suffice but no
general lower bound is known.!

'For high fraction of errors, tight bounds are known [65].

163

e For codes of rate R over fixed alphabet of size ¢ > 2, can one show existence of linear
codes that have ¢°*/¢) many codewords in any Hamming ball of radius 1— H,(R)—¢?
(See discussion in Section 2.2.1)

9.2.2 Property Testing
Here are some open questions concerning property testing of codes.
e The biggest open question in this area is to answer the following question. Are there

codes of constant rate and linear distance that can be locally tested with constant
many queries?

e A less ambitious (but perhaps still very challenging) goal is to show that the answer
to the question above is no for 3 queries.

e Can one show that the answer to the first question (or even the second) is no, if one
also puts in the extra requirement of tolerant testability? (Open Question 8.1)

164

[1]

[2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

BIBLIOGRAPHY

Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Test-
ing Reed-Muller codes. IEEE Transactions on Information Theory, 51(11):4032—-
4039, 2005.

Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley and Sons, Inc.,
1992.

Sigal Ar, Richard Lipton, Ronitt Rubinfeld, and Madhu Sudan. Reconstructing al-
gebraic functions from mixed data. SIAM Journal on Computing, 28(2):488-511,
1999.

Sanjeev Arora, Laszl6 Babai, Jacques Stern, and Z Sweedyk. The hardness of ap-
proximate optima in lattices, codes, and systems of linear equations. Journal of
Computer and System Sciences, 54:317-331, 1997.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the intractibility of approximation problems. Journal of the
ACM, 45(3):501-555, 1998.

Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new charac-
terization of NP. Journal of the ACM, 45(1):70-122, 1998.

Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications.
Combinatorica, 23(3):365-426, 2003.

Laszl6 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking com-
putations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Sympo-
sium on the Theory of Computing(STOC), pages 21-31, 1991.

Laszl6 Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. Computational Complexity, 1:3-40, 1991.

Laszl6 Babai, Amir Shpilka, and Daniel Stefankovic. Locally testable cyclic codes.
IEEE Transactions on Information Theory, 51(8):2849-2858, 2005.

165

[11] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs and application to coding. In Proceedings
of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages 1-10,
2004.

[12] Eli Ben-Sasson, Swastik Kopparty, and Jaikumar Radhakrishnan. Subspace polyno-
mials and list decoding of Reed-Solomon codes. In Proceedings of the 47th Annual
Symposium on Foundations of Computer Science (FOCS), pages 207-216, 2006.

[13] Eli Ben-Sasson and Madhu Sudan. Simple PCPs with poly-log rate and query com-
plexity. In Proceedings of 37th ACM Symposium on Theory of Computing (STOC),
pages 266-275, 2005.

[14] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of
codes. Random Structures and Algorithms, 28(4):387-402, 2006.

[15] Elwyn Berlekamp. Algebraic Coding Theory. McGraw Hill, New York, 1968.

[16] Elwyn Berlekamp. Factoring polynomials over large finite fields. Mathematics of
Computation, 24:713-735, 1970.

[17] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the
inherent intractability of certain coding problems. IEEE Transactions on Information
Theory, 24:384-386, 1978.

[18] Daniel Bleichenbacher, Aggelos Kiayias, and Moti Yung. Decoding of interleaved
Reed Solomon codes over noisy data. In Proceedings of the 30th International Col-
loquium on Automata, Languages and Programming (ICALP), pages 97-108, 2003.

[19] E. L. Blokh and Victor V. Zyablov. Existence of linear concatenated binary codes
with optimal correcting properties. Prob. Peredachi Inform., 9:3—10, 1973.

[20] E. L. Blokh and Victor V. Zyablov. Linear Concatenated Codes. Moscow: Nauka,
1982. (in Russian).

[21] Manuel Blum, Micahel Luby, and Ronit Rubinfeld. Self-testing/correcting with

applications to numerical problems. Journal of Computer and System Sciences,
47(3):549-595, 1993.

[22] Donald G. Chandler, Eric P. Batterman, and Govind Shah. Hexagonal, information
encoding article, process and system. US Patent Number 4,874,936, October 1989.

166

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

C. L. Chen and M. Y. Hsiao. Error-correcting codes for semiconductor memory
applications: A state-of-the-art review. IBM Journal of Research and Development,
28(2):124-134, 1984.

Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A.
Patterson. RAID: High-performance, reliable secondary storage. ACM Computing
Surveys, 26(2):145-185, 1994.

Qi Cheng and Daqing Wan. On the list and bounded distance decodability of Reed-
Solomon codes. SIAM Journal on Computing, 37(1):195-209, 2007.

Don Coppersmith and Atri Rudra. On the robust testability of product of codes. In
Electronic Colloquium on Computational Complexity (ECCC) Tech Report TROS-
104, 2005.

Don Coppersmith and Madhu Sudan. Reconstructing curves in three (and higher)
dimensional spaces from noisy data. In Proceedings of the 35th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 136—142, June 2003.

Philippe Delsarte, Jean-Marie Goethals, and Florence Jessie MacWilliams. On gen-
eralized Reed-Muller codes and their relatives. Information and Control, 16:403—
442, 1970.

Peng Ding and Jennifer D. Key. Minimum-weight codewords as generators of gen-
eralized Reed-Muller codes. IEEE Trans. on Information Theory., 46:2152-2158,
2000.

Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of tensor
products of LDPC codes. In Proceedings of the 10th International Workshop on
Randomization and Computation (RANDOM), pages 304-315, 2006.

Rodney G. Downey, Michael R. Fellows, Alexander Vardy, and Geoff Whittle. The
parametrized complexity of some fundamental problems in coding theory. SIAM
Journal on Computing, 29(2):545-570, 1999.

Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating
the minimum distance of a linear code. IEEE Transactions on Information Theory,
49(1):22-37, 2003.

Ilya I. Dumer. Concatenated codes and their multilevel generalizations. In V. S.
Pless and W. C. Huffman, editors, Handbook of Coding Theory, volume 2, pages
1911-1988. North Holland, 1998.

167

[34] Peter Elias. List decoding for noisy channels. Technical Report 335, Research Lab-
oratory of Electronics, MIT, 1957.

[35] Peter Elias. Error-correcting codes for list decoding. IEEE Transactions on Infor-
mation Theory, 37:5-12, 1991.

[36] Uriel Feige, Shafi Goldwasser, Laszl6 Lovasz, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. Journal of the ACM,
43(2):268-292, 1996.

[37] Uriel Fiege and Daniele Micciancio. The inapproximability of lattice and coding
problems with preprocessing. Journal of Computer and System Sciences, 69(1):45—
67, 2004.

[38] Eldar Fischer. The art of uninformed decisions: A primer to property testing. Bulletin
of the European Association for Theoretical Computer Science, (75):97-126, 2001.

[39] Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for boolean
properties. Theory of Computing, 2(9):173—-183, 2006.

[40] G. David Forney. Concatenated Codes. MIT Press, Cambridge, MA, 1966.

[41] G. David Forney. Generalized Minimum Distance decoding. IEEE Transactions on
Information Theory, 12:125-131, 1966.

[42] Katalin Friedl and Madhu Sudan. Some improvements to total degree tests. In
Proceedings of the 3rd Israel Symp. on Theory and Computing Systems (ISTCS),
pages 190-198, 1995.

[43] Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigder-
son. Self-testing/correcting for polynomials and for approxiamte functions. In Pro-
ceeding of the 23rd Symposium on the Theory of Computing (STOC), pages 32—42,
1991.

[44] Oded Goldreich. Short locally testable codes and proofs (Survey). ECCC Technical
Report TR0O5-014, 2005.

[45] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connec-
tion to learning and approximation. Journal of the ACM, 45(4):653-750, 1998.

[46] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost linear
length. In Proceedings of 43rd Symposium on Foundations of Computer Science
(FOCS), pages 13-22, 2002.

168

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Andrew Granville. The arithmetic properties of binomial coefficients. In
http://www.cecm.sfu.ca/organics/papers/granville/, 1996.

Venkatesan Guruswami. Limits to list decodability of linear codes. In Proceedings
of the 34th ACM Symposium on Theory of Computing (STOC), pages 802-811, 2002.

Venkatesan Guruswami. List decoding of error-correcting codes. Number 3282 in
Lecture Notes in Computer Science. Springer, 2004. (Winning Thesis of the 2002
ACM Doctoral Dissertation Competition).

Venkatesan Guruswami. Algorithmic results in list decoding. In Foundations and
Trends in Theoretical Computer Science (FnT-TCS), volume 2. NOW publishers,
2006.

Venkatesan Guruswami, Johan Hastad, Madhu Sudan, and David Zuckerman. Com-
binatorial bounds for list decoding. [EEE Transactions on Information Theory,
48(5):1021-1035, 2002.

Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of efficiently
decodable codes. In Proceedings of the 42nd Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 658—667, 2001.

Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meeting
Gilbert-Varshamov bound for low rates. In Proceedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 756757, 2004.

Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes
with near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393—
3400, October 2005.

Venkatesan Guruswami and Anindya C. Patthak. Correlated Algebraic-Geometric
codes: Improved list decoding over bounded alphabets. In Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), October
2006.

Venkatesan Guruswami and Atri Rudra. Limits to list decoding Reed-Solomon
codes. In Proceedings of the 37th ACM Symposium on Theory of Computing (STOC),
pages 602-609, May 2005.

Venkatesan Guruswami and Atri Rudra. Tolerant locally testable codes. In Proceed-
ings of the 9th International Workshop on Randomization and Computation (RAN-
DOM), pages 306317, 2005.

169

[58] Venkatesan Guruswami and Atri Rudra. Explicit capacity-achieving list-decodable
codes. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 1-10, May 2006.

[59] Venkatesan Guruswami and Atri Rudra. Limits to list decoding Reed-Solomon
codes. IEEE Transactions on Information Theory, 52(8), August 2006.

[60] Venkatesan Guruswami and Atri Rudra. Better binary list-decodable codes via mul-
tilevel concatenation. In Proceedings of the 11th International Workshop on Ran-
domization and Computation (RANDOM), 2007. To Appear.

[61] Venkatesan Guruswami and Atri Rudra. Concatenated codes can achieve list decod-
ing capacity. Manuscript, June 2007.

[62] Venkatesan Guruswami and Atri Rudra. Explicit bad list decoding configurations
for Reed Solomon codes of constant rate. Manuscript, May 2006.

[63] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon
and algebraic-geometric codes. IEEE Transactions on Information Theory, 45:1757—
1767, 1999.

[64] Venkatesan Guruswami and Madhu Sudan. Extensions to the Johnson bound.
Manuscript, February 2001.

[65] Venkatesan Guruswami and Salil Vadhan. A lower bound on list size for list de-
coding. In Proceedings of the 9th International Workshop on Randomization and
Computation (RANDOM), pages 318-329, 2005.

[66] Venkatesan Guruswami and Alexander Vardy. Maximum-likelihood decoding of
Reed-Solomon codes is NP-hard. IEEE Transactions on Information Theory,
51(7):2249-2256, 2005.

[67] Richard W. Hamming. Error Detecting and Error Correcting Codes. Bell System
Technical Journal, 29:147-160, April 1950.

[68] Prahladh Harsha. Robust PCPs of Proximity and Shorter PCPs. PhD thesis, Mas-
sachusetts Institute of Technology, 2004.

[69] Edward F. Assmus Jr. and Jennifer D. Key. Polynomial codes and finite geometries.
In V. S. Pless and W. C. Huffman, editors, Handbook of Coding Theory, volume 2,
pages 1269—1343. North Holland, 1998.

170

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Jgrn Justesen and Tom Hgholdt. Bounds on list decoding of MDS codes. [EEE
Transactions on Information Theory, 47(4):1604—1609, May 2001.

Charanjit S. Jutla, Anindya C. Patthak, and Atri Rudra. Testing polynomials over
general fields. manuscript, 2004.

Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing
low-degree polynomials over prime fields. In Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 423-432, 2004.

Tali Kaufman and Simon Litsyn. Almost orthogonal linear codes are locally testable.
In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 317-326, 2005.

Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM Journal
on Computing, 36(3):779-802, 2006.

Victor Y. Krachkovsky. Reed-Solomon codes for correcting phased error bursts.
IEEE Transactions on Information Theory, 49(11):2975-2984, November 2003.

Michael Langberg. Private codes or Succinct random codes that are (almost) perfect.
In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 325-334, October 2004.

Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and their applica-
tions. Cambridge University Press, Cambridge, MA, 1986.

Yu. V. Linnik. On the least prime in an arithmetic progression. I. The basic theorem.
Mat. Sbornik N. S., 15(57):139-178, 1944.

Antoine C. Lobstein. The hardness of solving subset sum with preprocessing. /IEEE
Transactions on Information Theory, 36:943-946, 1990.

Florence Jessie MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting
Codes. Elsevier/North-Holland, Amsterdam, 1981.

Robert J. McEliece. On the average list size for the Guruswami-Sudan decoder. In
7th International Symposium on Communications Theory and Applications (ISCTA),
July 2003.

D. E. Muller. Application of boolean algebra to switching circuit design and to error
detection. IEEE Transactions on Computers, 3:6—12, 1954.

171

[83] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and dis-
tance approximation. Journal of Computer and System Sciences, 72(6):1012—-1042,
2006.

[84] Farzad Parvaresh and Alexander Vardy. Multivariate interpolation decoding beyond
the Guruswami-Sudan radius. In Proceedings of the 42nd Allerton Conference on
Communication, Control and Computing, 2004.

[85] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the Guruswami-
Sudan radius in polynomial time. In Proceedings of the 46th Annual IEEE Sympo-
sium on Foundations of Computer Science, pages 285-294, 2005.

[86] Anindya C. Patthak. Error Correcting Codes : Local-testing, List-decoding, and
Applications to Cryptography. PhD thesis, University of Texas at Austin, 2007.

[87] Larry L. Peterson and Bruce S. Davis. Computer Networks: A Systems Approach.
Morgan Kaufmann Publishers, San Francisco, 1996.

[88] A. Polishchuk and D. A. Spielman. Nearly-linear size holographic proofs. In Pro-
ceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC),
pages 194-203, 1994.

[89] Irving S. Reed. A class of multiple-error-correcting codes and the decoding scheme.
IEEE Transactions on Information Theory, 4:38—49, 1954.

[90] Irving S. Reed and Gustav Solomon. Polynomial codes over certain finite fields.
SIAM Journal on Applied Mathematics, 8:300-304, 1960.

[91] Oded Regev. Improved inapproximability of lattice and coding problems with pre-
processing. IEEE Transactions on Information Theory, 50:2031-2037, 2004.

[92] Dana Ron. Property Testing. In S. Rajasekaran, P. M. Pardalos, J. H. Reif, and
J. D. P. Rolim, editors, Handbook of Randomization, pages 597-649, 2001.

[93] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM Journal on Computing, 25(2):252-271, 1996.

[94] Claude E. Shannon. A mathematical theory of communication. Bell System Techni-
cal Journal, 27:379-423, 623656, 1948.

[95] Michael Sipser and Daniel Spielman. Expander codes. IEEE Transactions on Infor-
mation Theory, 42(6):1710-1722, 1996.

172

[96] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of
Approximation Problems. ACM Distinguished Theses Series. Lecture Notes in Com-
puter Science, no. 1001, Springer, 1996.

[97] Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-correction
bound. Journal of Complexity, 13(1):180-193, 1997.

[98] Madhu Sudan. List decoding: Algorithms and applications. SIGACT News, 31:16—
27, 2000.

[99] Madhu Sudan. Lecture notes on algorithmic introduction to coding theory, Fall 2001.
Lecture 15.

[100] Madhu Sudan. Lecture notes on algorithmic introduction to coding theory, Fall 2001.
Lecture 6.

[101] Amnon Ta-Shma and David Zuckerman. Extractor Codes. IEEE Transactions on
Information Theory, 50(12):3015-3025, 2001.

[102] Christian Thommesen. The existence of binary linear concatenated codes with Reed-
Solomon outer codes which asymptotically meet the Gilbert-Varshamov bound.
IEEE Transactions on Information Theory, 29(6):850-853, November 1983.

[103] Paul Valiant. The tensor product of two codes is not necessarily robustly testable. In
Proceedings of the 9th International Workshop on Randomization and Computation
(RANDOM), pages 472-481, 2005.

[104] Jacobus H. van Lint. Introduction to Coding Theory. Graduate Texts in Mathematics
86, (Third Edition) Springer-Verlag, Berlin, 1999.

[105] Stephen B. Wicker and Vijay K. Bhargava, editors. Reed-Solomon Codes and Their
Applications. John Wiley and Sons, Inc., September 1999.

[106] John M. Wozencraft. List Decoding. Quarterly Progress Report, Research Labora-
tory of Electronics, MIT, 48:90-95, 1958.

[107] Chaoping Xing. Nonlinear codes from algebraic curves improving the Tsfasman-
Vladut-Zink bound. [EEE Transactions on Information Theory, 49(7):1653-1657,
2003.

[108] Victor A. Zinoviev. Generalized concatenated codes. Prob. Peredachi Inform.,
12(1):5-15, 1976.

173

[109] Victor A. Zinoviev and Victor V. Zyablov. Codes with unequal protection. Prob.
Peredachi Inform., 15(4):50-60, 1979.

[110] Victor V. Zyablov and Mark S. Pinsker. List cascade decoding. Problems of In-
formation Transmission, 17(4):29-34, 1981 (in Russian); pp. 236-240 (in English),
1982.

174

VITA

Atri Rudra was born in Dhanbad, India which is also where he grew up. He got a
Bachelors in Technology in Computer Science and Engineering from Indian Institute of
Technology, Kharagpur in 2000. After spending two years at IBM India Research Lab in
New Delhi, he joined the graduate program at University of Texas at Austin in 2002. He
moved to the Computer Science and Engineering department at the University of Washing-
ton in 2004, where he earned his Master of Science and Doctor of Philosophy degrees in
2005 and 2007 respectively under the supervision of Venkatesan Guruswami. Beginning
September 2007, he will be an Assistant Professor at the University at Buffalo, New York.

