
c©Copyright 2007

Atri Rudra

List Decoding and Property Testing of Error Correcting Codes

Atri Rudra

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2007

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoraldissertation by

Atri Rudra

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Venkatesan Guruswami

Reading Committee:

Paul Beame

Venkatesan Guruswami

Dan Suciu

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this dissertation
is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of thisdissertation may be referred
to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346,
1-800-521-0600, to whom the author has granted “the right toreproduce and sell (a) copies
of the manuscript in microform and/or (b) printed copies of the manuscript made from
microform.”

Signature

Date

University of Washington

Abstract

List Decoding and Property Testing of Error Correcting Codes

Atri Rudra

Chair of the Supervisory Committee:
Associate Professor Venkatesan Guruswami

Department of Computer Science and Engineering

Error correcting codes systematically introduce redundancy into data so that the original in-

formation can be recovered when parts of the redundant data are corrupted. Error correcting

codes are used ubiquitously in communication and data storage.

The process of recovering the original information from corrupted data is called decod-

ing. Given the limitations imposed by the amount of redundancy used by the error correct-

ing code, an ideal decoder should efficiently recover from asmany errors as information-

theoretically possible. In this thesis, we consider two relaxations of the usual decoding

procedure:list decodingandproperty testing.

A list decoding algorithm is allowed to output a small list ofpossibilities for the original

information that could result in the given corrupted data. This relaxation allows for effi-

cient correction of significantly more errors than what is possible through usual decoding

procedure which is always constrained to output the transmitted information.

• We present the first explicit error correcting codes along with efficient list-decoding

algorithms that can correct a number of errors that approaches the information-theoretic

limit. This meets one of the central challenges in the theoryof error correcting codes.

• We also present explicit codes defined over smaller symbols that can correct signifi-

cantly more errors using efficient list-decoding algorithms than existing codes, while

using the same amount of redundancy.

• We prove that an existing algorithm for a specific code familycalled Reed-Solomon

codes is optimal for “list recovery,” a generalization of list decoding.

Property testing of error correcting codes entails “spot checking” corrupted data to

quickly determine if the data is very corrupted or has few errors. Such spot checkers are

closely related to the beautiful theory of Probabilistically Checkable Proofs.

• We present spot checkers that only access a nearly optimal number of data symbols

for an important family of codes called Reed-Muller codes. Our results are the first

for certain classes of such codes.

• We define a generalization of the “usual” testers for error correcting codes by en-

dowing them with the very natural property of “tolerance,” which allows slightly

corrupted data to pass the test.

TABLE OF CONTENTS

Page

List of Figures .vi

List of Tables . vii

Chapter 1: Introduction .. 1

1.1 Basics of Error Correcting Codes 2

1.1.1 Historical Background and Modeling the Channel Noise. 3

1.2 List Decoding . 5

1.2.1 Going Beyond Half the Distance Bound8

1.2.2 Why is List Decoding Any Good ? 10

1.2.3 The Challenge of List Decoding (and What Was Already Known) . 12

1.3 Property Testing of Error Correcting Codes 13

1.3.1 A Brief History of Property Testing of Codes 14

1.4 Contributions of This Thesis .. . 15

1.4.1 List Decoding . 15

1.4.2 Property Testing . 17

1.4.3 Organization of the Thesis . 19

Chapter 2: Preliminaries .. 20

2.1 The Basics . 20

2.1.1 Basic Definitions for Codes . 21

2.1.2 Code Families . 22

2.1.3 Linear Codes . 22

2.2 Preliminaries and Definitions Related to List Decoding 24

2.2.1 Rate vs. List decodability . 26

2.2.2 Results Related to theq-ary Entropy Function 30

2.3 Definitions Related to Property Testing of Codes 34

i

2.4 Common Families of Codes . 35

2.4.1 Reed-Solomon Codes . 35

2.4.2 Reed-Muller Codes . 36

2.5 Basic Finite Field Algebra .. 36

Chapter 3: List Decoding of Folded Reed-Solomon Codes 38

3.1 Introduction . 38

3.2 Folded Reed-Solomon Codes .41

3.2.1 Description of Folded Reed-Solomon Codes 41

3.2.2 Why Might Folding Help? . 43

3.2.3 Relation to Parvaresh Vardy Codes 44

3.3 Problem Statement and Informal Description of the Algorithms 45

3.4 Trivariate Interpolation Based Decoding 48

3.4.1 Facts about Trivariate Interpolation 49

3.4.2 Using Trivariate Interpolation for Folded RS Codes 51

3.4.3 Root-finding Step . 53

3.5 Codes Approaching List Decoding Capacity 56

3.6 Extension to List Recovery .. 63

3.7 Bibliographic Notes and Open Questions 66

Chapter 4: Results via Code Concatenation 69

4.1 Introduction . 69

4.1.1 Code Concatenation and List Recovery 70

4.2 Capacity-Achieving Codes over Smaller Alphabets 72

4.3 Binary Codes List Decodable up to the Zyablov Bound 76

4.4 Unique Decoding of a Random Ensemble of Binary Codes 77

4.5 List Decoding up to the Blokh Zyablov Bound 80

4.5.1 Multilevel Concatenated Codes81

4.5.2 Linear Codes with Good Nested List Decodability 84

4.5.3 List Decoding Multilevel Concatenated Codes 88

4.5.4 Putting it Together . 92

4.6 Bibliographic Notes and Open Questions 94

ii

Chapter 5: List Decodability of Random Linear ConcatenatedCodes 96

5.1 Introduction . 96

5.2 Preliminaries . 97

5.3 Overview of the Proof Techniques .. . 101

5.4 List Decodability of Random Concatenated Codes 103

5.5 Using Folded Reed-Solomon Code as Outer Code 111

5.5.1 Preliminaries . 111

5.5.2 The Main Result . 113

5.6 Bibliographic Notes and Open Questions 117

Chapter 6: Limits to List Decoding Reed-Solomon Codes 119

6.1 Introduction . 119

6.2 Overview of the Results .120

6.2.1 Limitations to List Recovery .120

6.2.2 Explicit “Bad” List Decoding Configurations 122

6.2.3 Proof Approach . 123

6.3 BCH Codes and List Recovering Reed-Solomon Codes 123

6.3.1 Main Result . 123

6.3.2 Implications for Reed-Solomon List Decoding 129

6.3.3 Implications for List Recovering Folded Reed-Solomon Codes . . . 130

6.3.4 A Precise Description of Polynomials with Values in Base Field . . 131

6.3.5 Some Further Facts on BCH Codes 133

6.4 Explicit Hamming Balls with Several Reed-Solomon Codewords 135

6.4.1 Existence of Bad List Decoding Configurations 135

6.4.2 Low Rate Reed-Solomon Codes 136

6.4.3 High Rate Reed-Solomon Codes 140

6.5 Bibliographic Notes and Open Questions 143

Chapter 7: Local Testing of Reed-Muller Codes 147

7.1 Introduction . 147

7.1.1 Connection to Coding Theory . 148

7.1.2 Overview of Our Results . 148

7.1.3 Overview of the Analysis . 150

iii

7.2 Preliminaries . 151

7.2.1 Facts from Finite Fields . 154

7.3 Characterization of Low Degree Polynomials overFp 156

7.4 A Tester for Low Degree Polynomials overF
n
p 162

7.4.1 Tester inFp . 163

7.4.2 Analysis of AlgorithmTest-Pt . 164

7.4.3 Proof of Lemma 7.11 . 167

7.4.4 Proof of Lemma 7.12 . 173

7.4.5 Proof of Lemma 7.13 . 178

7.5 A Lower Bound and Improved Self-correction 179

7.5.1 A Lower Bound . 179

7.5.2 Improved Self-correction .180

7.6 Bibliographics Notes .182

Chapter 8: Tolerant Locally Testable Codes 185

8.1 Introduction . 185

8.2 Preliminaries . 186

8.3 General Observations .188

8.4 Tolerant Testers for Binary Codes 191

8.4.1 PCP of Proximity . 191

8.4.2 The Code . 195

8.5 Product of Codes . 200

8.5.1 Tolerant Testers for Tensor Products of Codes 200

8.5.2 Robust Testability of Product of Codes 202

8.6 Tolerant Testing of Reed-Muller Codes 205

8.6.1 Bivariate Polynomial Codes . 205

8.6.2 General Reed-Muller Codes . 207

8.7 Bibliographic Notes and Open Questions 209

Chapter 9: Concluding Remarks .. 211

9.1 Summary of Contributions .211

9.2 Directions for Future Work .. 212

9.2.1 List Decoding . 212

iv

9.2.2 Property Testing . 213

Bibliography . 215

v

LIST OF FIGURES

Figure Number Page

1.1 Bad Example for Unique Decoding .. 6

1.2 The Case for List Decoding .9

2.1 Theq-ary Entropy Function . 31

3.1 Rate vs List decodability for Various Codes 40

3.2 Folding of the Reed-Solomon Code with Parameterm = 4. 41

3.3 Relation between Folded RS and Parvaresh Vardy Codes 45

4.1 List Decodability of Our Binary Codes 70

4.2 Capacity Achieving Code over Small Alphabet 74

4.3 Unique Decoding of Random Ensembles of Binary Codes 79

4.4 Different variables in the proof of Theorem 4.5. 91

5.1 Geometric interpretations of functionsα2(·) andfx,2(·). 99

7.1 Definition of a Pseudoflat .154

8.1 The Reduction from Valiant’s Result 204

vi

LIST OF TABLES

Table Number Page

4.1 Comparison of the Blokh Zyablov and Zyablov Bounds 71

vii

ACKNOWLEDGMENTS

I moved to Seattle from Austin to work with Venkat Guruswami and I have never re-

gretted my decision. This thesis is a direct result of Venkat’s terrific guidance over the last

few years. Venkat was very generous with his time and was always patient when I told him

about my crazy ideas (most of the time gently pointing out whythey would not work), for

which I am very grateful. Most of the results in this thesis are the outcome of our collabora-

tions. I am also indebted to Don Coppersmith, Charanjit Jutla, Anindya Patthak and David

Zuckerman for collaborations that lead to portions of this thesis.

I would like to thank Paul Beame and Dan Suciu for agreeing to be on my reading

committee and their thoughtful and helpful comments on the earlier drafts of this thesis.

Thanks also to Anna Karlin for being on my supervisory committee.

I gratefully acknowledge the financial support from NSF grant CCF-0343672 and Venkat

Guruswami’s Sloan Research Fellowship.

My outlook on research has changed dramatically since my senior year at IIT Kharag-

pur when I was decidedly a non-theory person. Several peoplehave contributed to this

wonderful change and I am grateful to all of them. First, I would like to thank my un-

dergraduate advisor P. P. Chakrabarti for teaching the wonderful course on Computational

Complexity that opened my eyes to the beauty of theoretical computer science. My passion

for theory was further cemented in the two wonderful years I spent at IBM India Research

Lab. Thanks to Charanjit Jutla and Vijay Kumar for nurturingmy nascent interest in theo-

retical computer science for being wonderful mentors and friends ever since. Finally, I am

grateful to David Zuckerman for his wonderful courses on Graph theory and Combinatorics

and Pseudorandomness at Austin, which gave me the final confidence to pursue theory.

viii

I have been very lucky to have the privilege of collaboratingwith many wonderful

researchers over the years. Thanks to all the great folks at IBM Research with whom I

had the pleasure of working as a full time employee (at IBM India) as well as an intern

(at IBM Watson and IBM Almaden). Thanks in particular to Nikhil Bansal, Don Cop-

persmith, Pradeep Dubey, Lisa Fleischer, Rahul Garg, T. S. Jayram, Charanjit Jutla, Robi

Krauthgamer, Vijay Kumar, Aranyak Mehta, Vijayshankar Raman, J.R. Rao, Pankaj Ro-

hatgi, Baruch Schieber, Maxim Sviridenko and Akshat Verma for the wonderful time I had

during our collaborations.

My stay at UT Austin was wonderful and I am grateful to Anna Gál, Greg Plaxton and

David Zuckerman for their guidance and our chats about sundry research topics. Thanks a

bunch to my room mate and collaborator Anindya Patthak for the wonderful times. Also

a big thanks to my friends in Austin for the best possible firstone and a half years I could

have had in the US: Kartik, Sridhar, Peggy, Chris, Kurt, Peter, Walter, Nick, Maria.

I thought it would be hard to beat the friendly atmosphere at UT but things were as nice

(if not better) at UW. A big thanks to Anna Karlin and Paul Beame for all their help and

advice as well as the good times we had during our research collaborations. Special thanks

to Paul and Venkat for their kind and helpful advice on what todo with the tricky situations

that cropped up during my job search. I had a great time collaborating with my fellow

students at UW (at theory night and otherwise): Matt Cary, Ning Chen, Neva Cherniavsky,

Roee Engelberg, Thach Nguyen, Prasad Raghavendra, Ashish Sabharwal, Gyanit Singh

and Erik Vee. Thanks to my office mate Eytan Adar and Chris Ré for our enjoyable chats.

The CSE department at UW is an incredibly wonderful place to work– thanks to everyone

for making my stay at UW as much as fun as it has been.

Thanks to my parents and sister for being supportive of all myendeavors. Finally,

the best thing about my move to Seattle was that I met my wife here. Carole, thanks for

everything: you are more than what thisdesicould have dreamed for in a wife.

ix

DEDICATION

To my family, in the order I met them: Ma, Baba, Purba and Carole

x

1

Chapter 1

INTRODUCTION

Corruption of data is a fact of life. Error-correcting codes(or just codes) are clever

ways of representing data so that one can recover the original information even if parts of

it are corrupted. The basic idea is to judiciously introduceredundancy so that the original

information can be recovered even when parts of the (redundant) data have been corrupted.

Perhaps the most natural and common application of error correcting codes is for com-

munication. For example, when packets are transmitted overthe Internet, some of the

packets get corrupted or dropped. To deal with this, multiple layers of the TCP/IP stack use

a form of error correction called CRC Checksum [87]. Codes are used when transmitting

data over the telephone line or via cell phones. They are alsoused in deep space commu-

nication and in satellite broadcast (for example, TV signals are transmitted via satellite).

Codes also have applications in areas not directly related to communication. For exam-

ple, codes are used heavily in data storage. CDs and DVDs workfine even in presence of

scratches precisely because they use codes. Codes are used in Redundant Array of Inex-

pensive Disks (RAID) [24] and error correcting memory [23].Codes are also deployed in

other applications such as paper bar codes, for example, thebar code used by UPS called

MaxiCode [22].

In this thesis, we will think of codes in the communication scenario. In this framework,

there is a sender who wants to send (say)k message symbols over a noisy channel. The

sender firstencodesthek message symbols inton symbols (called acodeword) and then

sends it over thechannel. The receiver gets areceived wordconsisting ofn symbols.

The receiver then tries todecodeand recover the originalk message symbols. The main

2

challenge in coding theory is to come up with “good” codes along with efficient encoding

and decoding algorithms. In the next section, we will define more precisely the notion of

codes and the noise model.

Typically, the definition of a code gives the encoding algorithm “for free.” The decoding

procedure is generally the more challenging algorithmic task. In this thesis, we concentrate

more on the decoding aspect of the problem. In particular, wewill consider two relaxations

of the “usual” decoding problem in which either the algorithm outputs the original message

that was sent or gives up (when too many errors have occurred). The two relaxations

are calledlist decodingandproperty testing. The motivations for considering these two

notions of decoding are different: list decoding is motivated by a well known limit on the

number of errors one can decode from using the usual notion ofdecoding while property

testing is motivated by a notion of “spot-checking” of received words that has applications

in complexity theory. Before we delve into more details of these notions, let us first review

the basic definitions that we will need.

1.1 Basics of Error Correcting Codes

We will now discuss some of the basic notions of error correcting codes that are needed to

put forth the contributions of this thesis.1 These are the following.

• Encoding Theencoding functionwith parametersk, n is a functionE : Σk → Σn,

whereΣ is called thealphabet. The encoding functionE takes amessagem ∈ Σk

and converts it into acodewordE(m). We will refer to the algorithm that implements

the encoding function as anencoder.

• Error Correcting Code An error correcting codeor just acodecorresponding to an

encoding functionE is just the image of the encoding function. In other words, itis

the collection of all the codewords. A codeC with encoding functionE : Σk → Σn

1We will define some more “advanced” notions later.

3

is said to havedimensionk andblock lengthn. In this thesis, we will focus on codes

of large block length.

• Rate The ratioR = k/n is called therateof a code. This notion captures the amount

of redundancy used in the code. This is an important parameter of a code which will

be used throughout this thesis.

• Decoding Consider the basic setup for communication. Asenderhas a message

that it sends as a codeword after encoding. During transmission the codeword gets

distorted due to errors. Thereceivergets a noisyreceived wordfrom which it has

to recover the original message. This “reverse” process of encoding is achieved via

a decoding functionD : Σn → Σk. That is, given a received word, the decoding

function picks a message that it thinks was the message that was sent. We will refer

to the algorithm that implements the decoding function as adecoder.

• Distance Theminimum distance(or justdistance) of a code is a parameter that cap-

tures how much two different codewords differ. More formally, the distance between

any two codewords is the number of coordinates in which they differ. The (minimum)

distance of a code is the minimum distance between any two distinct codewords in

the code.

1.1.1 Historical Background and Modeling the Channel Noise

The notions of encoding, decoding and the rate appeared in the seminal work of Shan-

non [94]. The notions of codes and the minimum distance were put forth by Hamming [67].

Shannon modeled the noiseprobabilistically. For such a channel, he also defined a real

number called thecapacity, which is an upper bound on the rate of a code for which one

can have reliable communication. Shannon also proved the converse result. That is, there

existcodes for any rate less than the capacity of the channel for which one can have reliable

4

communication. This striking result essentially kick-started the fields of information theory

and coding theory.

Perhaps an undesirable aspect of Shannon’s noise model is that its effectiveness depends

on how well the noise is modeled. In some cases it might not be possible to accurately

model the channel. In such a scenario, one option is to model the noiseadversarialy. This

was proposed by Hamming. In Hamming’s noise model, we think of the channel as an

adversary who has the full freedom in picking the location aswell as nature of errors to

be introduced. The only restriction is on the number of errors. We will consider this noise

model in the thesis.

Alphabet Size and the Noise Model

We would like to point out that the noise model is intimately tied with the alphabet. A

symbol in the alphabet is the “atomic” unit on which the noiseacts. In other words, a

symbol that is fully corrupted and a symbol that is partiallycorrupted are treated as the

same. That is, the smaller the size of the alphabet, the more fine-grained the noise. This

implies that the decoder has to take care of more error patterns for a code defined over a

smaller alphabet. As a concrete example, say we want to design a decoder that can handle

50% of errors. Consider a codeC that is defined over an alphabet of size4 (i.e., each

symbols consists of two bits). Now, lete be an error pattern in which every alternate bit of

a codeword inC is flipped. Note that this implies thatall the symbols of the codeword have

been corrupted and hence the decoder does not need to recoverfrom e. However, ifC were

defined over the binary alphabet then the decoder would have to recover frome. Thus, it is

harder to design decoders for codes over smaller alphabets.

Further, the noise introduced by the channel should be independent of the message

length. However, in this thesis, we will study codes that aredefined over alphabets whose

size depends on the message length. In particular, the number of bits required to represent

any symbol in the alphabet would be logarithmic in the message length. The reason for

this is two-fold: As was discussed in the paragraph above, designing decoding algorithms

5

is strictly easier for codes over larger alphabets. Secondly, we will use such codes as a

starting point to design codes over fixed sized alphabets.

With the basic definitions in place, we now turn our attentionto the two relaxations of

the decoding procedure that will be the focus of this thesis.

1.2 List Decoding

Let us look at the decoding procedure in more detail. Upon getting the noisy received

word, the decoder has to output a message (or equivalently a codeword) that it thinks was

actually transmitted. If the output message is different from the message that was actually

transmitted then we say that a decoding error has taken place. For the first part of the thesis,

we will consider decoders that do not make any decoding error. Instead, we will consider

the following notion calledunique decoding. For any received word, a unique decoder

either outputs the message that was transmitted by the sender or reports a decoding failure.

One natural question to ask is how many errors such a unique decoder can tolerate.

That is, is there a bound on the number of errors (sayρUn, soρU is the fraction of errors)

such that for any error pattern with total error at mostρUn, the decoder always outputs the

transmitted codeword?

We first argue thatρU 6 1 − R. Note that the codeword ofn symbols really contains

k symbols of information. Thus, the receiver should have at leastk uncorrupted symbols

among then symbols in the received word to have any hope of recovering the transmitted

message. In other words, the information theoretic limit onthe number of errors from

which one can recover isn − k. This implies thatρU 6 (n − k)/n = 1 − R. Can this

information theoretic limit be achieved ?

Before answering the question above, we argue that the limitalso satisfiesρU < d/(2n),

where we assume that the distance of the coded is even. Consider two distinct messages

m1, m2 such that the distance betweenE(m1) andE(m2) is exactlyd. Now say that the

sender sends the codewordE(m1) over the channel and the channel introducesd/2 errors

and distorts the codeword into a received wordy that is at a distance ofd/2 from both

6

E(m1) andE(m2) (see Figure 1.1).

E(m)1

E(m)1
E(m)2

E(m)2

y
d

y
d/2

d/2

d/2 d/2n−d

Figure 1.1: Bad example for unique decoding. The picture on the left shows two codewords
E(m1) andE(m2) that differ in exactlyd positions while the received wordy differs from
bothE(m1) andE(m2) in d/2 many positions. The picture on the right is another view
of the same example. Everyn-symbol vector is now drawn on the plane and the distance
between any two points is the number of positions they differin. Thus,E(m1) andE(m2)
are at a distanced andy is at a distanced/2 from both. Further, note that any point that is
strictly contained within one of the balls of radiusd/2 has a unique closest-by codeword.

Now, when the decoder getsy as an input it has no way of knowing whether the original

transmitted codeword wasE(m1) or E(m2).2 Thus, the decoder has to output a decoding

failure when it receivesy and so we haveρU < d/(2n). How far is d/(2n) from the

information theoretic bound of1−R ? Unfortunately the gap is quite big. By the so called

Singleton bound,d 6 n − k + 1 or d/n < 1 − R. Thus, the limit ofd/(2n) is at most

half the information theoretic bound. We note that even though the limits differ by “only a

small constant,” in practice the potential to correct twicethe number of errors is a big gain.

Before we delve further into this gap between the information theoretic limit and half

the distance bound, we next argue that the the bound ofd/2 is in fact tight in the following

sense. IfρUn = d/2 − 1, then for an error pattern with at mostρUn errors, there is

2Throughout this thesis, we will be assuming that the only communication between the sender and the
receiver is through the channel and that they do not share anyside information/channel.

7

always a unique transmitted codeword. Suppose that this were not true and letE(m1) be

the transmitted codeword and lety be the received word such thaty is within distance

ρUn from bothE(m1) andE(m2). Then by the triangle inequality, the distance between

E(m1) andE(m2) is at most2ρUn = d − 2 < d, which contradicts the fact thatd is the

minimum distance of the code (also see Figure 1.1). Thus, as long asρUn = d/2 − 1, the

decoder can output the transmitted codeword. So if one wantsto do unique decoding then

one can correct up to half the distance of the code (but no further). Due to this “half the

distance barrier”, much effort has been devoted to designing codes with as large a distance

as possible.

However, all the discussion above has not addressed one important aspect of decoding.

We argued that forρUn = d/2 − 1, thereexistsa unique transmitted codeword. However,

the argument sheds no light on whether the decoder can find such a codewordefficiently.

Of course, before we can formulate the question more precisely, we need to state what we

mean by efficient decoding. We will formulate the notion moreformally later on but for

now we will say that a decoder is efficient if its running time is polynomial in the block

length of the code (which is the number of symbols in the received word). As a warm up,

let us consider the following naive decoding algorithm. Thedecoder goes through all the

codewords in the code and outputs the codeword that is closest to the received word. The

problem with this brute-force algorithm is that its runningtime is exponential in the block

length for constant rate codes (which will be the focus of thefirst part of the thesis) and

thus, is not an efficient algorithm. There is a rich body of beautiful work that focuses on

designing efficient algorithms for unique decoding for manyfamilies of codes. These are

discussed in detail in any standard coding theory texts suchas [80, 104].

We now return to the gap between the half the distance and the information theoretic

limit of n − k.

8

1.2.1 Going Beyond Half the Distance Bound

Let us revisit the bound of half the minimum distance on unique decoding. The bound

follows from the fact that there exists an error pattern for which one cannot do unique

decoding. However, such bad error patterns are rare. This follows from the nature of the

space that the codewords (and the received words) “sit” in. In particular, one can think of

a code of block lengthn as consisting of non-overlapping spheres of radiusd/2, where the

codewords are the centers of the spheres (see Figure 1.2). The argument for half the distance

bound uses the fact that at least two such spheres touch. The touching point corresponds

to the received wordy that was used in the argument in the last section. However, the way

the spheres pack in high dimension (recall the dimension of such a space is equal to the

block length of the coden), almost every point in the ambient space has a unique by closest

codeword at distances well beyondd/2 (see Figure 1.2).

Thus, by insisting onalwaysgetting back the original codeword, we are giving up on

correcting from error patterns from which we can recover theoriginal codeword. One

natural question one might ask is if one can somehow meaningfully relax this stringent

constraint.

In the late 1950s, Elias and Wozencraft independently proposed a nice relaxation of

unique decoding that gets around the barrier of half the distance bound [34, 106]. Under

list decoding, the (list) decoder needs to output a “small” list of answerswith the guarantee

that the transmitted codeword is present in the list.3 More formally, for a given error bound

ρn and a received wordy, the list-decoding algorithm has to output all codewords that are

at a distance at mostρn from y. Note that whenρn is an upper bound on the number of

errors that can be introduced by the channel, the list returned by the list-decoding algorithm

will have the transmitted codeword in the list.

There are two immediate questions that arise: (i) Is list decoding a useful relaxation of

3The condition on the list size being small is important. Otherwise, here is a trivial list-decoding algo-
rithm: output all codewords in the code. This, however is a very inefficient and more pertinently a useless
algorithm. We will specify more carefully what we mean by small lists soon.

9

E(m)3 E(m)4

E(m)1 E(m)2y
d/2

d/2

d/2
d/2

y’

Figure 1.2: Four close by codewordsE(m1), E(m2), E(m3) andE(m4) with two possible
received wordsy andy′. E(m1), E(m2) andy form the bad example of Figure 1.1. How-
ever, the bad examples lie on the dotted lines. For example,y′ is at a distance more than
d/2 from its (unique) closest codewordsE(m3). In high dimension, the space outside the
balls of radiusd/2 contains almost the entire ambient space.

unique decoding? (ii) Can we correct a number of errors that is close to the information

theoretic limit using list decoding ?

Before we address these questions, let us first concentrate on a new parameter that this

new definition throws into the mix: the worst case list size. Unless mentioned otherwise, we

will use L to denote this parameter. Note that the running time of the decoding algorithm

is Ω(L) as the decoder has to output every codeword in the list. Sincewe are interested

in efficient, polynomial time, decoding algorithms, this puts ana priori requirement that

L be a polynomial in the block length of the code. For a constantrate code, which has

exponentially many codewords, the polynomial bound onL is very small compared to the

total number of codewords. This bound was what we meant by small lists while defining

list decoding.

10

Maximum Likelihood Decoding

We would like to point out that list decoding is not the only meaningful relaxation of unique

decoding. Another relaxation calledmaximum likelihood decoding(or MLD) has been

extensively studied in coding theory. Under MLD, the decoder must output the codeword

that is closest to the received word. Note that if the number of errors is at most(d − 1)/2,

then MLD and unique decoding coincide. Thus, MLD is indeed a generalization of unique

decoding.

MLD and list decoding are incomparable relaxations. On the one hand, if one can list

decode efficiently up to the maximum number of errors that thechannel can introduce then

one can do efficient MLD. On the other hand, MLD does not put anyrestriction on the

number of errors it needs to tolerate (whereas such a restriction is necessary for efficient

list decoding). The main problem with MLD is that is turns outto be computationally in-

tractable in general [17, 79, 4, 31, 37, 91] as well as for specific families of codes [66]. In

fact, there is no non-trivial family of codes known for whichMLD can be done in polyno-

mial time. However, list decoding is computationally tractable for many interesting families

of codes (some of which we will see in this thesis).

We now turn to the questions that we raised about list decoding.

1.2.2 Why is List Decoding Any Good ?

We will now devote some time to address the question of whether list decoding is a mean-

ingful relaxation of the unique decoding problem. Further,what does one do when the

decoder outputs a list ?

In the communication setup, where the receiver might not have any side information,

the receiver can still use a list-decoding algorithm to do “normal” decoding. It runs the

list-decoding algorithm on the received word. If the list returned has just one codeword

in it, then the receiver accepts that codeword as the transmitted codeword. If the list has

more than one codeword, then it declares a decoding failure.First we note that this is no

11

worse than the original unique decoding setup. Indeed if thenumber of errors is at most

d/2 − 1, then by the discussion in Section 1.2 the list is going to contain one codeword

and we would be back in the unique decoding regime. However, as was argued in the last

section, formosterror patterns (with total number of errors well beyondd/2) there is a

unique closest by codeword. In other words, the list size forsuch error patterns would

be one. Thus, list decoding allows us to correct from more error patterns than what was

possible with unique decoding.

We now return to the question of whether list decoding can allow us to correct errors

up to the information theoretic limit of1 − R ? In short, the answer is yes. Using random

coding arguments one can show that for anyε > 0, with high probability a random code of

rateR, has the potential to correct up to1 − R − ε fraction of errors with a worst case list

size ofO(1/ε) (see Chapter 2 for more details). Further, one can show that for such codes,

the list size is one formostreceived words.4

Other Applications of List Decoding

In addition to the immense practical potential of correcting more than half the distance

number of errors in the communication setup, list decoding has found many surprising

applications outside of the coding theory domain. The reader is referred to the survey by

Sudan [98] and the thesis of Guruswami [49] (and the references therein) for more details

on these applications. A key feature in all these applications is that there is some side

information that one can use to sift through the list returned by the list-decoding algorithm

to pick the “correct” codeword. A good analogy is that of a spell checker. Whenever a word

is mis-spelt, the spell checker returns to the user a list of possible words that the user might

have intended to use. The user can then prune this list to choose the word that he or she had

intended to use. Indeed, even in the communication setup, ifthe sender and the receiver

can use a side channel (or have some shared information) thenone can use list decoding to

4This actually follows using the same arguments that Shannonused to establish his seminal result.

12

do “unambiguous” decoding [76].

1.2.3 The Challenge of List Decoding (and What Was Already Known)

In the last section, we argued that list decoding is a meaningful relaxation of unique de-

coding. More encouragingly, we mentioned that random codeshave the potential to correct

errors up to the information theoretic limit using list decoding. However, there are two

major issues with the random codes result. First, these codes are not explicit. In real world

applications, if one wants to communicate messages then oneneeds an explicit code. How-

ever, depending on the application, one might argue that doing a brute force search for such

a code might work as this is a “one-off” cost that one has to pay. The second and perhaps

more serious drawback is that the lack of structure in randomcodes implies that it is hard

to come up with efficient list decodable algorithms for such codes. Note that for decoding,

one cannot use a brute-force list-decoding algorithm.

Thus, the main challenge of list decoding is to come up with explicit codes along with

efficient list-decoding (and encoding) algorithms that cancorrect errors close to the infor-

mation theoretic limit ofn − k.

The first non-trivial list-decoding algorithm is due to Sudan [97], which built on the

results in [3]. Sudan devised a list-decoding algorithm fora specific family of codes called

Reed-Solomon codes [90] (widely used in practice [105]), which could correct beyond half

the distance barrier for Reed-Solomon codes of rate at most1/3. This result was then

extended to work for all rates by Guruswami and Sudan [63]. Itis worthwhile to note that

even though list decoding was introduced in the late 1950s, these results came nearly forty

years later. There was no improvement to the Guruswami-Sudan result until the recent

work of Parvaresh and Vardy [85], who designed a code that is related to Reed-Solomon

codes and presented efficient list-decoding algorithms that could correct more errors than

the Guruswami-Sudan algorithm. However, the result of Parvaresh and Vardy does not meet

the information theoretic limit (see Chapter 3 for more details). Further, for list decoding

Reed-Solomon codes there has been no improvement over [63].

13

This concludes our discussion on the background for list decoding. We now turn to

another relaxation of decoding that constitutes the secondpart of this thesis.

1.3 Property Testing of Error Correcting Codes

Consider the following communication scenario in which thechannel is very noisy. The

decoder, upon getting a very noisy received word, does its computation and ultimately

reports a decoding failure. Typically, the decoding algorithm is an expensive procedure and

it would be nice if one could quickly test if the received wordis “far” from any codeword (in

which case it should reject the received word) or is “close” to some codeword (in which case

it should accept the received word). In the former case, we would not run our expensive

decoding algorithm and in the latter case, we would then proceed to run the decoding

algorithm on the received word.

The notion of efficiency that we are going to consider for suchspot checkers is going

to be a bit different from that of decoding algorithms. We will require the spot checker

to probe only a few positions in the received word during the course of its computation.

Intuitively this should be possible as spot checking is a strictly easier task than decoding.

Further, the fact that the spot checkers need to make their decision based on a portion of

the received word should make spot checking very efficient. For example, if one could

design spot checkers that look at only constant many positions (independent of the block

length of the code), then we would have a spot checkers that run in constant time. However,

note that since the spot checker cannot look at the whole received word it cannot possibly

predict accurately if the received word is “far” from all thecodewords or is “close” to some

codeword. Thus, this notion of testing is a relaxation of theusual decoding as one sacrifices

in the accuracy of the answer while gaining in terms of numberof positions that one needs

to probe.

A related notion of such spot checkers is that of locally testable codes (LTCs). LTCs

have been the subject of much research over the years and there has been heightened activ-

ity and progress on them recently [46, 11, 74, 14, 13, 44]. LTCs are codes that have spot

14

checkers as those discussed above with one crucial difference: they only need to differenti-

ate between the cases when the received word is far from all codewords and the case when it

is a codeword. LTCs arise in the construction of Probabilistically Checkable Proofs (PCPs)

[5, 6] (see the survey by Goldreich [44] for more details on the interplay between LTCs and

PCPs). Note that in the notion of LTC, there is no requirementon the spot checker for input

strings that are very close to a codeword. This “asymmetry” in the way the spot checker

accepts and rejects an input reflects the way PCPs are defined,where the emphasis is on

rejecting “wrong” proofs.

Such spot checkers fall under the general purview ofproperty testing(see for example

the surveys by Ron [92] and Fischer [38]). In property testing, for some propertyP , given

an object as an input, the spot checker has to decide if the given object satisfies the property

P or is “far” from satisfyingP . LTCs are a special case of property testing in which the

propertyP is membership in some code and the objects are received words.

The ideal LTCs are codes with constant rate and linear distance that can be tested by

probing only constant many position in the received word. However, unlike the situation in

list decoding (where one can show the existence of codes withthe “ideal” properties), it is

not knownif such LTCs exist.

1.3.1 A Brief History of Property Testing of Codes

The field of codeword testing, which started with the work of Blum, Luby and Rubin-

feld [21] (who actually designed spot checkers for a varietyof numerical problems), later

developed into the broader field of property testing [93, 45]. LTCs were first explicitly de-

fined in [42, 93] and the systematic study of whether ideal LTCs (as discussed at the end

of the last section) was initiated in [46]. Testing for Reed-Muller codes in particular has

garnered a lot of attention [21, 9, 8, 36, 42, 93, 7, 1, 74], as they were crucial building

blocks in the construction of PCPs [6, 5], Kaufman and Litsyn[73] gave a sufficient con-

dition on an important class of codes that imply that the codeis an LTC. Ben-Sasson and

Sudan [13] built LTCs from a variant of PCPs called the Probabilistically Checkable Proof

15

of Proximity– this “method” of constructing LTCs was initiated by Ben-Sasson et al. [11].

1.4 Contributions of This Thesis

The contributions of this thesis are in two parts. The first part deals with list decoding while

the second part deals with property testing of codes.

1.4.1 List Decoding

This thesis advances our understanding of list decoding. Our results can be roughly divided

into three parts: (i) List decodable codes of optimal rate over large alphabets, (ii) List

decodable codes over small alphabets, and (iii) Limits to list decodability. We now look at

each of these in more detail.

List Decodable Codes over Large Alphabets

Recall that for codes of rateR, it is information theoretically not possible to correct beyond

1−R fraction of errors. Further, using random coding argument one can show the existence

of codes that can correct up to1−R−ε fraction of errors for anyε > 0 (using list decoding).

Since the first non-trivial algorithm of Sudan [97], there has been a lot of effort in designing

explicit codes along with efficient list-decoding algorithms that can correct errors close to

the information theoretic limit. In Chapter 3, we present the culmination of this line of

work by presenting explicit codes (which are in turn extensions of Reed-Solomon codes)

along with polynomial time list-decoding algorithm that can correct1 − R − ε fraction of

errors in polynomial time (for every rate0 < R < 1 and anyε > 0). This answers a

question that has been open for close to 50 years and meets oneof the central challenges in

coding theory.

This work was done jointly with Venkatesan Guruswami and waspublished in the pro-

ceedings of the 38th Symposium on Theory of Computing (STOC), 2006 [58] and is under

review for the journal IEEE Transactions on Information Theory.

16

List Decodable Codes over Small Alphabets

The codes mentioned in the last subsection are defined over alphabets whose size increases

with the block length of the code. As discussed in Section 1.1.1, this is not a desirable

feature. In Chapter 4, we show how to use our codes from Chapter 3 along with known

techniques ofcode concatenationandexpander graphsto design codes over alphabets of

size2O(ε−4) that can still correct up to1 − R − ε fraction of errors for anyε > 0. To get to

within ε of the information theoretic limit ofn − k, it is known that one needs an alphabet

of size2Ω(ε−1) (see Chapter 2 for more details).

However, if one were interested in codes over alphabets of fixed size, the situation is

different. First, it is known that for fixed size alphabets, the information theoretic limit

is much smaller thann − k (see Chapter 2 for more details). Again, one can show that

random codes meet this limit. In Chapter 4, we present explicit codes along with efficient

list-decoding algorithms that correct errors up to the so called Blokh-Zyablov bound. These

results are the currently best known via explicit codes, though the number of errors that can

be corrected is much smaller than the limit achievable by random codes.

This work was done jointly with Venkatesan Guruswami and appears in two different

papers. The first was published in in the proceedings of the 38th Symposium on Theory of

Computing (STOC), 2006 [58] and is under review for the journal IEEE Transactions on

Information Theory. The second paper will appear in the proceedings of the 11th Interna-

tional Workshop on Randomization and Computation (RANDOM)[60].

Explicit codes over fixed alphabets, considered in Chapter 4, are constructed usingcode

concatenation. However, as mentioned earlier, the fraction of errors thatsuch codes can

tolerate via list decoding is far from the information theoretic limit. A natural question to

ask is whether one can use concatenated codes to achieve the information theoretic limit?

In Chapter 5 we give a positive answer to this question in following sense. We present a

random ensemble of concatenated codes that with high probability meet the information

theoretic limit: That is, they can potentially list decode as large a fraction of errors as

17

general random codes, though with larger lists.

This work was done jointly with Venkatesan Guruswami and is an unpublished

manuscript [61].

Limits to List Decoding Reed-Solomon Codes

The results discussed in the previous two subsections are ofthe following flavor. We know

that random codes allow us to list decode up to a certain number of errors, and that is

optimal. Can we design more explicit codes (maybe with efficient list-decoding algorithms)

that can correct close to the number of errors that can be corrected by random codes?

However, consider the scenario where one is constrained to work with a certain family of

codes, say Reed-Solomon codes. Under this restriction whatis the most number of errors

from which one can hope to list decode?

The result of Guruswami and Sudan [63] says that one can efficiently correct up to

n −
√

nk many errors for Reed-Solomon codes. However, is this the best possible? In

Chapter 6, we give some evidence that the Guruswami-Sudan algorithm might indeed be the

best possible. Along the way we also give some explicit constructions of “bad list-decoding

configurations.” A bad list-decoding configuration refers to a received wordy along with an

error boundρ such that there are super-polynomial (inn) many Reed-Solomon codewords

within a distance ofρn from y.

This work was done jointly with Venkatesan Guruswami and appears in two different

papers. The first was published in in the proceedings of the 37th Symposium on Theory

of Computing (STOC), 2005 [56] as well as in the IEEE Transactions on Information The-

ory [59]. The second paper is an unpublished manuscript [62].

1.4.2 Property Testing

We now discuss our results on property testing of error correcting codes.

18

Testing Reed-Muller Codes

Reed-Muller codes are generalizations of Reed-Solomon codes. Reed-Muller codes are

based on multivariate polynomials while Reed-Solomon codes are based on univariate poly-

nomials. Local testing of Reed-Muller codes was instrumental in many constructions of

PCPs. However, the testers were only designed for Reed-Muller codes over large alpha-

bets. In fact, the size of the alphabet of such codes depends on the block length of the

codes. In Chapter 7, we present near-optimal local testers for Reed-Muller codes defined

over (a class of) alphabets of fixed size.

This work was done jointly with Charanjit Jutla, Anindya Patthak and David Zuckerman

and was published in the proceedings of the 45th Symposium onFoundation of Computer

Science (FOCS), 2005 [72] and is currently under review for the journal Random Structures

and Algorithms.

Tolerant Locally Testable Codes

Recall that the notion of spot checkers that we were interested in had to accept the received

word if it is far from all codewords and reject when it is closeto some codeword (as opposed

to LTCs, which only require to accept when the received word is a codeword). Surprisingly,

such testers were not considered in literature before. In Chapter 8, we define such testers,

which we call tolerant testers. Our results show that in general LTCs do not imply tolerant

testability, though most LTCs that achieve the best parameters also have tolerant testers.

As a slight aside, we look at certain strong form of local testability (calledrobust testa-

bility) of certainproduct of codes. Product of codes are also special cases of certain con-

catenated codes considered in Chapter 4. We show that in general, certain product of codes

cannot be robustly testable.

This work on tolerant testing was done jointly with Venkatesan Guruswami and was

published in the proceedings of the 9th International Workshop on Randomization and

Computation (RANDOM) [57]. The work on robust testability of product of codes is joint

19

work with Don Coppersmith and is an unpublished manuscript [26].

1.4.3 Organization of the Thesis

We start with some preliminaries in Chapter 2. In Chapter 3, we present the main result

of this thesis: codes with optimal rate over large alphabets. This result is then used to de-

sign new codes in Chapters 4 and 5. We present codes over smallalphabets in Chapter 4,

which are constructed by a combination of the codes from Chapter 3 andcode concatena-

tion. In Chapter 5, we show that certain random codes constructedby code concatenation

also achieve the list-decoding capacity. In Chapter 6, we present some limitations to list

decoding Reed-Solomon codes. We switch gears in Chapter 7 and present new local testers

for Reed-Muller codes. We present our results on tolerant testability in Chapter 8. We

conclude with the major open questions in Chapter 9.

20

Chapter 2

PRELIMINARIES

In this chapter we will define some basic concepts and notations that will be used

throughout this thesis. We will also review some basic results in list decoding that will

set the stage for our results. Finally, we will look at some specific families of codes that

will crop up frequently in the thesis.

2.1 The Basics

We first fix some notation that will be used frequently in this work, most of which is stan-

dard.

For any integerm > 1, we will use[m] to denote the set{1, . . . , m}. Given positive

integersn andm, we will denote the set of all lengthn vectors over[m] by [m]n. Unless

mentioned otherwise, all vectors in this thesis will be row vectors. log x will denote the

logarithm ofx in base2. lnx will denote the natural logarithm ofx. For bases other than

2 ande, we will specify the base of the logarithm explicitly: for example logarithm ofx in

baseq will be denoted bylogq x.

A finite field with q elements will be denoted byFq or GF (q). For any real valuex in

the range0 6 x 6 1, we will useHq(x) = x logq(q−1)−x logq x− (1−x) logq(1−x) to

denote theq-ary entropy function. For the special case ofq = 2, we will simply useH(x)

for H2(x). For more details on theq-ary entropy function, see Section 2.2.2.

For any finite setS, we will use|S| to denote the size of the set.

We now move on to the definitions of the basic notions of error correcting codes.

21

2.1.1 Basic Definitions for Codes

Let q > 2 be an integer.

Code, Blocklength, Alphabet size :

• An error correcting code(or simply acode) C is a subset of[q]n for positive integers

q andn. The elements ofC are calledcodewords.

• The parameterq is called thealphabet sizeof C. In this case, we will also refer toC

as aq-ary code. Whenq = 2, we will refer toC as abinary code.

• The parametern is called theblock lengthof the code.

Dimension and Rate :

• For aq-ary codeC, the quantityk = logq |C| is called thedimensionof the code (this

terminology makes more sense for certain classes of codes called linear codes, which

we will discuss shortly).

• For aq-ary codeC with block lengthn, its rate is defined as the ratioR =
logq |C|

n
.

Often it will be useful to use the following alternate way of looking at a code. We will

think of aq-ary codeC with block lengthn and|C| = M as a function[M] → [q]n. Every

elementx in [M] is called amessageandC(x) is itsassociated codeword. If M is a power

of q, then we will think of the message as lengthk-vector in [q]k. Viewed this way,C

provides a systematic way to add redundancy such that messages of lengthk over [q] are

mapped ton symbols over[q].

(Minimum) Distance and Relative distance : Given any two vectorsv = 〈v1, . . . , vn〉
andu = 〈u1, . . . , un〉 in [q]n, their Hamming distance(or simply distance), denoted by

∆(v,u), is the number of positions that they differ in. In other words,∆(v,u) = |{i|ui 6=
vi}.

22

• The (minimum) distanceof a codeC is the minimum Hamming distance between

any two codewords in the code. More formally

dist(C) = min
c1,c2∈C,
c1 6=c2

∆(c1, c2).

• Therelative distanceof a codeC of block lengthn is defined asδ = dist(C)
n

.

2.1.2 Code Families

The focus of this thesis will be on the asymptotic performance of decoding algorithms. For

such analysis to make sense, we need to work with an infinite family of codes instead of

a single code. In particular, an infinite family ofq-ary codesC is a collection{Ci|i ∈ Z},

where for everyi, Ci is aq-ary code of lengthni andni > ni−1. The rate of the familyC is

defined as

R(C) = lim inf
i

{
logq |Ci|

ni

}

.

The relative distance of such a family is defined as

δ(C) = lim inf
i

{
dist(Ci)

ni

}

.

From this point on, we will overload notation by referring toan infinite family of codes

simply as a code. In particular, from now on, whenever we talka codeC of lengthn, rate

R and relative distanceδ, we will implicitly assume the following. We will think ofn as

large enough so that its rateR and relative distanceδ are (essentially) same as the rate and

the relative distance of the corresponding infinite family of codes.

Given this implicit understanding, we can talk about the asymptotics of different algo-

rithms. In particular, we will say that an algorithm that works with a code of block length

n is efficientif its running time isO(nc) for some fixed constantc.

2.1.3 Linear Codes

We will now consider an important sub-class of codes called linear codes.

23

Definition 2.1. Letq be a prime power. Aq-ary codeC of block lengthn is said to belinear

if it is a linear subspace (over some fieldFq) of the vector spaceFn
q .

The size of aq-ary linear code is obviouslyqk for some integerk. In fact, it is the

dimension of the corresponding subspace inF
n
q . Thus, the dimension of the subspace is

same as the dimension of the code. (This is the reason behind the terminology of dimension

of a code.)

We will denote aq-ary linear code of dimensionk, lengthn and distanced as an

[n, k, d]q code. (For a general code with the same parameters, we will refer to it as an

(n, k, d)q code.) Most of the time, we will drop the distance part and just refer to the code

as an[n, k]q code. Finally, we will drop the dependence onq if the alphabet size is clear

from the context.

We now make some easy observations aboutq-ary linear codes. First, the zero vector is

always a codeword. Second, the minimum distance of a linear code is equal to the minimum

Hamming weightof the non-zero codewords, where the Hamming weight of a vector is the

number of positions with non-zero values.

Any [n, k]q codeC can be defined in the following two ways.

• C can be defined as a set{xG|x ∈ F
k
q}, whereG is ank × n matrix overFq. G is

called agenerator matrixof C.

• C can also be characterized by the following subspace{c|c ∈ F
n
q andHcT = 0},

whereH is an(n − k) × n matrix overFq. H is called theparity check matrixof

C. The code withH as its generator matrix is called thedual of C and is generally

denoted byC⊥.

The above two representations imply the following two things for an[n, k]q codeC.

First, given the generator matrixG and a messagex ∈ F
n
q , one can computeC(x) using

O(nk) field operations (by multiplyingxT with G). Second, given a received wordy ∈ F
n
q

24

and the parity check matrixH for C, one can check ify ∈ C usingO(n(n−k)) operations

(by computingHy and checking if it is the all zeroes vector).

Finally, given aq-ary linear codeC, we can define the following equivalence relation.

x ≡C y if and only if x − y ∈ C. It is easy to check that sinceC is linear this indeed

is an equivalence relation. In particular,≡C partitionsF
n
q into equivalence classes. These

are calledcosetsof C (note that one of the cosets is the codeC itself). In particular, every

coset is of the formy + C, where eithery = 0 or y 6∈ C andy + C is shorthand for

{y + c|c ∈ C}.

We are now ready to talk about definitions and preliminaries for list decoding and prop-

erty testing of codes.

2.2 Preliminaries and Definitions Related to List Decoding

Recall that list decoding is a relaxation of the decoding problem, where given a received

word, the idea is to output all “close-by” codewords. More precisely, given an error bound,

we want to output all codewords that lie within the given error bound from the received

word. Note that this introduces a new parameter into the mix:the worst case list size. We

will shortly define the notion of list decoding that we will beworking with in this thesis.

Given integersq > 2, n > 1, 0 6 e 6 n and a vectorx ∈ [q]n, we define theHamming

ball aroundx of radiuse to be the set of all vectors in[q]n that are at Hamming distance at

moste from x. That is,

Bq(x, e) = {y|y ∈ [q]n and∆(y,x) 6 e}.

We will need the following well known result.

Proposition 2.1 ([80]). Let q > 2 and e, n > 1 be integers such thate 6 (1 − 1/q)n.

Defineρ = e/n. Then the following relations are satisfied.

|Bq(0, e)| =
e∑

i=0

(
n

i

)

(q − 1)i 6 qHq(e/n)n = qHq(ρ)n. (2.1)

|Bq(0, e)| > qHq(ρ)n−o(n). (2.2)

25

We will be using the following definition quite frequently.

Definition 2.2 (List-Decodable Codes). LetC be aq-ary code of block lengthn. LetL > 1

be an integer and0 < ρ < 1 be a real. ThenC is called(ρ, L)-list decodable if every

Hamming ball of radiusρn has at mostL codewords in it. That is, for everyy ∈ F
n
q ,

|B(y, ρn) ∩ C| 6 L.

In the definitions above, the parameterL can depend on the block length of the code.

In such cases, we will explicitly denote the list size byL(n), wheren is the block length.

We will also frequently use the notion of list-decoding radius, which is defined next.

Definition 2.3 (List-Decoding Radius). Let C be aq-ary code of block lengthn. Let 0 <

ρ < 1 be a real and definee = ρn. C is said to have a list-decoding radius ofρ (or e) with

list sizeL if ρ (or e) is themaximumvalue for whichC is (ρ, L)-list decodable.

We will frequently use the termlist-decoding radiuswithout explicitly mentioning the

list size in which case the list size is assumed to be at most some fixed polynomial in

the block length. Note that one way to show that a codeC has a list-decoding radius of

at leastρ is to present a polynomial time list-decoding algorithm that can list decodeC

up to aρ fraction of errors. Thus, by abuse of notation, given an efficient list-decoding

algorithm for a code that can list decode aρ fraction (or e number) of errors, we will

say that the list-decoding algorithm has a list-decoding radius ofρ (or e). In most places,

we will be exclusively talking about list-decoding algorithms in which case we will refer

to their list-decoding radius asdecoding radiusor just radius. In such a case, the code

under consideration is said to be list decodable up to the corresponding decoding radius

(or just radius). Whenever we are talking about a different notion of decoding (say unique

decoding), we will refer to the maximum fraction of errors that a decoder can correct by

qualifying the decoding radius with the specific notion of decoding (for exampleunique

decoding radius).

We will also use the following generalization of list decoding.

26

Definition 2.4 (List-Recoverable Codes). Let C be aq-ary code of block lengthn. Let

ℓ, L > 1 be integers and0 < ρ < 1 be a real. ThenC is called(ρ, ℓ, L)-list recoverable if

the following is true. For every sequence of setsS1, . . . , Sn, whereSi ⊆ [q] and |Si| 6 ℓ

for every1 6 i 6 n, there are at mostL codewordsc = 〈c1, . . . , cn〉 ∈ C such thatci ∈ Si

for at least(1 − ρ)n positionsi.

Further, codeC is said to(ρ, ℓ)-list recoverable in polynomial timeif it is (ρ, ℓ, L(n))-

list recoverable for some polynomially bounded functionL(·), and moreover there is a

polynomial time algorithm to find the at mostL(n) codewords that are solutions to any

(ρ, ℓ, L(n))-list recovery instance.

List recovery has been implicitly studied in several works;the name itself was coined in

[52]. Note that a(ρ, 1, L)-list recoverable code is a(ρ, L)-list decodable code and hence, list

recovery is indeed a generalization of list decoding. List recovery is useful in list decoding

codes obtained by a certain code composition procedure. Thenatural list decoder for such

a code is a two stage algorithm, where in the first stage the “inner” codes are list decoded

to get a sequence of lists, from which one needs to recover codewords from the “outer”

code(s). For such an algorithm to be efficient, the outer codes need to be list recoverable.

We next look at the most fundamental tradeoff that we would beinterested in for list

decoding.

2.2.1 Rate vs. List decodability

In this subsection, we will consider the following question. Given limitsL > 1 and0 <

ρ < 1 on the worst case list size and the fraction of errors that we want to tolerate, what

is the maximum rate that a(ρ, L)-list decodable code can achieve? The following results

were implicit in [110] but were formally stated and proved in[35]. We present the proofs

for the sake of completeness.

We first start with a positive result.

27

Theorem 2.1([110, 35]). Letq > 2 be an integer and0 < δ 6 1 be a real. For any integer

L > 1 and any real0 < ρ < 1 − 1/q, there exists a(ρ, L)-list decodableq-ary code with

rate at least1 − Hq(ρ) − 1
L+1

− 1
nδ .

Proof. We will prove the result by using the probabilistic method [2]. Choose a codeC of

block lengthn and dimensionk = ⌈(1 − Hq(ρ) − 1
L+1

)n − n1−δ⌉ at random. That is, pick

each of theqk codewords inC uniformly (and independently) at random from[q]n. We will

show that with high probability,C is (ρ, L)-list decodable.

Let |C| = M = qk. We first fix the received wordy ∈ [q]n. Consider an(L + 1)-tuple

of codewords(c1, . . . , cL+1) in C. Now if all these codewords fall in a Hamming ball of

radiusρn aroundy, thenC is not(ρ, L)-list decodable. In other words, this(L + 1)-tuple

forms a counter-example forC having the required list decodable properties. What is the

probability that such an event happens ? For any fixed codeword c ∈ C, the probability

that it lies inB(y, ρn) is exactly
|B(y, ρn)|

qn
.

Now since every codeword is picked independently, the probability that the tuple(c1, . . . ,

cL+1) forms a counter example is

(|B(y, ρn)|
qn

)L+1

6 q−(L+1)n(1−Hq(ρ)),

where the inequality follows from Proposition 2.1 (and the fact that the volume of a Ham-

ming ball is translation invariant). Since there are
(

M
L+1

)
6 ML+1 different choices ofL+1

tuples of codewords fromC, the probability that there exists at least oneL + 1-tuple that

lies inB(y, ρn) is at most (by the union bound):

ML+1 · q−(L+1)n(1−Hq(ρ)) = q−(L+1)n(1−Hq(ρ)−R),

whereR = k/n is the rate ofC. Finally, since there are at mostqn choices fory, the

probability that there exists some Hamming ball withL + 1 codewords fromC is at most

qn · q−(L+1)n(1−Hq(ρ)−R) = q(L+1)n(1−Hq(ρ)−R−1/(L+1) 6 q−n1−δ

,

28

where the last inequality follows ask/n > 1 − Hq(ρ) − 1/(L + 1) − 1/nδ. Thus, with

probability 1 − q−n1−δ
> 0 (for large enoughn), C is a (ρ, L)-list decodable code, as

desired.

The following is an immediate consequence of the above theorem.

Corollary 2.2. Let q > 2 be an integer and0 < ρ < 1 − 1/q. For everyε > 0, there exists

a q-ary code with rate at least1 − Hq(ρ) − ε that is(ρ, O(1/ε))-list decodable.

We now move to an upper bound on the rate of good list decodablecodes.

Theorem 2.3([110, 35]). Let q > 2 be an integer and0 < ρ 6 1 − 1/q. For everyε > 0,

there do not exist anyq-ary code with rate1 − Hq(ρ) + ε that is (ρ, L(n))-list decodable

for any functionL(n) that is polynomially bounded inn.

Proof. The proof like that of Theorem 2.1 uses the probabilistic method. LetC be anyq-

ary code of block lengthn with rateR = 1−Hq(ρ) + ε. Pick a received wordy uniformly

at random from[q]n. Now, the probability that for some fixedc ∈ C, ∆(y, c) 6 ρn is

|B(0, ρn)|
qn

> qn(Hq(ρ)−1)−o(n),

where the inequality follows from Proposition 2.1. Thus, the expected number of code-

words within a Hamming ball of radiusρn aroundy is at least

|C| · qn(Hq(ρ)−1)−o(n) = qn(R−(1−Hq(ρ)))−o(n),

which by the value ofR is qΩ(n). Since the expected number of codewords is exponential,

this implies that there exists a received wordy that has exponentially many codewords

from C within a distanceρn from it. Thus,C cannot be(ρ, L(n))-list decodable for any

polynomially bounded (in fact any subexponential) function L(·).

29

List decoding capacity

Theorems 2.1 and 2.3 say that to correct aρ fraction of errors using list decoding with small

list sizes the best rate that one can hope for and can achieve is1 − Hq(ρ). We will call this

quantity thelist-decoding capacity.

The terminology is inspired by the connection of the resultsabove to Shannon’s theorem

for the special case of theq-symmetric channel (which we will denote byqSCρ). In this

channel, every symbol (from[q]) remains untouched with probability1 − ρ while it is

changed to each of the other symbols in[q] with probability ρ
q−1

. Shannon’s theorem states

that one can have reliable communication with code of rate less than1 − Hq(ρ) but not

with rates larger than1 − Hq(ρ). Thus, Shannon’s capacity forqSCρ is 1 − Hq(ρ), which

matches the expression for the list-decoding capacity.

Note that inqSCρ, the expected fraction of errors when a codeword is transmitted isρ.

Further, as the errors on each symbol occur independently, the Chernoff bound implies that

with high probability the fraction of errors is concentrated aroundρ. However, Shannon’s

proof crucially uses the fact that these (roughly)ρ fraction of errors occur randomly. What

Theorems 2.1 and 2.3 say is that even with aρ fraction of adversarialerrors1 one can

have reliable communication via codes of rate1 − Hq(ρ) with list decoding using lists of

sufficiently large constant size.

We now consider the list-decoding capacity in some more detail. First we note the fol-

lowing special case of the expression for list-decoding capacity for large enough alphabets.

Whenq is 2Θ(1/ε), 1−ρ− ε is a good approximation ofHq(ρ) (see Proposition 2.2). Recall

that in Section 1.2, we saw that1 − ρ is the information theoretic limit for codes over any

alphabet. The discussion above states that we match this bound for large alphabets.

The proof of Theorem 2.1 uses a general random code. A naturalquestion to ask is if

one can prove Theorem 2.1 for special classes of codes: for example, linear codes. For

q = 2 it is known that Theorem 2.1 is true for linear codes [51]. However, unlike general

1Where both thelocationand thenatureof errors are arbitrary.

30

codes, where Theorem 2.1 (withδ < 1) holds for random codes with high probability, the

result in [51] doesnot hold with high probability. Forq > 2, it is only known that random

linear codes (with high probability) are(ρ, L)-list decodable with rate at least1−Hq(ρ)−
1

logq(L+1)
− o(1).

Achieving List-Decoding Capacity with Explicit Codes

There are two unsatisfactory aspects of Theorem 2.1: (i) Thecodes are not explicit and (ii)

There is no efficient list-decoding algorithm. In light of Theorem 2.1, we can formalize the

challenge of list decoding that was posed in Section 1.2.3 asfollows:

Grand Challenge. Let q > 2 and let0 < ρ < 1− 1/q andε > 0 be reals. Give an explicit

construction2 of a q-ary codeC with rate1−Hq(ρ)− ε that is(ρ, O(1/ε))-list decodable.

Further, design a polynomial time list-decoding algorithmthat can correctρ fraction of

errors while using lists of sizeO(1/ε).

We still do not know how to meet the above grand challenge in its entirety. In Chapter 3,

we will show how to meet the challenge above for large enough alphabets (with lists of

larger size).

2.2.2 Results Related to theq-ary Entropy Function

We conclude our discussion on list decoding by recording fewproperties of theq-ary en-

tropy function that will be useful later.

We first start with a calculation where theq-ary entropy function naturally pops up. This

hopefully will give the reader a feel for the function (and asa bonus will pretty much prove

the lower bound in Proposition 2.1). Let0 6 x 6 1 andq > 2. We claim that the quantity
(

n
nx

)
(q − 1)nx is approximated very well byqHq(x)n for large enoughn. To see this, let us

2By explicit construction, we mean an algorithm that in time polynomial in the block length of the code
can output some succinct description of the code. For a linear code, such a description could be the
generator matrix of the code.

31

first use Stirling’s approximation ofm! by (m/e)m (for large enoughm)3 to approximate
(

n
nx

)
:

(
n

nx

)

=
n!

(nx)!(n − nx)!
≈ nnenxen−nx

(nx)nx(n − nx)n−nxen
=

qn logq n

qnx logq(nx)qn(1−x) logq(n(1−x))

= q−n(x logq x+(1−x) logq(1−x)).

Thus, we have

(
n

nx

)

(q − 1)nx ≈ q−n(x logq x+(1−x) logq(1−x)) · qnx logq(q−1) = qHq(x)n,

as desired.

Figure 2.1 gives a pictorial view of theq-ary function for the first few values ofq.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

H
q(

x)
 -

--
>

x --->

q=2
q=3
q=4

Figure 2.1: A plot ofHq(x) for q = 2, 3 and4. The maximum value of1 is achieved at
x = 1 − 1/q.

We now look at theq-ary entropy function for largeq.

3There is a
√

2πn factor that we are ignoring.

32

Proposition 2.2. For small enoughε, 1−Hq(ρ) > 1− ρ− ε for every0 < ρ 6 1− 1/q if

and only ifq is 2Θ(1/ε).

Proof. We first note thatHq(ρ) = ρ logq(q−1)−ρ logq ρ−(1−ρ) logq(1−ρ) = ρ logq(q−
1) + H(ρ)/ log2 q. Now if q = 21/ε, we get thatHq(ρ) 6 ρ + ε aslogq(q − 1) 6 1 and

H(ρ) 6 1. Next we claim that for small enoughε, if q > 1/ε2 thenlogq(q − 1) > 1 − ε.

Indeed,logq(q − 1) = 1 + (1/ ln q) ln(1− 1/q) = 1−O
(

1
q ln q

)

, which is at least1− ε for

q > 1/ε2. Finally, if q = 2o(1
ε) (butq > 1/ε2), then for fixedρ, H(ρ)/ log q = ε·ω(1). Then

ρ logq(q−1)+H(ρ)/ log q > ρ−ε+ε·ω(1) > ρ+ε, which implies that1−Hq(ρ) < 1−ρ−ε,

as desired.

Next, we look at the entropy function when its value is very close to1.

Proposition 2.3. For small enoughε > 0,

Hq

(

1 − 1

q
− ε

)

6 1 − cqε
2,

cq is constant that only depends onq.

Proof. The intuition behind the proof is the following. Since the derivate ofHq(x) is zero

atx = 1− 1/q, in the Taylor expansion ofHq(1− 1/q− ε) theε term will vanish. We will

now make this intuition more concrete. We will think ofq as fixed and1/ε as growing. In

particular, we will assume thatε < 1/q. Consider the following equalities:

Hq(1 − 1/q − ε) = −
(

1 − 1

q
− ε

)

logq

(
1 − 1/q − ε

q − 1

)

−
(

1

q
+ ε

)

logq

(
1

q
+ ε

)

= − logq

(
1

q

(

1 − εq

q − 1

))

+

(
1

q
+ ε

)

logq

(
1 − (εq)/(q − 1)

1 + εq

)

= 1 − 1

ln q

[

ln

(

1 − εq

q − 1

)

−
(

1

q
+ ε

)

ln

(
1 − (εq)/(q − 1)

1 + εq

)]

= 1 + o(ε2) − 1

ln q

[

− εq

q − 1
− ε2q2

2(q − 1)2
−
(

1

q
+ ε

)(

− εq

q − 1

− ε2q2

2(q − 1)2
− εq +

ε2q2

2

)]

(2.3)

33

= 1 + o(ε2) − 1

ln q

[

− εq

q − 1
− ε2q2

2(q − 1)2

−
(

1

q
+ ε

)(

− εq2

q − 1
+

ε2q3(q − 2)

2(q − 1)2

)]

= 1 + o(ε2) − 1

ln q

[

− ε2q2

2(q − 1)2
+

ε2q2

q − 1
− ε2q2(q − 2)

2(q − 1)2

]

(2.4)

= 1 − ε2q2

2 ln q(q − 1)
+ o(ε2)

6 1 − ε2q2

4 ln q(q − 1)

(2.5)

(2.3) follows from the fact that for|x| < 1, ln(1 + x) = x − x2/2 + x3/3 − . . . and by

collecting theε3 and smaller terms ino(ε2). (2.4) follows by rearranging the terms and by

absorbing theε3 term ino(ε2). The last step is true assumingε is small enough.

We will also work with the inverse of theq-ary entropy function. Note thatHq(·) on the

domain[0, 1 − 1/q] is an bijective map into[0, 1]. Thus, we defineH−1
q (y) = x such that

Hq(x) = y and0 6 x 6 1 − 1/q. Finally, we will need the following lower bound.

Lemma 2.4. For every0 6 y 6 1 − 1/q and for every small enoughε > 0,

H−1
q (y − ε2/c′q) > H−1

q (y) − ε,

wherec′q > 1 is a constant that depends only onq.

Proof. It is easy to check thatH−1
q (y) is a strictly increasing convex function in the range

y ∈ [0, 1]. This implies that the derivate ofH−1
q (y) increases withy. In particular,

(H−1
q)′(1) > (H−1

q)′(y) for every 0 6 y 6 1. In other words, for every0 < y 6 1,

and (small enough)δ > 0, H−1
q (y)−H−1

q (y−δ)

δ
6

H−1
q (1)−H−1

q (1−δ)

δ
. Proposition 2.3 along with

the facts thatH−1
q (1) = 1 − 1/q andH−1

q is increasing completes the proof if one picks

c′q = max(1, 1/cq) andδ = ε2/c′q.

34

2.3 Definitions Related to Property Testing of Codes

We first start with some generic definitions. Letq > 2, n > 1 be integers and let0 < ε < 1

be a real. Given a vectorx ∈ [q]n and a subsetS ⊆ [q]n, we say thatx is ε-closeto S

if there exist ay ∈ S such thatδ(x,y) 6 ε, whereδ(x,y) = ∆(x,y)/n is therelative

Hamming distancebetweenx andy. Otherwise,x is ε-far from S.

Given aq-ary codeC of block lengthn, an integerr > 1 and real0 < ε < 1, we say

that a randomized algorithmTC is an(r, ε)-tester forC if the following conditions hold:

• (Completeness) For every codewordy ∈ C, Pr[TC(y) = 1] = 1, that is,TC always

acceptsa codeword.

• (Soundness) For everyy ∈ [q]n that isε-far from C, Pr[TC(y) = 1] 6 1/3, that is,

with probability at least2/3, TC rejectsy.

• (Query Complexity) For every random choice made byTC , the tester only probes at

mostr positions iny.

We remark that the above definition only makes sense whenC has large distance. Oth-

erwise we could chooseC = [q]n and the trivial tester that accepts all received words is

a (0, ε)-tester. For this thesis, we will adopt the convention that whenever we are taking

about testers for a codeC, C will have some non trivial distance (in most casesC will have

linear distance).

The above kind of tester is also called aone-sided testeras it never makes a mistake

in the completeness case. Also, the choice of2/3 in the soundness case is arbitrary in the

following sense. The probability of rejection can be made1 − δ for anyδ > 0, as long as

we are happy withO(r) many queries, which is fine for this thesis as we will be interested

in the asymptotics of the query complexity. The number ofqueries(or r) can depend onn.

Note that there is a gap in the definition of the completeness and soundness of a tester. In

particular, the tester can have arbitrary output when the received wordy is not a codeword

35

but is still ε-close toC. In particular, the tester can still reject (very) close-bycodewords.

We will revisit this in Chapter 8.

We say that a(r, ε) tester is alocal testerif it makes sub-linear number of queries4,

that is,r = o(n) andε is some small enough constant. A code is called aLocally Testable

Code(or LTC), if it has a local tester. We also say that a local tester for acodeC allows for

locally testingC.

2.4 Common Families of Codes

In this section, we will review some code families that will be used frequently in this thesis.

2.4.1 Reed-Solomon Codes

Reed-Solomon codes (named after their inventors [90]) is a linear code that is based on

univariate polynomials over finite fields. More formally, an[n, k +1]q Reed-Solomon code

with k < n andq > n is defined as follows. Letα1, . . . , αn be distinct elements fromFq

(which is why we neededq > n). Every messagem = 〈m0, . . . , mk〉 ∈ F
k+1
q is thought of

as a degreek polynomial overFq by assigning thek+1 symbols to thek+1 coefficients of

a degreek polynomial. In other words,Pm(X) = m0+m1X + · · ·+mkX
k. The codeword

corresponding tom is defined as follows

RS(m) = 〈Pm(α1), . . . , Pm(αn)〉.

Now a degreek polynomial can have at mostk roots in any field. This implies that any two

distinct degreek polynomials can agree in at mostk places. In other words,

Proposition 2.5. An [n, k + 1]q Reed-Solomon code is an[n, k + 1, d = n − k]q code.

By the Singleton bound (see for example [80]), the distance of any code of dimension

k + 1 and lengthn is at mostn− k. Thus, Reed-Solomon codes have the optimal distance:

such codes are calledMaximum Distance Separable(or MDS) codes. The MDS property

4Recall that in this thesis we are implicitly dealing with code families.

36

along with its nice algebraic structure has made Reed-Solomon code the center of a lot of

research in coding theory. In particular, the algebraic properties of these codes have been

instrumental in the algorithmic progress in list decoding [97, 63, 85]. In addition to their

nice theoretical applications, Reed-Solomon codes have found widespread use in practical

applications. In particular, these codes are used in CDs, DVDs and other storage media,

deep space communications, DSL and paper bar codes. We referthe reader to [105] for

more details on some of these applications of Reed-Solomon codes.

2.4.2 Reed-Muller Codes

Reed-Muller codes are generalization of Reed-Solomon codes. For integersℓ > 1 and

m > 1, the message space is the set of all polynomials overFq in ℓ variables that have

total degree at mostm. The codeword corresponding to a message is the evaluation of

the correspondingℓ-variate polynomial overn distinct points inFℓ
q (note that this requires

qℓ > n). Finally, note that whenℓ = 1 andm = k, we get an[n, k + 1]q Reed-Solomon

code. Interestingly, Reed-Muller codes [82, 89] were discovered before Reed-Solomon

codes.

2.5 Basic Finite Field Algebra

We will be using a fair amount of finite field algebra in the thesis. In this section, we recap

some basic notions and facts about finite fields.

A field consists of a set of elements that is closed under addition, multiplication and

(both additive and multiplicative) inversion. It also has two special elements0 and1, which

are the additive and multiplicative identities respectively. A field is called afinite fieldif its

set of elements is finite. The set of integers modulo some primep, form the finite fieldFp.

The ring of univariate polynomials with coefficients fromF will be denoted byF[X].

A polynomialE(X) is said to be irreducible if for every way of writingE(X) = A(X) ·
B(X), eitherA(X) or B(X) is a constant polynomial. A polynomial is calledmonic, if the

37

coefficient of its leading term is1.

If E(X) is an irreducible polynomial of degreed over a fieldF, then the quotient ring

F[X]/(E(X)), consisting of all polynomials inF[X] moduloE(X) is itself a finite field

and is calledfield extensionof F. The extension field also forms a vector space of dimension

d overF.

All finite fields are eitherFp for primep or is an extension of a prime field. Thus, the

number of elements in a finite field is a prime power. Further, for any prime powerq there

exists only one finite field (up to isomorphism). For anyq that is a power of primep, the

field Fq hascharacteristicof p. The multiplicative groups of non-zero elements of a field

Fq, denoted byF∗
q , is known to be cyclic. In other words,F∗

q = {1, γ, γ2, . . . , γq−2} for

some elementγ ∈ Fq \ {0}. γ is also called theprimitive elementor generatorof F
∗
q.

The following property of finite fields will be crucial. Any polynomialf(X) of degree

at mostd in F[X] has at mostd roots, whereα ∈ F is a root off(X) if f(α) = 0. We

would be also interested in finding roots of univariate polynomials (over extension fields)

for which we will use a classical algorithm due to Berlekamp [16].

Theorem 2.4([16]). Letp be a prime. There exists a deterministic algorithm that on input

a polynomial inFpt [X] of degreed, can find all the irreducible factors (and hence the roots)

in time polynomial ind, p andt.

38

Chapter 3

LIST DECODING OF FOLDED REED-SOLOMON CODES

3.1 Introduction

Even though list decoding was defined in the late 1950s, therewas essentially no algorith-

mic progress that could harness the potential of list decoding for nearly forty years. The

work of Sudan [97] and improvements to it by Guruswami and Sudan in [63], achieved effi-

cient list decoding up to aρGS(R) = 1−
√

R fraction of errors for Reed-Solomon codes of

rateR. Note that1−
√

R > ρU(R) = (1−R)/2 for every rateR, 0 < R < 1, so this result

showed that list decoding can be effectively used to go beyond the unique decoding radius

for every rate (see Figure 3.1). The ratioρGS(R)/ρU(R) approaches2 for ratesR → 0,

enabling error-correction when the fraction of errors approaches 100%, a feature that has

found numerous applications outside coding theory, see forexample [98], [49, Chap. 12].

Unfortunately, the improvement provided by [63] over unique decoding diminishes for

larger rates, which is actually the regime of greater practical interest. For ratesR → 1, the

ratio ρGS(R)
ρU (R)

approaches1, and already for rateR = 1/2 the ratio is at most1.18. Thus,

while the results of [97, 63] demonstrated that list decoding always, for every rate, enables

correcting more errors than unique decoding, they fell short of realizing the full quantitative

potential of list decoding (recall that the list-decoding capacity promises error correction

up to a1 − R = 2ρU(R) fraction of errors).

The boundρGS(R) stood as the best known decoding radius for efficient list decoding

(for any code) for several years. In fact constructing(ρ, L)-list decodable codes of rate

R for ρ > ρGS(R) and polynomially boundedL, regardless of the complexity of actually

performing list decoding to radiusρ, itself was elusive. Some of this difficulty was due to

the fact that1−
√

R is the largest radius for which small list size can be shown generically,

39

via the so-called Johnson bound which argues about the number of codewords in Hamming

balls using only information on the relative distance of thecode, cf. [48].

In a recent breakthrough paper [85], Parvaresh and Vardy presented codes that are list-

decodable beyond the1−
√

R radius for low ratesR. The codes they suggest are variants of

Reed-Solomon (or simply RS) codes obtained by evaluatingm > 1 correlated polynomials

at elements of the underlying field (withm = 1 giving RS codes). For anym > 1, they

achieve the list-decoding radiusρ(m)
PV (R) = 1 − m+1

√
mmRm. For ratesR → 0, choosing

m large enough, they can list decode up to radius1 − O(R log(1/R)), which approaches

the capacity1 − R. However, forR > 1/16, the best choice ofm (the one that maximizes

ρ
(m)
PV (R)) is in fact m = 1, which reverts back to RS codes and the list-decoding radius

1 −
√

R. (See Figure 3.1 where the bound1 − 3
√

4R2 for the casem = 2 is plotted

— except for very low rates, it gives a small improvement overρGS(R).) Thus, getting

arbitrarily close to capacity for some rate, as well as beating the1 −
√

R bound for every

rate, both remained open before our work1.

In this chapter, we describe codes that get arbitrarily close to the list-decoding capacity

for every rate (for large alphabets). In other words, we giveexplicit codes of rateR together

with polynomial time list decoding up to a fraction1 − R − ε of errors for every rateR

and arbitraryε > 0. As mentioned in Section 2.2.1, this attains the best possible trade-

off one can hope for between the rate and list-decoding radius. This is the first result that

approaches the list-decoding capacity foranyrate (and over any alphabet).

Our codes are simple to describe: they arefolded Reed-Solomon codes, which are in

fact exactlyReed-Solomon codes, but viewed as codes over a larger alphabet by careful

bundling of codeword symbols. Given the ubiquity of RS codes, this is an appealing feature

of our result, and in fact our methods directly yield better decoding algorithms for RS codes

when errors occur inphased bursts(a model considered in [75]).

1Independent of our work, Alex Vardy (personal communication) constructed a variant of the code defined
in [85] which could be list decoded with fraction of errors more than1−

√
R for all ratesR. However, his

construction gives only a small improvement over the1−
√

R bound and does not achieve the list-decoding
capacity.

40

Our result extends easily to the problem oflist recovery(recall Definition 2.4). The

biggest advantage here is that we are able to achieve a rate that is independent of the size of

the input lists. This is an extremely useful feature that will be used in Chapters 4 and 5 to

design codes over smaller alphabets. In particular, we willconstruct new codes from folded

Reed-Solomon codes that achieve list-decoding capacity over constant sized alphabets (the

folded Reed-Solomon codes are defined over alphabets whose size increases with the block

length of the code).

Our work builds on existing work of Guruswami and Sudan [63] and Parvaresh and

Vardy [85]. See Figure 3.1 for a comparison of our work with previous known list-decoding

algorithms (for various codes).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ρ
 (

F
R

A
C

T
IO

N
 O

F
 E

R
R

O
R

S
)

 -
--

>

R (RATE) --->

List decoding capacity (this chapter)
Unique decoding radius

Guruswami-Sudan
Parvaresh-Vardy

Figure 3.1: List-decoding radiusρ plotted against the rateR of the code for known algo-
rithms. The best possible trade-off, i.e., list-decoding capacity, isρ = 1−R, and our work
achieves this.

We start with the description of our code in Section 3.2 and give some intuition why

these codes might have good list decodable properties. We present the main ideas in our

list-decoding algorithms for the folded Reed-Solomon codes in Section 3.3. In Section 3.4,

41

we present and analyze a polynomial time list-decoding algorithm for folded RS codes of

rateR that can correct roughly1 − 3
√

R2 fraction of errors . In Section 3.5, we extend

the results in Section 3.4 to present codes that can be efficiently list decoded up to the

list-decoding capacity. Finally, we extend our results to list recovery in Section 3.6.

3.2 Folded Reed-Solomon Codes

In this section, we will define a simple variant of Reed-Solomon codes called folded Reed-

Solomon codes. By choosing parameters suitably, we will design a list-decoding algorithm

that can decode close to the optimal fraction1 − R of errors with rateR.

3.2.1 Description of Folded Reed-Solomon Codes

Consider a[n, k + 1]q Reed-Solomon codeC consisting of evaluations of degreek polyno-

mials overFq at the setF∗
q. Note thatq = n + 1. Let γ be a generator of the multiplicative

groupF
∗
q , and let the evaluation points be ordered as1, γ, γ2, . . . , γn−1. Using all nonzero

field elements as evaluation points is one of the most commonly used instantiations of

Reed-Solomon codes.

f(x0) f(x1) f(x2) f(x3) f(x4) f(x5) f(x6) f(x7) f(xn−4) f(xn−3) f(xn−2) f(xn−1)

f(x0)

f(x1)

f(x2)

f(x3)

f(x4)

f(x5)

f(x6)

f(x7)

f(xn−4)

f(xn−3)

f(xn−2)

f(xn−1)

Figure 3.2: Folding of the Reed-Solomon Code with Parameterm = 4.

Let m > 1 be an integer parameter called thefolding parameter. For ease of presenta-

tion, we will assume thatm dividesn = q − 1.

42

Definition 3.1 (Folded Reed-Solomon Code). The m-folded version of the RS codeC,

denotedFRSFq,γ,m,k, is a code of block lengthN = n/m overFm
q , wheren = q − 1. The

encoding of a messagef(X), a polynomial overFq of degree at mostk, has as itsj’th

symbol, for0 6 j < n/m, them-tuple (f(γjm), f(γjm+1), · · · , f(γjm+m−1)). In other

words, the codewords ofC ′ = FRSFq,γ,m,k are in one-one correspondence with those of

the RS codeC and are obtained by bundling together consecutivem-tuple of symbols in

codewords ofC.

The way the above definition is stated the message alphabet isFq while the codeword

alphabet isFm
q whereas in our definition of codes, both the alphabets were the same. This

can be easily taken care of by bundlingm consecutive message symbols fromFq to make

the message alphabet to beF
m
q . We will however, state our results with the message symbols

as coming fromFq as this simplifies our presentation.

We illustrate the above construction for the choicem = 4 in Figure 3.2. The polyno-

mial f(X) is the message, whose Reed-Solomon encoding consists of thevalues off at

x0, x1, . . . , xn−1 wherexi = γi. Then, we perform a folding operation by bundling together

tuples of4 symbols to give a codeword of lengthn/4 over the alphabetF4
q.

Note that the folding operation does not change the rateR of the original Reed-Solomon

code. The relative distance of the folded RS code also meets the Singleton bound and is at

least1 − R.

Remark 3.1(Origins of term “folded RS codes”). The terminology of folded RS codes was

coined in [75], where an algorithm to correct random errors in such codes was presented

(for a noise model similar to the one used in [27, 18]: see Section 3.7 for more details).

The motivation was to decode RS codes from many random “phased burst” errors. Our

decoding algorithm for folded RS codes can also be likewise viewed as an algorithm to

correct beyond the1 −
√

R bound for RS codes if errors occur in large, phased bursts (the

actual errors can be adversarial).

43

3.2.2 Why Might Folding Help?

Since folding seems like such a simplistic operation, and the resulting code is essentially

just a RS code but viewed as a code over a large alphabet, let usnow understand why it can

possibly give hope to correct more errors compared to the bound for RS codes.

Consider the folded RS code with folding parameterm = 4. First of all, decoding the

folded RS code up to a fractionρ of errors is certainly not harder than decoding the RS

code up to the same fractionρ of errors. Indeed, we can “unfold” the received word of the

folded RS code and treat it as a received word of the original RS code and run the RS list-

decoding algorithm on it. The resulting list will certainlyinclude all folded RS codewords

within distanceρ of the received word, and it may include some extra codewordswhich we

can, of course, easily prune.

In fact, decoding the folded RS code is a strictly easier task. To see why, say we want to

correct a fraction1/4 of errors. Then, if we use the RS code, our decoding algorithmought

to be able to correct an error pattern that corrupts every4’th symbol in the RS encoding

of f(X) (i.e., corruptsf(x4i) for 0 6 i < n/4). However, after the folding operation,

this error pattern corrupts every one of the symbols over thelarger alphabetF4
q , and thus

need not be corrected. In other words, for the same fraction of errors, the folding operation

reduces the total number of error patterns that need to be corrected, since the channel has

less flexibility in how it may distribute the errors.

It is of course far from clear how one may exploit this to actually correct more errors. To

this end, algebraic ideas that exploit the specific nature ofthe folding and the relationship

between a polynomialf(X) and its shifted counterpartf(γX) will be used. These will

become clear once we describe our algorithms later in the chapter.

We note that the above simplification of the channel is not attained for free since the

alphabet size increases after the folding operation. For folding parameterm that is an

absolute constant, the increase in alphabet size is moderate and the alphabet remains poly-

nomially large in the block length. (Recall that the RS code has an alphabet size that is

44

linear in the block length.) Still, having an alphabet size that is a large polynomial is some-

what unsatisfactory. Fortunately, existing alphabet reduction techniques, which are used in

Chapter 4, can handle polynomially large alphabets, so thisdoes not pose a big problem.

3.2.3 Relation to Parvaresh Vardy Codes

In this subsection, we relate folded RS codes to the Parvaresh-Vardy (PV) codes [85], which

among other things will help make the ideas presented in the previous subsection more

concrete.

The basic idea in the PV codes is to encode a polynomialf of degreek by the evalu-

ations ofs > 2 polynomialsf0 = f, f1, . . . , fs−1 wherefi(X) = fi−1(X)d mod E(X)

for an appropriate powerd (and some irreducible polynomialE(X) of some appropriate

degree) — let us calls the order of such a code. Our first main idea is to pick the irre-

ducible polynomialE(X) (and the parameterd) in such a manner that every polynomialf

of degree at mostk satisfies the following identity:f(γX) = f(X)d mod E(X), where

γ is the generator of the underlying field. Thus, a folded RS code with bundling using an

γ as above is in fact exactly the PV code of orders = m for the set of evaluation points

{1, γm, γ2m, . . . , γ(n/m−1)m}. This is nice as it shows that PV codes can meet the Singleton

bound (since folded RS codes do), but as such does not lead to any better codes for list

decoding.

We now introduce our second main idea. Let us compare the folded RS code to a PV

code of order2 (instead of orderm wherem dividesn) for the set of evaluation points

{1, γ, . . . γm−2, γm, γm+1, . . . , γ2m−2, . . . , γn−m, γn−m+1 . . . , γn−2}. We find that in the

PV encoding off , for every0 6 i 6 n/m − 1 and every0 < j < m − 1, f(γmi+j)

appears exactly twice (once asf(γmi+j) and another time asf1(γ
−1γmi+j)), whereas it ap-

pears only once in the folded RS encoding. (See Figure 3.3 foran example whenm = 4

ands = 2.) In other words, the PV and folded RS codes have the same information, but

the rate of the folded RS codes is bigger by a factor of2m−2
m

= 2− 2
m

. Decoding the folded

RS codes from a fractionρ of errors reduces to correcting the same fractionρ of errors for

45

FRS codeword

f(x0)

f(γx0)

f(γ2x0)

f(x0)

f(γx0)

f(γ2x0)

f(γ3x0)

f(x4)

f(γx4)

f(γ2x4)

f(γ3x4)

f(x0)

f(γx0)

f(γx0)

f(γ2x0)

f(γ2x0)

f(γ3x0)

f(γ3x0)

PV codeword

f(x4)

f(γx4)

f(γx4)

f(γ2x4)

f(γ2x4)

f(γ3x4)

Figure 3.3: The correspondence between a folded Reed-Solomon code (withm =
4 and xi = γi) and the Parvaresh Vardy code (of orders = 2) evaluated over
{1, γ, γ2, γ4, . . . , γn−4, . . . , γn−2}. The correspondence for the first block in the folded
RS codeword and the first three blocks in the PV codeword is shown explicitly in the left
corner of the figure.

the PV code. But the rate vs. list-decoding radius trade-offis better for the folded RS code

since it has (for large enoughm, almost) twice the rate of the PV code.

In other words, our folded RS codes are chosen such that they are compressed forms of

suitable PV codes, and thus have better rate than the corresponding PV code for a similar

error-correction performance. This is where our gain is, and using this idea we are able to

construct folded RS codes of rateR that are list decodable up to radius roughly1− s+1
√

Rs

for any s > 1. Picking s large enough lets us get within any desiredε of list-decoding

capacity.

3.3 Problem Statement and Informal Description of the Algorithms

We first start by stating more precisely the problem we will solve in the rest of the chapter.

We will give list-decoding algorithms for the folded Reed-Solomon codeFRSFq,γ,m,k of

rateR. More precisely, for every1 6 s 6 m andδ > 0, given a received wordy =

46

〈(y0, . . . , ym−1), . . . , (yn−m, . . . , yn−1)〉 (where recalln = q − 1), we want to output all

codewords inFRSFq,γ,m,k that disagree withy in at most1 − (1 + δ)
(

m
m−s+1

)
Rs/(s+1)

fraction of positions in polynomial time. In other words, weneed to output all degree

k polynomialsf(X) such that for at least(1 + δ)
(

m
m−s+1

)
Rs/(s+1) fraction of 0 6 i 6

n/m − 1, f(γim+j) = yim+j (for every0 6 j 6 m − 1). By picking the parametersm, s

andδ carefully, we will get folded Reed-Solomon codes of rateR that can be list decoded

up to a1 − R − ε fraction of errors (for anyε > 0).

We will now present the main ideas need to design our list-decoding algorithm. Readers

familiar with list-decoding algorithms of [97, 63, 85] can skip the rest of this section.

For the ease of presentation we will start with the case whens = m. As a warm up, let

us consider the case whens = m = 1. Note that form = 1, we are interested in list decod-

ing Reed-Solomon codes. More precisely, given the receivedwordy = 〈y0, . . . , yn−1〉, we

are interested in all degreek polynomialsf(X) such that for at least(1 + δ)
√

R fraction

of positions0 6 i 6 n − 1, f(γi) = yi. We now sketch the main ideas of the algorithms

in [97, 63]. The algorithms have two main steps: the first is aninterpolationstep and the

second one is aroot findingstep. In the interpolation step, the list-decoding algorithm finds

a bivariate polynomialQ(X, Y) thatfits the input. That is,

for every positioni, Q(γi, yi) = 0.

Such a polynomialQ(·, ·) can be found in polynomial time if we search for one with large

enough total degree (this amounts to solving a system of linear equations). After the inter-

polation step, the root finding step finds all factors ofQ(X, Y) of the formY − f(X). The

crux of the analysis is to show that

for every degreek polynomialf(X) that satisfiesf(γi) = yi for at least(1 +

δ)
√

R fraction of positionsi, Y − f(X) is indeed a factor ofQ(X, Y).

However, the above is not true for every bivariate polynomial Q(X, Y) that satisfiesQ(γi, yi)

= 0 for all positionsi. The main ideas in [97, 63] were to introduce more constraints on

47

Q(X, Y). In particular, the work of Sudan [97] added the constraint that a certain weighted

degree ofQ(X, Y) is below a fixed upper bound. Specifically,Q(X, Y) was restricted

to have a non-trivially bounded(1, k)-weighted degree. The(1, k)-weighted degree of a

monomialX iY j is i+jk and the(1, k)-weighted degree of a bivariate polynomialQ(X, Y)

is the maximum(1, k)-weighted degree among its monomials. The intuition behinddefin-

ing such a weighted degree is that givenQ(X, Y) with weighted(1, k) of D, theunivariate

polynomialQ(X, f(X)), wheref(X) is some degreek polynomial, has total degree at

mostD. The upper boundD is chosen carefully such that iff(X) is a codeword that needs

to be output, thenQ(X, f(X)) has more thanD zeroes and thusQ(X, f(X)) ≡ 0, which

in turn implies thatY − f(X) dividesQ(X, Y). To get to the bound of1 − (1 + δ)
√

R,

Guruswami and Sudan in [63], added a further constraint onQ(X, Y) that required it to

haver roots at(γi, yi), wherer is some parameter (in [97]r = 1 while in [63], r is roughly

1/δ).

We now consider the next non-trivial case ofm = s = 2 (the ideas for this case

can be easily generalized for the generalm = s case). Note that now given the received

word 〈(y0, y1), (y2, y3), . . . , (yn−2, yn−1)〉 we want to find all degreek polynomialsf(X)

such that for at least2(1 + δ)
3
√

R2 fraction of positions0 6 i 6 n/2 − 1, f(γ2i) =

y2i and f(γ2i+1) = y2i+1. As in the previous case, we will have an interpolation and

a root finding step. The interpolation step is a straightforward generalization ofm = 1

case: we find a trivariate polynomialQ(X, Y, Z) that fits the received word, that is, for

every0 6 i 6 n/2 − 1, Q(γ2i, y2i, y2i+1) = 0. Further,Q(X, Y, Z) has an upper bound

on its (1, k, k)-weighted degree (which is a straightforward generalization of the(1, k)-

weighted degree for the bivariate case) and has a multiplicity of r at every point. These

straightforward generalization and their various properties are recorded in Section 3.4.1.

For the root finding step, it suffices to show that for every degreek polynomialf(X) that

needs to be outputQ(X, f(X), f(γX)) ≡ 0. This, however does not follow from weighted

degree and multiple root properties ofQ(X, Y, Z). Here we will need two new ideas,

the first of which is to show that for some irreducible polynomial E(X) of degreeq − 1,

48

f(X)q ≡ f(γX) mod (E(X)) (this is Lemma 3.4). The second idea, due to Parvaresh and

Vardy [85], is the following. We first obtain the bivariate polynomial (over an appropriate

extension field)T (Y, Z) ≡ Q(X, Y, Z) mod (E(X)). Note that by our first idea, we are

looking for solutions on the curveZ = Y q (Y corresponds tof(X) andZ corresponds to

f(γX) in the extension field). The crux of the argument is to show that all the polynomials

f(X) that need to be output correspond to (in the extension field) some root of the equation

T (Y, Y q) = 0. See Section 3.4.3 for the details.

As was mentioned earlier, the extension of them = s = 2 case to the generalm =

s > 2 case is fairly straightforward (and is presented in part as Lemma 3.6). To go from

s = m to anys 6 m requires another simple idea: We will reduce the problem of list

decoding folded Reed-Solomon code with folding parameterm to the problem of list de-

coding folded Reed-Solomon code with folding parameters. We then use the algorithm

outlined in the previous paragraph for the folded Reed-Solomon code with folding param-

eters. A careful tracking of the agreement parameter in the reduction, brings down the

final agreement fraction (that is required for the original folded Reed-Solomon code with

folding parameterm) from m(1+δ) m+1
√

Rm (which can be obtained without the reduction)

to (1+ δ)
(

m
m−s+1

)
s+1
√

Rs. This reduction is presented in detail in Section 3.4 for thes = 2

case. The generalization to anys 6 m is presented in Section 3.5.

3.4 Trivariate Interpolation Based Decoding

As mentioned in the previous section, the list-decoding algorithm for RS codes from [97,

63] is based on bivariate interpolation. The key factor driving the agreement parametert

needed for the decoding to be successful was the ((1, k)-weighted) degreeD of the interpo-

lated bivariate polynomial. Our quest for an improved algorithm for folded RS codes will

be based on trying to lower this degreeD by using more degrees of freedom in the interpo-

lation. Specifically, we will try to usetrivariate interpolationof a polynomialQ(X, Y1, Y2)

throughn points inF
3
q. This enables us to perform the interpolation withD in O((k2n)1/3),

which is much smaller than theΘ(
√

kn) bound for bivariate interpolation. In principle,

49

this could lead to an algorithm that works for agreement fraction R2/3 instead ofR1/2. Of

course, this is a somewhat simplistic hope and additional ideas are needed to make this ap-

proach work. We now turn to the task of developing a trivariate interpolation based decoder

and proving that it can indeed decode up to a1 − R2/3 fraction of errors.

3.4.1 Facts about Trivariate Interpolation

We begin with some basic definitions and facts concerning trivariate polynomials.

Definition 3.2. For a polynomialQ(X, Y1, Y2) ∈ Fq[X, Y1, Y2], its (1, k, k)-weighted de-

gree is defined to be the maximum value ofℓ+kj1+kj2 taken over all monomialsXℓY j1
1 Y j2

2

that occur with a nonzero coefficient inQ(X, Y1, Y2). If Q(X, Y1, Y2) ≡ 0 then its(1, k, k)-

weighted degree is0.

Definition 3.3 (Multiplicity of zeroes). A polynomialQ(X, Y1, Y2) overFq is said to have

a zero of multiplicityr > 1 at a point(α, β1, β2) ∈ F
3
q if Q(X + α, Y1 + β1, Y2 + β2) has

no monomial of degree less thanr with a nonzero coefficient. (The degree of the monomial

X iY j1
1 Y j2

2 equalsi + j1 + j2.)

Lemma 3.1.Let{(αi, yi1, yi2)}n
i=1 be an arbitrary set ofn triples fromF

3
q. LetQ(X, Y1, Y2)

∈ Fq[X, Y1, Y2] be a nonzero polynomial of(1, k, k)-weighted degree at mostD that has a

zero of multiplicityr at (αi, yi1, yi2) for everyi ∈ [n]. Let f(X), g(X) be polynomials of

degree at mostk such that for at leastt > D/r values ofi ∈ [n], we havef(αi) = yi1 and

g(αi) = yi2. Then,Q(X, f(X), g(X)) ≡ 0.

Proof. If we defineR(X) = Q(X, f(X), g(X)), thenR(X) is a univariate polynomial of

degree at mostD, and for everyi ∈ [n] for which f(αi) = yi1 andg(αi) = yi2, (X − αi)
r

dividesR(X). Therefore ifrt > D, thenR(X) has more roots (counting multiplicities)

than its degree, and so it must be the zero polynomial.

Lemma 3.2. Given an arbitrary set ofn triples {(αi, yi1, yi2)}n
i=1 from F

3
q and an integer

parameterr > 1, there exists a nonzero polynomialQ(X, Y1, Y2) over Fq of (1, k, k)-

weighted degree at mostD such thatQ(X, Y1, Y2) has a zero of multiplicityr at (αi, yi1, yi2)

50

for all i ∈ [n], providedD3

6k2 > n
(

r+2
3

)
. Moreover, we can find such aQ(X, Y1, Y2) in time

polynomial inn, r by solving a system of homogeneous linear equations overFq.

Proof. We begin with the following claims. (i) The condition thatQ(X, Y1, Y2) has a zero

of multiplicity r at (αi, yi1, yi2) for all i ∈ [n] amounts ton
(

r+2
3

)
homogeneous linear

conditions in the coefficients ofQ; and (ii) The number of monomials inQ(X, Y1, Y2)

equals the number, sayN3(k, D), of triples (i, j1, j2) of nonnegative integers that obey

i + kj1 + kj2 6 D is at leastD
3

6k2 . Hence, if D3

6k2 > n
(

r+2
3

)
, then the number of unknowns

exceeds the number of equations, and we are guaranteed a nonzero solution.

To complete the proof, we prove the two claims. To prove the first claim, it suffices to

show that for any arbitrary tuple(α, β, γ), the condition thatQ(X, Y, Z) has multiplicityr

at point(α, β, γ) amounts to
(

r+2
3

)
many homogeneous linear constraints. By the definition

of multiplicities of roots, this amounts to setting the coefficients of all monomials of total

degreer in Q(X+α, Y +β, Z+γ) to be zero. In particular, the coefficient of the monomial

X i1Y i2Z i3 is given by
∑

i′1>i1

∑

i′2>i2

∑

i′3>i3

(
i′1
i1

)(
i′2
i2

)(
i′3
i3

)
qi′1,i′2.i′3

αi′1−i1βi′2−i2γi′3−i3 , where

qi′1,i′2,i′3
is the coefficient ofX i′1Y i′2Z i′3 in Q(X, Y, Z). Thus, the condition on multiplici-

ties on roots ofQ(X, Y, Z) at (α, β, γ) follows if the following is satisfied by for every

triple (i1, i2, i3) such thati1 + i2 + i3 6 r:

∑

i′1>i1

∑

i′2>i2

∑

i′3>i3

(
i′1
i1

)(
i′2
i2

)(
i′3
i3

)

qi′1,i′2,i′3
αi′1−i1βi′2−i2γi′3−i3 = 0.

The claim follows by noting that the number of integral solutions toi1 + i2 + i3 6 r is
(

r+2
3

)
.

To prove the second claim, following [85], we will first show that the numberN3(k, D)

is at least as large as the volume of the 3-dimensional regionP = {x + ky1 + ky2 6 D |
x, y1, y2 > 0} ⊂ R

3. Consider the correspondence between monomials inFq[X, Y, Z] and

unit cubes inR3: X i1Y i2Z i3 → C(i1, i2, i3), whereC(i1, i2, i3) = [i1, i1 +1)× [i2, i2 +1)×
[i3, i3 + 1). Note that the volume of each such cube is1. Thus,N3(k, D) is the volume of

the union of cubesC(i1, i2, i3) for positive integersi1, i2, i3 such thati1 + ki2 + ki3 6 D:

51

let U denote this union. It is easy to see thatP ⊂ U . To complete the claim we will show

that the volume ofP equalsD3

6k2 . Indeed the volume ofP is

∫ D

0

∫ (D−x)/k

0

∫ (D−x)/k−y1

0

dy2 dy1 dx =

∫ D

0

∫ (D−x)/k

0

(
D − x

k
− y1

)

dy1 dx

=

∫ D

0

(D − x)2

2k2
dx

=
1

2k2

∫ D

0

z2 dz

=
D3

6k2
,

where the third equality follows by substitutingz = D − x.

3.4.2 Using Trivariate Interpolation for Folded RS Codes

Let us now see how trivariate interpolation can be used in thecontext of decoding the folded

RS codeC ′ = FRSFq,γ,m,k of block lengthN = (q − 1)/m. (Throughout this section, we

denoten = q − 1.) Given a received wordz ∈ (Fm
q)N for C ′ that needs to be list decoded,

we definey ∈ F
n
q to be the corresponding “unfolded” received word. (Formally, let thej’th

symbol ofz be (zj,0, . . . , zj,m−1) for 0 6 j < N . Theny is defined byyjm+l = zj,l for

0 6 j < N and0 6 l < m.)

Suppose thatf(X) is a polynomial whose encoding agrees withz on at leastt locations

(note that the agreement is on symbols fromF
m
q). Then, here is an obvious but important

observation:

For at leastt(m− 1) values ofi, 0 6 i < n, boththe equalitiesf(γi) = yi and

f(γi+1) = yi+1 hold.

Define the notationg(X) = f(γX). Therefore, if we consider then triples(γi, yi, yi+1) ∈
F

3
q for i = 0, 1, . . . , n − 1 (with the conventionyn = y0), then for at leastt(m − 1)

triples, we havef(γi) = yi andg(γi) = yi+1. This suggests that interpolating a polynomial

Q(X, Y1, Y2) through thesen triples and employing Lemma 3.1, we can hope thatf(X) will

52

satisfyQ(X, f(X), f(γX)) = 0, and then somehow use this to findf(X). We formalize

this in the following lemma. The proof follows immediately from the preceding discussion

and Lemma 3.1.

Lemma 3.3. Letz ∈ (Fm
q)N and lety ∈ F

n
q be the unfolded version ofz. LetQ(X, Y1, Y2)

be any nonzero polynomial overFq of (1, k, k)-weighted degree atD that has a zero of

multiplicityr at (γi, yi, yi+1) for i = 0, 1, . . . , n−1. Lett be an integer such thatt > D
(m−1)r

.

Then every polynomialf(X) ∈ Fq[X] of degree at mostk whose encoding according to

FRSFq,γ,m,k agrees withz on at leastt locations satisfiesQ(X, f(X), f(γX)) ≡ 0.

Lemmas 3.2 and 3.3 motivate the following approach to list decoding the folded RS

codeFRSFq,γ,m,k. Herez ∈ (Fm
q)N is the received word andy = (y0, y1, . . . , yn−1) ∈ F

n
q

is its unfolded version. The algorithm uses an integer multiplicity parameterr > 1, and is

intended to work for an agreement parameter1 6 t 6 N .

Algorithm Trivariate-FRS-decoder:

Step 1 (Trivariate Interpolation) Define the degree parameter

D = ⌊ 3
√

k2nr(r + 1)(r + 2)⌋ + 1 . (3.1)

Interpolate a nonzero polynomialQ(X, Y1, Y2) with coefficients fromFq with the

following two properties: (i)Q has(1, k, k)-weighted degree at mostD, and (ii)Q

has a zero of multiplicityr at (γi, yi, yi+1) for i = 0, 1, . . . , n − 1 (whereyn = y0).

(Lemma 3.2 guarantees the feasibility of this step as well asits computability in time

polynomial inn, r.)

Step 2 (Trivariate “Root-finding”) Find a list of all degree6 k polynomialsf(X) ∈ Fq[X]

such thatQ(X, f(X), f(γX)) = 0. Output those whose encoding agrees withz on

at leastt locations.

Ignoring the time complexity of Step 2 for now, we can alreadyclaim the following

result concerning the error-correction performance of this algorithm.

53

Theorem 3.1.The algorithmTrivariate-FRS-decoder successfully list decodes the folded

Reed-Solomon codeFRSFq,γ,m,k up to a radius ofN −
⌊

N m
m−1

3

√
k2

n2

(
1 + 1

r

) (
1 + 2

r

)
⌋

− 2.

Proof. By Lemma 3.3, we know that anyf(X) whose encoding agrees withz on t or more

locations will be output in Step 2, providedt > D
(m−1)r

. For the choice ofD in (3.1), this

condition is met for the choicet = 1 +
⌊

3

√
k2n

(m−1)3

(
1 + 1

r

) (
1 + 2

r

)
+ 1

(m−1)r

⌋

. Indeed, we

have

D

(m − 1)r
6

1

(m − 1)r

(
3
√

k2nr(r + 1)(r + 2) + 1
)

=
1

m − 1
3

√

k2n

(

1 +
1

r

)(

1 +
2

r

)

+
1

(m − 1)r

< 1 +

⌊

1

m − 1
3

√

k2n

(

1 +
1

r

)(

1 +
2

r

)

+
1

(m − 1)r

⌋

= t,

where the first inequality follows from (3.1) and the fact that for any realx > 0, ⌊x⌋ 6 x

while the second inequality follows from the fact that for any realx > 0, x < ⌊x⌋+ 1. The

decoding radius is equal toN − t, and recalling thatn = mN , we get bound claimed in the

lemma.

The rate of the folded Reed-Solomon code isR = (k+1)/n > k/n, and so the fraction

of errors corrected (for large enoughr) is 1 − m
m−1

R2/3. Letting the parameterm grow, we

can approach a decoding radius of1 − R2/3.

3.4.3 Root-finding Step

In light of the above discussion, the only missing piece in our decoding algorithm is an

efficient way to solve the following trivariate “root-finding” problem:

Given a nonzero polynomialQ(X, Y1, Y2) with coefficients from a finite field

Fq, a primitive elementγ of the fieldFq, and an integer parameterk < q − 1,

54

find the list of all polynomialsf(X) of degree at mostk such thatQ(X, f(X), f(γX)) ≡
0.

The following simple algebraic lemma is at the heart of our solution to this problem.

Lemma 3.4. Let γ be a primitive element that generatesF
∗
q . Then we have the following

two facts:

1. The polynomialE(X)
def
= Xq−1 − γ is irreducible overFq.

2. Every polynomialf(X) ∈ Fq[X] of degree less thanq − 1 satisfiesf(γX) = f(X)q

mod E(X).

Proof. The fact thatE(X) = Xq−1−γ is irreducible overFq follows from a known, precise

characterization of all irreducible binomials, i.e., polynomials of the formXa − c, see for

instance [77, Chap. 3, Sec. 5]. For completeness, and since this is an easy special case,

we now prove this fact. SupposeE(X) is not irreducible and some irreducible polynomial

f(X) ∈ Fq[X] of degreeb, 1 6 b < q − 1, divides it. Letζ be a root off(X) in the

extension fieldFqb. We then haveζqb−1 = 1. Also, f(ζ) = 0 impliesE(ζ) = 0, which

implies ζq−1 = γ. These equations together implyγ
qb−1
q−1 = 1. Now, γ is primitive in

Fq, so thatγa = 1 iff a is divisible by (q − 1). We conclude thatq − 1 must divide
qb−1
q−1

= 1+q+q2+ · · ·+qb−1. This is, however, impossible since1+q+q2+ · · ·+qb−1 ≡ b

(mod (q − 1)) and0 < b < q − 1. This contradiction proves thatE(X) has no such factor

of degree less thanq − 1, and is therefore irreducible.

For the second part, we have the simple but useful identityf(X)q = f(Xq) that holds

for all polynomials inFq[X]. Therefore,f(X)q − f(γX) = f(Xq) − f(γX). Since

Xq = γX implies f(Xq) = f(γX), f(Xq) − f(γX) is divisible by Xq − γX, and

thus also byXq−1 − γ. Hencef(X)q ≡ f(γX) (mod E(X)) which implies thatf(X)q

mod E(X) = f(γX) since the degree off(γX) is less thanq − 1.

Armed with this lemma, we are ready to tackle the trivariate root-finding problem.

55

Lemma 3.5. There is a deterministic algorithm that on input a finite fieldFq, a primitive

elementγ of the fieldFq, a nonzero polynomialQ(X, Y1, Y2) ∈ Fq[X, Y1, Y2] of degree less

thanq in Y1, and an integer parameterk < q − 1, outputs a list of all polynomialsf(X) of

degree at mostk satisfying the conditionQ(X, f(X), f(γX)) ≡ 0. The algorithm has run

time polynomial inq.

Proof. Let E(X) = Xq−1 − γ. We know by Lemma 3.4 thatE(X) is irreducible. We

first divide out the largest power ofE(X) that dividesQ(X, Y1, Y2) to obtainQ0(X, Y1, Y2)

whereQ(X, Y1, Y2) = E(X)bQ0(X, Y1, Y2) for someb > 0 andE(X) does not divide

Q0(X, Y1, Y2). Note that asE(X) is irreducible,f(X) does not divideE(X). Thus, if

f(X) satisfiesQ(X, f(X), f(γX)) ≡ 0, thenQ0(X, f(X), f(γX)) ≡ 0 as well, so we

will work with Q0 instead ofQ. Let us viewQ0(X, Y1, Y2) as a polynomialT0(Y1, Y2) with

coefficients fromFq[X]. Further, reduce each of the coefficients moduloE(X) to get a

polynomialT (Y1, Y2) with coefficients from the extension fieldFqq−1 (which is isomorphic

to Fq[X]/(E(X)) asE(X) is irreducible overFq). We note thatT (Y1, Y2) is a nonzero

polynomial sinceQ0(X, Y1, Y2) is not divisible byE(X).

In view of Lemma 3.4, it suffices to find degree6 k polynomialsf(X) satisfying

Q0(X, f(X), f(X)q) (mod E(X)) ≡ 0. In turn, this means it suffices to find elements

Γ ∈ Fqq−1 satisfyingT (Γ, Γq) = 0. If we define the univariate polynomialR(Y1)
def
=

T (Y1, Y
q
1), this is equivalent to finding allΓ ∈ Fqq−1 such thatR(Γ) = 0, or in other words

the roots inFqq−1 of R(Y1).

Now R(Y1) is a nonzero polynomial sinceR(Y1) = 0 iff Y2 − Y q
1 dividesT (Y1, Y2),

and this cannot happen asT (Y1, Y2) has degree less thanq in Y1. The degree ofR(Y1) is at

mostdq whered is the total degree ofQ(X, Y1, Y2). The characteristic ofFqq−1 is at most

q, and its degree over the base field is at mostq lg q. Therefore, by Theorem 2.4 we can find

all roots ofR(Y1) by a deterministic algorithm running in time polynomial ind, q. Each of

the roots will be a polynomial inFq[X] of degree less thanq−1. Once we find all the roots,

we prune the list and only output those rootsf(X) that have degree at mostk and satisfy

56

Q0(X, f(X), f(γX)) = 0.

With this, we have a polynomial time implementation of the algorithmTrivariate-FRS-

decoder. There is the technicality that the degree ofQ(X, Y1, Y2) in Y1 should be less than

q. This degree is at mostD/k, which by the choice ofD in (3.1) is at most(r+3) 3
√

n/k <

(r + 3)q1/3. For a fixedr and growingq, the degree is much smaller thanq. (In fact, for

constant rate codes, the degree is a constant independent ofn.) By letting m, r grow in

Theorem 3.1, and recalling that the running time is polynomial in n, r, we can conclude the

following main result of this section.

Theorem 3.2. For everyδ > 0 and R, 0 < R < 1, there is a family ofm-folded Reed-

Solomon codes form in O(1/δ) that have rate at leastR and that can be list decoded up

to a fraction1 − (1 + δ)R2/3 of errors in time polynomial in the block length and1/δ.

Remark 3.2 (Optimality of degreeq of relation betweenf(X) and f(γX)). Let Fqq−1

be the extension fieldFq[X]/(E(X)) — its elements are in one-one correspondence with

polynomials of degree less thanq − 1 over Fq. Let Γ : Fqq−1 → Fqq−1 be such that for

everyf(X) ∈ Fqq−1 , Γ(f(X)) = f(G(X)) for some polynomialG overFq. (In the above,

we hadΓ(f(X)) = f(X)q mod (E(X)) andG(X) = γX; as a polynomial overFqq−1,

Γ(Z) = Zq, and hence had degreeq.) Any such mapΓ is anFq-linear function onFqq−1,

and is therefore alinearizedpolynomial, cf. [77, Chap. 3, Sec. 4], which has only terms

with exponents that are powers ofq (includingq0 = 1). It turns out that for our purposesΓ

cannot have degree1, and so it must have degree at leastq.

3.5 Codes Approaching List Decoding Capacity

Given that trivariate interpolation improved the decodingradius achievable with rateR

from 1 − R1/2 to 1 − R2/3, it is natural to attempt to use higher order interpolation to

improve the decoding radius further. In this section, we discuss the quite straightforward

technical changes needed for such a generalization.

57

Consider again them-folded RS codeC ′ = FRSFq,γ,m,k. Lets be an integer in the range

1 6 s 6 m. We will develop a decoding algorithm based on interpolating an(s+1)-variate

polynomialQ(X, Y1, Y2, . . . , Ys). The definitions of the(1, k, k, . . . , k)-weighted degree

(with k repeateds times) ofQ and the multiplicity at a point(α, β1, β2, . . . , βs) ∈ F
s+1
q are

straightforward extensions of Definitions 3.2 and 3.3.

As before lety = (y0, y1, . . . , yn−1) be the unfolded version of the received wordz ∈
(Fm

q)N of the folded RS code that needs to be decoded. For convenience, defineyj =

yj mod n for j > n. Following algorithmTrivariate-FRS-decoder, for suitable integer

parametersD, r, the interpolation phase of the(s+1)-variate FRS decoder will fit a nonzero

polynomialQ(X, Y1, . . . , Ys) with the following properties:

1. It has(1, k, k, . . . , k)-weighted degree at mostD

2. It has a zero of multiplicityr at (γi, yi, yi+1, . . . , yi+s−1) for i = 0, 1, . . . , n − 1.

The following is a straightforward generalization of Lemmas 3.2 and 3.3.

Lemma 3.6. (a) Provided Ds+1

(s+1)!ks > n
(

r+s
s+1

)
, a nonzero polynomialQ(X, Y1, . . . , Ys)

with the following properties exists.Q(X, Y1, . . . , Ys) has(1, k, . . . , k) weighted de-

gree at mostD and has roots with multiplicityr at (γi, yi, yi+1, . . . , yi+s−1) for every

i ∈ {0, . . . , n − 1}. Moreover such aQ(X, Y1, . . . , Ys) can be found in time polyno-

mial in n, rs andDs+1/ks.

(b) Lett be an integer such thatt > D
(m−s+1)r

. Then every polynomialf(X) ∈ Fq[X] of

degree at mostk whose encoding according toFRSFq,γ,m,k agrees with the received

wordz on at leastt locations satisfiesQ(X, f(X), f(γX), . . . , f(γs−1X)) ≡ 0.

Proof. The first part follows from (i) a simple lower bound on the number of monomials

XaY b1
1 · · ·Y bs

s with a+k(b1 +b2+ · · ·+bs) 6 D, which gives the number of coefficients of

Q(X, Y1, . . . , Ys), and (ii) an estimation of the number of(s+1)-variate monomials of total

degree less thanr, which gives the number of interpolation conditions per(s+1)-tuple. We

58

now briefly justify these claims. By a generalization of the argument in Lemma 3.2, one

can lower bound the number of monomialsXaY b1
1 · · ·Y bs

s such thata+ k(b1 + · · · bs) 6 D

by the volume ofPs,D = {x + ky1 + ky2 + · · · + kys 6 D|x, y1, y2, . . . ys > 0}. We will

use induction ons to prove that the volume ofPs,D is Ds+1

(s+1)!ks . The proof of Lemma 3.2

shows this fors = 2. Now assume that the volume ofPs−1,D is exactly Ds

s!ks−1 . Note that the

subset ofPs,D where the value ofys = α is fixed is exactlyPs−1,D−kα Thus, the volume of

Ps,D is exactly

∫ D/k

0

(D − kys)
s

s!ks−1
dys =

1

s!ks

∫ D

0

zs dz =
Ds+1

(s + 1)!ks
,

where the second equality follows by substitutingz = D − kys. Further, a straightforward

generalization of the argument in the proof of Lemma 3.2, shows that the condition on the

multiplicity of the polynomialQ(X, Y1, . . . , Ys) is satisfied if for everyi ∈ {0, . . . , n − 1}
and every tuple(l, j1, . . . , js) such thatl + j1 + j2 · · ·+ js 6 r the following is0

∑

l′>l

∑

j′1>j1

∑

j′2>j2

· · ·
∑

j′s>js

(
l′

l

)(
j′1
j1

)(
j′2
j2

)

· · ·
(

j′s
js

)

ql′,j′1,i′2,...,j′sγ
i(l′−l)y

j′1−g1

i y
j′2−j2
i+1 · · · yj′s−js

i+s−1,

whereql′,j′1,j′2,...,j′s is the coefficient of the monomialX l′Y
j′1
1 · · ·Y j′s

s in Q(X, Y1, . . . , Ys).

The number of positive integral solutions fori+ j1 + j2 · · ·+ js 6 r is exactly
(

r+s
s+1

)
. Thus,

the total number of constraints isn
(

r+s
s+1

)
. Thus, the condition in part (a) of the lemma,

implies that the set of homogeneous linear equations have more variables than constraints.

Hence, a solution can be found in time polynomial in the number of variables (6 Ds+1/ks)

and constraints (at mostnrO(s)).

The second part is similar to the proof of Lemma 3.3. Iff(X) has agreement on at leastt

locations ofz, then for at leastt(m−s+1) of the(s+1)-tuples(γi, yi, yi+1, . . . , yi+s−1), we

havef(γi+j) = yi+j for j = 0, 1, . . . , s − 1. As in Lemma 3.1, we conclude thatR(X)
def
=

Q(X, f(X), f(γX), . . . , f(γs−1X)) has a zero of multiplicityr atγi for each such(s+1)-

tuple. Also, by designR(X) has degree at mostD. Hence ift(m − s + 1)r > D, then

R(X) has more zeroes (counting multiplicities) than its degree,and thusR(X) ≡ 0.

59

Note the lower bound condition onD above is met with the choice

D =
⌊

(ksnr(r + 1) · · · (r + s))1/(s+1)
⌋

+ 1 . (3.2)

The task of finding the list of all degreek polynomialsf(X) ∈ Fq[X] satisfying

Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 can be solved using ideas similar to the proof

of Lemma 3.5. First, by dividing out byE(X) enough times, we can assume that not all

coefficients ofQ(X, Y1, . . . , Ys), viewed as a polynomial inY1, . . . , Ys with coefficients in

Fq[X], are divisible byE(X). We can then go moduloE(X) to get a nonzero polynomial

T (Y1, Y2, . . . , Ys) over the extension fieldFqq−1 = Fq[X]/(E(X)). Now, by Lemma 3.4,

we havef(γjX) = f(X)qj
mod E(X) for every j > 1. Therefore, the task at hand

reduces to the problem of finding all rootsΓ ∈ Fqq−1 of the polynomialR(Y1) where

R(Y1) = T (Y1, Y
q
1 , . . . , Y qs−1

1). There is the risk thatR(Y1) is the zero polynomial, but it

is easily seen that this cannot happen if the total degree ofT is less thanq. This will be the

case since the total degree is at mostD/k, which is at most(r + s)(n/k)1/(s+1) ≪ q.

The degree of the polynomialR(Y1) is at mostqs, and therefore all its roots inFqq−1

can be found inqO(s) time (by Theorem 2.4). We conclude that the “root-finding” step can

be accomplished in polynomial time.

The algorithm works for agreementt > D
(m−s+1)r

, which for the choice ofD in (3.2) is

satisfied if

t >

(

1 +
s

r

) (ksn)1/(s+1)

m − s + 1
+ 2 .

Indeed,

D

(m − s + 1)r
6

1

(m − s + 1)r
·
(

s+1
√

ksnr(r + 1) · · · (r + s) + 1
)

6
1

(m − s + 1)r
·
(

(r + s)
s+1
√

ksn + 1
)

=
(

1 +
s

r

) (ksn)1/(s+1)

m − s + 1
+

1

r(m − s + 1)

<
(

1 +
s

r

) (ksn)1/(s+1)

m − s + 1
+ 2

6 t,

60

where the first inequality follows from (3.2) along with the fact that for any realx > 0,

⌊x⌋ 6 x while the second inequality follows by upper boundingr+ i by r+s for every0 6

i 6 s. We record these observations in the following, which is a multivariate generalization

of Theorem 3.1.

Theorem 3.3. For every integerm > 1 and everys, 1 6 s 6 m, the (s + 1)-variate

FRS decoder successfully list decodes them-folded Reed-Solomon codeFRSFq,γ,m,k up to

a radiusn/m − t as long as the agreement parametert satisfies

t >

(

1 +
s

r

) (ksn)1/(s+1)

m − s + 1
+ 2 . (3.3)

The algorithm runs innO(s) time and outputs a list of size at most|F |s = (n + 1)s.

Recalling that the block length ofFRSFq,γ,m,k is N = n/m and the rate is(k + 1)/n,

the above algorithm can decode a fraction of errors approaching

1 −
(

1 +
s

r

) m

m − s + 1
Rs/(s+1) (3.4)

using lists of size at mostqs. By picking r, m large enough compared tos, the decoding

radius can be made larger than1 − (1 + δ)Rs/(s+1) for any desiredδ > 0. We state this

result formally below.

Theorem 3.4. For every0 < δ 6 1, integers > 1 and0 < R < 1, there is a family of

m-folded Reed-Solomon codes form 6 4s/δ that have rate at leastR and which can be

list decoded up to a1 − (1 + δ)Rs/(s+1) fraction of errors in time(Nm)O(s) and outputs a

list of size at most(Nm)O(s) whereN is the block length of the code. The alphabet size of

the code as a function of the block lengthN is (Nm)O(m).

Proof. We first instantiate the parametersr andm in terms ofs andδ:

r =
3s

δ
m =

(s − 1)(3 + δ)

δ
.

Note that asδ 6 1, m 6 4s/δ. With the above choice, we have

(

1 +
s

r

) m

m − s + 1
=

(

1 +
δ

3

)2

< 1 + δ .

61

Together with the bound (3.4) on the decoding radius, we conclude that the(s + 1)-variate

decoding algorithm certainly list decodes up to a fraction1 − (1 + δ)Rs/(s+1) of errors.

The worst case list size isqs and the claim on the list size follows by recalling that

q = n + 1 andN = n/m. The alphabet size isqm = (Nm)O(m). The running time

has two major components: (1) Interpolating thes + 1-variate polynomialQ(·), which by

Lemma 3.6 is(nrs)O(1); and (2) Finding all the roots of the interpolated polynomial, which

takesqO(s) time. Of the two, the time complexity of the root finding step dominates, which

is (Nm)O(s).

In the limit of larges, the decoding radius approaches the list-decoding capacity 1−R,

leading to our main result.

Theorem 3.5(Explicit capacity-approaching codes). For every0 < R < 1 and0 < ε 6 R,

there is a family of folded Reed-Solomon codes that have rateat leastR and which can be

list decoded up to a1 − R − ε fraction of errors in time (and outputs a list of size at most)

(N/ε2)O(ε−1 log(1/R)) whereN is the block length of the code. The alphabet size of the code

as a function of the block lengthN is (N/ε2)O(1/ε2).

Proof. Givenε, R, we will apply Theorem 3.4 with the choice

s =

⌈
log(1/R)

log(1 + ε)

⌉

and δ =
ε(1 − R)

R(1 + ε)
. (3.5)

Note that asε 6 R, δ 6 1. Thus, the list-decoding radius guaranteed by Theorem 3.4 is at

least

1 − (1 + δ)Rs/(s+1) = 1 − R(1 + δ)(1/R)1/(s+1)

> 1 − R(1 + δ)(1 + ε) (by the choice ofs in (3.5))

= 1 − (R + ε) (using the value ofδ) .

We now turn our attention to the time complexity of the decoding algorithm and the

alphabet size of the code. To this end we first claim thatm is O(1/ε2). First we note that

62

by the choice ofs,

s 6
2 ln(1/R)

ln(1 + ε)
6

4 ln(1/R)

ε
,

where the second inequality follows from the fact that for0 < x 6 1, ln(1 + x) > x/2.

Thus, we have

m 6
4s

δ
= 4s · R(1 + ε)

ε(1 − R)
6 8s · R

ε(1 − R)
6

32

ε2
· R ln(1/R)

1 − R
6

32

ε2
,

where for the last step we usedln(1/R) 6 1
R
−1 for 0 < R 6 1. The claims on the running

time, worst case list size and the alphabet size of the code follow from Theorem 3.4 and the

facts thatm is O(1/ε2) ands is O(ε−1 log(1/R)).

Remark 3.3 (Upper bound onε in Theorem 3.5). A version of Theorem 3.5 can also be

proven forε > R. The reason it is stated forε 6 R, is that we generally think ofε as much

smaller thanR (this is certainly true when we apply the generalization of Theorem 3.5

(Theorem 3.6) in Chapters 4 and 5). However, if one wantsε > R, first note that the

theorem is trivial forε > 1 −R. Then ifR < ε < 1 −R, can do a proof similar to the one

above. However, in this rangeδ = ε(1−R)
R(1+ε)

can be strictly greater than1. In such a case we

apply Theorem 3.4 withδ = 1 (note that applying Theorem 3.4 with a smallerδ than what

we want only increases the decoding radius). This implies that we havem 6 4s, in which

case both the worst case list and the alphabet size become(N log(1/R)/ε)ε−1 log(1/R).

Remark 3.4(Minor improvement to decoding radius). It is possible to slightly improve the

bound of (3.4) to1 −
(

1 + s
r

)(
mR

m−s+1

)s/(s+1)

with essentially no effort. The idea is to not

use only a fraction(m − s + 1)/m of then (s + 1)-tuples for interpolation. Specifically,

we omit tuples withγi for i mod m > m − s. This does not affect the number of(s + 1)-

tuples for which we have agreement (this remains at leastt(m− s + 1)), but the number of

interpolation conditions is reduced toN(m − s + 1) = n(m − s + 1)/m. This translates

into the stated improvement in list-decoding radius. For clarity of presentation, we simply

chose to use alln tuples for interpolation.

63

Remark 3.5 (Average list size). Theorem 3.5 states that the worst case list size (over all

possible received words) is polynomial in the block length of the codeword (for fixedR

andε). One might also be interested in what is theaveragelist size (over all the possible

received words within a distanceρn from some codeword). It is known that for Reed-

Solomon codes of rateR the average list size is≪ 1 even forρ close to1 − R [81].

Since folded Reed-Solomon codes are just Reed-Solomon codewords with symbols bundled

together, the arguments in [81] extend easily to show that even for folded Reed-Solomon

codes, the average list size is≪ 1.

3.6 Extension to List Recovery

We now present a very useful generalization of the list decoding result of Theorem 3.5 to

the setting of list recovery. Recall that under the list recovery problem, one is given as input

for each codeword position, not just one but a set of several,sayℓ, alphabet symbols. The

goal is to find and output all codewords which agree with some element of the input sets

for several positions. Codes for which this more general problem can be solved turn out to

be extremely valuable as outer codes in concatenated code constructions. In short, this is

because one can pass a set of possibilities from decodings ofthe inner codes and then list

recover the outer code with those sets as the input. If we onlyhad a list-decodable code at

the outer level, we will be forced to make a unique choice in decoding the inner codes thus

losing valuable information.

This is a good time to recall the definition of list recoverable codes (Definition 2.4).

Theorem 3.5 can be generalized to list recover the folded RS codes. Specifically, for

a FRS code with parameters as in Section 3.5, for an arbitraryconstantℓ > 1, we can

(ζ, ℓ)-list recover in polynomial time provided

(1 − ζ)N >

(

1 +
s

r

) s+1
√

nℓks

m − s + 1
, (3.6)

whereN = n/m. We briefly justify this claim. The generalization of the list-decoding

algorithm of Section 3.5 is straightforward: instead of oneinterpolation condition for each

64

symbol of the received word, we just impose|Si| 6 ℓ many interpolation conditions for

each positioni ∈ {1, 2, . . . , n} (whereSi is thei’th input set in the list recovery instance).

The number of interpolation conditions is at mostnℓ, and so replacingn by nℓ in the bound

of Lemma 3.6 guarantees successful decoding2. This in turn implies that the condition on

the number of agreement of (3.3) generalizes to the one in (3.6).3 This simple generalization

to list recovery is a positive feature of all interpolation based decoding algorithms [97, 63,

85] beginning with the one due to Sudan [97].

Pickingr ≫ s andm ≫ s in (3.6), we get(ζ, ℓ)-list recoverable codes with rateR for

ζ 6 1 −
(
ℓRs
)1/(s+1)

. Now comes the remarkable fact: we can pick a suitables ≫ ℓ and

perform(ζ, ℓ)-list recovery withζ 6 1 − R − ε which is independent ofℓ ! We state the

formal result below (Theorem 3.5 is a special case whenℓ = 1).

Theorem 3.6. For every integerℓ > 1, for all R, 0 < R < 1 and 0 < ε 6 R, and

for every primep, there is anexplicit family of folded Reed-Solomon codes over fields of

characteristicp that have rate at leastR and which are(1−R−ε, ℓ, L(n))-list recoverable

in polynomial time, whereL(n) = (N/ε2)O(ε−1 log(ℓ/R)). The alphabet size of a code of

block lengthN in the family is(N/ε2)O(ε−2 log ℓ/(1−R)).

Proof. (Sketch)Using the exact same arguments as in the proof of Theorem 3.4 to the

agreement condition of (3.6), we get that one can list recover in polynomial time as long as

ζ 6 1− (1+δ)(ℓRs)1/(s+1), for any0 < δ 6 1. The arguments to obtain an upper bound of

1 − R − ε are similar to the ones employed in the proof of theorem 3.5. However,s needs

to be defined in a slightly different manner:

s =

⌈
log(ℓ/R)

log(1 + ε)

⌉

.

2In fact, this extension also works when the average size of the size is at mostℓ, that is
∑n

i=1 |Si| 6 ℓn.

3We will also need the condition that(r + s)(nℓ/k)1/(s+1) < q. This condition is required to argue that
in the “root finding” step, the “final” polynomialR(Y1) is not the zero polynomial. The condition is met
for constant rate codes ifℓ ≪ qs (recall that we think ofq as growing whiler ands are fixed). In all our
applications of list recovery for folded Reed-Solomon codes, the parameterℓ will be a constant, so this is
not a concern.

65

Also this implies thatm is O
(

log ℓ
(1−R)ε2

)

, which implies the claimed bound on the alphabet

size of the code as well asL(n).

We also note that increasing the folding parameterm only helps improve the result (at

the cost of a larger alphabet). In particular, we have the following corollary of the theorem

above.

Corollary 3.7. For every integerℓ > 1, for all constants0 < ε 6 R, for all R, R′;

0 < R 6 R′ < 1, and for every primep, there is anexplicit family of folded Reed-Solomon

codes, over fields of characteristicp that have rate at leastR and which can be(1 − R −
ε, ℓ, L(N))-list recovered in polynomial time, where for codes of blocklengthN , L(N) =

(N/ε2)O(ε−1 log(ℓ/R)) and the code is defined over alphabet of size(N/ε2)O(ε−2 log ℓ/(1−R′)).

Note that one can trivially increase the alphabet of a code bythinking of every symbol

as coming from a larger alphabet. However, this trivial transformation decreases the rate

of the code. Corollary 3.7 states that for folded Reed-Solomon codes, we can increase the

alphabet while retaining the rate and the list recoverability properties. At this point this

extra feature is an odd one to state explicitly, but we will need this result in Chapter 4.

Remark 3.6 (Soft Decoding). The decoding algorithm for folded RS codes from Theorem

3.5 can be further generalized to handle soft information, where for each codeword posi-

tion i the decoder is given as input a non-negative weightwi,z for each possible alphabet

symbolz. The weightswi,z can be used to encode the confidence information concerning

the likelihood of the thei’th symbol of the codeword beingz. For anyε > 0, for suitable

choice of parameters, our codes of rateR over alphabetΣ have a soft decoding algorithm

that outputs all codewordsc = 〈c1, c2, . . . , cN〉 that satisfy

N∑

i=1

wi,ci
>

(

(1 + ε)(RN)s
(N∑

i=1

∑

z∈Σ

ws+1
i,z

)
)1/(s+1)

.

For s = 1, this soft decoding condition is identical to the one for Reed-Solomon codes in

[63].

66

3.7 Bibliographic Notes and Open Questions

We have solved the qualitative problem of achieving list-decoding capacity over large al-

phabets. Our work could be improved with some respect to someparameters. The size

of the list needed to perform list decoding to a radius that iswithin ε of capacity grows

asnO(1/ε) wheren is the block length of the code. It remains an open question tobring

this list size down to a constant independent ofn, or even tof(ε)nc with an exponentc

independent ofε (we recall that the existential random coding arguments work with a list

size ofO(1/ε)).

These results in this chapter were first reported in [58]. We would like to point out

that the presentation in this chapter is somewhat differentfrom the original papers [85, 58]

in terms of technical details, organization, as well as chronology. Our description closely

follows that of a survey by Guruswami [50]. With the benefit ofhindsight, we believe

this alternate presentation to be simpler and more self-contained than the description in

[58], which used the results of Parvaresh-Vardy as a black-box. Below, we discuss some

technical aspects of the original development of this material, in order to shed light on the

origins of our work.

Two independent works by Coppersmith and Sudan [27] and Bleichenbacher, Kiayias

and Yung [18] considered the variant of RS codes where the message consists of two (or

more) independent polynomials over some fieldFq, and the encoding consists of the joint

evaluation of these polynomials at elements ofFq (so this defines a code overF
2
q).

4 A

naive way to decode these codes, which are also called “interleaved Reed-Solomon codes,”

would be to recover the two polynomials individually, by running separate instances of

the RS decoder. Of course, this gives no gain over the performance of RS codes. The

hope in these works was that something can possibly be gainedby exploiting that errors

in the two polynomials happen at “synchronized” locations.However, these works could

4The resulting code is in fact just a Reed-Solomon code where the evaluation points belong to the subfield
Fq of the extension field overFq of degree two.

67

not give any improvement over the1 −
√

R bound known for RS codes for worst-case

errors. Nevertheless, forrandom errors, where each error replaces the correct symbol by a

uniform random field element, they were able to correct well beyond a fraction1 −
√

R of

errors. In fact, as the order of interleaving (i.e., number of independent polynomials) grows,

the radius approaches the optimal value1 − R. This model of random errors is not very

practical or interesting in a coding-theoretic setting, though the algorithms are interesting

from an algebraic viewpoint.

The algorithm of Coppersmith and Sudan bears an intriguing relation to multivariate

interpolation. Multivariate interpolation essentially amounts to finding a non-trivial linear

dependence among the rows of a certain matrix (that consistsof the evaluations of appropri-

ate monomials at the interpolation points). The algorithm in [27], instead finds a non-trivial

linear dependence among thecolumnsof this same matrix! The positions corresponding

to columns not involved in this dependence are erased (they correspond to error locations)

and the codeword is recovered from the remaining symbols using erasure decoding.

In [84], Parvaresh and Vardy gave a heuristic decoding algorithm for these interleaved

RS codes based on multivariate interpolation. However, theprovable performance of these

codes coincided with the1 −
√

R bound for Reed-Solomon codes. The key obstacle

in improving this bound was the following: for the case when the messages are pairs

(f(X), g(X)) of degreek polynomials, two algebraically independent relations were needed

to identify bothf(X) andg(X). The interpolation method could only provide one such re-

lation in general (of the formQ(X, f(X), g(X)) = 0 for a trivariate polynomialQ(X, Y, Z)).

This still left too much ambiguity in the possible values of(f(X), g(X)). (The approach

in [84] was to find several interpolation polynomials, but there was no guarantee that they

were not all algebraically dependent.)

Then, in [85], Parvaresh and Vardy put forth the ingenious idea of obtaining the extra al-

gebraic relation essentially “for free” by enforcing it as an a priori condition satisfied at the

encoder. Specifically, instead of letting the second polynomial g(X) to be an independent

degreek polynomial, their insight was to make it correlated withf(X) by a specific alge-

68

braic condition, such asg(X) = f(X)d mod E(X) for some integerd and an irreducible

polynomialE(X) of degreek + 1.

Then, once we have the interpolation polynomialQ(X, Y, Z), f(X) can be obtained as

follows: Reduce the coefficients ofQ(X, Y, Z) moduloE(X) to get a polynomialT (Y, Z)

with coefficients fromFq[X]/(E(X)) and then find roots of the univariate polynomial

T (Y, Y d). This was the key idea in [85] to improve the1 −
√

R decoding radius for rates

less than1/16. For ratesR → 0, their decoding radius approached1 − O(R log(1/R)).

The modification to using independent polynomials, however, does not come for free.

In particular, since one sends at least twice as much information as in the original RS code,

there is no way to construct codes with rate more than1/2 in the PV scheme. If we use

s > 2 correlated polynomials for the encoding, we incur a factor1/s loss in the rate. This

proves quite expensive, and as a result the improvements over RS codes offered by these

codes are only manifest at very low rates.

The central idea behind our work is to avoid this rate loss by making the correlated poly-

nomialg(X) essentially identical to the first (sayg(X) = f(γX)). Then the evaluations

of g(X) can be inferred as a simple cyclic shift of the evaluations off(X), so intuitively

there is no need to explicitly include those too in the encoding.

69

Chapter 4

RESULTS VIA CODE CONCATENATION

4.1 Introduction

In Chapter 3, we presented efficient list-decoding algorithms for folded Reed-Solomon

codes that can correct1 − R − ε fraction of errors with rateR (for any ε > 0). One

drawback of folded Reed-Solomon codes is that they are defined over alphabets whose size

is polynomial in the blocklength of the code. This is an undesirable feature of the code and

we address this issue in this chapter.

First, we show how to convert folded Reed-Solomon codes to a related code that can still

be list decoded up to1−R−ε fraction of errors with rateR (for anyε > 0). However, unlike

folded Reed-Solomon codes these codes are defined over alphabets of size2O(ε−4 log(1/ε)).

Recall that codes that can be list decoded up to1−R − ε fraction of errors need alphabets

of size2Ω(ε−1) (see section 2.2.1).

Next, we will show how to use folded Reed-Solomon codes to obtain codes overfixed

alphabets (for example, binary codes). We will present explicit linear codes over fixed

alphabets that achieve tradeoffs between rate and fractionof errors that satisfy the so

called Zyablov and Blokh-Zyablov bounds (along with efficient list-decoding algorithms

that achieve these tradeoffs). The codes list decodable up to the Blokh-Zyablov bound

tradeoff are the best known to date for explicit codes over fixed alphabets. However, unlike

Chapter 3, these results do not get close to the list-decoding capacity (see Figure 4.1). In

particular, for binary codes, if1/2 − γ fraction of errors are targeted, our codes have rate

Ω(γ3). By contrast, codes on list-decoding capacity will have rateΩ(γ2). Unfortunately (as

has been mentioned before), the only codes that are known to achieve list-decoding capac-

ity are random codes for which no efficient list-decoding algorithms are known. Previous

70

to our work, the best known explicit codes had rateΘ(γ4) [51] (these codes also had effi-

cient list-decoding algorithms). We choose to present the codes that are list decodable up

to the Zyablov bound (even though the code that are list decodable up to the Blokh Zyablov

have better rate vs. list decodability tradeoff) because ofthe following reasons (i) The con-

struction is much simpler and these codes give the same asymptotic rate for the high error

regime and (ii) The worst case list sizes and the code construction time are asymptotically

smaller.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

R
 (

R
A

T
E

)
 -

--
>

ρ (ERROR-CORRECTION RADIUS) --->

List decoding capacity
Zyablov bound (Section 4.3)

Blokh Zyablov bound (Section 4.4)

Figure 4.1: RateR of our binary codes plotted against the list-decoding radius ρ of our
algorithms. The best possible trade-off, i.e., list-decoding capacity,ρ = H−1(1−R) is also
plotted.

All our codes are based on code concatenation (and their generalizations called multi-

level code concatenation). We next turn to an informal description of code concatenation.

4.1.1 Code Concatenation and List Recovery

Concatenated codes were defined in the seminal thesis of Forney [40]. Concatenated codes

are constructed from two different codes that are defined over alphabets of different sizes.

71

Table 4.1: Values of rate at different decoding radius for List decoding capacity (RCap),
Zyablov bound (RZ) and Blokh Zyablov bound (RBZ) in the binary case. For rates above
0.4, the Blokh Zyablov bound is0 up to 3 decimal places, hence we have not shown this.

ρ 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.30 0.35
RCap 0.919 0.858 0.805 0.713 0.531 0.390 0.278 0.188 0.118 0.065
RZ 0.572 0.452 0.375 0.273 0.141 0.076 0.041 0.020 0.009 0.002
RBZ 0.739 0.624 0.539 0.415 0.233 0.132 0.073 0.037 0.017 0.006

Say we are interested in a code over[q] (in this chapter, we will always think ofq > 2 as

being a fixed constant). Then theouter codeCout is defined over[Q], whereQ = qk for

some positive integerk. The second code, called theinner codeis defined over[q] and is

of dimensionk (Note that the message space ofCin and the alphabet ofCout have the same

size). The concatenated code, denoted byC = Cout ◦ Cin, is defined as follows. Let the

rate ofCout beR and let the blocklengths ofCout andCin beN andn respectively. Define

K = RN andr = k/n. The input toC is a vectorm = 〈m1, . . . , mK〉 ∈ ([q]k)K . Let

Cout(m) = 〈x1, . . . , xN〉. The codeword inC corresponding tom is defined as follows

C(m) = 〈Cin(x1), Cin(x2), . . . , Cin(xN)〉.

It is easy to check thatC has raterR, dimensionkK and blocklengthnN .

Notice that to construct aq-ary codeC we use anotherq-ary codeCin. However, the

nice thing aboutCin is that it has small blocklength. In particular, sinceR andr are con-

stants (and typicallyQ andN are polynomially related),n = O(log N). This implies that

we can use up exponential time (inn) to search for a “good” inner code. Further, one can

use the brute force algorithm to (list) decodeCin.

Finally, we motivate why we are interested in list recovery.Consider the following

natural decoding algorithm for the concatenated codeCout ◦Cin. Given a received word in

([q]n)N , we divide it intoN blocks from[q]n. Then we use a decoding algorithm forCin to

get an intermediate received word to feed into a decoding algorithm forCout. Now one can

use unique decoding forCin and list decoding forCout. However, this loses information in

72

the first step. Instead, one can use the brute force list-decoding algorithm forCin to get a

sequence of lists (each of which is a subset of[Q]). Now we use a list-recovery algorithm

for Cout to get the final list of codewords.

The natural algorithm above is used to design codes over fixedalphabets that are list

decodable up to the Zyablov bound in Section 4.3 and (along with expanders) to design

codes that achieve list-decoding capacity (but have much smaller alphabet size as compared

to those for folded Reed-Solomon codes) in Section 4.2.

4.2 Capacity-Achieving Codes over Smaller Alphabets

Theorem 3.5 has two undesirable aspects: both the alphabet size and worst-case list size

output by the list-decoding algorithm are a polynomial of large degree in the block length.

We now show that the alphabet size can be reduced to a constantthat depends only on the

distanceε to capacity.

Theorem 4.1. For everyR, 0 < R < 1, everyε > 0, there is a polynomial time con-

structible family of codes over an alphabet of size2O(ε−4 log(1/ε)) that have rate at leastR

and which can be list decoded up to a fraction(1 − R − ε) of errors in polynomial time.

Proof. The theorem is proved using the code construction scheme used by Guruswami

and Indyk in [54] for linear time unique decodable codes withoptimal rate, with different

components appropriate for list decoding plugged in. We briefly describe the main ideas

behind the construction and proof below. The high level approach is to concatenate two

codesCout andCin, and then redistribute the symbols of the resulting codeword using an

expander graph. Assume thatε < (1 − R)/7 and letδ = ε2.

The outer codeCout will be a code of rate(1 − 2ε) over an alphabetΣ of sizen(1/δ)O(1)

that can be(ε, O(1/ε))-list recovered in polynomial time (to recall definitions pertaining to

list recovery, see Definition 2.4), as guaranteed by Theorem3.6. That is, the rate ofCout

will be close to1, and it can be(ζ, l)-list recovered for largel andζ → 0.

73

The inner codeCin will be a ((1 − R − 4ε), O(1/ε))-list decodable code with near-

optimal rate, say rate at least(R + 3ε). Such a code is guaranteed to exist over an alphabet

of sizeO(1/ε2) using random coding arguments. A naive brute-force for sucha code, how-

ever, is too expensive, since we need a code with|Σ| = nΩ(1) codewords. Guruswami and

Indyk [52], see also [49, Sec. 9.3], prove that there is a small (quasi-polynomial sized)

sample space ofpseudolinear codesin which most codes have the needed property. Fur-

thermore, they also present a deterministic polynomial time construction of such a code

(using derandomization techniques), see [49, Sec. 9.3.3].

The concatenation ofCout andCin gives a codeCconcat of rate at least(1 − 2ε)(R +

3ε) > R over an alphabetΣ of size|Σ| = O(1/ε2). Moreover, given a received word of

the concatenated code, one can find all codewords that agree with the received word on a

fractionR + 4ε of locations in at least(1 − ε) fraction of the inner blocks. Indeed, we can

do this by running the natural list-decoding algorithm, call it A, for Cconcat that decodes

each of the inner blocks to a radius of(1−R−4ε) returning up tol = O(1/ε) possibilities

for each block, and then(ε, l)-list recoveringCout in polynomial time.

The last component in this construction is aD = O(1/ε4)-regular bipartite expander

graph which is used to redistribute symbols of the concatenated code in a manner so that

an overall agreement on a fractionR + 7ε of the redistributed symbols implies a fractional

agreement of at leastR + 4ε on most (specifically a fraction(1 − ε)) of the inner blocks

of the concatenated code. In other words, the expander redistributes symbols in a manner

that “smoothens” the distributions of errors evenly among the various inner blocks (except

for possibly aε fraction of the blocks). This expander based redistribution incurs no loss in

rate, but increases the alphabet size toO(1/ε2)O(1/ε4) = 2O(ε−4 log(1/ε)).

We now discuss some details of how the expander is used. Suppose that the block length

of the folded Reed-Solomon codeCout is N1 and that ofCin is N2. Let us assume thatN2

is a multiple ofD, sayN2 = n2D (if this is not the case, we can make it so by padding

at mostD − 1 dummy symbols at a negligible loss in rate). Therefore codewords ofCin,

and therefore also ofCconcat, can be thought of as being composed of blocks ofD symbols

74

Codeword in

b

c

b

〈a, b, c〉

D

D

Cin

Cin

Cin

C
od

ew
or

d
in
C

ou
t

C
odew

ord
inC

∗

a

c

a

Expander graphG

u1

u2

uN1

Cconcat

Figure 4.2: The codeC∗ used in the proof of Theorem 4.1. We start with a codeword
〈u1, . . . , uN1〉 in Cout. Then every symbol is encoded byCin to form a codeword inCconcat

(this intermediate codeword is marked by the dotted box). The symbols in the codeword
for Cconcat are divided into chunks ofD symbols and then redistributed along the edges of
an expanderG of degreeD. In the figure, we useD = 3 for clarity. Also the distribution
of three symbolsa, b andc (that form a symbol in the final codeword inC∗) is shown.

each. LetN = N1n2, so that codewords ofCconcat can be viewed as elements in(ΣD)N .

Let G = (L, R, E) be aD-regular bipartite graph withN vertices on each side (i.e.,

|L| = |R| = N), with the property that for every subsetY ⊆ R of size at least(R + 7ε)N ,

the number of vertices belonging toL that have at most(R + 6ε)D of their neighbors inY

is at mostδN (for δ = ε2). It is a well-known fact (used also in [54]) that ifG is picked

to be the double cover of a Ramanujan expander of degreeD > 4/(δε2), thenG will have

such a property.

75

We now define our final codeC∗ = G(Cconcat) ⊆ (ΣD)N formally. The codewords in

C∗ are in one-one correspondence with those ofCconcat. Given a codewordc ∈ Cconcat, its

ND symbols (each belonging toΣ) are placed on theND edges ofG, with theD symbols

in its i’th block (belonging toΣD, as defined above) being placed on theD edges incident

on thei’th vertex ofL (in some fixed order). The codeword inC∗ corresponding toc has as

its i’th symbol the collection ofD symbols (in some fixed order) on theD edges incident

on thei’th vertex ofR. See Figure 4.2 for a pictorial view of the construction.

Note that the rate ofC∗ is identical to thatCconcat, and is thus at leastR. Its alphabet

size is|Σ|D = O(1/ε2)O(1/ε4) = 2O(ε−4 log(1/ε)), as claimed. We will now argue howC∗ can

be list decoded up to a fraction(1 − R − 7ε) of errors.

Given a received wordr ∈ (ΣD)N , the following is the natural algorithm to find all

codewords ofC∗ with agreement at least(R+7ε)N with r. Redistribute symbols according

to the expander backwards to compute the received wordr′ for Cconcat which would result

in r. Then run the earlier-mentioned decoding algorithmA onr′.

We now briefly argue the correctness of this algorithm. Letc ∈ C∗ be a codeword with

agreement at least(R + 7ε)N with r. Let c′ denote the codeword ofCconcat that leads toc

after symbol redistribution byG, and finally supposec′′ is the codeword ofCout that yields

c′ upon concatenation byCin. By the expansion properties ofG, it follows that all but aδ

fraction ofN D-long blocks ofr′ have agreement at least(R+6ε)D with the corresponding

blocks ofc′. By an averaging argument, this implies that at least a fraction (1−
√

δ) of the

N1 blocks ofc′ that correspond to codewords ofCin encoding theN1 symbols ofc′′, agree

with at least a fraction(1 −
√

δ)(R + 6ε) = (1 − ε)(R + 6ε) > R + 4ε of the symbols

of the corresponding block ofr′. As argued earlier, this in turn implies that the decoding

algorithmA for Cconcat when run on inputr′ will output a polynomial size list that will

includec′.

76

4.3 Binary Codes List Decodable up to the Zyablov Bound

Concatenating the folded Reed-Solomon codes with suitableinner codes also gives us

polytime constructible binary codes that can be efficientlylist decoded up to the Zyablov

bound, i.e., up to twice the radius achieved by the standard GMD decoding of concate-

nated codes [41]. The optimal list recoverability of the folded Reed-Solomon codes plays

a crucial role in establishing such a result.

Theorem 4.2.For all 0 < R, r < 1 and allε > 0, there is a polynomial time constructible

family of binary linear codes of rate at leastR · r which can be list decoded in polynomial

time up to a fraction(1 − R)H−1(1 − r) − ε of errors.

Proof. Let γ > 0 be a small constant that will be fixed later. We will constructbinary codes

with the claimed property by concatenating two codesC1 andC2. For C1, we will use a

folded Reed-Solomon code over a field of characteristic2 with block lengthn1, rate at least

R, and which can be(1−R−γ, l)-list recovered in polynomial time forl = ⌈10/γ⌉. Let the

alphabet size ofC1 be2M whereM is O(γ−2 log(1/γ)(1 −R)−1 log n1) (by Theorem 3.6,

such aC1 exists). ForC2, we will use a binary linear code of dimensionM and rate at least

r which is (ρ, l)-list decodable forρ = H−1(1 − r − γ). Such a code is known to exist

via a random coding argument that employs the semi-random method [51]. Also, a greedy

construction of such a code by constructing itsM basis elements in turn is presented in

[51] and this process takes2O(M) time. We conclude that the necessary inner code can be

constructed innO(γ−2(1−R)−1 log(1/γ))
1 time. The codeC1, being a folded Reed-Solomon code

over a field of characteristic2, is F2-linear, and therefore when concatenated with a binary

linear inner code such asC2, results in a binary linear code. The rate of the concatenated

code is at leastR · r.

The decoding algorithm proceeds in a natural way. Given a received word, we break it

up into blocks corresponding to the various inner encodingsby C1. Each of these blocks

is list decoded up to a radiusρ, returning a set of at mostl possible candidates for each

outer codeword symbol. The outer code is then(1 − R − γ, l)-list recovered using these

77

sets, each of which has size at mostl, as input. To argue about the fraction of errors this

algorithm corrects, we note that the algorithm fails to recover a codeword only if on more

than a fraction(1−R−γ) of the inner blocks the codeword differs from the received word

on more than a fractionρ of symbols. It follows that the algorithm correctly list decodes up

to a radius(1−R−γ)ρ = (1−R−γ)H−1(1−r−γ). If we pick an appropriateγ in Θ(ε2),

then by Lemma 2.4,H−1(1−r−γ) > H−1(1−r)−ε/3 (and(1−R−γ) > 1−R−ε/3),

which implies(1 − R − γ)H−1(1 − r − γ) > (1 − R)H−1(1 − r) − ε as desired.

Optimizing over the choice of inner and outer codes ratesr, R in the above results, we

can decode up to the Zyablov bound, see Figure 4.1. For an analytic expression, see (4.2)

with s = 1.

Remark 4.1. In particular, decoding up to the Zyablov bound implies thatwe can correct a

fraction(1/2−ε) of errors with rateΩ(ε3) for smallε → 0, which is better than the rate of

Ω(ε3/ log(1/ε)) achieved in [55]. However, our construction and decoding complexity are

nO(ε−2 log(1/ε)) whereas these are at mostf(ε)nc for an absolute constantc in [55]. Also,

we bound the list size needed in the worst-case bynO(ε−1 log(1/ε)), while the list size needed

in the construction in [55] is(1/ε)O(log log(1/ε)).

4.4 Unique Decoding of a Random Ensemble of Binary Codes

We will digress a bit to talk about a consequence of (the proofof) Theorem 4.2.

One of the biggest open questions in coding theory is to come up with explicit binary

codes that are on the Gilbert Varshamov (or GV) bound. In particular, these are codes that

achieve relative distanceδ with rate1 − H(δ). There exist ensembles of binary codes for

which if one picks a code at random then with high probabilityit lies on the GV bound.

Coming up with an explicit construction of such a code, however, has turned out to be an

elusive task.

Given the bleak state of affairs, some attention has been paid to the following prob-

lem. Give a probabilistic construction of binary codes thatmeet the GV bound (with high

78

probability) together with efficient (encoding and)decoding up to half the distanceof the

code. Zyablov and Pinsker [110] give such a construction forbinary codes of rate about

0.02 with subexponentialtime decoding algorithms. Guruswami and Indyk [53] give such

a construction for binary linear codes up to rates about10−4 with polynomialtime encoding

and decoding algorithms. Next we briefly argue that Theorem 4.2 can be used to extend

the result of [53] to work till rates of about0.02. In other words, we get the rate achieved

by the construction of [110] but (like [53]) we getpolynomialtime encoding and decoding

(up to half the GV bound).

We start with a brief overview of the construction of [53], which is based on code

concatenation. The outer code is chosen to be the Reed-Solomon code (of say lengthN and

rateR) while there areN linear binary inner codes of rater (recall that in the “usual” code

concatenation only one inner code is used) that are chosen uniformly (and independently)

at random. A result of Thommesen [102] states that with high probability such a code

lies on the GV bound provided the rates of the codes satisfyR 6 α(r)/r, whereα(r) =

1− H(1− 2r−1). Guruswami and Indyk then give list-decoding algorithms for such codes

such that for (overall) raterR 6 10−4, the fraction of errors they can correct is at least

1
2
· H−1(1 − rR) (that is, more than half the distance on the GV bound) as well as satisfy

the constraint in Thommesen’s result.

Given Theorem 4.2, here is the natural way to extend the result of [53]. We pick the

outer code of rateR to be a folded Reed-Solomon code (with the list recoverable properties

as required in Theorem 4.2) and the pickN independent binary linear codes of rater as

the inner codes. It is not hard to check that the proof of Thommesen also works when the

outer code is folded Reed-Solomon. That is, the construction just mentioned lies on the

GV bound with high probability. It is also easy to check that the proof of Theorem 4.2 also

works when all the inner codes are different (basically the list decoding for the inner code

in Theorem 4.2 is done by brute-force, which of course one cando even if all theN inner

codes are different). Thus, ifrR 6 α(r), we can list decode up to(1 − R)H−1(1 − r)

fraction of errors and at the same time have the property thatwith high probability, the

79

constructed code lies on the GV bound. Thus, all we now need todo is to check what is

the maximum raterR one can achieve while at the same time satisfyingrR 6 α(r) and

(1−R)H−1(1−r) > 1
2
H−1(1−rR). This rate turns out to be around0.02 (see Figure 4.3).

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.02 0.04 0.06 0.08 0.1

ρ
 (

F
R

A
C

T
IO

N
 O

F
 E

R
R

O
R

S
)

 -
--

>

R0 (OVERALL RATE) --->

Half the GV bound
Truncated Zyablov bound

Limit of the method

Figure 4.3: Tradeoffs for decoding certain random ensembleof concatenated codes. “Half
the GV bound” is the curve1

2
· H−1(1 − R0) while “Truncated Zyablov bound” is the

limit till which we can list decode the concatenated codes (and still satisfy the Thommesen
condition, that is for inner and outer ratesr andR, rR = R0 6 α(r)). “Limit of the
method” is the best tradeoff one can hope for using list decoding of code concatenation
along with the Thommesen result.

Thus, we have argued the following.

Theorem 4.3.There is a probabilistic polynomial time procedure to construct codes whose

rate vs. distance tradeoff meets the Gilbert-Varshamov bound with high probability for all

rates up to0.02. Furthermore, these codes can be decoded in polynomial timeup to half

the relative distance.

One might hope that this method along with ideas of multilevel concatenated codes

80

(about which we will talk next) can be used to push the overallrate significantly up from

0.02 that we achieve here. However, the following simple argument shows that one cannot

go beyond a rate of0.04. If we are targeting list decoding up toρ fraction of errors (and

use code concatenation), then the inner rater must be at most1 − H(ρ) (see for example

(4.2)). Now by the Thommesen condition the overall rate is atmostα(r). It is easy to check

thatα(·) is an increasing function. Thus, the maximum overall rate that we can achieve is

α(1 − H(ρ))— this is the curve titled “Limit of the method” in Figure 4.3.One can see

from Figure 4.3, the maximum rate for which this curve still beats half the GV bound is at

most0.04.

4.5 List Decoding up to the Blokh Zyablov Bound

We now present linear codes over any fixed alphabet that can beconstructed in polynomial

time and can be efficiently list decoded up to the so called Blokh-Zyablov bound (Fig-

ure 4.1). This achieves a sizable improvement over the tradeoff achieved by codes from

Section 4.3 (see Figure 4.1 and Table 4.1).

Our codes are constructed via multilevel concatenated codes. We will provide a formal

definition later on — we just sketch the basic idea here. For anintegers > 1, a multilevel

concatenated codeC overFq is obtained by combinings “outer” codesC0
out, C

1
out, . . . , C

s−1
out

of the same block length , sayN , over large alphabets of size sayqa0 , qa1 , . . . , qas−1 , respec-

tively, with a suitable “inner” code. The inner code is of dimensiona0+a1 · · ·+as−1. Given

messagesm0, m1, . . . , ms−1 for thes outer codes, the encoding as per the multilevel gener-

alized concatenation codes proceeds by first encoding eachmj as perCj
out. Then for every

1 6 i 6 N , the collection of theith symbols ofCj
out(m

j) for 0 6 j 6 s − 1, which can be

viewed as a string overFq of lengtha0 + a1 + · · ·+ as−1, is encoded by the inner code. For

s = 1 this reduces to the usual definition of code concatenation.

We present a list-decoding algorithm forC, given list-recovery algorithms for the outer

codes and list-decoding algorithms for the inner code and some of its subcodes. What

makes this part more interesting than the usual code concatenation (like those in Section

81

4.3), is that the inner code in addition to having good list-decodable properties, also needs

to have good list-decodable properties for certain subcodes. Specifically, the subcodes of

dimensionaj + aj+1 + · · · + as−1 of the inner code obtained by arbitrarily fixing the first

a0 + · · · + aj−1 symbols of the message, must have better list-decodabilityproperties for

increasingj (which is intuitively possible since they have lower rate).In turn, this allows

the outer codesCj
out to have rates increasing withj, leading to an overall improvement in

the rate for a certain list-decoding radius.

To make effective use of the above approach, we also prove, via an application of the

probabilistic method, that a random linear code overFq has the required stronger condi-

tion on list decodability. By applying the method of conditional expectation ([2]), we can

construct such a code deterministically in time singly exponential in the block length of the

code (which is polynomial if the inner code encodes messagesof lengthO(log N)). Note

that constructing such an inner code, given the existence ofsuch codes, is easy in quasi-

polynomial time by trying all possible generator matrices.The lower time complexity is

essential for constructing the final codeC in polynomial time.

4.5.1 Multilevel Concatenated Codes

We will be working with multilevel concatenation coding schemes [33]. We start this sec-

tion with the definition of multilevel concatenated codes. As the name suggests, these are

generalizations of concatenated codes. Recall that for a concatenated code, we start with

a codeCout over a large alphabet (called the outer code). Then we need a codeCin that

maps all symbols of the larger alphabet to strings over a smaller alphabet (called the inner

code). The encoding for the concatenated code (denoted byCout ◦ Cin) is done as follows.

We think of the message as being a string over the large alphabet and then encode it using

Cout. Now we useCin to encode each of the symbols in the codeword ofCout to get our

codeword (inCout ◦ Cin) over the smaller alphabet.

Multilevel code concatenation generalizes the usual code concatenation in the following

manner. Instead of there being one outer code, there are multiple outer codes. In partic-

82

ular, we “stack” codewords from these multiple outer codes and construct a matrix. The

inner codes then act on the columns of these intermediate matrix. We now formally define

multilevel concatenated codes.

There ares > 1 outer codes, denoted byC0
out, C

1
out, . . . , C

s−1
out . For every0 6 i 6 s−1,

Ci
out is a code of block lengthN and rateRi and defined over a fieldFQi

. The inner code

Cin is code of block lengthn and rater that maps tuples fromFQ0 × FQ1 × · · · × FQs−1 to

symbols inFq. In other words,

Ci
out : (FQi

)RiN → (FQi
)N ,

Cin : FQ0 × FQ1 × · · · × FQs−1 → (Fq)
n.

The multilevel concatenated code, denoted by(C0
out × C1

out × . . . Cs−1
out) ◦ Cin is a map of

the following form:

(C0
out × C1

out × . . . Cs−1
out) ◦ Cin : (FQ0)

R0N × (FQ1)
R1N × · · · × (FQS−1

)Rs−1N → (Fq)
nN .

We now describe the encoding scheme. Given a message(m0, m1, . . . , ms−1) ∈ (FQ0)
R0N×

(FQ1)
R1N × · · · × (FQS−1

)Rs−1N , we first construct ans × N matrix M , whoseith row is

the codewordCi
out(m

i). Note that every column ofM is an element from the setFQ0 ×
FQ1 × · · · × FQs−1. Let thejth column (for1 6 j 6 N) be denoted byMj . The codeword

corresponding to the multilevel concatenated code (C
def
= (C0

out × C1
out × . . . Cs−1

out) ◦ Cin)

is defined as follows

C(m0, m1, . . . , ms−1) = (Cin(M1), Cin(M2), · · · , Cin(MN)) .

(The codeword can be naturally be thought of as ann × N matrix, whosei’th column

corresponds to the inner codeword encoding thei’th symbols of thes outer codewords.)

For the rest of the chapter, we will only consider outer codesover the same alphabet,

that is,Q0 = Q1 = · · · = Qs−1 = Q. Further,Q = qa for some integera > 1. Note that if

C0
out, . . . , C

s−1
out andCin are allFq linear, then so is(C0

out × C1
out × · · · × Cs−1

out) ◦ Cin.

83

The gain from using multilevel concatenated codes comes from looking at the inner

codeCin along with its subcodes. For the rest of the section, we will consider the case

when Cin is linear (though the ideas can easily be generalized for general codes). Let

G ∈ F
as×n
q be the generator matrix forCin. Let r0 = as/n denote the rate ofCin. For

0 6 j 6 s − 1, definerj = r0(1 − j/s), and letGj denoterjn × n submatrix ofG

containing the lastrjn rows ofG. Denote the code generated byGj by Cj
in; the rate ofCj

in

is rj. For our purposes we will actually look at the subcode ofCin where one fixes the first

0 6 j 6 s− 1 message symbols. Note that for everyj these are just cosets ofCj
in. We will

be looking atCin, which in addition to having good list decoding properties as a “whole,”

also has good list-decoding properties for each of its subcodeCj
in.

The multilevel concatenated codeC (= (C0
out × · · · × Cs−1

out) ◦ Cin) has rateR(C) that

satisfies

R(C) =
r0

s

s−1∑

i=0

Ri . (4.1)

The Blokh-Zyablov bound is the trade-off between rate and relative distance obtained

when the outer codes meet the Singleton bound (i.e.,Cj
out has relative distance1−Rj), and

the various subcodesCj
in of the inner code, including the whole inner codeCin = C0

in, lie on

the Gilbert-Varshamov bound (i.e., have relative distanceδj > H−1
q (1−rj)). The multilevel

concatenated code then has relative distance at leastmin06j6s−1(1 − Rj)H
−1
q (1 − rj).

Expressing the rate in terms of distance, the Blokh-Zyablovbound says that there exist

multilevel concatenated codeC with relative distance at leastδ with the following rate:

Rs
BZ(C) = max

0<r<1−Hq(δ)
r − r

s

s−1∑

i=0

δ

H−1
q (1 − r + ri/s)

. (4.2)

As s increases, the trade-off approaches the integral

RBZ(C) = 1 − Hq(δ) − δ

∫ 1−Hq(δ)

0

dx

H−1
q (1 − x)

. (4.3)

The convergence ofRs
BZ(C) to RBZ(C) happens quite quickly even for smalls such as

s = 10.

84

Nested List Decoding

We will need to work with the following generalization of list decoding. The definition

looks more complicated than it really is.

Definition 4.1 (Nested linear list decodable code). Given a linear codeC in terms of some

generator matrixG ∈ F
k×n
q , an integers that dividesk, a vectorL = 〈L0, L1, . . . , Ls−1〉 of

integersLj (0 6 j 6 s − 1), a vectorρ = 〈ρ0, ρ1 . . . , ρs−1〉 with 0 < ρj < 1, and a vector

r = 〈r0, . . . , rs−1〉 of reals wherer0 = k/n and0 6 rs−1 < · · · < ri < r0, C is called an

(r, ρ,L)-nested list decodable if the following holds:

For every0 6 j 6 s − 1, Cj is a raterj code that is(ρj , Lj)-list decodable, whereCj

is the subcode ofC generated by the the lastrjn rows of the generator matrixG.

4.5.2 Linear Codes with Good Nested List Decodability

In this section, we will prove the following result concerning the existence (and con-

structibility) of linear codes over any fixed alphabet with good nested list-decodable prop-

erties.

Theorem 4.4. For any integers > 1 and reals0 < rs−1 < rs−2 < · · · < r1 < r0 < 1,

ε > 0, let ρj = H−1
q (1 − rj − 2ε) for every0 6 j 6 s − 1. Let r = 〈r0, . . . , rs−1〉,

ρ = 〈ρ0, ρ1, . . . , ρs−1〉 andL = 〈L0, L1, . . . , Ls−1〉, whereLj = q1/ε. For large enough

n, there exists a linear code (over fixed alphabetFq) that is(r, ρ,L)-nested list decodable.

Further, such a code can be constructed in timeqO(n/ε).

Proof. We will show the existence of the required codes via a simple use of the proba-

bilistic method (in fact, we will show that a random linear code has the required properties

with high probability). We will then use the method of conditional expectation ([2]) to

derandomize the construction with the claimed time complexity.

Definekj = ⌊rin⌋ for every0 6 j 6 s−1. We will pick a randomk0×n matrixG with

entries picked independently fromFq. We will show that the linear codeC generated byG

85

has good nested list decodable properties with high probability. Let Cj, for 0 6 j 6 s − 1

be the code generated by the “bottom”kj rows of G. Recall that we have to show that

with high probabilityCj is (ρj , q
1/ε) list decodable for every0 6 j 6 s − 1 (Cj obviously

has raterj). Finally for integersJ, k > 1, and a prime powerq, let Ind(q, k, J) denote

the collection of subsets{x1, x2, . . . , xJ} ⊆ F
k
q such that all vectorsx1, . . . , xJ are linearly

independent overFq.

We recollect the following two straightforward facts: (i) Given anyL distinct vectors

from F
k
q , for somek > 1, at least⌈logq L⌉ of them are linearly independent; (ii) Any set

of linearly independent vectors inFk
q are mapped to independent random vectors inF

n
q by

a randomk × n matrix overFq. The first claim is obvious. For the second claim, first note

that for anyv ∈ F
k
q and a randomk × n matrixG (where each of thekn values are chosen

uniformly and independently at random fromFq) the values at then different positions in

v · G are independent. Further, the value at position1 6 i 6 n, is given byv · Gi, where

Gi is the ith column ofG. Now for fixed v, v · Gi takes values fromFq uniformly at

random (note thatGi is a random vector fromFk
q). Finally, for linearly independent vectors

v1, . . . ,vm by a suitable linear invertible map can be mapped to the standard basis vectors

e1, . . . , em. Obviously, the valuese1 ·Gi . . . , em · Gi are independent.

We now move on to the proof of existence of linear codes with good nested list de-

codability. We will actually do the proof in a manner that will facilitate the derandom-

ization of the proof. DefineJ = ⌈logq(q
1/ε + 1)⌉. For any vectory ∈ F

n
q , integer

0 6 j 6 s − 1, subsetT = {x1, . . . , xJ} ∈ Ind(q, kj, J) and any collectionS of subsets

S1, S2, . . . , SJ ⊆ {1, . . . , n} of size at mostρjn, define an indicator variableI(j,y, T,S)

in the following manner.I(j,y, T,S) = 1 if and only if for every1 6 i 6 J , C(xi) differs

from y in exactly the setSi. Note that if for some0 6 j 6 s − 1, there areq1/ε + 1

codewords inCj all of which differ from some received wordy in at mostρjn places, then

this set of codewords is a “counter-example” that shows thatC is not (y, ρ,L)-nested list

decodable. Since theq1/ε + 1 codewords will have some setT of J linearly independent

codewords, the counter example will imply thatI(j,y, T,S) = 1 for some collection of

86

subsetsS. In other words, the indicator variable captures the set of bad events we would

like to avoid. Finally define the sum of all the indicator variables as follows:

SC =
s−1∑

j=0

∑

y∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|6ρjn

I(j,y, T,S).

Note that ifSC = 0, thenC is (y, ρ,L)-nested list decodable as required. Thus, we can

prove the existence of such aC if we can show thatEC[SC] < 1. By linearity of expecta-

tion, we have

E[SC] =
s−1∑

j=0

∑

y∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|6ρjn

E[I(j,y, T,S)]. (4.4)

Fix some arbitraryj,y, T = {x1, x2, . . . , xJ},S = {S1, S2, . . . , SJ} (in their correspond-

ing domains). Then we have

E[I(j,y, T,S)] = Pr[I(j,y, T,S) = 1]

=
∏

xi∈T

Pr[C(xi) differ from y in exactly the positions inSi]

=
J∏

i=1

(
q − 1

q

)|Si|(1

q

)n−|Si|
(4.5)

=

J∏

i=1

(q − 1)|Si|

qn
, (4.6)

where the second and the third equality follow from the definition of the indicator variable,

the fact that vectors inT are linearly independent and the fact that a random matrix maps

linearly independent vectors to independent uniformly random vectors inFn
q . Using (4.6)

in (4.4), we get

E[SC] =
s−1∑

j=0

∑

y∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|6ρjn

J∏

i=1

(q − 1)|Si|

qn

=

s−1∑

j=0

∑

y∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

(ℓ1,ℓ2,...,ℓJ)∈{0,1,...,ρjn}J

J∏

i=1

(
n

ℓi

)
(q − 1)ℓi

qn

87

=

s−1∑

j=0

∑

y∈Fn
q

∑

T∈Ind(q,kj ,J)

(
ρjn
∑

ℓ=0

(
n

ℓ

)
(q − 1)ℓ

qn

)J

6

s−1∑

j=0

∑

y∈Fn
q

∑

T∈Ind(q,kj ,J)

qnJ(Hq(ρj)−1)

6

s−1∑

j=0

qn · qJkj · qnJ(Hq(ρj)−1)

6

s−1∑

j=0

qnJ(1/J+rj+1−rj−2ε−1)

6 sq−εnJ . (4.7)

The first inequality follows from Proposition 2.1. The second inequality follows by upper

bounding the number ofJ linearly independent vectors inFkj
q by qJkj . The third inequality

follows from the fact thatkj = ⌊rjn⌋ andρj = H−1
q (1 − rj − 2ε), The final inequality

follows from the fact thatJ = ⌈logq(q
1/ε + 1)⌉.

Thus, (4.7) shows that there exists a codeC (in fact with high probability) that is

(y, ρ,L)-nested list decodable. In fact, this could have been provedusing a simpler argu-

ment. However, the advantage of the argument above is that wecan now apply the method

of conditional expectations to derandomize the above proof.

The algorithm to deterministically generate a linear codeC that is(y, ρ,L)-nested list

decodable is as follows. The algorithm consists ofn steps. At any step1 6 i 6 n, we

choose theith column of the generator matrix to be the valuevi ∈ F
k0
q that minimizes the

conditional expectationE[SC |G1 = v1, . . . ,Gi−1 = vi−1,Gi = vi], whereGi denotes

the ith column ofG andv1, . . . ,vi−1 are the column vectors chosen in the previousi − 1

steps. This algorithm would work if for any1 6 i 6 n and vectorsv1, . . . ,vi, we can

exactly computeE[SC |G1 = v1, . . . ,Gi = vi]. Indeed from (4.4), we haveE[SC |G1 =

v1, . . . ,Gi = vi] is

s−1∑

j=0

∑

y∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|6ρjn

E[I(j,y, T,S)|G1 = v1, . . . ,Gi = vi].

88

Thus, we would be done if we can compute the following for every value of j,y, T =

{x1, . . . , xJ},S = {S1, . . . , SJ}: E[I(j,y, T,S) = 1|G1 = v1, . . . ,Gi = vi]. Note

that fixing the firsti columns ofG implies fixing the value of the codewords in the firsti

positions. Thus, the indicator variable is0 (or in other words, the conditional expectation we

need to compute is0) if for some message, the corresponding codeword does not disagree

with y exactly as dictated byS in the firsti positions. More formally,I(j,y, T,S) = 0 if

the following is true for some1 6 ℓ 6 i and0 6 i′ 6 J : xi′ · Gℓ 6= yℓ, if ℓ 6∈ Si′ and

xi′ · Gℓ = yℓ otherwise. However, if none of these conditions hold, then using argument

similar to the ones used to obtain (4.6), one can show that

E[I(j,y, T,S)|G1 = v1, . . . ,Gi = vi] =
J∏

ℓ=1

(
q − 1

q

)|S′
ℓ|(1

q

)n−i−|S′
ℓ|

,

whereS ′
ℓ = Sℓ \ {1, 2, . . . , i} for every1 6 ℓ 6 J .

To complete the proof, we need to estimate the time complexity of the above algorithm.

There aren steps and at every stepi, the algorithm has to considerqk0 6 qn different

choices ofvi. For every choice ofvi, the algorithm has to compute the conditional ex-

pectation of the indicator variables for all possible values of j,y, T,S. It is easy to check

that there are
∑s

i=1 qn · qJkj · 2nJ 6 sqn(1+2J) possibilities. Finally, the computation of the

conditional expected value of a fixed indicator variable takes timeO(snJ). Thus, in all the

total time taken isO(n · qn · sqn(1+2J) · snJ) = qO(n/ε), as required.

4.5.3 List Decoding Multilevel Concatenated Codes

In this section, we will see how one can list decode multilevel concatenated codes, pro-

vided the outer codes have good list recoverability and the inner code has good nested

list decodability. We have the following result, which generalizes Theorem 4.2 for regular

concatenated codes (the cases = 1).

Theorem 4.5. Let s > 1 and ℓ > 1 be integers. Let0 < R0 < R1 < · · · < Rs−1 < 1,

0 < r0 < 1 be rationals and0 < ξ0, · · · , ξs−1 < 1, 0 < ρ0, · · · , ρs−1 < 1 andε > 0 be

89

reals. Letq be a prime power and letQ = qa for some integera > 1. Further, letCj
out

(0 6 j 6 s−1) be anFq-linear code overFQ of rateRj and block lengthN that is(ξj, ℓ, L)-

list recoverable. Finally, letCin be a linear(r, ρ,L)-nested list decodable code overFq of

rate r0 and block lengthn = as/r0, wherer = 〈r0, · · · , rs−1〉 with ri = (1 − i/s)r0,

ρ = 〈ρ0, · · · , ρs−1〉 andL = 〈ℓ, ℓ, · · · , ℓ〉. ThenC = (C0
out × · · · × Cs−1

out) ◦ Cin is a linear

(minj ξj · ρj , L
s)-list decodable code. Further, if the outer codeCj

out can be list recovered

in timeTj(N) and the inner codeCin can be list decoded in timetj(n) (for thejth level),

thenC can be list decoded in timeO
(
∑s−1

j=0 Lj (Tj(N) + N · tj(n))
)

.

Proof. Given list-recovery algorithms forCj
out and list-decoding algorithms forCin (and

its subcodesCj
in), we will design a list-decoding algorithm forC. Recall that the received

word is ann×N matrix overFq. Each consecutive “chunk” ofn/s rows should be decoded

to a codeword inCj
out. The details follow.

Before we describe the algorithm, we will need to fix some notation. Defineδ =

minj ξjρj . Let Y ∈ F
nN
q be the received word, which we will think of as ann × N

matrix overFq (note thats dividesn). For anyn×N matrixM and for any1 6 i 6 N , let

Mi ∈ F
n
q denote theith column of the matrixM . Finally, for every0 6 j 6 s − 1, let Cj

in

denote the subcode ofCin generated by all but the firstja rows of the generator matrix of

Cin. We are now ready to describe our algorithm.

Recall that the algorithm needs to output all codewords inC that differ fromY in at

most δ fraction of positions. For the ease of exposition, we will consider an algorithm

that outputs matrices fromC0
out × · · · × Cs−1

out . The algorithm hass phases. At the end

of phasej (0 6 j 6 s − 1), the algorithm will have a list of matrices (calledLj) from

C0
out × · · ·×Cj

out, where each matrix inLj is a possible submatrix of some matrix that will

be in the final list output by the algorithm. The following steps are performed in phasej

(where we are assuming that the list-decoding algorithm forCj
in returns a list of messages

while the list-recovery algorithm forCj
out returns a list of codewords).

1. SetLj to be the empty set.

90

2. For everyc = (c0, · · · , cj−1) ∈ Lj−1 repeat the following steps (if this is the first

phase, that isj = 0, then repeat the following steps once):

(a) LetGj be the firstaj rows of the generator matrix ofCin. Let X = (Gj)
T · c,

where we think ofc as anja × N matrix overFq. Let Z = Y − X (for j = 0

we use the convention thatX is the all0s matrix). For every1 6 i 6 N , use

the list-decoding algorithm forCj
in on columnZi for up toρj fraction of errors

to obtain listSj
i ⊆ (FQ)s−j. Let T j

i ⊆ FQ be the projection of every vector in

Sj
i on to its first component.

(b) Run the list-recovery algorithm forCj
out on set of lists{T j

i }i obtained from the

previous step for up toξj fraction of errors. Store the set of codewords returned

in Ij.

(c) Add{(c,v)|v ∈ Ij} toLj .

At the end, remove all the matricesM ∈ Ls−1, for which the codeword(Cin(M1),

Cin(M2), · · · , Cin(MN)) is at a distance more thanδ from Y. Output the remaining matri-

ces as the final answer.

We will first talk about the running time complexity of the algorithm. It is easy to check

that each repetition of steps 2(a)-(c) takes timeO(Tj(N)+N · tj(n)). To compute the final

running time, we need to get a bound on number of times step 2 isrepeated in phasej. It

is easy to check that the number of repetitions is exactly|Lj−1|. Thus, we need to bound

|Lj−1|. By the list recoverability property ofCj
out, we can bound|Ij| by L. This implies

that|Lj| 6 L|Lj−1|, and therefore by induction we have

|Li| 6 Li+1 for i = 0, 1, . . . , s − 1 . (4.8)

Thus, the overall running time and the size of the list outputby the algorithm are as claimed

in the statement of the theorem.

We now argue the correctness of the algorithm. That is, we have to show that for every

M ∈ C0
out × · · · × Cs−1

out , such that(Cin(M1), Cin(M2) · · · , Cin(MN)) is at a distance at

91

GT · M =








(Gj′)
T (G \ Gj′)

T








·

















m0
1 · · · m0

i · · · m0
N

...

mj′−1
1 · · · mj′−1

i · · · mj′−1
N

mj′

1 · · · mj′

i · · · mj′

N

...

ms−1
1 · · · ms−1

i · · · ms−1
N

















=








↑ ↑ ↑
Cin(M1) · · · Cin(Mi) · · · Cin(MN)

↓ ↓ ↓








Figure 4.4: Different variables in the proof of Theorem 4.5.

mostδ from Y (call such anM agoodmatrix),M ∈ Ls−1. In fact, we will prove a stronger

claim: for every good matrixM and every0 6 j 6 s − 1, M j ∈ Lj, whereM j denotes

the submatrix ofM that lies inC0
out × · · · × Cj

out (that is the firstj “rows” of M). For the

rest of the argument fix an arbitrary good matrixM . Now assume that the stronger claim

above holds forj′ − 1 (< s − 1). In other words,M j′−1 ∈ Lj′−1. Now, we need to show

thatM j′ ∈ Lj′.

For concreteness, letM = (m0, · · · , ms−1)T . As M is a good matrix andδ 6 ξj′ρj′,

Cin(Mi) can disagree withYi on at least a fractionρj′ of positions for at mostξj′ fraction

of column indicesi. The next crucial observation is that for any column indexi, Cin(Mi) =

(Gj′)
T · (m0

i , · · · , mj′−1
i) + (G \ Gj′)

T · (mj′

i , · · · , ms−1
i), whereGj′ is as defined in step

2(a),G\Gj′ is the submatrix ofG obtained by “removing”Gj′ andmj′

i is theith component

of the vectormj′. Figure 4.5.3 might help the reader to visualize the different variables.

Note thatG \ Gj′ is the generator matrix ofCj′

in. Thus, for at mostξj′ fraction of column

indicesi, (mj′

i , · · · , ms−1
i) · (G \ Gj′) disagrees withYi − Xi on at leastρj′ fraction of

92

places, whereX is as defined in Step 2(a), andXi denotes thei’th column ofX. As Cj′

in

is (ρj′ , ℓ)-list decodable, for at least1 − ξj′ fraction of column indexi, M j′

i will be in Sj′

i

(whereM j′

i is Mi projected on it’s lasts − j′ co-ordinates andSj′

i is as defined in Step

2(a)). In other words,mj′

i is in T j′

i for at least1 − ξj′ fraction of i’s. Further, as|Sj′

i | 6 ℓ,

|T j′

i | 6 ℓ. This implies with the list recoverability property ofCj′

out thatmj′ ∈ Ij′, where

Ij′ is as defined in step 2(b). Finally, step 2(c) implies thatM j′ ∈ Lj′ as required.

The proof of correctness of the algorithm along with (4.8) shows thatC is (δ, Ls)-list

decodable, which completes the proof.

4.5.4 Putting it Together

We combine the results we have proved in the last couple of subsections to get the main

result of this section.

Theorem 4.6. For every fixed fieldFq, reals0 < δ < 1, 0 < r 6 1 − Hq(δ), ε > 0 and

integers > 1, there exists linear codesC overFq of block lengthN that are(δ− ε, L(N))-

list decodable with rateR such that

R = r − r

s

s−1∑

i=0

δ

H−1
q (1 − r + ri/s)

, (4.9)

andL(N) = (N/ε2)O(sε−3δ/(H−1
q (1−r)−δ)). Finally, C can be constructed in time

(N/ε2)O(s/(ε6rδ)) and list decoded in time polynomial inN .

Proof. Let γ > 0 (we will define its value later). For every0 6 j 6 s − 1 define

rj = r(1−j/s) andRj = 1− δ
H−1

q (1−rj)
. The codeC is going to be a multilevel concatenated

code(C0
out×· · ·×Cs−1

out)◦Cin, whereCj
out is the code from Corollary 3.7 of rateRj and block

lengthN ′ (overFqa) andCin is an(〈r0, . . . , rs−1〉, ρ,L)-nested list decodable code as guar-

anteed by Theorem 4.4, where for0 6 j 6 s− 1, ρj = H−1
q (1− rj − 2γ2) andLj = q1/γ2

.

Finally, we will use the property ofCj
out that it is(1−Rj−γ, q1/γ2

, (N ′/γ2)O(γ−3 log(1/Rj)))-

list recoverable for any0 6 γ 6 Rj. Corollary 3.7 implies that such codes exist with (where

93

we apply Corollary 3.7 withR′ = maxj Rj = 1 − δ/H−1
q (1 − r/s))

qa = (N ′/γ2)O(γ−4H−1
q (1−r/s)/δ). (4.10)

Further, as codes from Corollary 3.7 areFq-linear,C is a linear code.

The claims on the list decodability ofC follows from the choices ofRj andrj , Corol-

lary 3.7 and Theorems 4.4 and 4.5. In particular, note that weinvoke Theorem 4.5 with

the following parameters:ξj = 1 − Rj − γ andρj = H−1
q (1 − rj − 2γ2) (which by

Lemma 2.4 implies that thatξjρj > δ − ε as long asγ = Θ(ε)), ℓ = q1/γ2
andL =

(N ′/γ2)O(γ−1 log(ℓ/Rj)). The choices ofℓ andγ imply thatL = (N/ε2)O(ε−3 log(1/Rj)). Now

log(1/Rj) 6 log(1/Rmin), whereRmin = minj Rj = 1−δ/H−1
q (1−r). Finally, we use the

fact that for any0 < y < 1, ln(1/y) 6 1/y − 1 to get thatlog(1/Rj) 6 O(1/Rmin − 1) =

O(δ/(H−1
q (1 − r) − δ)). The claimed upper bound ofL(N) follows asL(N) 6 Ls (by

Theorem 4.5).

By the choices ofRj andrj and (4.1), the rate ofC is as claimed. The construction time

for C is the time required to constructCin, which by Theorem 4.4 is2O(n/γ2) wheren is

the block length ofCin. Note thatn = as/r, which by (4.10) implies that the construction

time is(N/ε2)O(ε−6sH−1
q (1−r/s)/(rδ)). The claimed running time follows by using the bound

H−1
q (1 − r/s) 6 1.

We finally consider the running time of the list-decoding algorithm. We list decode

the inner code(s) by brute force, which takes2O(n) time, that is,tj(n) = 2O(n). Thus,

Corollary 3.7, Theorem 4.5 and the bound onL(N) implies the claimed running time com-

plexity.

Choosing the parameterr in the above theorem so as to maximize (4.9) gives us linear

codes over any fixed field whose rate vs. list-decoding radiustradeoff meets the Blokh-

Zyablov bound (4.2). Ass grows, the trade-off approaches the integral form (4.3) of the

Blokh-Zyablov bound.

94

4.6 Bibliographic Notes and Open Questions

We managed to reduce the alphabet size needed to approach capacity to a constant inde-

pendent ofn. However, this involved a brute-force search for a rather large code. Ob-

taining a “direct” algebraic construction over a constant-sized alphabet (such as variants of

algebraic-geometric codes, or AG codes) might help in addressing these two issues. To this

end, Guruswami and Patthak [55] definecorrelated AG codes, and describe list-decoding

algorithms for those codes, based on a generalization of theParvaresh-Vardy approach to

the general class of algebraic-geometric codes (of which Reed-Solomon codes are a special

case). However, to relate folded AG codes to correlated AG codes like we did for Reed-

Solomon codes requires bijections on the set of rational points of the underlying algebraic

curve that have some special, hard to guarantee, property. This step seems like a highly

intricate algebraic task, and especially so in the interesting asymptotic setting of a family

of asymptotically good AG codes over a fixed alphabet.

Our proof of existence of the requisite inner codes with goodnested list decodable

properties (and in particular the derandomization of the construction of such codes using

conditional expectation) is similar to the one used to establish list decodability properties

of random “pseudolinear” codes in [52] (see also [49, Sec. 9.3]).

Concatenated codes were defined in the seminal thesis of Forney [40]. Its generaliza-

tions to linear multilevel concatenated codes were introduced by Blokh and Zyablov [20]

and general multilevel concatenated codes were introducedby Zinoviev [108]. Our list-

decoding algorithm is inspired by the argument for “unequalerror protection” property of

multilevel concatenated codes [109].

The results on capacity achieving list decodable codes oversmall alphabets (Section 4.2)

and binary linear codes that are list decodable up to the Zyablov bound (Section 4.3) ap-

peared in [58]. The result on linear codes that are list decodable up to the Blokh Zyablov

bound (Section 4.5) appeared in [60].

The biggest and perhaps most challenging question left unresolved by our work is the

95

following.

Open Question 4.1.For every0 < ρ < 1/2 and everyε > 0 give explicit construction of

binary codes that are(ρ, O(1/ε))-list decodable with rate1 − H(ρ) − ε. Further, design

polynomial time list decoding algorithms that can correct up toρ fraction of errors.

In fact, just resolving the above question foranyfixedρ (even with an exponential time

list-decoding algorithm) is widely open at this point.

96

Chapter 5

LIST DECODABILITY OF RANDOM LINEAR CONCATENATED
CODES

5.1 Introduction

In Chapter 2, we saw that for any fixed alphabet of sizeq > 2 there exist codes of rateR

that can be list decoded up toH−1
q (1 − R − ε) fraction of errors with list of sizeO(1/ε).

For linear codes one can show a similar result with lists of size qO(1/ε). These results are

shown by choosing the code at random. However, as we saw in Chapter 4 the explicit

constructions of codes over finite alphabets are nowhere close to achieving list-decoding

capacity.

The linear codes in Chapter 4 are based on code concatenation. A natural question to

ask is whether linear codes based on code concatenation can get us to list-decoding capacity

for fixed alphabets.

In this chapter, we answer the question above in the affirmative. In particular, in Sec-

tion 5.4 we show that if the outer code is random linear code and the inner codes are also

(independent) random linear codes, then the resulting concatenated codes can get to within

ε of the list-decoding capacity with list of constant size depending onε only. In Section 5.5,

we also show a similar result when the outer code is the foldedReed-Solomon code from

Chapter 3. However, we can only show the latter result with polynomial-sized lists.

The way to interpret the results in this chapter is the following. We exhibit an ensemble

of random linear codes with more structure than general random (linear) codes that achieve

the list-decoding capacity. This structure gives rise to the hope of being able to list decode

such a random ensemble of codes up to the list-decoding capacity. Furthermore, for design-

ing explicit codes that meet the list-decoding capacity, one can concentrate on concatenated

97

codes. Another corollary of our result is that we need fewer random bits to construct a code

that achieves the list-decoding capacity. In particular, ageneral random linear code requires

number of random bits that grows quadratically with the block length. On the other hand,

random concatenated codes with outer codes as folded Reed-Solomon code require number

of random bits that grows quasi-linearly with the block length.

The results in this chapter (and their proofs) are inspired by the following results due to

Blokh and Zyablov [19] and Thommesen [102]. Blokh and Zybalov show that random con-

catenated linear binary codes (where both the outer and inner codes are chosen uniformly

at random) have with high probability the same minimum distance as general random lin-

ear codes. Thommesen shows a similar result when the outer code is the Reed-Solomon

code. The rate versus distance tradeoff achieved by random linear codes satisfies the so

called Gilbert-Varshamov (GV) bound. However, like list decodability of binary codes,

explicit codes that achieve the GV bound are not known. Coming up with such explicit

constructions is one of the biggest open questions in codingtheory.

5.2 Preliminaries

We will consider outer codes that are defined overFQ, whereQ = qk for some fixedq > 2.

The outer code will have rate and block length ofR andN respectively. The outer code

Cout will either be a random linear code overFQ or the folded Reed-Solomon code from

Chapter 3. In the case whenCout is random, we will pickCout by selectingK = RN

vectors uniformly at random fromFN
Q to form the rows of the generator matrix. For every

position1 6 i 6 N , we will choose an inner codeCi
in to be a random linear code over

Fq of block lengthn and rater = k/n. In particular, we will work with the corresponding

generator matricesGi, where everyGi is a randomk×n matrix overFq. All the generator

matricesGi (as well as the generator matrix forCout, when we choose a randomCout) are

chosen independently. This fact will be used crucially in our proofs.

Given the outer codeCout and the inner codesCi
in, the resulting concatenated codeC =

98

Cout ◦ (C1
in, . . . , C

N
in) is constructed as follows.1 For every codewordu = (u1, . . . ,uN) ∈

Cout, the following codeword is inC:

uG
def
= (u1G1,u2G2, . . . ,uNGN),

where the operations are overFq.

We will need the following notions of the weight of a vector. Given a vectorv ∈ F
nN
q ,

its Hamming weight is denoted bywt(v). Given a vectory = (y1, . . . , yN) ∈ (Fn
q)N

and a subsetS ⊆ [N], we will usewtS(y) to denote the Hamming weight overFq of the

subvector(yi)i∈S. Note thatwt(y) = wt[N](y).

We will need the following lemma due to Thommesen, which is stated in a slightly

different form in [102]. For the sake of completeness we alsopresent its proof.

Lemma 5.1([102]). Given a fixed outer codeCout of block lengthN and an ensemble of

random inner linear codes of block lengthn given by generator matricesG1, . . . ,GN the

following is true. Lety ∈ F
nN
q . For any codewordu ∈ Cout, any non-empty subsetS ⊆ [N]

such thatui 6= 0 for all i ∈ S and any integerh 6 n|S| ·
(

1 − 1
q

)

:

Pr[wtS(uG − y) 6 h] 6 q−n|S|(1−Hq(h
n|S|)),

where the probability is taken over the random choices ofG1, . . . ,GN .

Proof. Let |S| = s and w.l.o.g. assume thatS = [s]. As the choices forG1, . . . ,GN are

made independently, it is enough to show that the claimed probability holds for the random

choices forG1, . . . ,Gs. For any1 6 i 6 s and anyy ∈ F
n
q , sinceui 6= 0, we have

PrGi
[uiGi = y] = q−n. Further, these probabilities are independent for everyi. Thus, for

anyy = 〈y1, . . . , ys〉 ∈ (Fn
q)s, PrG1,...,Gs[uiGi = yi for every1 6 i 6 s] = q−ns. This

implies that:

PrG1,...,Gs[wtS(uG − y) 6 h] = q−ns

h∑

j=0

(
ns

j

)

(q − 1)j.

1Note that this is a slightly general form of code concatenation that is considered in Chapter 4. We did
consider the current generalization briefly in Section 4.4.

99

The claimed result follows from the Proposition 2.1.

z
x

H−1(1 − z)

H−1(1 − θx)

H−1(1 − α2(x))

fx,2(θ)

α2(x)θx
0

0.5

0 1

Figure 5.1: Geometric interpretations of functionsα2(·) andfx,2(·).

For0 6 z 6 1 define

αq(z) = 1 − Hq(1 − qz−1). (5.1)

We will need the following property of the function above.

Lemma 5.2. Let q > 2 be an integer. For every0 6 z 6 1,

αq(z) 6 z.

Proof. The proof follows from the subsequent sequence of relations:

αq(z) = 1 − Hq(1 − qz−1)

= 1 − (1 − qz−1) logq(q − 1) + (1 − qz−1) logq(1 − qz−1) + qz−1(z − 1)

= zqz−1 + (1 − qz−1)

(

1 − logq

(
q − 1

1 − qz−1

))

6 z,

where the last inequality follows from the facts thatqz−1 6 1 and1 − qz−1 6 1 − 1/q,

which implies thatlogq

(
q−1

1−qz−1

)

> 1.

100

We will consider the following function

fx,q(θ) = (1 − θ)−1 · H−1
q (1 − θx),

where0 6 θ, x 6 1. We will need the following property of this function.2

Lemma 5.3([102]). Let q > 2 be an integer. For anyx > 0 and0 6 y 6 αq(x)/x,

min
06θ6y

fx,q(θ) = (1 − y)−1H−1
q (1 − xy).

Proof. The proof follows from the subsequent geometric interpretations of fx,q(·) and

αq(·). See Figure 5.1 for a pictorial illustration of the arguments used in this proof (for

q = 2).

First, we claim that for any0 6 z0 6 1, αq(z) satisfies the following property: the line

segment between(αq(z0), H
−1
q (1−αq(z0))) and(z0, 0) is tangent to the curveH−1

q (1− z)

atαq(z0).

Thus, we need to show that

−H−1
q (1 − αq(z0))

z0 − αq(z0)
= (H−1

q)′(1 − αq(z0)). (5.2)

One can check that(H−1
q)′(1−x) = −1

H′
q(H−1

q (1−x))
= −1

logq(q−1)−logq(H−1
q (1−x))+logq(1−H−1

q (1−x))
.

Now,

z0 − αq(z0) = z0 − 1 + (1 − qz0−1) logq(q − 1) − (1 − qz0−1) logq(1 − qz0−1)

− qz0−1(z0 − 1)

= (1 − qz0−1) ·
(
logq(q − 1) − logq(1 − qz0−1) + z0 − 1

)

= H−1
q (1 − αq(z0)) ·

(
logq(q − 1) − logq(H

−1
q (1 − αq(z0)))

+ logq(1 − H−1
q (1 − αq(z0)))

)

=
−H−1

q (1 − αq(z0))

(H−1
q)′(1 − αq(z0))

,

2 Lemma 5.3 was proven in [102] for theq = 2 case. Here we present the straightforward extension of
the result for generalq.

101

which proves (5.2) (where we have used the expression forαq(z) and(H−1
q)′(1 − z) and

the fact that1 − qz−1 = H−1
q (1 − αq(z))).

We now claim thatfx,q(θ) is the intercept of the line segment through(x, 0) and

(θx, H−1
q (1−θx)) on the “y-axis.” Indeed, the “y-coordinate” increases byH−1

q (1−θx) in

the line segment fromx to θx. Thus, when the line segment crosses the “y-axis”, it would

cross at an intercept of1/(1 − θ) times the “gain” going fromx to θx. The lemma follows

from the fact that the functionH−1
q (1 − r) is a decreasing (strictly) convex function ofr

and thus, the minimum offx,q(θ) would occur atθ = y providedyx 6 αq(x).

5.3 Overview of the Proof Techniques

In this section, we will highlight the main ideas in our proofs. Our proofs are inspired by

Thommesen’s proof of the following result [102]. Binary linear concatenated codes with

an outer Reed-Solomon code and independently and randomly chosen inner codes meet the

Gilbert-Varshamov bound3. Given that our proof builds on the proof of Thommesen, we

start out by reviewing the main ideas in his proof.

The outer codeCout in [102] is a Reed-Solomon code of lengthN and rateR (over

FQ) and the inner codes (overFq such thatQ = qk for somek > 1) are generated byN

randomly chosenk × n generator matricesG = (G1, . . . ,GN), wherer = k/n. Note

that since the final code will be linear, to show that with highprobability the concatenated

code will have distance close toH−1(1 − rR), it is enough to show that the probability

of the Hamming weight ofuG overFq being at most(H−1(1 − rR) − ε)nN (for some

Reed-Solomon codewordu = (u1, . . . ,uN)), is small. Let us now concentrate on a fixed

codewordu ∈ Cout. Now note that if for some1 6 i 6 N , ui = 0, then for every

choice ofGi, uiGi = 0. Thus, only the non-zero symbols ofu contribute towt(uG).

Further, for a non-zeroui, uiGi takes all the values inFn
q with equal probability over

the random choices ofGi. Also for two different non-zero positionsi1 6= i2 in u, the

3A binary code of rateR satisfies the Gilbert-Varshamov bound if it has relative distance at leastH−1(1−
R).

102

random variablesui1Gi1 andui2Gi2 are independent(as the choices forGi1 andGi2 are

independent). This implies thatuG takes each of the possibleqn·wt(u) values inF
nN
q with

the same probability. Thus, the total probability thatuG has a Hamming weight of at most

h is
∑h

w=0

(
n·wt(u)

w

)
q−n·wt(u) 6 q

−n·wt(u)(1−H(h
n·wt(u))). The rest of the argument follows by

doing a careful union bound of this probability for all non zero codewords inCout (using

the known weight distribution of Reed-Solomon codes4).

Let us now try to extend the idea above to show a similar resultfor list decoding of a

code similar to the one above (the inner codes are the same butwe might change the outer

code). We want to show that for any Hamming ball of radius at mosth = (H−1(1− rR)−
ε)nN has at mostL codewords from the concatenated codeC (assuming we want to show

thatL is the worst case list size). To show this let us look at a set ofL+1 codewords fromC

and try to prove that the probability that all of them lie within some ball of radiush is small.

Let u1, . . . ,uL+1 be the corresponding codewords inCout. As a warm up, let us try and

show this for a Hamming ball centered around0. Thus, we need to show that all of theL+1

codewordsu1G, . . . ,uL+1G have Hamming weight at mosth. Note thatL = 0 reverts

back to the setup of Thommesen, that is, any fixed codeword hasweight at mosth with

small probability. However, we need all the codewords to have small weight. Extending

Thommesen’s proof would be straightforward if the random variables corresponding to

each ofuiG having small weight were independent. In particular, if we can show that for

every position1 6 i 6 N , all the non-zero symbols in{u1
i ,u

2
i , . . . ,u

L+1
i } are linearly

independent5 overFq then the generalization of Thommesen’s proof is immediate.

Unfortunately, the notion of independence discussed abovedoesnot hold for every

L + 1 tuple of codewords fromCout. A fairly common trick to get independence when

dealing with linear codes is to look at messages that are linearly independent. It turns out

that if Cout is a random linear code overFQ then we have a good approximation of the the

4In fact, the argument works just as well for any code that has aweight distribution that is close to that
of the Reed-Solomon code. In particular, it also works for folded Reed-Solomon codes– we alluded to this
fact in Section 4.4.

5Recall thatFqk is isomorphic toFk
q and hence, we can think of the symbols inFQ as vectors overFq.

103

notion of independence above. Specifically, we show that with very high probability for a

linearly independent (overFQ) set of messages6 m1, . . . ,mL+1, the set of codewordsu1 =

Cout(m
1), . . . ,uN = Cout(m

N) have the following approximate independence property.

For most of the positions1 6 i 6 N , most of the non-zero symbols in{u1
i , . . . ,u

N
i } are

linearly independent overFq. It turns out that this approximate notion of independence is

enough for Thommesen’s proof to go through. Generalizing this argument to the case when

the Hamming ball is centered around an arbitrary vector fromF
nN
q is straightforward.

We remark that the notion above crucially uses the fact that the outer code is a random

linear code. However, the argument is bit more tricky whenCout is fixed to be (say) the

Reed-Solomon code. Now even if the messagesm1, . . . ,mL+1 are linearly independent

it is not clear that the corresponding codewords will satisfy the notion of independence

in the above paragraph. Interestingly, we can show that thisnotion of independence is

equivalent to showing good list recoverability propertiesfor Cout. Reed-Solomon codes

are however not known to have optimal list recoverability (which is what is required in our

case). In fact, the results in Chapter 6 show that this isimpossiblefor Reed-Solomon codes

in general. However, as we saw in Chapter 3, folded Reed-Solomon codesdohave optimal

list recoverability and we exploit this fact in this chapter.

5.4 List Decodability of Random Concatenated Codes

In this section, we will look at the list decodability of concatenated codes when both the

outer code and the inner codes are (independent) random linear codes.

The following is the main result of this section.

Theorem 5.1. Let q be a prime power and let0 < r < 1 be an arbitrary rational. Let

0 < ε < αq(r) be an arbitrary real, whereαq(r) is as defined in (5.1), and0 < R 6

(αq(r) − ε)/r be a rational. Then the following holds for large enough integersn, N such

6Again any set ofL + 1 messages need not be linearly independent. However, it is easy to see that some
subset ofJ = ⌈logQ(L + 1)⌉ of messages are indeed linearly independent. Hence, we can continue the
argument by replacingL + 1 with J .

104

that there exist integersk andK that satisfyk = rn andK = RN . LetCout be a random

linear code overFqk that is generated by a randomK×N matrix overFqk . LetC1
in, . . . , C

N
in

be random linear codes overFq, whereCi
in is generated by a randomk × n matrixGi and

the random choices forCout,G1, . . . ,GN are all independent. Then the concatenated code

C = Cout ◦ (C1
in, . . . , C

N
in) is a

(

H−1
q (1 − Rr) − ε, q

O
“

rn
ε2(1−R)

”

)

-list decodable code with

probability at least1 − q−Ω(nN) over the choices ofCout,G1, . . . ,GN . Further, with high

probability,C has raterR.

In the rest of this section, we will prove the above theorem.

DefineQ = qk. LetL be the worst-case list size that we are shooting for (we will fix its

value at the end). The first observation is that anyL+1-tuple of messages(m1, . . . ,mL+1) ∈
(FK

Q)L+1 contains at leastJ = ⌈logQ(L + 1)⌉ many messages that are linearly independent

over FQ. Thus, to prove the theorem it suffices to show that with high probability, no

Hamming ball overFnN
q of radius(H−1

q (1− rR)− ε)nN contains aJ-tuple of codewords

(C(m1), . . . , C(mJ)), wherem1, . . . ,mJ are linearly independent overFQ.

Defineρ = H−1
q (1 − Rr) − ε. For everyJ-tuple of linearly independent messages

(m1, . . . ,mJ) ∈ (FK
Q)J and received wordy ∈ F

nN
q , define an indicator random variable

I(y,m1, . . . ,mJ) as follows.I(y,m1, . . . ,mJ) = 1 if and only if for every1 6 j 6 J ,

wt(C(mj) − y) 6 ρnN . That is, it captures the bad event that we want to avoid. Define

XC =
∑

y∈FnN
q

∑

(m1,...,mJ)∈Ind(Q,K,J)

I(y,m1, . . . ,mJ)

whereInd(Q, K, J) denotes the collection of subsets ofFQ-linearly independent vectors

from F
K
Q of sizeJ . We want to show that with high probabilityXC = 0. By Markov’s

inequality, the theorem would follow if we can show that:

E[XC] =
∑

y∈FnN
q

∑

(m1,...,mJ)∈Ind(Q,K,J)

E[I(y,m1, . . . ,mJ)] is q−Ω(nN). (5.3)

Note that the number of distinct possibilities fory,m1, . . . ,mJ is upper bounded byqnN ·
QRNJ = qnN(1+rRJ). Fix some arbitrary choice ofy,m1, . . . ,mJ . To prove (5.3), we will

105

show that

qnN(1+rRJ) · E[I(y,m1, . . . ,mJ)] is q−Ω(nN). (5.4)

Before we proceed, we need some more notation. Given vectorsu1, . . . ,uJ ∈ F
N
Q , we

defineZ(u1, . . . ,uJ) = (Z1, . . . , ZN) as follows. For every1 6 i 6 N , Zi ⊆ [J] denotes

the largest subset such that the elements(uj
i)j∈Zi

are linearly independent overFq (in case

of a tie choose the lexically first such set), whereuj = (uj
1, . . . , u

j
N). A subset ofFQ is

linearly independent overFq if its elements, when viewed as vectors fromFk
q (recall that

Fqk is isomorphic toFk
q) are linearly independent overFq. If uj

i ∈ Zi then we will calluj
i

a goodsymbol. Note that a good symbol is always non-zero. We will also define another

partition of all the good symbols,T(u1, . . . ,uJ) = (T1, . . . , TJ) by settingTj = {i|j ∈ Zi}
for 1 6 j 6 J .

Sincem1, . . . ,mJ are linearly independent overFQ, the corresponding codewords in

Cout are distributed uniformly inFN
Q . In other words, for any fixed(u1, . . . ,uJ) ∈ (FN

Q)J ,

PrCout

[
J∧

j=1

Cout(m
j) = uj

]

= Q−NJ = q−rnNJ . (5.5)

Recall that we denote the (random) generator matrices for the inner codeCi
in by Gi for

every1 6 i 6 N . Also note that every(u1, . . . ,uJ) ∈ (FN
Q)J has a uniqueZ(u1, . . . ,uJ).

In other words, the2NJ choices ofZ partition the tuples in(FN
Q)J .

Let h = ρnN . Consider the following calculation (where the dependenceof Z andT

onu1, . . . ,uJ have been suppressed for clarity):

E[I(y,m1, . . . ,mJ)] =
∑

(u1,...,uJ)∈(FN
Q)J

PrG=(G1,...,GN)

[
J∧

j=1

wt(ujG − y) 6 h

]

(5.6)

· PrCout

[
J∧

j=1

Cout(m
j) = uj

]

= q−rnNJ
∑

(u1,...,uJ)∈(FN
Q)J

PrG=(G1,...,GN)

[
J∧

j=1

wt(ujG − y) 6 h

]

(5.7)

106

6 q−rnNJ
∑

(u1,...,uJ)∈(FN
Q)J

PrG=(G1,...,GN)

[
J∧

j=1

wtTj
(ujG − y) 6 h

]

(5.8)

= q−rnNJ
∑

(u1,...,uJ)∈(FN
Q)J

J∏

j=1

PrG
[
wtTj

(ujG − y) 6 h
]

(5.9)

In the above (5.6) follows from the fact that the (random) choices for Cout and G =

(G1, . . . ,GN) are all independent. (5.7) follows from (5.5). (5.8) follows from the simple

fact that for everyy ∈ (Fn
q)

N andT ⊆ [N], wtT (y) 6 wt(y). (5.9) follows from the subse-

quent argument. By definition of conditional probability,PrG

[
∧J

j=1 wtTj
(ujG − y) 6 h

]

is the same as

PrG

[

wtTJ
(uJG − y) 6 h

∣
∣

J−1∧

j=1

wtTj
(ujG − y) 6 h

]

· PrG

[
J−1∧

j=1

wtTj
(ujG − y) 6 h

]

.

Now as all symbols corresponding toTJ are good symbols, for everyi ∈ TJ , the value

of uJ
i Gi is independent of the values of{u1

i Gi, . . . ,u
J−1
i Gi}. Further since each of

G1, . . . ,GN are chosen independently (at random), the eventwtTJ
(uJG − y) 6 h is in-

dependent of the event
∧J−1

j=1 wtTj
(ujG− y) 6 h. Thus,PrG

[
∧J

j=1 wtTj
(ujG − y) 6 h

]

is

PrG
[
wtTJ

(uJG − y) 6 h
]
· PrG

[
J−1∧

j=1

wtTj
(ujG − y) 6 h

]

.

Inductively applying the argument above gives (5.9).

Further,

E[I(y,m1, . . . ,mJ)] =
∑

(u1,...,uJ)∈(FN
Q)J

J∏

j=1

q−rnN · PrG
[
wtTj

(ujG − y) 6 h
]

(5.10)

=
∑

(d1,...,dJ)∈{0,...,N}J

∑

(u1,...,uJ)∈(FN
Q)J ,

(|T1|=d1,...,|TJ |=dJ)

J∏

j=1

PrG
[
wtTj

(ujG − y) 6 h
]

qrnN

(5.11)

107

6
∑

(d1,...,dJ)
∈{0,...,N}J

qJN+(rn+J)
PJ

j=1 dj

J∏

j=1,
|Tj |=dj

PrG
[
wtTj

(ujG − y) 6 h
]

qrnN

(5.12)

=
∑

(d1,...,dJ)∈{0,...,N}J

J∏

j=1,
|Tj |=dj

PrG
[
wtTj

(ujG − y) 6 h
]

q
n

“

−r(dj−N)−Jdj
n

−N
n

” (5.13)

In the above (5.10), (5.11), (5.13) follow from rearrangingand grouping the summands.

(5.12) uses the following argument. Given a fixedZ = (Z1, . . . , ZN), the number of tuples

(u1, . . . ,uJ) such thatZ(u1, . . . ,uJ) = Z is at mostU =
∏N

i=1 q|Zi|k · q|Zi|(J−|Zi|), where

theq|Zi|k is an upper bound on the number of|Zi| linearly independent vectors fromFk
q and

q|Zi|(J−|Zi|) follows from the fact that every bad symbol{uj
i}j 6∈Zi

has to take a value that is a

linear combination of the symbols{uj
i}j∈Zi

. Now U 6
∏N

i=1 q|Zi|(k+J) = q(k+J)
PN

i=1 |Zi| =

q(k+J)
PJ

j=1 |Tj |. Finally, there are2JN 6 qJN distinct choices forZ.

(5.13) implies the following

qnN(1+rRJ) · E[I(y,m1, . . . ,mJ)] 6
∑

(d1,...,dJ)∈{0,...,N}J

J∏

j=1

Ej

where

Ej = q
−n

“

−r(dj−N(1−R))−N
J
−Jdj

n
−N

n

”

· PrG
[
wtTj

(ujG − y) 6 h
]
.

We now proceed to upper boundEj by q−Ω(nN) for every1 6 j 6 J . Note that this

will imply the claimed result as there are at most(N + 1)J = qo(nN) choices for different

values ofdj ’s.

We first start with the case whendj < d∗, where

d∗ = N(1 − R − γ),

for some parameter0 < γ < 1 − R to be defined later. In this case we use the fact that

PrG
[
wtTj

(ujG − y) 6 h
]

6 1. Thus, we would be done if we can show that

1

N

(

r (dj − N(1 − R)) +
N

J
+

Jdi

n
+

N

n

)

6 −δ′ < 0,

108

for someδ′ > 0 that we will choose soon. The above would be satisfied if

dj

N
< (1 − R) − 1

r

(
1

J
+

Jdj

nN
+

1

n

)

− δ′

r
,

which is satisfied if we chooseγ > 2
r

(
1
J

+
Jdj

nN
+ 1

n

)

+ δ′

r
asdj < d∗. Note that ifn >

2J
(

Jdj

N
+ 1
)

and if we setδ′ = 1
J
, it is enough to chooseγ = 4

Jr
.

We now turn our attention to the case whendj > d∗. The arguments are very similar to

the ones employed by Thommesen in the proof of his main theorem in [102]. In this case,

by Lemma 5.1 we have

Ej 6 q
−ndj

„

1−Hq

„

h
ndj

«

−r

„

1−N(1−R)
dj

«

− N
djJ

−J
n
− N

ndj

«

.

The above implies that we can show thatEj is q−Ω(nN(1−R−γ)) provided we show that for

everyd∗ 6 d 6 N ,

h/(nd) 6 H−1
q

(

1 − r

(

1 − N(1 − R)

d

)

− N

dJ
− J

n
− N

nd

)

− δ,

for δ = ε/3. Now if n > 2J2, then bothJ
n

6 N
2Jd

and N
nd

6 N
2Jd

. In other words,

J
n

+ N
nd

6 N
Jd

. Using the fact thatH−1
q is increasing, the above is satisfied if

h/(nd) 6 H−1
q

(

1 − r

(

1 − N(1 − R − γ)

d

)

− 2N

dJ

)

− δ,

By Lemma 5.4, as long asJ > 4c′q/(δ2(1−R)) (and the conditions onγ are satisfied), the

above can be satisfied by picking

h/(nN) = H−1
q (1 − rR) − 3δ = ρ,

as required. We now verify that the conditions onγ in Lemma 5.4 are satisfied by our

choice ofγ = 4
Jr

. Note that if we chooseJ = 4c′q/(δ2(1 − R)), we will haveγ = δ2(1−R)
c′qr

.

Now, asR < 1, we also haveγ 6 δ2/(rc′q). Finally, we show thatγ 6 (1 − R)/2. Indeed

γ =
δ2(1 − R)

c′qr
=

ε2(1 − R)

9c′qr
6

ε(1 − R)

9r
6

αq(r)(1 − R)

9r
<

1 − R

2
,

109

where the first inequality follows from the facts thatc′q > 1 and ε 6 1. The second

inequality follows from the assumption onε. The third inequality follows from Lemma 5.2.

Note thatJ = O
(

1
(1−R)ε2

)

, which impliesL = QO(1/((1−R)ε2) as claimed in the state-

ment of the theorem.

We still need to argue that with high probability the rate of the codeC = Cout ◦
(C1

in, . . . , C
N
in) is rR. One way to argue this would be to show that with high probabil-

ity all of the generator matrices have full rank. However, this is not the case: in fact, with

some non-negligible probability at least one of them will not have full rank. However, we

claim that with high probabilityC has distance> 0. Note that asC is a linear code, this

implies that for every distinct pair of messagesm1 6= m2 ∈ F
K
Q are mapped to distinct

codewords, which implies thatC hasqrnRN codewords, as desired. We now briefly argue

why C has distance> 0. The proof above in fact implies that with high probabilityC has

distance aboutH−1
q (1 − rR)nN . It is easy to see that to show thatC has distance at least

h, it is enough to show that with high probability
∑

m∈F
K
Q

I(0,m) = 0. Note that this is

a special case of our proof, withJ = 1 andy = 0 and hence, with probability at least

1 − qΩ(nN), the codeC has large distance. The proof is complete.

Remark 5.1. In a typical use of concatenated codes, the block lengths of the inner and

outer codes satisfyn = Θ(log N), in which case the concatenated code of Theorem 5.1 is

list decodable with lists of sizeNO(ε−2(1−R)−1). However, the proof of Theorem 5.1 also

works with smallern. In particular as long asn is at least3J2, the proof of Theorem 5.1

goes through. Thus, withn in Θ(J2), one can get concatenated codes that are list decodable

up to the list-decoding capacity with lists of sizeqO(ε−6(1−R)−3).

Lemma 5.4. Let q be a prime power, and1 6 n 6 N be integers. Let0 < r, R < 1 be

rationals andδ > 0 be a real such thatR 6 (αq(r) − δ)/r and δ 6 αq(r), whereαq(r)

is as defined in (5.1). Letγ > 0 be a real such thatγ 6 min
(

1−R
2

, δ2

c′qr

)

, wherec′q is the

constant that depends only onq from Lemma 2.4. Then for all integersJ >
4c′q

δ2(1−R)
and

h 6 (H−1
q (1− rR)− 2δ)nN the following is satisfied. For every integer(1−R − γ)N 6

110

d 6 N ,
h

nd
6 H−1

q

(

1 − r

(

1 − N(1 − R − γ)

d

)

− 2N

Jd

)

. (5.14)

Proof. Using the factH−1
q is an increasing function, (5.14) is satisfied if the following is

true (whered∗ = (1 − R − γ)N):

h

nN
6 min

d∗6d6N

{(
d

N

)

· H−1
q

(

1 − r

(

1 − N(1 − R − γ)

d

)

− 2N

d∗J

)}

.

Define a new variableθ = 1−N(1−R−γ)/d. Note that asd∗ = (1−R−γ)N 6 d 6 N ,

0 6 θ 6 R + γ. Also d/N = (1 − R − γ)(1 − θ)−1. Thus, the above inequality would be

satisfied if

h

nN
6 (1 − R − γ) min

06θ6R+γ

{

(1 − θ)−1H−1
q

(

1 − rθ − 2

(1 − R − γ)J

)}

.

Again using the fact thatH−1
q is an increasing function along with the fact thatγ 6 (1 −

R)/2 , we get that the above is satisfied if

h

nN
6 (1 − R − γ) min

06θ6R+γ

{

(1 − θ)−1H−1
q

(

1 − rθ − 4

(1 − R)J

)}

.

By Lemma 2.4, ifJ >
4c′q

δ2(1−R)
, then7 H−1

q

(

1 − rθ − 4
(1−R)J

)

> H−1
q (1 − rθ) − δ. Since

for every0 6 θ 6 R+γ, (1−R−γ)(1−θ)−1δ 6 δ, the above equation would be satisfied

if
h

nN
6 (1 − R − γ) min

0<θ6R+γ
fr,q(θ) − δ.

Note that the assumptionsγ 6 δ2/(rc′q) 6 δ/r (as δ 6 1 and c′q > 1) and R 6

(αq(r) − δ)/r, we haveR + γ 6 αq(r)/r. Thus, by using Lemma 5.3 we get that

(1 − R − γ) min0<θ6R+γ fr,q(θ) = H−1
q (1 − rR − rγ). By Lemma 2.4, the facts that

γ 6 δ2/(rc′q) andH−1
q is increasing, we haveH−1

q (1− rR− rγ) > H−1
q (1− rR)− δ. This

implies that (5.14) is satisfied ifh/(nN) 6 H−1
q (1 − rR) − 2δ, as desired.

7We also use the fact thatH−1
q is increasing.

111

5.5 Using Folded Reed-Solomon Code as Outer Code

In this section, we will prove a result similar to Theorem 5.1, with the outer code being

the folded Reed-Solomon code from Chapter 3. The proof will make crucial use of the list

recoverability of folded Reed-Solomon codes. Before we begin we will need the following

definition and results.

5.5.1 Preliminaries

We will need the following notion of independence.

Definition 5.1 (Independent tuples). LetC be a code of block lengthN and rateR defined

over Fqk . Let J > 1 and 0 6 d1, . . . , dJ 6 N be integers. Letd = 〈d1, . . . , dJ〉. An

ordered tuple of codewords(c1, . . . , cJ), cj ∈ C is said to be(d, Fq)-independent if the

following holds.d1 = wt(c1) and for every1 < j 6 J , dj is the number of positionsi such

that cj
i is Fq-independent of the vectors{c1

i , . . . , c
j−1
i }, wherecℓ = (cℓ

1, . . . , c
ℓ
N).

Note that for any tuple of codewords(c1, . . . , cJ) there exists a uniqued such that it is

(d, Fq)-independent.

The next result will be crucial in our proof.

Lemma 5.5. Let C be a folded Reed-Solomon code of block lengthN that is defined over

FQ with Q = qk as guaranteed by Theorem 3.6. For anyL-tuple of codewords fromC,

whereL > J · (N/ε2)O(ε−1J log(q/R)) (whereε > 0 is same as the one in Theorem 3.6),

there exists a sub-tuple ofJ codewords such that theJ-tuple is(d, Fq)-independent, where

d = 〈d1, . . . , dJ〉 such that for every1 6 j 6 J , dj > (1 − R − ε)N .

Proof. The proof is constructive. In particular, given anL-tuple of codewords, we will con-

struct aJ sub-tuple with the required property. The correctness of the procedure will hinge

on the list recoverability of the folded Reed-Solomon code as guaranteed by Theorem 3.6.

We will construct the final sub-tuple iteratively. In the first step, pick any non-zero

codeword in theL-tuple– call itc1. Note that asC has distance(1 − R)N (and0 ∈ C),

112

c1 is non-zero in at leastd1 > (1 − R)N > (1 − R − ε)N many places. Note thatc1 is

vacuously independent of the “previous” codewords in thesepositions. Now, say that the

procedure has chosen codewordsc1, . . . , cs such that the tuple is(d′, Fq)-independent for

d′ = 〈d1, . . . , ds〉, where for every1 6 j 6 s, dj > (1 − R − ε)N . For every1 6 i 6 N ,

defineSi to be theFq-span of the vectors{c1
i , . . . , c

s
i} in F

k
q . Note that|Si| 6 qs. Call

c = (c1, . . . , cN) ∈ C to be abadcodeword, if there does not exist anyds+1 > (1−R−ε)N

such that(c1, . . . , cs, c) is (d, Fq)-independent ford = 〈d1, . . . , ds+1〉. In other words,c is a

bad codeword if and only if someT ⊂ [N] with |T | = (R + ε)N satisfiesci ∈ Si for every

i ∈ T . Put differently,c satisfies the condition of being in the output list for list recovering

C with inputS1, . . . , SN and agreement fractionR + ε. Thus, by Theorem 3.6, the number

of such bad codewords isU = (N/ε2)O(ε−1s log(q/R)) 6 (N/ε2)O(ε−1J log(q/R)), whereJ is

the number of steps for which this greedy procedure can be applied. Thus, as long as at

each step there are strictly more thanU codewords from the originalL-tuple of codewords

left, we can continue this greedy procedure. Note that we cancontinue this procedureJ

times, as long asJ 6 L/U . The proof is complete.

Finally, we will need a bound on the number of independent tuples for folded Reed-

Solomon codes.

Lemma 5.6. LetC be a folded Reed-Solomon code of block lengthN and rate0 < R < 1

that is defined overFQ, whereQ = qk. LetJ > 1 and0 6 d1, . . . , dJ 6 N be integers and

defined = 〈d1, . . . , dJ〉. Then the number of(d, Fq)-independent tuples inC is at most

qNJ(J+1)
J∏

j=1

Qmax(dj−N(1−R)+1,0).

Proof. Given a tuple(c1, . . . , cJ) that is(d, Fq)-independent, defineTj ⊆ [N] with |Tj| =

dj, for 1 6 j 6 J to be the set of positionsi, wherecj
i is linearly independent of the

values{c1
i , . . . , c

j−1
i }. We will estimate the number of(d, Fq)-independent tuples by first

estimating a boundUj on the number of choices for thejth codeword in the tuple (given a

113

fixed choice of the firstj − 1 codewords). To complete the proof, we will show that

Uj 6 qN(J+1) · Qmax(dj−N(1−R)+1,0).

A codewordc ∈ C can be thejth codeword in the tuple in the following way. Now for every

position in[N] \ Tj , c can take at mostqj−1 6 qJ values (as in these position the value has

to lie in theFq span of the values of the firstj − 1 codewords in that position). SinceC is

folded Reed-Solomon, once we fix the values at positions in[N] \ Tj , the codeword will be

completely determined once anymax(RN−(N −dj)+1, 0) = max(dj−N(1−R)+1, 0)

positions inTj are chosen (w.l.o.g. assume that they are the “first” so many positions). The

number of choices forTj is
(

N
dj

)
6 2N 6 qN . Thus, we have

Uj 6 qN · (qJ)N−dj · Qmax(dj−N(1−R)+1,0) 6 qN(J+1) · Qmax(dj−N(1−R)+1),0),

as desired.

5.5.2 The Main Result

We will now prove the following result.

Theorem 5.2.Let q be a prime power and let0 < r < 1 be an arbitrary rational. Let0 <

ε < αq(r) an arbitrary real, whereαq(r) is as defined in (5.1), and0 < R 6 (αq(r)− ε)/r

be a rational. Then the following holds for large enough integersn, N such that there exist

integersk andK that satisfyk = rn andK = RN . Let Cout be a folded Reed-Solomon

code overFqk of block lengthN and rateR. LetC1
in, . . . , C

N
in be random linear codes over

Fq, whereCi
in is generated by a randomk×n matrixGi overFq and the random choices for

G1, . . . ,GN are all independent. Then the concatenated codeC = Cout ◦ (C1
in, . . . , C

N
in)

is a

(

H−1
q (1 − Rr) − ε,

(
N
ε2

)O(ε−4(1−R)−2 log(1/R))
)

-list decodable code with probability at

least1 − q−Ω(nN) over the choices ofG1, . . . ,GN . Further, with high probability,C has

raterR.

In the rest of this section, we will prove the above theorem.

114

DefineQ = qk. Let L be the worst-case list size that we are shooting for (we will fix

its value at the end). By Lemma 5.5, anyL + 1-tuple ofCout codewords(u0, . . . ,uL) ∈
(Cout)

L+1 contains at leastJ =
⌊

(L + 1)/(N/γ2)O(γ−1J log(q/R))
⌋

codewords that form an

(d, Fq)-independent tuple, for somed = 〈d1, . . . , dJ〉, with dj > (1 − R − γ)N (we will

specifyγ, 0 < γ < 1 − R, later). Thus, to prove the theorem it suffices to show that

with high probability, no Hamming ball inFnN
q of radius(H−1

q (1 − rR) − ε)nN contains

aJ-tuple of codewords(u1G, . . . ,uJG), where(u1, . . . ,uJ) is aJ-tuple of folded Reed-

Solomon codewords that is(d, Fq)-independent. For the rest of the proof, we will call a

J-tuple ofCout codewords(u1, . . . ,uJ) a goodtuple if it is (d, Fq)-independent for some

d = 〈d1, . . . , dJ〉, wheredj > (1 − R − γ)N for every1 6 j 6 J .

Defineρ = H−1
q (1 − Rr) − ε. For every goodJ-tuple ofCout codewords(u1, . . . ,uJ)

and received wordy ∈ F
nN
q , define an indicator variableI(y,u1, . . . ,uJ) as follows.

I(y,u1, . . . ,uJ) = 1 if and only if for every1 6 j 6 J , wt(ujG − y) 6 ρnN . That

is, it captures the bad event that we want to avoid. Define

XC =
∑

y∈FnN
q

∑

good(u1,...,uJ)∈(Cout)J

I(y,u1, . . . ,uJ).

We want to show that with high probabilityXC = 0. By Markov’s inequality, the theorem

would follow if we can show that:

E[XC] =
∑

y∈FnN
q

∑

good(u1,...,uJ)∈(Cout)J

E[I(y,u1, . . . ,uJ)] 6 q−Ω(nN). (5.15)

Before we proceed, we need a final bit of notation. For a good tuple (u1, . . . ,uJ)

and every1 6 j 6 J , defineTj(u
1, . . . ,uJ) ⊆ [N] to be the set of positionsi such

that uj
i is Fq-independent of the set{u1

i , . . . ,u
j−1
i }. Note that since the tuple is good,

|Tj(u
1, . . . ,uJ)| > (1 − R − γ)N .

Let h = ρnN . Consider the following sequence of inequalities (where below we have

suppressed the dependence ofTj on (u1, . . . ,uJ) for clarity):

115

E[XC] =
∑

y∈FnN
q

∑

good(u1,...,uJ)∈(Cout)J

PrG=(G1,...,GN)

[
J∧

j=1

wt(ujG − y) 6 h

]

(5.16)

6
∑

y∈FnN
q

∑

good(u1,...,uJ)∈(Cout)J

PrG=(G1,...,GN)

[
J∧

j=1

wtTj
(ujG − y) 6 h

]

(5.17)

=
∑

y∈FnN
q

∑

good(u1,...,uJ)∈(Cout)J

J∏

j=1

PrG
[
wtTj

(uiG − y) 6 h
]

(5.18)

6
∑

y∈FnN
q

∑

good(u1,...,uJ)∈(Cout)J

J∏

j=1

q
−n|Tj |

„

1−Hq

„

h
n|Tj |

««

(5.19)

=
∑

y∈FnN
q

∑

(d1,...,dJ)
∈{(1−R−γ)N,...,N}J

∑

good(u1,...,uJ)∈(Cout)J ,
(|T1|=d1,...,|TJ |=dJ)

J∏

j=1

q
−ndj

„

1−Hq

„

h
ndj

««

(5.20)

6
∑

(d1,...,dJ)
∈{(1−R−γ)N,...,N}J

qnN · qNJ(J+1)

J∏

j=1

Qmax(dj−(1−R)N+1,0)

J∏

j=1

q
−ndj

„

1−Hq

„

h
ndj

««

(5.21)

6
∑

(d1,...,dJ)
∈{(1−R−γ)N,...,N}J

qnN · qNJ(J+1)

J∏

j=1

Qdj−(1−R−γ)N

J∏

j=1

q
−ndj

„

1−Hq

„

h
ndj

««

(5.22)

=
∑

(d1,...,dJ)
∈{(1−R−γ)N,...,N}J

J∏

j=1

q
−ndj

„

1−Hq

„

h
ndj

«

−r

„

1− (1−R−γ)N
dj

«

− N
Jdj

−N(J+1)
ndj

«

. (5.23)

In the above (5.16) follows from the definition of the indicator variable. (5.17) follows

from the simple fact that for every vectoru of lengthN and everyT ⊆ [N], wtT (u) 6

wt(u). (5.18) follows by an argument similar to the one used to argue (5.9) from (5.8)

in the proof of Theorem 5.1. Basically, we need to write out the probability as a product

of conditional probabilities (withj = J “taken out” first) and then using the facts that

the tuple(u1, . . . ,uJ) is good and the choices forG1, . . . ,GN are independent.8 (5.19)

8In Theorem 5.1, the tuple of codewords were not ordered whilethey are ordered here. However, it is easy

116

follows from Lemma 5.1. (5.20) follows from rearranging thesummand and using the

fact that the tuple is good (and hencedj > (1 − R − γ)N). (5.21) follows from the

fact that there areqnN choices9 for y and Lemma 5.6. (5.22) follows from the fact that

dj − (1 − R)N + 1 6 dj − (1 − R − γ)N (for N > 1/γ) and thatdj > (1 − R − γ)N .

(5.23) follows by rearranging the terms.

Now, as long asn > J(J + 1), we haveN(J+1)
nd

6 N
Jd

. (5.23) will imply (5.15) (along

with the fact thatH−1
q is increasing) if we can show that for every(1−R−γ)N 6 d 6 N ,

h

nd
6 H−1

q

(

1 − r

(

1 − (1 − R − γ)N

d

)

− 2N

Jd

)

− δ,

for δ = ε/3. Thus, by Lemma 5.4 (and using the arguments used in the proofof The-

orem 5.1 to show that the conditions of Lemma 5.4 are satisfied), we can selectJ in

Θ
(

1
ε2(1−R)

)

(andγ in Θ(ε2(1 − R)/r)), and pick

h/(nN) = H−1
q (1 − rR) − ε = ρ,

as desired. This along with Lemma 5.5, implies that we can set

L = (N/ε2)O(ε−4(1−R)−2 log(q/R)),

as required.

Using arguments similar to those in the proof of Theorem 5.1,one can show that the

codeCout ◦ (C1
in, . . . , C

N
in) with high probability has raterR.

Remark 5.2. The idea of using list recoverability to argue independencecan also be used

to prove Theorem 5.1. That is, first show that with good probability, a random linear outer

code will have good list recoverability. Then the argument in this section can be used to

to check that the argument in Theorem 5.1 also works for ordered tuples as long as the induction is applied
in the right order.

9 As the final codeC will be linear, it is sufficient to only look at received wordsthat have Hamming
weight at mostρnN . However, this gives a negligible improvement to the final result and hence, we just
bound the number of choices fory by qnN .

117

prove Theorem 5.1. However, this gives worse parameters than the proof presented in Sec-

tion 5.4. In particular, by a straightforward application of the probabilistic method, one can

show that a random linear code of rateR overFQ is (R + γ, ℓ, Qℓ/γ)-list recoverable [49,

Sec 9.3.2]. In proof of Theorem 5.2,ℓ is roughlyqJ , whereJ is roughly1/ε2. Thus, if we

used the arguments in the proof of Theorem 5.2, we would be able to prove Theorem 5.1

but with lists of size ofQq
O(ε−2(1−R)−1)

, which is worse than the list size ofQO(ε−2(1−R)−1)

guaranteed by Theorem 5.1.

5.6 Bibliographic Notes and Open Questions

The material presented in this chapter appears in [61].

Theorem 5.1 in some sense generalizes the following result of Blokh and Zyablov [19].

Blokh and Zyablov show that the concatenated code where boththe outer and inner codes

are chosen to be random linear codes with high probability lies on the Gilbert-Varshamov

bound of relative minimum distance is (at least)H−1
q (1 − R) for rateR.

The arguments used in this chapter also generalize Thommesen’s proof that concate-

nated codes obtained by setting Reed-Solomon codes as outercodes and independent ran-

dom inner code lie on the Gilbert-Varshamov bound [102]. In particular by usingy to be

the all zero vector andJ = L = 1 in proof of Theorem 5.2, one can recover Thommesen’s

proof. Note that whenJ = 1, a codewordc is (〈w〉, Fq)-independent ifwt(w) = w. Thus,

the proof of Thommesen only required a knowledge of the weight distribution of the Reed-

Solomon code. However, for our purposes, we need a stronger form of independence in the

proof of Theorem 5.2 for which we used the strong list-recoverability property of folded

Reed-Solomon codes.

Theorem 5.2 leads to the following intriguing possibility.

Open Question 5.1.Can one list decode the concatenated codes from Theorem 5.2 up to

the fraction of errors for which Theorem 5.2 guarantees it tobe list decodable (with high

probability)?

118

Current list-decoding algorithms for concatenated codes work in two stages. In the

first stage, the inner code(s) are list decoded and in the second stage the outer code is list

recovered (for example see Chapter 4). In particular, the fact that in these algorithms the

first phase is oblivious to the outer codes seems to be a bottleneck. Somehow “merging”

the two stages might lead to a positive resolution of the question above.

119

Chapter 6

LIMITS TO LIST DECODING REED-SOLOMON CODES

6.1 Introduction

In Chapters 3 and 4 we were interested in the following question: Can one construct explicit

codes along with efficient list-decoding algorithms that can correct errors up to the list-

decoding capacity ? Note that in the question above, we have the freedom to pick the code.

In this chapter, we will turn around the question by focusingon a fixed code and then asking

what is the best possible tradeoff between rate and fractionof errors (that can be corrected

via efficient list decoding) for the given code.

In this chapter, we will primarily focus on Reed-Solomon codes. Reed-Solomon codes

are an important and extensively studied family of error-correcting codes. The codewords

of a Reed-Solomon code (henceforth, RS code) over a fieldF are obtained by evaluating low

degree polynomials at distinct elements ofF. The rate versus distance tradeoff for Reed-

Solomon codes meets the Singleton bound, which along with the code’s nice algebraic

properties, give RS codes a prominent place in coding theory. As a result the problem of

decoding RS codes has received much attention.

As we already saw in Section 3.1, in terms of fraction of errors corrected, the best

known polynomial time list algorithm today can, for Reed-Solomon codes of rateR, correct

up to a1 −
√

R ([97, 63]) fraction of errors. The performance of the algorithm in [63]

matches the so-called Johnson bound (cf. [64]) which gives ageneral lower bound on the

number of errors one can correct using small lists inanycode, as a function of the distance

of the code. As we saw in Chapter 3, there are explicit codes known that have better

list decodable properties than Reed-Solomon codes. However, Reed-Solomon codes have

been instrumental in all the algorithmic progress in list decoding (see Section 3.1 for more

120

details on these developments). In addition, Reed-Solomoncodes have important practical

applications. Thus, given the significance (both theoretical and practical) of Reed-Solomon

codes, it is an important question to pin down the optimal tradeoff between the rate and list

decodability of Reed-Solomon codes.

This chapter is motivated by the question of whether the Guruswami-Sudan result is

the best possible (i.e., whether the Johnson bound is “tight” for Reed-Solomon codes).

By this we mean whether attempting to decode with a larger error parameter might lead

to super-polynomially large lists as output, which of course will preclude a polynomial

time algorithm. While we don’t quite show this to be the case,we give evidence in this

direction by demonstrating that in the more general settingof list recovery (to which also

the algorithm of Guruswami and Sudan [63] applies) its performance is indeed the best

possible.

We also present constructions of explicit “bad list-decoding configurations” for Reed-

Solomon codes. The details follow.

6.2 Overview of the Results

6.2.1 Limitations to List Recovery

The algorithm in [63] in fact solves the following more general polynomial reconstruction

problem in polynomial time: Givenn′ distinct pairs(βi, γi) ∈ F
2 output a list of all polyno-

mialsp of degreek that satisfyp(βi) = γi for more than
√

kn′ values ofi ∈ {1, 2, . . . , n′}
(we stress that theβi’s neednot be distinct). In particular, the algorithm can solve the

list recovery problem (see Definition 2.4). As a special case, it can solve the following

“error-free” or “noiseless” version of the list recovery problem.

Definition 6.1 (Noiseless List Recovery). For a q-ary codeC of block lengthn, the noise-

less list recovery problem is the following. We are given a set Si ⊆ Fq of possible symbols

for the i’th symbol for each positioni, 1 6 i 6 n, and the goal is to output all codewords

c = 〈c1, . . . , cn〉 such thatci ∈ Si for everyi. When eachSi has at mostℓ elements, we

121

refer to the problem as noiseless list recovery with input lists of sizeℓ.

Note that if a codeC is (0, ℓ, L)-list recoverable thenL is the worst case output list size

when one solves the noiseless list recovery problem onC with input lists of sizeℓ.

Guruswami and Sudan algorithm [63] can solve the noiseless list recovery problem for

Reed-Solomon codes with input lists of sizeℓ < ⌈n
k
⌉ in polynomial time. That is, Reed-

Solomon codes are(0, ⌈n
k
⌉−1, L(n))-list recoverable for some polynomially bounded func-

tion L(n). In Section 6.3, we demonstrate that this latter performance is the best possible

with surprising accuracy — specifically, we show that whenℓ = ⌈n
k
⌉, there are settings of

parameters for which the list of output polynomials needs tobe super-polynomially large

in n (Theorem 6.3). In fact, our result also applies to the model considered by Ar et al. [3],

where the input lists are “mixtures of codewords.” In particular, in their model the lists at

every position take values from a collection ofℓ fixedcodewords.

As a corollary, this rules out an efficient solution to the polynomial reconstruction al-

gorithm that works even under the slightly weaker conditionon the agreement parameter:

t >
√

kn′ − k/2.1 In this respect, the “square root” bound achieved by [63] is optimal,

and any improvement to their list-decoding algorithm whichworks with agreement frac-

tion t/n <
√

R whereR = (k + 1)/n is the rate of the code, or in other words that works

beyond the Johnson bound, must exploit the fact that the evaluation pointsβi are distinct

(or “almost distinct”).

While this part on tightness of Johnson bound remains speculative at this stage, for the

problem of list recovery itself, our work proves that RS codes are indeed sub-optimal, as

we describe below. By our work Reed-Solomon codes for list recovery with input lists of

sizeℓ must have rate at most1/ℓ. On the other hand, Guruswami and Indyk [52] prove that

there exists a fixedR > 0 (in fact R can be close to1) such that for every integerℓ there

are codes of rateR which are list recoverable given input lists of sizeℓ (the alphabet size

and output list size will necessarily grow withℓ but the rate itself is independent ofℓ). Note

1This in turn rules out, for everyε > 0, a solution to the polynomial reconstruction algorithm that works
as long ast >

√

(1 − ε)kn′.

122

that in Chapter 3, we showed that folded Reed-Solomon codes are explicit list recoverable

codes with optimal rate.

6.2.2 Explicit “Bad” List Decoding Configurations

The result mentioned above presents an explicit bad list recovery configuration, i.e., an

input instance to the list recovery problem with a super-polynomial number of solutions.

To prove results on limitations of list decoding, such as thetightness of the Johnson bound,

we need to demonstrate a received wordy with super-polynomially many codewords that

agree withy at t or more places. A simple counting argument establishes theexistence

of such received words that have agreementt with
(

n
t

)
/qt−k many codewords [70, 25].

In particular, this implies the following forn = q. For k = nδ (in which case we say

that the Reed-Solomon code has low rate), one can gett = k
2δ

for any δ > 0 and fork

in Ω(n) (in which case we say that the Reed-Solomon code has high rate), one can get

t = k + O
(

n
log n

)

. In Section 6.4.2, we demonstrate anexplicit construction of such a

received word with super-polynomial number of codewords with agreementt up to(2−ε)k

(for anyε > 0), wherek = nδ for any δ > 0. Note that such a construction is trivial for

t = k since we can interpolate degreek polynomials through any set ofk points. In

Section 6.4.3, we demonstrate anexplicit construction of such a received word with super-

polynomial number of codewords with agreementt up tok + n
logω(1) n

, whenk is in Ω(n).

In general, the quest forexplicitconstructions of this sort (namely small Hamming balls

with several codewords) is well motivated. If achieved withappropriate parameters they

will lead to a derandomization of the inapproximability result for computing the minimum

distance of a linear code [32]. However, for this application it is important to get2nΩ(1)

codewords in a ball of radiusρ times the distance of the code for some constantρ < 1.

Unfortunately, neither of our explicit constructions achieveρ smaller than1 − o(1).

As another motivation, we point out that the currentbesttrade-off between rate and

relative distance (for a code over constant sized alphabet)is achieved by a non-linear code

comprising of precisely a bad list-decoding configuration in certain algebraic-geometric

123

codes [107]. Unfortunately the associated received word isonly shown to exist by a count-

ing argument and its explicit specification will be requiredto get explicit codes with these

parameters.

6.2.3 Proof Approach

We show our result on list recovering Reed-Solomon codes by proving a super-polynomial

(in n = qm) bound on the number of polynomials overFqm of degreek that take values

in Fq at every point inFqm, for any prime powerq wherek is roughlyqm−1. Note that

this implies that there can be a super-polynomial number of solutions to list recovery when

input list sizes are⌈n
k
⌉. We establish this bound on the number of such polynomials by

exploiting a folklore connection of such polynomials to a classic family of cyclic codes

called BCH codes, followed by an (exact) estimation of the size of BCH codes with certain

parameters. We also write down an explicit collection of polynomials, obtained by taking

Fq-linear combinations of translated norm functions, all of which take values only inFq.

By the BCH bound, we conclude that this in fact is a precise description of the collection

of all such polynomials.

Our explicit construction of a received wordy with several RS codewords (for low rate

RS codes) with non-trivial agreement withy is obtained using ideas from [25] relating to

representations of elements in an extension finite field by products of distinct linear factors.

Our explicit construction for high rate RS codes is obtainedby looking at cosets of certain

prime fields.

6.3 BCH Codes and List Recovering Reed-Solomon Codes

6.3.1 Main Result

We will work with polynomials overFqm of characteristicp whereq is a power ofp, and

m > 1. Our goal in this section is to prove the following result, and in Section 6.3.2 we

will use it to state corollaries on limits to list decodability of Reed-Solomon codes. (We

124

will only need a lower bound on the number of polynomials withthe stated property but

the result below in fact gives an exact estimation, which in turn is used in Section 6.3.4 to

give a precise characterization of the concerned polynomials.)

Theorem 6.1. Let q be a prime power, andm > 1 be an integer. Then, the number of

univariate polynomials inFqm[z] of degree at mostq
m−1
q−1

which take values inFq when

evaluated at every point inFqm is exactlyq2m
. That is,

∣
∣
∣{P (z) ∈ Fqm [z] | deg(P) 6

qm − 1

q − 1
and∀α ∈ Fqm, P (α) ∈ Fq}

∣
∣
∣ = q2m

In the rest of this section, we prove Theorem 6.1. The proof isbased on a connection of

polynomials with the stated property to a family of cyclic codes called BCH codes, followed

by an estimation of the size (or dimension) of the associatedBCH code. Now, the latter

estimation itself uses basic algebra. In particular one canprove Theorem 6.1 using finite

field theory and Fourier transform without resorting to coding terminology. However, the

connection to BCH codes is well known and we use this body of prior work to modularize

our presentation.

We begin with the definition of BCH codes2. We point the reader to [80], Ch. 7, Sec. 6,

and Ch. 9, Secs. 1-3, for detailed background information onBCH codes.

Definition 6.2. Let α be a primitive element ofFqm , and letn = qm − 1. The BCH code

BCHq,m,d,α of designed distanced is a linear code of block lengthn overFq defined as:

BCHq,m,d,α = {〈c0, c1, . . . , cn−1〉 ∈ F
n
q |c(αi) = 0 for i = 1, 2, . . . , d − 1, where

c(x) = c0 + c1x + · · ·+ cn−1x
n−1 ∈ Fq[x]}.

We will omit one or more the subscripts inBCHq,m,d,α for notational convenience when

they are clear from the context.

In our proof, we will use the following well-known result. For the sake of completeness,

we present its proof here.

2What we define are actually referred to more specifically asnarrow-sense primitiveBCH codes, but we
will just use the term BCH codes for them.

125

Lemma 6.1(BCH codes are subfield subcodes of RS codes). Let q be a prime power and

m > 1 an integer. Letn = qm − 1, d be an integer in the range1 < d < n, andα be a

primitive element ofFqm . Then the set of codewords ofBCHq,m,d,α maybe written as

{〈P (α0), P (α1), . . . , P (αn−1)〉 ∈ F
n
q | P ∈ Fqm [z],deg(P) 6 n − d,

andP (γ) ∈ Fq ∀γ ∈ Fqm}.

Proof. Our goal is to prove that the two sets

S1 = { 〈c0, c1, . . . , cn−1〉 |c(αi) = 0 for i = 1, 2, . . . , d − 1, where

c(x) = c0 + c1x + · · ·+ cn−1x
n−1 ∈ Fq[x] } ,

S2 =
{
〈P (α0), P (α1), . . . , P (αn−1)〉 | P ∈ Fqm[z], deg(P) 6 n − d, andP (γ) ∈ Fq

∀γ ∈ Fqm} ,

are identical. We will do so by showing both the inclusionsS2 ⊆ S1 andS1 ⊆ S2.

We begin with showingS2 ⊆ S1. Let P (z) =
∑n−d

j=0 ajz
j ∈ Fqm [z] be a polynomial of

degree at most(n − d) that takes values inFq. Then, forr = 1, 2, . . . , d − 1, we have

n−1∑

i=0

P (αi)(αr)i =

n−1∑

i=0

(n−d∑

j=0

ajα
ij
)

αri =

n−d∑

j=0

aj

n−1∑

i=0

(αr+j)i = 0 ,

where in the last step we use that
∑n−1

i=0 γi = 0 for everyγ ∈ Fqm \{1} andαr+j 6= 1 since

1 6 r + j 6 n − 1 andα is primitive. Therefore,〈P (α0), P (α1), . . . , P (αn−1)〉 ∈ S1.

We next proceed to show the inclusionS1 ⊆ S2. Suppose〈c0, c1, . . . , cn−1〉 ∈ S1. For

0 6 j 6 n − 1, define (this is the “inverse Fourier transform”)

aj =
1

n

n−1∑

i=0

ciα
−ji ,

where by 1
n
, we mean the multiplicative inverse ofn · 1 in the fieldFqm . Note thataj =

1
n
c(α−j) = 1

n
c(αn−j) wherec(x) =

∑n−1
i=0 cix

i. So, by the definition ofS1, it follows that

aj = 0 for j > n − d. Therefore the polynomialP (z) ∈ Fqm defined by

P (z) =

n−1∑

j=0

ajz
j =

n−d∑

j=0

ajz
j

126

has degree at most(n − d).

We now claim that forP (αs) = cs for 0 6 s 6 n − 1. Indeed,

P (αs) =

n−1∑

j=0

ajα
sj =

n−1∑

j=0

(
1

n

n−1∑

i=0

ciα
−ji

)

αsj

=
n−1∑

i=0

ci

n

n−1∑

j=0

(αs−i)j = cs ,

where in the last step we used the fact that
∑n−1

j=0 (αs−i)j = 0 wheneveri 6= s, and equals

n wheni = s. Therefore,〈c0, c1, . . . , cn−1〉 = 〈P (α0), . . . , P (αn−1)〉. We are pretty much

done, except that we have to check also thatP (0) ∈ Fq (since we wantedP (γ) ∈ Fq for

all γ ∈ Fqm , includingγ = 0). Note thatP (0) = a0 = 1
n
·∑n−1

i=0 ci. Sincen = qm − 1, we

haven + 1 = 0 in Fqm and so1
n

= −1 ∈ Fq. This together with the fact thatci ∈ Fq for

everyi implies thatP (0) ∈ Fq as well, completing the proof.

In light of the above lemma, in order to prove Theorem 6.1, we have to prove that

|BCHq,m,d,α| = q2m
whend = (qm − 1)(1− 1

q−1
). We turn to this task next. We begin with

the following bound on the size of BCH codes [15, Ch. 12]. For the sake of completeness,

we also give a proof sketch.

Lemma 6.2 (Dimension of BCH Codes). For integer i, n, let ⌊i⌋n be a shorthand fori

mod n. Then|BCHq,m,d,α| = q|I(q,m,d)| where

I(q, m, d) = {i | 0 6 i 6 n − 1, ⌊iqj⌋n 6 n − d for all j, 0 6 j 6 m − 1} (6.1)

for n = qm − 1. (Note that for this value ofn, if i = i0 + i1q + · · · im−1q
m−1, then

⌊iq⌋n = im−1 + i0q + i1q
2 + · · · + im−2q

m−1, and so⌊iq⌋n is obtained by a simple cyclic

shift of theq-ary representation ofi.)

Proof. It follows from Definition 6.2 that the BCH codewords are simply polynomialsc(x)

overFq of degree at most(n−1) that vanish atαi for 1 6 i < d. Note that ifc(x), c′(x) are

two such polynomials, then so isc(x)+c′(x). Moreover, sinceαn = 1, xc(x) mod (xn−1)

127

also vanishes at each designatedαi. It follows that ifc(x) is a codeword, then so isr(x)c(x)

mod (xn − 1) for every polynomialr(x) ∈ Fq[x].

In other wordsBCHq,m,d is anideal in the quotient ringR = Fq[x]/(xn − 1). It is well

known thatR is a principal ideal ring, i.e., a ring in which every ideal isgenerated by one

element [77, Chap. 1, Sec. 3]. Therefore there is a unique monic polynomialg(x) ∈ Fq[x]

such that

BCHq,m,d,α = {g(x)h(x) | h(x) ∈ Fq[x]; deg(h) 6 n − 1 − deg(g)}

It follows that |BCHq,m,d,α| = qn−deg(g), and so it remains to prove thatdeg(g) = n −
|I(q, m, d)| whereI(q, m, d) is defined as in (6.1).

It is easily argued that the polynomialg(x) is the monic polynomial of lowest degree

overFq that hasαi for everyi, 1 6 i < d, as roots. It is well known ([80, Chap. 7, Sec. 5])

thatg(x) is then given by

g(x) =
∏

β∈M(α)∪M(α2)···∪M(αd−1)

(x − β) ,

whereM(αi) is thecyclotomic coset3of αi. Further for the ease of notation, defineMd,α =

M(α) ∪ M(α2) · · · ∪ M(αd−1). To complete the proof we will show that

| Md,α |= n− | I(q, m, d) | . (6.2)

To prove (6.2), we claim that for every0 6 i 6 n − 1, αi ∈ Md,α if and only if

(n − i) 6∈ I(m, q, d). To see that this is true note that(n − i) 6∈ I(q, m, d) if and only

if there is a0 6 ji < m such that⌊(n − i)qji⌋n = n − i∗ > n − d. In other words,

⌊iqji⌋n = i∗, where0 6 i∗ < d. This implies that(n − i) 6∈ I(q, m, d) if and only if

αi ∈ M(αi∗) ⊆ Md,α, which proves the claim.

Let’s now use the above to compute the size ofBCHq,m,d,α whered = (qm−1)− qm−1
q−1

.

We need to compute the quantity|I(q, m, d)|, i.e., the number ofi, 0 6 i < qm − 1 such

3In other wordsM(αi) = {αi, α⌊iq⌋n , . . . , α⌊iqmi−1⌋n}, wheremi is the smallest integer such that
⌊iqmi⌋n = i.

128

that⌊iqj⌋qm−1 6
qm−1
q−1

= 1 + q + · · ·+ qm−1 for eachj = 0, 1, . . . , m− 1. This condition

is equivalent to saying that ifi = i0 + i1q + · · · + im−1q
m−1 is theq-ary expansion ofi,

then all them integers whoseq-ary representations are cyclic shifts of(i0, i1, . . . , im−1)

are 6 1 + q + · · · + qm−1. Clearly, this condition is satisfied if and only if for each

j = 0, 1, . . . , m − 1, ij ∈ {0, 1}. There are2m choices fori with this property, and hence

we conclude|I(q, m, d)| = 2m whend = (qm − 1) − qm−1
q−1

.

Together with Lemma 6.1, we conclude that the number of polynomials of degree at

most qm−1
q−1

overFqm which take on values only inFq at every point inFqm is preciselyq2m
.

This is exactly the claim of Theorem 6.1.

Before moving on to state implications of the above result for Reed-Solomon list de-

coding, we state the following variant of Theorem 6.1.

Theorem 6.2.Let q be a prime power, andm > 1 be an integer. Then, for eachs, 1 6 s 6

m, the number of univariate polynomials inFqm[z] of degree at most
∑s

j=1 qm−j which take

values inFq when evaluated at every point inFqm is at leastq
Ps

j=0 (m
j). And the number

of such polynomials of degree strictly less thanqm−1 is exactlyq (namely just the constant

polynomials, so there are no polynomials with this propertyfor degrees between1 and

qm−1 − 1).

Since the proof of the theorem above is similar to the proof ofTheorem 6.1, we will

just sketch it here. By Lemmas 6.1 and 6.2, to count the numberof univariate polynomials

in Fqm [z] of degree at mostqm−1 + · · · + qm−s which take values inFq, we need to count

the number of integersi = i0 + i1q + · · · + im−1q
m−1 such that all integers corresponding

to cyclic shifts of(i0, . . . , im−1) are at mostqm−1 + · · ·+ qm−s. It is easy to see all integers

i such thatij ∈ {0, 1} for all j andij = 1 for at mosts values ofj, satisfy the required

condition. The number of such integers is
∑s

j=0

(
m
j

)
, which implies the bound claimed in

the theorem. The argument when degree is< qm−1 is similar. In this case we have to count

the number of integersi0 + i1q + · · · + im−1q
m−1 such that all integers corresponding to

all cyclic shifts of(i0, . . . , im−1) is < qm−1. Note that ifij 6= 0 for some0 6 j 6 m − 1,

129

then the(m − 1 − j)th shift with be at leastqm−1. Thus, onlyi = 0 satisfies the required

condition, which implies claimed bound in the theorem.

6.3.2 Implications for Reed-Solomon List Decoding

In the result of Theorem 6.1, if we imagine keepingq > 3 fixed and lettingm grow, then for

the choicen = qm andk = (qm − 1)/(q − 1) (so that⌈n
k
⌉ = q), Theorem 6.1 immediately

gives us the following “negative” result on polynomial reconstruction algorithms and Reed-

Solomon list decoding.4

Theorem 6.3. For every prime powerq > 3, there exist infinitely many pairs of integers

k, n such that⌈n
k
⌉ = q for which there are Reed-Solomon codes of dimension(k + 1) and

block lengthn, such that noiselessly list recovering them with input lists of size⌈n
k
⌉ requires

super-polynomial (in factqn1/ lg q
) output list size.

The above result is exactly tight in the following sense. It is easy to argue combinatori-

ally (via the “Johnson type” bounds, cf. [64]) that whenℓ < ⌈n
k
⌉, the number of codewords

is polynomially bounded. Moreover [63] presents a polynomial time algorithm to recover

all the solution codewords in this case. As was mentioned in the introduction, our results

also show the tightness of noiselessly list recovering Reed-Solomon codes in the special

setting of Ar, Lipton, Rubinfeld and Sudan [3]. One of the problems considered in [3] is

that of noiselessly list recovering Reed-Solomon codes with list sizeℓ, when the setSi at

every positioni is the set of values offixedℓ codewords at positioni. Note that our lower

bound also works in this restricted model if one takes theq fixed codewords to be theq

constant codewords.

The algorithm in [63] solves the more general problem of finding all polynomials of

degree at mostk which agree with at leastt out of n′ distinct pairs(βi, γi) whenevert >
√

kn′. The following corollary states that, in light of Theorem 6.3, this is essentially the

4We remark that we used the notationn = qm − 1 in the previous subsection, but for this Subsection we
will take n = qm.

130

best possible trade-off one can hope for from such a general algorithm. We view this as

providing the message that a list-decoding algorithm for Reed-Solomon codes that works

with fractional agreementt/n that is less than
√

R whereR is the rate, must exploit the fact

that the evaluation pointsβi are distinct or almost distinct (by which we mean that noβi

is repeated too many times). Note that for small values ofR (close to0), our result covers

even an improvement of the necessary fractional agreement by O(R) which is substantially

smaller than
√

R.

Corollary 6.4. SupposeA is an algorithm that takes as inputn′ distinct pairs(βi, γi) ∈ F
2

for an arbitrary fieldF and outputs a list of all polynomialsp of degree at mostk for which

p(βi) = γi for more than
√

kn′ − k
2

pairs. Then, there exist inputs under whichA must

output a list of super-polynomial size.

Proof. Note that in the list recovery setting of Theorem 6.3, the total number of pairs

n′ = nℓ = n⌈n
k
⌉ < n(n

k
+ 1), and the agreement parametert = n. Then

√
kn′ − k

2
<

√

kn
(n

k
+ 1
)

− k

2
= n

√

1 +
k

n
− k

2

6 n
(

1 +
k

2n

)

− k

2
= n = t .

Therefore there can be super-polynomially many candidate polynomials to output even

when the agreement parametert satisfiest >
√

kn′ − k/2.

6.3.3 Implications for List Recovering Folded Reed-Solomon Codes

In this subsection, we will digress a bit and see what the ideas in Section 6.3.1 imply

about list recoverability of folded Reed-Solomon codes. Recall that a folded Reed-Solomon

code with folding parameterm is just a Reed-Solomon code withm consecutive evalua-

tion pointsbundled together (see Chapter 3). In particular, if we start with an[n, k] Reed-

Solomon code, then we get an(N = n/m, K = k/m) folded Reed-Solomon code.

It is not too hard to check that the one can generalize Theorem6.1 to show the following.

Let a > 1 be an integer andq be a prime power. Then there areq2a
codewords from an

131

(
qa

m
, qa−1

m(q−1)

)

folded Reed-Solomon code such that every symbol of such a codeword takes

a value in(Fq)
m. The set ofq2a

folded Reed-Solomon codewords are just theq2a
BCH

codewords from Theorem 6.1, withm consecutive positions in the BCH codeword “folded”

into one symbol. Thus, this shows that an(N, K) folded Reed-Solomon code (with folding

parameterm) cannot be noiselessly list recovered with input lists of size
(

N
K

)m
.

Let us now recall the algorithmic results for (noiselessly)list recovering folded Reed-

Solomon codes. From (3.6) it follows that an(N, K) folded Reed-Solomon code (with

folding parameterm) can be noiselessly list recovered with input lists of sizeℓ if

N >

(

1 +
s

r

)(m

m − s + 1

)

s+1
√

NKsℓ,

where1 6 s 6 m, andr > s are parameters that we can choose. Thus for anyε > 0 if

r = s
ε
, then we can satisfy the above condition if

ℓ 6 (1 − ε)s+1

(
N

K

)s(
m − s + 1

m

)s+1

. (6.3)

The bound above unfortunately is much smaller than the boundof (N/K)m, unlike the

case of Reed-Solomon codes where the two bounds were (surprisingly) tight. For the case

whenK = o(N), however one can show that for anyδ > 0, the bound in (6.3) is at least

(N/K)m(1−δ). Indeed, one can chooses = m(1 − δ/2), in which case the bound in (6.3)

is (N/K)m(1−δ) · (N/K)mδ/2(δ/2)m(1−δ/2)+1(1 − ε)m(1−δ/2)+1. The claimed expression

follows by noting thatN/K = ω(1) while δ, ε andm are allO(1).

6.3.4 A Precise Description of Polynomials with Values in Base Field

We proved in Section 6.3.1, forQ = qm−1
q−1

, there are exactlyq2m
polynomials overFqm

of degreeQ or less that evaluate to a value inFq at every point inFqm. The proof of this

obtains the coefficients of such polynomials using a “Fourier transform” of codewords of an

associated BCH code, and as such gives little insight into the structure of these polynomials.

One of the natural questions to ask is: Can we say something more concrete about the

132

structure of theseq2m
polynomials? In this section, we answer this question by giving an

exact description of the set of all theseq2m
polynomials.

We begin with the following well-known fact which simply states that the “Norm”

function ofFqm overFq takes only values inFq.

Lemma 6.3. For all x ∈ Fqm , x
qm−1
q−1 ∈ Fq.

Theorem 6.5.Let q be a prime power, and letm > 1. Letα be a primitive element ofFqm.

Then, there are exactlyq2m
univariate polynomials inFqm [z] of degree at mostQ = qm−1

q−1

that take values inFq when evaluated at every point inFqm , and these are precisely the

polynomials in the set

N = {
2m−1∑

i=0

βi(z + αi)Q | β0, β1, . . . , β2m−1 ∈ Fq} .

Proof. By Lemma 6.3, clearly every polynomialP in the setN satisfiesP (γ) ∈ Fq for

all γ ∈ Fqm. The claim that there are exactlyq2m
polynomials overFqm of degreeQ or

less that take values only inFq was already established in Theorem 6.1. So the claimed

result thatN precisely describes the set of all these polynomials follows if we show that

|N | = q2m
.

Note that by definition,|N | 6 q2m
. To show that|N | > q2m

, it clearly suffices to show

(by linearity) that if
2m−1∑

i=0

βi(z + αi)Q = 0 (6.4)

as polynomials inFqm[z], thenβ0 = β1 = · · · = β2m−1 = 0. We will prove this by setting

up a full rank homogeneous linear system of equations that the βi’s must satisfy. For this

we need Lucas’ theorem, stated below.

Lemma 6.4(Lucas’ Theorem, cf. [47]). Let p be a prime. Leta andb be positive integers

with p-ary expansionsa0 + a1p + · · · + arp
r andb0 + b1p + · · · + brp

r respectively. Then
(

a
b

)
=
(

a0

b0

)(
a1

b1

)
· · ·
(

ar

br

)
mod p, which gives us

(
a
b

)
6= 0 mod p if and only ifaj > bj for

all j ∈ {0, 1, · · · , r}.

133

Define the set

T = {
∑

j∈S

qj | S ⊆ {0, · · · , m − 1} } .

Applying Lemma 6.4 withp being the characteristic of the fieldFq, we note that when

operating in the fieldFqm, the binomial coefficient ofzj in the expansion of(z + αi)Q is 1

if j ∈ T and0 otherwise. It follows that (6.4) holds if and only if
∑2m−1

i=0 (αi)Q−jβi = 0 for

all j ∈ T , which by the definition ofT and the fact thatQ = 1 + q + q2 + · · · + qm−1 is

equivalent to
2m−1∑

i=0

(αj)iβi = 0 for all j ∈ T . (6.5)

Let us label the2m elements{αj | j ∈ T} asα0, α1, . . . , α2m−1 (note that these aredistinct

elements ofFqm sinceα is primitive in Fqm). The coefficient matrix of the homogeneous

system of equations (6.5) with unknownsβ0, . . . , β2m−1 is then the Vandermonde matrix











1 α0 α2
0 · · · α2m−1

0

1 α1 α2
1 · · · α2m−1

1

...
...

...
...

...

1 α2m−1 α2
2m−1 · · · α2m−1

2m−1











,

which has full rank. Therefore, the only solution to the system (6.5) isβ0 = β1 = · · · =

β2m−1 = 0, as desired.

6.3.5 Some Further Facts on BCH Codes

The results in the previous subsections show that a large number (q2m
) of polynomials over

Fqm take on values inFq at every evaluation point, and this proved the tightness of the

“square-root” bound for agreementt = n = qm and total number of pointsn′ = nq (recall

Corollary 6.4). It is a natural question whether similarly large list size can be shown at other

points(t, n′), specifically for slightly smallern′ andt. For example, what ifn′ = n(q − 1)

and we consider list recovery from lists of sizeq − 1. In particular, how many polynomials

of degree at mostQ = (qm − 1)/(q − 1) take on values inFq \ {0} at t points inFqm. It

134

is easily seen that whent = n = qm, there are precisely(q − 1) such polynomials, namely

the constant polynomials that equal an element ofF
∗
q . Indeed, by the Johnson bound, since

t >
√

Qn′ for the choicet = n andn′ = n(q − 1), we should not expect a large list size.

However, even for the slightly smaller amount of agreementt = n − 1 = ⌊√Qn′⌋, there

are only about a linear inn number of codewords, as Lemma 6.5 below shows. Hence

obtaining super-polynomial number of codewords at other points on the square-root bound

when the agreementt is less than the block length remains an interesting question, which

perhaps the BCH code connection just by itself cannot resolve.

Lemma 6.5. Let q be a prime power and letm > 1. For any polynomialP (z) overFqm [z],

let its Hamming weight be defined as|{β ∈ Fqm|P (β) 6= 0}|. Then, there are exactly

(q − 1)qm univariate polynomials inFqm[z] of degree at mostQ = (qm−1)
q−1

that take values

in Fq when evaluated at every point inFqm and that have Hamming weight(qm − 1).

Furthermore, these are precisely the polynomials in the setW = {λ(z + β)Q | β ∈
Fqm, λ ∈ F

∗
q}.

Proof. It is obvious that all the polynomials inW satisfy the required property and are

distinct polynomials. We next show that any polynomial of degree at mostQ that satisfies

the required properties belongs toW completing the proof.

Let P (z) be a polynomial of degree at mostQ that satisfies the required properties.

We must show thatP (z) ∈ W . Let γ ∈ Fqm be such thatP (γ) = 0. Clearly, for each

β ∈ (Fqm \ {γ}), P (β)/(β − γ)Q ∈ F
∗
q. By a pigeonhole argument, there must exist some

λ ∈ F
∗
q such thatP (β) = λ(β − γ)Q for at leastq

m−1
q−1

= Q values ofβ in Fqm \ {γ}.

SinceP (γ) = 0, we have that the degreeQ polynomialsP (z) andλ(z − γ)Q agree on at

leastQ + 1 field elements, which means that they must be equal to each other. Thus the

polynomialP (z) belongs toW and the proof is complete.

135

6.4 Explicit Hamming Balls with Several Reed-Solomon Codewords

Throughout this section, we will be concerned with an[q, k + 1] Reed-Solomon code

RS[q, k + 1] overFq. We will be interested in a received wordy ∈ F
q
q such that a super-

polynomial number of codewords ofRS[q, k + 1] agree withy on t or more positions, and

the aim would be to prove such a result fort non-trivially larger thank. We start with the

existential result.

6.4.1 Existence of Bad List Decoding Configurations

It is easy to prove theexistenceof a received wordy with at least
(

q
t

)
/qt−k codewords with

agreement at leastt with y. One way to see this is that this quantity is the expected number

of such codewords for a received word that is the evaluation of a randompolynomial of

degreet [70].5

We have the following lower bound on
(

q
t

)
/qt−k:

(
q
t

)

qt−k
>

qt

ttqt−k
=

qk

tt
= 2k log q−t log t.

Now whenk = qδ for someδ > 0 and t = qδ

2δ
, thenk log q − t log t is Ω(qδ log q),

which implies that the number of RS codewords with agreementt with the received word

r is qΩ(qδ).

On the other hand, ifk = Ω(q) let t = k + ∆, where∆ = k
2 log q

(we also assume

t 6 q/2). Now,k log q − t log t > k log q − (k + ∆)(log q − 1) = k + ∆−∆ log q > k/2.

Thus, we get2Ω(q) RS codewords with agreementt = k +O
(

q
log q

)

with the received word

r.

In the remainder of the chapter, we will try to match these parameters withexplicit

received words. We will refer to Reed-Solomon codes with constant rate ashigh rate Reed-

Solomon codes and to Reed-Solomon codes with inverse polynomial rate aslow rate Reed-

Solomon codes.

5The bound can be improved slightly to
(
q
t

)
/qt−1−k by using a randommonicpolynomial.

136

6.4.2 Low Rate Reed-Solomon Codes

Another argument for the existence of a bad list-decoding configuration (from the previous

subsection), as suggested in [25], is based on an elementβ in Fqh = Fq(α), for some

positive integerh, that can be written as a product
∏

a∈T (α + a) for at least
(

q
t

)
/qh subsets

T ⊂ Fq with |T | = t — the existenceof such aβ again follows by a trivial counting

argument. Here we use the result due to Cheng and Wan [25] thatfor certain settings of

parameters and fields such aβ can be explicitly specified with only a slight loss in the

number of subsetsT , and thereby get anexplicit received wordy with several close-by

codewords fromRS[q, k + 1].

Theorem 6.6([25]). Letε > 0 be arbitrary. Letq be a prime power,h be a positive integer

andα be such thatFq(α) = Fqh. For anyβ ∈ F
∗
qh, let Nt(β) denote the number oft-tuples

〈a1, a2, . . . , at〉 of distinctai ∈ Fq such thatβ =
∏t

i=1(α + ai). If t > (4
ε

+ 2)(h + 1),

ε < t − 2 andq > max(t2, (h − 1)
(2+ε)t

t−(2+ε)), then for allβ ∈ F
∗
qh, Nt(β) > (t − 1)qt−h−1.

Proof. From the proof of Theorem 3 in [25], we obtainNt(β) > E1 − E2, whereE1 =
qt−(t

2)qt−1

qh−1
andE2 = (1+

(
t
2

)
)(h−1)tq

t
2 . Observe that from the choice ofq,

(
t
2

)
= t2

2
− t

2
6

q−t
2

.

We first give a lower bound onE1. Indeed, using
(

t
2

)
6

q−t
2

andqh − 1 < qh, we have

E1 > 2qt−(q−t)qt−1

2qh = qt−h

2
+ t

2
qt−h−1.

Note that from our choice oft, we havet > (4
ε

+ 2)h, that is,t − h > (4+ε
4+2ε

)t. Further,

from our choice ofq, (h − 1)t 6 q
t

2+ε
−1. We now boundE2 from above. From our

bounds on
(

t
2

)
and (h − 1)t, we haveE2 6 (1 + q−t

2
)q(4+ε

4+2ε
)t−1 < (1 + q−t

2
)qt−h−1 =

qt−h

2
− (t

2
− 1)qt−h−1, where the second inequality comes from our bound ont − h.

Combining the bounds onE1 andE2 proves the theorem.

We now state the main result of this section concerning Reed-Solomon codes:

Theorem 6.7. Let ε > 0 be arbitrary real,q a prime power, andh any positive integer.

If t > (4
ε

+ 2)(h + 1) and q > max(t2, (h − 1)
(2+ε)t

t−(2+ε)) then for everyk in the range

137

t−h 6 k 6 t− 1, there exists an explicit received wordy ∈ F
q
q such that there are at least

qk

t!(k+h
t)

codewords ofRS[q, k + 1] that agree withy in at leastt positions.

We will prove the above theorem at the end of this section. Asε → 0, andq, k, h → ∞
in the above, we can get super-polynomially many codewords with agreement(1 + δ)k for

someδ = δ(ε) > 0 for a Reed-Solomon code of dimension tending toq1/2. As ε → ∞, we

can get super-polynomially many codewords with agreement tending to2k with dimension

still beingqΩ(1). We record these as two corollaries below (for the sake of completeness, we

sketch the proofs). We note that the non-explicit bound
(

q
t

)
/qt−k gives a super-polynomial

number of codewords for agreementt > k/δ for dimension aboutk = qδ−o(1), where as

our explicit construction can give agreement at most2k (or dimension at most
√

q).

Corollary 6.8. For all 0 < γ < 1, and primesp, there existsδ > 0 such that for any

power ofp (call it q) that is large enough, there exists an explicity ∈ F
q
q such that the

Reed-Solomon codeRS[q, k + 1 = qδ + 1] contains a super-polynomial (inq) number of

codewords with agreement at least(2 − γ)k with y.

Proof. For any integerh, chooseε, t andk such thatt = (4
ε
+2)(h+1), k = t−h+1 and

t = (2 − γ)k. These relations imply that

ε =
4

(2−γ
1−γ

)(h−1
h+1

) − 2
.

Note that in the limit ash goes to infinity,ε = 4(1−γ)
γ

. Further, chooseq to be a prime

power such thatpq0 > q > q0, whereq0 = (h − 1)
2+ε

1−(2+ε)/t . Finally note that ast goes

to infinity, q0 = (h − 1)
2(2−γ)

γ . For the rest of the proof we will assume thath is large

enough so thatε ≃ 4(1−γ)
γ

, q0 ≃ (h − 1)
2(2−γ)

γ and(h − 1)
2(2−γ)

γ > t2. Note that nowδ =

logq(h−1)− logq(1−γ) >
2(2−γ)

γ
− logq p− logq(1−γ) > 0. As all conditions of Theorem

6.7 are satisfied, we have that the relevant number of codewords is at leastB = qk

(t+1)!
. Now

ast ≃
(

2−γ
1−γ

)

(h + 1) andh is large enough, we can assume thatt 6

(
2−γ
1−γ

)

(2h). Thus,

tt 6 (2h)(2−γ
1−γ

)(2h) · (2−γ
1−γ

)(2−γ
1−γ

)(2h). To finish the proof we will show thatB >
qch

2dh wherec

138

andd are constants which depend onγ. Indeed as(t + 1)! 6 tt, andk > h, we have

qk

(t + 1)!
>

qh

(2h)(2−γ
1−γ

)(2h) · (2−γ
1−γ

)(2−γ
1−γ

)(2h)
.

Sinceh is large enough,q > (h/2)
2(2−γ)

γ , which along with the above inequality implies

that

B >
hh(2(2−γ)

γ)

h(2−γ
1−γ

)(2h)
· 1

2
2(2−γ)h

γ 2(2−γ
1−γ

)(2h)(2−γ
1−γ

)(2−γ
1−γ

)(2h)
>

hh(2(2−γ)
γ)(1− γ

1−γ)

2dh
,

whered is chosen such that2dh > 2
2(2−γ)h

γ 2(2−γ
1−γ

)(2h)(2−γ
1−γ

)(2−γ
1−γ

)(2h). Note that suchd exists

and it only depends onγ. Finally, if γ < 1/2, then there exists a valuec that depends only

onγ such thathh(2(2−γ)
γ)(1− γ

1−γ) > qch. Thus, we have proved the theorem for0 < γ < 1/2.

Since having an agreement of2 − γ implies an agreement of2 − γ′ for any γ′ > γ, the

proof of the theorem for0 < γ < 1 follows.

Corollary 6.9. For all 0 < γ < 1
2

and primesp, there existsδ > 0, such that for any power

of p (call it q) that is large enough, there is an explicity ∈ F
q
q such that the Reed-Solomon

codeRS[q, k + 1 = q1/2−γ + 1] contains a super-polynomial (inq) number of codewords

with agreement at least(1 + δ)k with y.

Proof. The proof is similar to the proof of Corollary 6.8 and hence, most details are

skipped. Chooset andk such thatt = (4
ε

+ 3)(h − 1) andk = t − h + 1. Note that

for h > 8
ε

+ 5, t > (4
ε

+ 2)(h + 1). Also let q be a prime power such thatq0 6 q 6 pq0,

whereq0 = (h − 1)
2+ε

1−(2+ε)/t . As in Corollary 6.8, we considerh to be very large and we

haveq0 ≃ (h− 1)
2

1−2γ , t ≃ 1+γ
γ

(h− 1) andk ≃ h−1
γ

. Recalling thatt = (1 + δ)k, we have

δ ≃ γ. Again using arguments as in the proof of Corollary 6.8, we have a lower bound of

Ω(qh

2dh) whered is a constant which depends onγ.

(Proof of Theorem 6.7). In what follows, we fixE(x) to be a polynomial of degreeh that

is irreducible overFq. For the rest of this proof we will denoteFq[x]/(E(x)) by Fqh. Also

note that for any rootα of E, Fq(α) = Fqh .

139

Pick anyℓ where0 6 ℓ 6 h − 1 and note thatq andt satisfy the conditions of Theo-

rem 6.6. For anyB = (b0, b1, · · · , bℓ), wherebi ∈ Fq with at least one non zerobj ; define

LB(x)
def
=
∑ℓ

i=0 bix
i. Fix r(x) to be an arbitrary non-zero polynomial of degree at most

h − 1. By their definitions,r(α) andLB(α) are elements ofF∗
qh.

We will set the received wordy to be〈 r(a)
E(a)

〉a∈Fq . Note that sinceE(x) is an irreducible

polynomial,E(a) 6= 0 for all a ∈ Fq, andy is a well-defined element ofFq
q.

We now proceed to bound from below the number of polynomials of degreek def
= t +

ℓ − h that agree withy on t positions. For each non-zero tupleB ∈ F
ℓ+1
q , defineQB(x) =

− r(x)
LB(x)

. Clearly, QB(α) ∈ F
∗
qh. For notational convenience we will useNB to denote

Nt(QB(α)). Then, forj = 1, · · · , NB there existA(B,j) whereA(B,j) ⊂ Fq and|A(B,j)| = t

such thatP (j)
B (α)

def
=
∏

a∈A(B,j)
(α + a) = QB(α). By Theorem 6.6, we haveNB > (t −

1)qt−h−1 for everyB — let us denote byN this latter quantity. Recalling the definition of

QB, we have that for any(B, j), r(α)
LB(α)

= −P
(j)
B (α), or equivalentlyr(α)+P

(j)
B (α)LB(α) =

0. SinceE is the irreducible polynomial ofα over Fq, this implies thatE(x) divides

P
(j)
B (x)LB(x) + r(x) in Fq[x].

Finally we defineT (j)
B (x) to be a polynomial of degreek = t + ℓ − h such that

T
(j)
B (x)E(x) = P

(j)
B (x)LB(x) + r(x). (6.6)

ClearlyT
(j)
B (−a) equalsr(−a)/E(−a) for eacha ∈ A(B,j) and thus the polynomialT (j)

B

agrees withy on at leastt positions. To complete the proof we will give a lower bound

on the number ofdistinctpolynomials in the collection{T (j)
B }. For a fixedB, out of the

NB choices forP (j)
B , t! choices ofj would lead to the same6 polynomial of degreet. Since

NB > N , there are at least(q
ℓ+1−1)N

t!
choices of pairs(B, j). Clearly for j1 6= j2 the

polynomialsP (j1)
B (x) andP

(j2)
B (x) are distinct, however we could haveP (j1)

B1
(x)LB1(x) =

P
(j2)
B2

(x)LB2(x) (both are equal to sayS(x)) leading toT
(j1)
B1

(x) = T
(j2)
B2

(x). However the

degree ofS is at mostt+ℓ = k+h, and henceS can have at mostk+h roots, and therefore

6If 〈a1, · · · , at〉 is a solution of the equationβ =
∏t

i=1(α + ai) then so is〈aσ(1), · · · , aσ(t)〉 for any
permutationσ on{1, · · · , t}.

140

at most
(

k+h
t

)
factors of the form

∏

a∈T (x+a) with |T | = t. It follows that no single degree

k polynomial is counted more than
(

k+h
t

)
times in the collection{T (j)

B }, and hence there

must be at least
(qℓ+1 − 1)N

t!
(

k+h
t

) >
qk

t!
(

k+h
t

)

distinct polynomials among them, where we usedN = (t−1)qt−h−1 and(qℓ+1−1)(t−1) >

qℓ+1 = qk−t+h+1 sincek = t + ℓ − h. �

6.4.3 High Rate Reed-Solomon Codes

We now consider the case of constant rate Reed-Solomon codes. We start with the main

result of this subsection.

Theorem 6.10.Let L > 2 be an integer. Letp = aL + 1 be a prime and definet = bL

for any1 < b < a − 1. Let the received wordr be the evaluation ofR(X) = X t overF∗
p.

Then there are
(

a
b

)
many codewords inRS[n = p, k = (b− 1)L + 1]Fp that agree withr in

at leastt places.

To get some interesting numbers, let’s instantiate the parameters in the above theorem.

First we need the following result (we will prove this later in the subsection):

Lemma 6.6. For every0 < ε 6 1/(cL − 1), where1 < cL < 6, there exists infinitely many

L with primep = aL + 1 such thata is Θ(Lε).

Corollary 6.11. Let p be a prime that satisfies Lemma 6.6 for someε. Then there exists

at least2Ω(nε/(1+ε)) codewords inRS[n = p, k = Ω(n), d = n − k + 1]Fp with agreement

t = k + Θ(n1/(1+ε)).

Proof. Setb = ⌊(1 − δ)a⌋ + 1 for someδ > 0. Thus,k = (b − 1)L > ⌊(1 − δ)aL⌋ =

Θ(aL) = Θ(n). Further,t = bL = k + L = k + Θ(n1/(1+ε)). The last part follows from

the fact thatn = Θ(L1+ε). Finally, the number of codewords is at least
(

a
b−1

)b−1
= 2Ω(a) =

2Ω(nε/(1+ε)).

141

If one is satisfied with super polynomially many codewords, say2w(n) for somew(n) =

ω(logn), then choosingε = c log w(n)
log n−c log w(n)

(for some suitable constantc), gives an agree-

mentt = k + Θ
(

n
(w(n))c

)

.

Proof of Theorem 6.10.The basic idea is to find a “lot” oft-tuples(y1, y2, . . . , yt) ∈ F
t
p,

(where for everyi 6= j, yi 6= yj) such that the polynomialP(y1,...,yt)(X) =
∏t

i=1(X − yi) is

actually of the form

X t +

t−L∑

j=1

cjX
j

wherect−L can be0.7 The above is equivalent to showing that(y1, . . . , yt) satisfy the

following equations

ys
1 + ys

2 + · · · ys
t = 0 s = 1, 2, . . . L − 1 (6.7)

We give an “explicit” description of at least
(

a
b

)
distinct(y1, . . . , yt) such tuples.

Let F
∗
p be generated byγ and setα = γa. Note that the order ofα is exactlyL.

Now consider the “orbits” inF∗
p under the action ofα. It is not too hard to see that for

0 6 i < a, the ith orbit is the setγiA, whereA = {1, α, α2, . . . , αL−1}. We will call γi

the “representative” of theith orbit. Consider all subsets{i0, . . . , ib−1} ⊆ {0, 1, . . . , a− 1}
of size b. Each such subset corresponds to a tuple(y1, . . . , yt) in the following manner

(recall thatt = bL). For subset{i0, . . . , ib−1}, defineydL+r = γidαr, where0 6 d < b and

0 6 r < L. Note that each such subset{i0, . . . , ib−1} implies a distinct tuple(y1, . . . , yt).

Thus, there are
(

a
b

)
such distinct tuples.

To complete the proof, we will now verify that (6.7) holds forevery such tuple(y1, . . . , yt).

Indeed by construction, fors = 1, . . . , L − 1:

t∑

j=1

ys
j =

b−1∑

d=0

γids

(
L−1∑

r=0

αsr

)

=

b−1∑

d=0

γids

(
αLs − 1

αs − 1

)

= 0,

where the last inequality follows from the the fact that the order ofα is L. �

7ThenR(X) − P(y1,...,yt)(X) is of degreet − L = k − 1 as needed.

142

We now turn to the proof of Lemma 6.6. First we need the following result, which is a

special case of Linnik’s theorem:

Theorem 6.12([78]). There exists a constantcL, 1 < cL < 6, such that for all sufficiently

larged, there exists a primep such thatp < dcL andp ≡ 1 mod d.

Proof of Lemma 6.6. Fix any 0 < ε 6 1
cL−1

. The basic idea of the proof is to “re-

distribute” the productbd asaL, wherea = Θ(Lε).

Let d = 2r be sufficiently large so that it satisfies the condition of Theorem 6.12. Thus,

by Theorem 6.12,p = bd + 1 is prime for some1 6 b < 2r(cL−1). Let 2i 6 b < 2i+1 for

somei ∈ [0, r(cL−1)−1]. Now we consider two cases depending on whetheri 6 i0 = ⌊rε⌋
or not.

First consider the case wheni 6 i0. Here definexi = ⌊ rε−i
1+ε

⌋. Finally, leta = b2xi and

L = 2r−xi. First note that0 6 xi 6 r and thus,a andL are well defined. Also note that

a

Lε
=

b2xi

2ε(r−xi)
= b2(1+ε)xi−rε > 2i2(1+ε)(rε−i

1+ε
)−rε−1 =

1

2
,

where the inequality follows from the fact that for all positive reals⌊y⌋ > y−1 andb > 2i.

Similarly, one can show thata/Lε < 4 and thus,a = Θ(Lε) as required.

Now we consider the case wheni > i0. In this case definexi = ⌊ r−ε(i+1)
1+ε

⌋. Finally, let

a = 2r−xi andL = b2xi . Note thatxi 6 r. Also note that asi + 1 < r(cL − 1), xi > 0 and

thus,a andL are well defined. As before, we first lower bound

a

Lε
=

2r−xi

bε2εxi
>

2r−xi

2ε(i+1)+εxi
= 2r−(1+ε)xi−ε(i+1) > 1,

where the first inequality follows fromb < 2i+1 and the second follows from the fact

that for all positivey, ⌊y⌋ 6 y. Similarly one can show thata
Lε 6 4, which implies that

a = Θ(Lε) as required.�

Smooth Variation of the Agreement

In this section, we will see how to get rid of the “restriction” that t has to be a multiple of

L in Theorem 6.10.

143

Theorem 6.13.LetL > 2 and0 6 e < L be integers. Letp = aL+1 be a prime and define

t = bL+ e for any1 < b < a−1. Let the received wordr be the evaluation ofR(X) = X t

overF∗
p. Then there are

(
a−1

b

)
many codewords inRS[n = p, k = (b − 1)L + 1 + e]Fp that

agree withr in at leastt places.

Since the proof is very similar to that of Theorem 6.10, we will just sketch the main

ideas here. The basic argument used earlier was that everyt-tuple(y1, y2, . . . , yt) was cho-

sen such that the polynomialsP(y1,...,yt)(X) andR(X) agreed on the firstt−k co-efficients

and the RS codewords were simply the polynomialsR(X)−P(y1,...,yt)(X). Now the simple

observation is that for any fixed polynomialD(X) of degreee we can get RS codewords of

dimensionk′ = k + e by considering the polynomialsD(X)
(
R(X) − P(y1,...,yt)(X)

)
. The

new agreementt′ is with the new received wordR′(X) = R(X)D(X). Now t′ − t is the

number of roots ofD(X) that are not in the set{y1, . . . , yt}.

Thus, we can now vary the values ofk by picking the polynomialD(X) of differ-

ent degrees. However, the differencet′ − k′ might go down (as an arbitrary polynomial

D(X) of degreee might not havee roots and even then, some of them might be in the set

{y1, . . . , yt}). To get around this, while choosing the tuples(y1, . . . , yt), we will not pick

any elements from one of thea cosets (recall that the tuples(y1, . . . , yt) are just a collection

of b out of thea cosets formed by the orbits ofα = γa, whereγ generatesF∗
p). This reduces

the number of tuples from
(

a
b

)
to
(

a−1
b

)
. Now we pick an arbitrary subset of that coset of

size0 6 e < L– say the subset is{z1, . . . , ze}. Finally, pickD(X) =
∏e

i=1(X − zi). Note

that this implies thatt′ = t + e as desired.

6.5 Bibliographic Notes and Open Questions

Results in Section 6.3 and Section 6.4.2 appeared in [59] while those in Section 6.4.3 are

from [62].

Our work, specifically the part that deals with precisely describing the collection of

polynomials that take values only inFq, bears some similarity to [51] which also exhibited

144

limits to list recoverability of codes. One of the simple yetpowerful ideas used in [51],

and also in the work on extractor codes [101], is that polynomials which arer’th powers

of a lower degree polynomial take only values in a multiplicative subgroup consisting of

ther’th powers in the field. Specifically, the construction in [101, 51] yields roughlyn
ℓk
n

codewords for list recovery whereℓ is the size of theSi’s in Definition 6.1. Note that this

gives super-polynomially many codewords only when the input lists are asymptotically

bigger thann/k.

In our work, we also user’th powers, but the value ofr is such that ther’th powers

form a subfield of the field. Therefore, one can also freely addpolynomials which arer’th

powers and the sum still takes on values in the subfield. This lets us demonstrate a much

larger collection of polynomials which take on only a small possible number of values at

every point in the field. Proving bounds on the size of this collection of polynomials used

techniques that were new to this line of study.

The technique behind our results in Section 6.4.2 is closelyrelated to that of the result of

Cheng and Wan [25] on connections between Reed-Solomon listdecoding and the discrete

logarithm problem over finite fields. However, our aim is slightly different compared to

theirs in that we want to get a large collection of codewords close by to a received word. In

particular in Theorem 6.6, we get an estimate onNt(β) while Cheng and Wan only require

Nt(β) > 0. Also Cheng and Wan consider equation (6.6) only with the choiceLB(x) = 1.

Ben-Sasson, Kopparty and Radhakrishnan in [12], exploiting the sparsity oflinearized

polynomials, have shown the following. For everyδ ∈ (0, 1) there exits Reed-Solomon

code of block lengthn and dimensionnδ +1, which contains super-polynomial many code-

words that agree with a received word in at leastn
√

δ positions. Also they show for constant

rate Reed-Solomon codes (where the rate isR > 0), there exists a received word that has

agreementR′N (whereR′ > R) with roughlyNΩ(log(1/R) codewords. The received word

in the above constructions, however, is not explicit. Ben-Sasson et al. also construct an ex-

plicit received word that agrees with super-polynomially many Reed-Solomon codewords

in ω(k) many places, wherek = nδ +1 is the dimension of the code. However, their results

145

do not give an explicit bad list decoding configurations for constant rate Reed-Solomon

codes. The results in [12] do not work for prime fields while the results on explicit received

words in this chapter do work for prime fields.

We conclude with some open questions.

Open Question 6.1.We have shown that RS codes of rate1/ℓ cannot be list recovered with

input lists of sizeℓ in polynomial time whenℓ is a prime power. Can one show a similar

result for other values ofℓ?

Using the density of primes and our work, we can bound the rateby O(1/ℓ), but if it is

true it will be nice to show it is at most1/ℓ for everyℓ.

We have shown that the
√

kn′ bound for polynomial reconstruction is the best possible

given n′ general pairs(βi, γi) ∈ F
2 as input. It remains a big challenge to determine

whether this is the case also when theβi’s are all distinct, or equivalently

Open Question 6.2.Is the Johnson bound is the true list decoding radius of RS codes?

We conjecture this to be the case in the following sense: there exists a fieldF and a

subset of evaluations pointsS such that for the Reed-Solomon code defined overF andS,

the answer to the question above is yes. One approach that might give at least partial results

would be to use some of our ideas (in particular those using the norm function, possibly

extended to other symmetric functions of the automorphismsof Fqm overFq) together with

ideas in the work of Justesen and Hoholdt [70] who used the Trace function to demonstrate

that a linear number of codewords could occur at the Johnson bound. Further, the work of

Ben-Sasson et al. [12] gives evidence for this forRS codes of raten−ε for constantε close

to 0.

Open Question 6.3.Can one show an analog of Theorem 6.6 on products of linear factors

for the case whent is linear in the field sizeq (the currently known results work only fort

up toq1/2)?

146

This is an interesting field theory question in itself, and furthermore might help to-

wards showing the existence of super-polynomial number of Reed-Solomon codewords

with agreementt > (1+ ε)k for someε > 0 for constant rate (i.e. whenk is linear inn)? It

is important for the latter, however, that we show thatNt(β) is very large for somespecial

field elementβ in an extension field, since by a trivial counting argument itfollows that

there existβ ∈ F
∗
qh for whichNt(β) 6

(
q
t

)
/(qh − 1).

147

Chapter 7

LOCAL TESTING OF REED-MULLER CODES

From this chapter onwards, we will switch gears and talk about property testing of

codes.

7.1 Introduction

A low degree testeris a probabilistic algorithm which, given a degree parameter t and

oracle access to a functionf onn arguments (which take values from some finite fieldF),

has the following behavior. Iff is the evaluation of a polynomial onn variables with total

degree at mostt, then the low degree tester must accept with probability one. On the other

hand, iff is “far” from being the evaluation of some polynomial onn variables with degree

at mostt, then the tester must reject with constant probability. Thetester can query the

functionf to obtain the evaluation off at any point. However, the tester must accomplish

its task by using as few probes as possible.

Low degree testers play an important part in the construction of Probabilistically Check-

able Proofs (or PCPs). In fact, different parameters of low degree testers (for example, the

number of probes and the amount of randomness used) directlyaffect the parameters of the

corresponding PCPs as well as various inapproximability results obtained from such PCPs

([36, 5]). Low degree testers also form the core of the proof of MIP = NEXPTIME in [9].

Blum, Luby, and Rubinfeld designed the first low degree tester, which handled the

linear case, i.e.,t = 1 ([21]), although with a different motivation. This was followed by

a series of works that gave low degree testers that worked forlarger values of the degree

parameter ([93, 42, 7]). However, these subsequent resultsas well as others which use low

degree testers ([9, 43]) only work when the degree is smallerthan size of the fieldF. Alon

148

et al. proposed a low degree tester for any nontrivial degreeparameter over the binary field

F2 [1].

A natural open problem was to give a low degree tester for all degrees for finite fields of

size between two and the degree parameter. In this chapter we(partially) solve this problem

by presenting a low degree test for multivariate polynomials over any prime fieldFp.

7.1.1 Connection to Coding Theory

The evaluations of polynomials inn variables of degree at mostt are well knownReed-

Muller codes(note that whenn = 1, we have the Reed-Solomon codes, which we con-

sidered in Chapter 6). In particular, the evaluation of polynomials inn variables of degree

at mostt over Fq is the Reed-Muller code or RMq(t, n) with parameterst andn. These

codes have lengthqn and dimension
(

n+t
n

)
(see [28, 29, 69] for more details). Therefore,

a function has degreet if and only if (the vector of evaluations of) the function is avalid

codeword in RMq(n, t). In other words, low degree testing is equivalent to locallytesting

Reed-Muller codes.

7.1.2 Overview of Our Results

It is easier to define our tester overF3. To test iff has degree at mostt, setk = ⌈ t+1
2
⌉, and

let i = (t + 1) (mod 2). Pickk-vectorsy1, · · · , yk andb from F
n
3 , and test if

∑

c∈F
k
3 ;c=(c1,··· ,ck)

ci
1f(b +

k∑

j=1

cjyj) = 0,

where for notational convenience we use00 = 1 (and we will stick to this convention

throughout this chapter). We remark here that a polynomial of degree at mostt always

passes the test, whereas a polynomial of degree greater thant gets caught with non-negligible

probabilityα. To obtain a constant rejection probability we repeat the testΘ(1/α) times.

The analysis of our test follows a similar general structuredeveloped by Rubinfeld and

Sudan in [93] and borrows techniques from [93, 1]. The presence of a doubly-transitive

149

group suffices for the analysis given in [93]. Essentially weshow that the presence of a

doubly-transitive group acting on the coordinates of the dual code does indeed allow us

to localize the test. However, this gives a weaker result. Weuse techniques developed in

[1] for better results, although the adoption is not immediate. In particular the interplay

between certain geometric objects described below and their polynomial representations

plays a pivotal role in getting results that are only about a quadratic factor away from

optimal query complexity.

In coding theory terminology, we show that Reed-Muller codes over prime fields are

locally testable. We further consider a new basis of Reed-Muller code over prime fields that

in general differs from the minimum weight basis. This allows us to present a novel exact

characterization of the multivariate polynomials of degreet in n variables over prime fields.

Our basis has a clean geometric structure in terms offlats [69], and unions of parallel flats

but with different weights assigned to different parallel flats1. The equivalent polynomial

and geometric representations allow us to provide an almostoptimal test.

Main Result

Our results may be stated quantitatively as follows. For a given integert > (p − 1) and a

given realε > 0, our testing algorithm queriesf atO
(

1
ε

+ t · p 2t
p−1

+1
)

points to determine

whetherf can be described by a polynomial of degree at mostt. If f is indeed a polynomial

of degree at mostt, our algorithm always accepts, and iff has a relative Hamming distance

at leastε from every degreet polynomial, then our algorithm rejectsf with probability

at least1
2
. (In the caset < (p − 1), our tester still works but more efficient testers are

known). Our result is almost optimal since any such testing algorithm must queryf in at

leastΩ(1
ε

+ p
t+1
p−1) many points (see Corollary 7.5).

We extend our analysis also to obtain aself-correctorfor f (as defined in [21]), in case

the functionf is reasonably close to a degreet polynomial. Specifically, we show that the

1The natural basis given in [28, 29] assigns the same weight toeach parallel flat.

150

value of the functionf at any given pointx ∈ F
n
p may be obtained with good probability

by queryingf on Θ(pt/p) random points. Using pairwise independence we can achieve

even higher probability by queryingf on pO(t/p) random points and using majority logic

decoding.

7.1.3 Overview of the Analysis

The design of our tester and its analysis follows the following general paradigm first for-

malized by Rubinfeld and Sudan [93]. The analysis also uses additional ideas used in [1].

In this section, we review the main steps involved.

The first step is coming up with anexact characterizationfor functions that have low

degree. The characterization identifies a collection of subsets of points and a predicate

such that an input function is of low degree if and only if for every subset in the collection,

the predicate is satisfied by the evaluation of the function at the points in the subset. The

second step entails showing that the characterization is arobust characterization, that is,

the following natural tester is indeed a local tester (see section 2.3 for a formal definition):

Pick one of the subsets in the collection uniformly at randomand check if the predicate is

satisfied by the evaluation of the function on the points in the chosen subset. Note that the

number of queries made by the tester is bounded above by the size of the largest subset in

the collection.

There is a natural characterization for polynomials of low degree using their alternative

interpretation as a RM code. As RM code is a linear code, a function is of low degree if

and only if it is orthogonal to every codeword in the dual of the corresponding RM code.

The problem with the above characterization is that the resulting local tester will have to

make as many queries as the maximum number of non-zero position in any dual codeword,

which can be large. To get around this problem, instead of considering all codewords in the

dual of the RM code, we consider a collection of dual codewords that have few non-zero

positions. To obtain an exact characterization, note that this collection has to generate the

dual code.

151

We use the well known fact that the dual of a RM code is a RM code (with different

parameters). Thus, to obtain a collection of dual codewordswith low weight that generate

the dual of a RM code it is enough to find low weight codewords that generate every RM

code. To this end we show that the characteristic vector of any affine subspace (also called a

flat in RM terminology [69]) generates certain RM codes. To complete the characterization,

we show that any RM code can be generated by flats and certain weighted characteristic

vectors of affine subspaces (which we callpseudoflats). To prove these we look at the affine

subspaces as the intersection of (a fixed number of) hyperplanes and alternatively represent

the characteristic vectors as polynomials.

To prove that the above exact characterization is robust we use theself-correctingap-

proach ([21, 93]). Given an inputf we define a related functiong as follows. The value

of g(x) is defined to be the most frequently occurring value, orplurality, of f at correlated

random points. The major part of the analysis is to show that if f disagrees from all low

degree polynomials in a lot of places then the tester rejectswith high probability.

The analysis proceeds by first showing thatf andg agree on most points. Then we show

that if the tester rejects with low enough probability theng is a low degree polynomial. In

other words, iff is far enough from all low degree polynomials, then the tester rejects with

high probability. To complete the proof, we take care of the case whenf is close to some

low degree polynomial separately.

7.2 Preliminaries

Throughout this chapter, we usep to denote a prime andq to denote a prime power (ps

for some positive integers) to be a prime power. In this chapter, we will mostly deal with

prime fields. We therefore restrict most definitions to the prime field setting.

For anyt ∈ [n(q − 1)], letPt denote the family of all functions overFn
q that are poly-

nomials of total degree at mostt (and w.l.o.g. individual degree at mostq − 1) in n vari-

ables. In particularf ∈ Pt if there exists coefficientsa(e1,··· ,en) ∈ Fq, for everyi ∈ [n],

152

ei ∈ {0, · · · , q − 1},
∑n

i=1 ei 6 t, such that

f =
∑

(e1,··· ,en)∈{0,··· ,q−1}n;06
Pn

i=1 ei6t

a(e1,··· ,en)

n∏

i=1

xei
i . (7.1)

The codeword corresponding to a function will be the evaluation vector off . We recall the

definition of the (Primitive) Reed-Muller code as describedin [69, 29].

Definition 7.1. Let V = F
n
q be the vector space ofn-tuples, forn > 1, over the fieldFq.

For anyk such that0 6 k 6 n(q − 1), thekth order Reed-Muller codeRMq(k, n) is the

subspace ofF|V |
q of all n-variable polynomial functions (reduced moduloxq

i −xi) of degree

at mostk.

This implies that the code corresponding to the family of functionsPt is RMq(t, n).

Therefore, a characterization for one will simply translate into a characterization for the

other.

We will be using terminology defined in Section 2.3. We now briefly review the defi-

nitions that are relevant to this chapter. For any two functionsf, g : F
n
q → Fq, the relative

distanceδ(f, g) ∈ [0, 1] betweenf andg is defined asδ(f, g)
def
= Prx∈Fn

q
[f(x) 6= g(x)].

For a functiong and a family of functionsF (defined over the same domain and range), we

sayg is ε- closeto F , for some0 < ε < 1, if, there exists anf ∈ F , whereδ(f, g) 6 ε.

Otherwise it isε- far from F .

A one sided testing algorithm (one-sided tester) for Pt is a probabilistic algorithm that

is given query access to a functionf and a distance parameterε, 0 < ε < 1. If f ∈ Pt, then

the tester should always acceptf (perfect completeness), and iff is ε-far from Pt, then

with probability at least1
2

the tester should rejectf .

For vectorsx, y ∈ F
n
p , the dot (scalar) product ofx andy, denotedx · y, is defined to be

∑n
i=1 xiyi, wherewi denotes theith co-ordinate ofw.

To motivate the next notation which we will use frequently, we give a definition.

153

Definition 7.2. For any k > 0, a k-flat in F
n
p is a k-dimensional affine subspace. Let

y1, · · · , yk ∈ F
n
p be linearly independent vectors andb ∈ F

n
p be a point. Then the subset

L = {
k∑

i=1

ciyi + b|∀i ∈ [k] ci ∈ Fp}

is a k-dimensional flat. We will say thatL is generated byy1, · · · , yk at b. The incidence

vector of the points in a givenk-flat will be referred to as the codeword corresponding to

the givenk-flat.

Given a functionf : F
n
p → Fp, for y1, · · · , yl, b ∈ F

n
p we define

T 0
f (y1, · · · , yl, b)

def
=

∑

c=(c1,··· ,cl)∈Fl
p

f(b +
∑

i∈[l]

ciyi), (7.2)

which is the sum of the evaluations of functionf over anl-flat generated byy1, · · · , yl, at

b. Alternatively, as we will see later in Observation 7.4, this can also be interpreted as the

dot product of the codeword corresponding to thel-flat generated byy1, · · · , yl atb and that

corresponding to the functionf .

While k-flats are well-known, we define a new geometric object, called a pseudoflat. A

k-pseudoflat is a union of(p − 1) parallel(k − 1)-flats.

Definition 7.3. Let L1, L2, · · · , Lp−1 be parallel(k − 1)-flats (k > 1), such that for some

y ∈ F
n
p and all t ∈ [p − 2], Lt+1 = y + Lt, where for any setS ⊆ F

n
p and y ∈ F

n
p ,

y + S
def
= {x + y|x ∈ S}. We define ak-pseudoflatto be the union of the set of points

L1 to Lp−1. Further, given anr (where1 6 r 6 p − 2) and ak-pseudoflat, we define

a (k, r)pseudoflat vectoras follows. LetIj be the incidence vector ofLj for j ∈ [p − 1].

Then the(k, r)-pseudoflat vector is defined to be
∑p−1

j=1 jrIj. We will also refer to the(k, r)-

pseudoflat vector as a codeword.

Let L be ak-pseudoflat. Also, forj ∈ [p − 1], let Lj be the(k − 1)-flat generated by

y1, · · · , yk−1 at b+ j · y, wherey1, · · · , yk−1 are linearly independent. Then we say that the

(k, r)-pseudoflat vector corresponding toL as well as the pseudoflatL, are generated by

y, y1, · · · , yk−1 at b exponentiated alongy.

154

y
L1

L2

L3

L4

(2, 1)-pseudoflat vector corresponding toL

1 1 1 1 1

22222

3 3 3 3 3

4444 4

L

0 0 0 0 0

Figure 7.1: Illustration of ak-pseudoflatL defined overFn
p with k = 2, p = 5 andn = 5.

Picture on the left shows the points inL (recall that each ofL1, . . . , L4 are1-flats or lines).
EachLi (for 1 6 i 6 4) haspk−1 = 5 points in it. The points inL are shown by filled
circles and the points inF5

5 \L are shown by unfilled circles. The picture on the right is the
(2, 1)-pseudoflat corresponding toL.

See Figure 7.1 for an illustration of the Definition 7.3.

Given a functionf : F
n
p → Fp, for y1, · · · , yl, b ∈ F

n
p , for all i ∈ [p − 2], we define

T i
f (y1, · · · , yl, b)

def
=

∑

c=(c1,··· ,cl)∈Fl
p

ci
1 · f(b +

∑

j∈[l]

cjyj). (7.3)

As we will see later in Observation 7.5, the above can also be interpreted as the dot product

of the codeword corresponding to the(l, r)-pseudoflat vector generated byy1, · · · , yl at b

exponentiated alongy1 and the codeword corresponding to the functionf .

7.2.1 Facts from Finite Fields

In this section we spell out some facts from finite fields whichwill be used later. We begin

with a simple lemma.

Lemma 7.1. For anyt ∈ [q − 1],
∑

a∈Fq
at 6= 0 if and only ift = q − 1.

Proof. First note that
∑

a∈Fq
at =

∑

a∈F∗
q
at. Observing that for anya ∈ F

∗
q , aq−1 = 1, it

follows that
∑

a∈F∗
q
aq−1 =

∑

a∈F∗
q
1 = −1 6= 0.

155

Next we show that for allt 6= q−1,
∑

a∈F∗
q
at = 0. Letα be a generator ofF∗

q . The sum

can be re-written as
∑q−2

i=0 αit = αt(q−1)−1
αt−1

. The denominator is non-zero fort 6= q − 1 and

thus, the fraction is well defined. The proof is complete by noting thatαt(q−1) = 1.

This immediately implies the following lemma.

Lemma 7.2. Let t1, · · · , tl ∈ [q − 1]. Then
∑

(c1,··· ,cl)∈(Fq)l

ct1
1 ct2

2 · · · ctl
l 6= 0 if and only if t1 = t2 = · · · = tl = q − 1. (7.4)

Proof. Note that the left hand side can be rewritten as
∏

i∈[l]

(
∑

ci∈Fq
cti
i

)

.

We will need to transform products of variables to powers of linear functions in those

variables. With this motivation, we present the following identity.

Lemma 7.3. For eachk, s.t.0 < k 6 (p − 1) there existsck ∈ F
∗
p such that

ck

k∏

i=1

xi =

k∑

i=1

(−1)k−iSi where Si =
∑

∅6=I⊆[k];|I|=i

(
∑

j∈I

xj

)k

. (7.5)

Proof. Consider the right hand side of the (7.5). Note that all the monomials are of degree

exactlyk. Also note that
∏k

i=1 xi appears only in theSk and nowhere else. Now consider

any other monomial of degreek that has a support of sizej, where0 < j < k: w.l.o.g.

assume that this monomial isM = xi1
1 xi2

2 · · ·xij
j such thati1 + · · ·+ ij = k. Now note that

for anyI ⊇ [j], M appears with a coefficient of
(

k
i1,i2,...,ij

)
in the expansion of(

∑

ℓ∈I xℓ)
k.

Further for everyi > j, the number of choices ofI ⊇ [j] with |I| = i is exactly
(

k−j
k−i

)
.

Therefore, summing up the coefficients ofM in the various summandsSi (along with the

(−1)k−i factor), we get that the coefficient ofM in the right hand side of (7.5) is
(

k

i1, i2, . . . , ij

)(k∑

i=j

(−1)k−i

(
k − j

k − i

))

=

(
k

i1, i2, . . . , ij

)(k−j
∑

ℓ=0

(−1)k−j−ℓ

(
k − j

k − j − ℓ

))

=

(
k

i1, i2, . . . , ij

)

(1 − 1)k−j

= 0.

Moreover, it is clear thatck =
(

k
1,1,...,1

)
= k! (modp) andck 6= 0 for the choice ofk.

156

7.3 Characterization of Low Degree Polynomials overFp

In this section we present an exact characterization for thefamily Pt over prime fields.

Specifically we prove the following:

Theorem 7.1. Let t = (p − 1) · k + r. (Note0 6 r 6 p − 2.) Let i = p − 2 − r. Then a

functionf belongs toPt, if and only if for everyy1, · · · , yk+1, b ∈ F
n
p , we have

T i
f(y1, · · · , yk+1, b) = 0 (7.6)

As mentioned previously, a characterization for the familyPt is equivalent to a char-

acterization for RMp(t, n). It turns out that it is easier to characterizePt when viewed as

RMp(t, n). Therefore our goal is to determine whether a given word belongs to the RM

code. Since we deal with a linear code, a simple strategy willthen be to check whether

the given word is orthogonal to all the codewords in the dual code. Though this yields a

characterization, this is computationally inefficient. Note however that the dot product is

linear in its input. Therefore checking orthogonality witha basis of the dual code suffices.

To make it computationally efficient, we look for a basis withsmall weights. The above

theorem essentially is a clever restatement of this idea.

We recall the following useful lemma which can be found in [69].

Lemma 7.4. RMq(k, n) is a linear code with block lengthqn and minimum distance(R +

1)qQ whereR is the remainder andQ the quotient resulting from dividing(q − 1) · n − k

by (q − 1). ThenRMq(k, n)⊥ = RMq((q − 1) · n − k − 1, n).

Since the dual of a RM code is again a RM code (of appropriate order), we therefore

need the generators of RM code (of arbitrary order). We first establish that flats and pseud-

oflats (of suitable dimension and exponent) indeed generatethe Reed-Muller code. We then

end the section with a proof of Theorem 7.1 and a few remarks.

We begin with few simple observations about flats. Note that an l-flat L is the inter-

section of(n − l) hyperplanes in general position. Equivalently, it consists of all points

157

v that satisfy(n − l) linear equations overFp (i.e., one equation for each hyperplane):

∀i ∈ [n − l]
∑n

j=1 cijxj = bi wherecij , bi defines theith hyperplane (i.e.,v satisfies
∑n

j=1 cijvj = bi). General position means that the matrix{cij} has rank(n − l). Note that

then the characteristic function (and by abuse of notation the incidence vector) ofL can be

written as

n−l∏

i=1

(1 − (
n∑

j=1

cijxj − bi)
p−1) =







1 if (v1, · · · , vl) ∈ L

0 otherwise
(7.7)

We now record a lemma here that will be used later in this section.

Lemma 7.5. For k > l, the incidence vector of anyk-flat is a linear sum of the incidence

vectors ofl-flats.

Proof. Let k = l + r and letW be ank-flat. We want to show that it is generated by a

linear combination ofl flats.

Let W be generated byy1, · · · , yl−1, w1, · · · , wr+1 at b. For each non-zero vectorci =

〈ci1, . . . , ci(r+1)〉 in F
r+1
p define:

vi =

r+1∑

j=1

cijwj.

Clearly there are(pr+1 − 1) suchvi. Now for eachi ∈ [pr+1 − 1], define anl-flat Li

generated byy1, · · · , yl−1, vi at b. Denote the incidence vector of a flatV by 1V , then we

claim that

1W = (p − 1)

pr+1−1
∑

i=1

1Li
. (7.8)

Since the vectorsy1, . . . , yl−1, w1, . . . , wr+1 are all linearly independent, we can divide the

proof in three sub cases:

• v ∈ W is of the formb +
∑l−1

i=1 eiyi, for somee1, . . . , el−1 ∈ Fp: Then each flat

Li contributes1 to the right hand side of (7.8), and therefore, the right handside is

(p − 1)(pr+1 − 1) = 1 in Fp.

158

• v ∈ W is of the formb +
∑r+1

i=1 diwi for somed1, . . . , dr+1 ∈ Fp: Then the flatsLj

that contribute haveVj = a ·∑r+1
i=1 diwi, for a = 1, . . . , p − 1. Therefore, the right

hand side of (7.8) is(p − 1)2 = 1 in Fp.

• v ∈ W is of the formb +
∑l−1

i=1 eiyi +
∑r+1

i=1 diwi: Then the flatsLj that contribute

haveVj = a ·∑r+1
i=1 diwi, for a = 1, . . . , p−1. Therefore, the right hand side of (7.8)

is (p − 1)2 = 1 in Fp.

As mentioned previously, we give an explicit basis for RMp(r, n). For the special case

of p = 3, our basis coincides with the min-weight basis given in [29].2 However, in general,

our basis differs from the min-weight basis provided in [29].

The following Proposition shows that the incidence vectorsof flats form a basis for the

Reed-Muller code of orders that are multiples of(p − 1).

Proposition 7.6. RMp((p−1)(n− l), n) is generated by the incidence vectors of thel-flats.

Proof. We first show that the incidence vectors of thel-flats are in RMp((p− 1)(n− l), n).

Recall thatL is the intersection of(n− l) independent hyperplanes. Therefore using (7.7),

L can be represented by a polynomial of degree at most(n − l)(p − 1) in x1, · · · , xn.

Therefore the incidence vectors ofl-flats are in RMp((p − 1)(n − l), n).

We prove that RMp((p − 1)(n − l), n) is generated byl-flats by induction onn − l.

Whenn − l = 0, the code consists of constants, which is clearly generatedby n-flats i.e.,

the whole space.

To prove for an arbitrary(n − l) > 0, we show that any monomial of total degree

d 6 (p − 1)(n − l) can be written as a linear sum of the incidence vectors ofl-flats. Let

the monomial bexe1
1 · · ·xes

s . Rewrite the monomials asx1 · · ·x1
︸ ︷︷ ︸

e1 times

· · · xs · · ·xt
︸ ︷︷ ︸

es times

. Group into

2The equations of the hyperplanes are slightly different in our case; nonetheless, both of them define the
same basis generated by the min-weight codewords.

159

products of(p − 1) (not necessarily distinct) variables as much as possible. Rewrite each

group using (7.5) withk = (p − 1). For any incomplete group of sized′, use the same

equation by setting the last(p − 1 − d′) variables to the constant 1. After expansion, the

monomial can be seen to be a sum of products of at most(n − l) linear terms raised to

the power ofp − 1. We can add to it a polynomial of degree at most(p − 1)(n − l − 1)

so as to represent the resulting polynomial as a sum of polynomials, each polynomial as

in (7.7). Each such non-zero polynomial is generated by at flat, t > l. By induction, the

polynomial we added is generated by(l+1) flats. Thus, by Lemma 7.5 our given monomial

is generated byl-flats.

This leads to the following observation:

Observation 7.4. Consider anl-flat generated byy1, · · · , yl at b. Denote the incidence

vector of this flat byI. Then the right hand side of (7.2) may be identified asI · f , where

I andf denote the vector corresponding to respective codewords and · is the dot (scalar)

product.

To generate a Reed-Muller code of any arbitrary order, we need pseudoflats. Note that

the points in ak-pseudoflat may alternatively be viewed as the space given bythe union

of intersections of(n − k − 1) hyperplanes, where the union is parameterized by another

hyperplane that does not take one particular value. Concretely, it is the set of pointsv which

satisfy the following constraints overFp:

∀i ∈ [n − k − 1]

n∑

j=1

cijxj = bi; and
n∑

j=1

cn−k,jxj 6= bn−k.

Thus the values taken by the points of ak-pseudoflat in its corresponding(k, r)-pseudoflat

vector is given by the polynomial

n−k−1∏

i=1

(1 − (
n∑

j=1

cijxj − bi)
p−1) · (

n∑

j=1

cn−k,jxj − bn−k)
r (7.9)

160

Remark 7.1. Note the difference between (7.9) and the basis polynomial in [29] that (along

with the action of the affine general linear group) yields themin-weight codewords:

h(x1, · · · , xm) =

k−1∏

i=1

(1 − (xi − wi)
p−1)

r∏

j=1

(xk − uj),

wherew1, · · · , wk−1, u1, · · · , ur ∈ Fp.

The next lemma shows that the code generated by the incidencevectors ofl-flats is a

subcode of the code generated by the(l, r)-pseudoflats vectors.

Claim 7.7. The(l, r)-pseudoflats vectors, wherel > 1 and r ∈ [p − 2], generate a code

containing the incidence vectors ofl-flats.

Proof. Let W be the incidence vector of anl-flat generated byy1, · · · , yl atb. Since pseud-

oflat vector corresponding to anl-pseudoflat (as well as a flat) assigns the same value to all

points in the same(l−1)-flat, we can describeW (as well as any(l, ·)-pseudoflat vector) by

giving its values on each of itsp l−1-flats. In particular,W = 〈1, . . . , 1〉. LetLj be a pseud-

oflat generated byy1, · · · , yl exponentiated alongy1 atb+ j · y1, for eachj ∈ Fp, and letVj

be the corresponding(l, r)- pseudoflat vector. By Definition 7.3,Vj assigns a valueir to the

(l−1)-flat generated byy2, · · · , yl atb+(j + i)y. Rewriting them in terms of the values on

its l−1-flats yields thatVj = 〈(p−j)r, (p−j+1)r, · · · , (p−j+i)r, · · · , (p−j−1)r〉 ∈ F
p
p.

Let λj denotep variables forj = 0, 1, · · · , p− 1, each taking values inFp. Then a solution

to the following system of equations

1 =
∑

j∈Fp

λj(i − j)r for every0 6 l 6 p − 1

implies thatW =
∑p−1

j=0 λjVj , which suffices to establish the claim. Consider the identity

1 = (−1)
∑

j∈Fp

(j + i)rjp−1−r

which may be verified by expanding and applying Lemma 7.1. Settingλj to (−1)(−j)p−1−r

establishes the claim.

161

The next Proposition complements Proposition 7.6. Together they say that by choosing

pseudoflats appropriately, Reed-Muller codes of any given order can be generated. This

gives an equivalent representation of Reed-Muller codes. An exact characterization then

follows from this alternate representation.

Proposition 7.8. For everyr ∈ [p − 2], the linear code generated by(l, r)-pseudoflat

vectors is equivalent toRMp((p − 1)(n − l) + r, n).

Proof. For the forward direction, consider anl-pseudoflatL. Its corresponding(l, r)-

pseudoflat vector is given by an equation similar to (7.9). Thus the codeword corresponding

to the evaluation vector of this flat can be represented by a polynomial of degree at most

(p − 1)(n − l) + r. This completes the forward direction.

Since monomials of degree at most(p−1)(n−l) are generated by the incidence vectors

of l-flats, Claim 7.7 will establish the proposition for such monomials. Thus, to prove the

other direction of the proposition, we restrict our attention to monomials of degree at least

(p−1)(n−l)+1 and show that these monomials are generated by(l, r)-pseudoflats vectors.

Now consider any such monomial. Let the degree of the monomial be(p−1)(n−l)+r′ (1 6

r′ 6 r). Rewrite it as in Proposition 7.6. Since the degree of the monomial is(p − 1)(n −
l) + r′, we will be left with an incomplete group of degreer′. We make any incomplete

group complete by adding 1’s (as necessary) to the product. We then use Lemma 7.3 to

rewrite each (complete) group as a linear sum ofrth powered terms. After expansion, the

monomial can be seen to be a sum of product of at most(n − l) degree(p − 1)th powered

linear terms and arth powered linear terms. Each such polynomial is generated either by

an(l, r)-pseudoflat vector or anl-flat. Claim 7.7 completes the proof.

The following is analogous to Observation 7.4.

Observation 7.5. Consider anl-pseudoflat, generated byy1, · · · , yl at b exponentiated

alongy1. Let E be its corresponding(l, r)-pseudoflat vector. Then the right hand side of

(7.3) may be interpreted asE · f .

162

Now we prove the exact characterization.

Proof of Theorem 7.1: The proof directly follows from Lemma 7.4, Proposition 7.6,

Proposition 7.8 and Observation 7.4 and Observation 7.5. Indeed by Observation 7.4, Ob-

servation 7.5 and (7.6) are essentially tests to determine whether the dot product of the

function with every vector in the dual space of RMp(t, n) evaluates to zero.�

Remark 7.2. One can obtain an alternate characterization from Remark 7.1 which we state

here without proof.

Let t = (p − 1) · k + R (note0 < R 6 (p − 2)). Letr = p − R − 2. LetW ⊆ Fp with

|W | = r. Define the polynomialg(x)
def
=
∏

α∈W (x − α) if W is non-empty; andg(x) = 1

otherwise. Then a function belong toPt if and only if for everyy1, · · · , yk+1, b ∈ F
n
p , we

have
∑

c1∈Fp\W
g(c1)

∑

(c2,··· ,ck+1)∈Fk
p

f(b +

k+1∑

i=1

ci · yi) = 0.

Moreover, this characterization can also be extended to certain degrees for more general

fields, i.e.,Fps (see the next remark).

Remark 7.3. The exact characterization of low degree polynomials as claimed in [42] may

be proved using duality. Note that their proof works as long as the dual code has a min-

weight basis (see [29]). Suppose that the polynomial has degreed 6 q − q/p − 1, then

the dual ofRMq(d, n) is RMq((q − 1)n − d − 1, n) and therefore has a min-weight basis.

Note that then the dual code has min-weight(d + 1). Therefore, assuming the minimum

weight codewords constitute a basis (that is, the span of allcodewords with the minimum

Hamming weight is the same as the code), anyd+1 evaluations of the original polynomial

on a line are dependent and vice-versa.

7.4 A Tester for Low Degree Polynomials overFn
p

In this section we present and analyze a one-sided tester forPt. The analysis of the algo-

rithm roughly follows the proof structure given in [93, 1]. We emphasize that the general-

ization from [1] to our case is not straightforward. As in [93, 1] we define a self-corrected

163

version of the (possibly corrupted) function being tested.The straightforward adoption of

the analysis given in [93] gives reasonable bounds. However, a better bound is achieved

by following the techniques developed in [1]. In there, theyshow that the self-corrector

function can be interpolated with overwhelming probability. However their approach ap-

pears to use special properties ofF2 and it is not clear how to generalize their technique for

arbitrary prime fields. We give a clean formulation which relies on the flats being repre-

sented through polynomials as described earlier. In particular, Claims 7.14, 7.15 and their

generalizations appear to require our new polynomial basedview.

7.4.1 Tester inFp

In this subsection we describe the algorithm when underlying field isFp.

Algorithm Test-Pt in Fp

0. Let t = (p − 1) · k + R, 0 6 R < p − 1. Denoter = p − 2 − R.

1. Uniformly and independently at random selecty1, · · · , yk+1, b ∈ F
n
p .

2. If T r
f (y1, · · · , yk+1, b) 6= 0, thenreject, elseaccept.

Theorem 7.2. The algorithmTest-Pt in Fp is a one-sided tester forPt with a success

probability at least min(c(pk+1ε), 1
2(k+7)pk+2) for some constantc > 0.

Corollary 7.3. Repeating the algorithmTest-Pt in Fp for Θ(1
pk+1ε

+ kpk) times, the prob-

ability of error can be reduced to less than1/2.

We will provide a general proof framework. However, for the ease of exposition we

prove the main technical lemmas for the case ofF3. The proof idea in the general case is

similar and the details are omitted. Therefore we will essentially prove the following.

Theorem 7.4.The algorithmTest-Pt in F3 is a one-sided tester forPt with success prob-

ability at least min(c(3k+1ε), 1
2(t+7)3t/2+1) for some constantc > 0.

164

7.4.2 Analysis of AlgorithmTest-Pt

In this subsection we analyze the algorithm described in Section 7.4.1. From Claim 7.1 it

is clear that iff ∈ Pt, then the tester accepts. Thus, the bulk of the proof is to show that if

f is ε-far from Pt, then the tester rejects with significant probability. Our proof structure

follows that of the analysis of the test in [1]. In particular, let f be the function to be tested

for membership inPt. Assume we perform TestT i
f for an appropriatei as required by the

algorithm described in Section 7.4.1. For such ani, we definegi : F
n
p → Fp as follows:

For y ∈ F n
p , α ∈ Fp, denotepy,α = Pry1,··· ,yk+1

[f(y) − T i
f (y − y1, y2, · · · , yk+1, y1) = α].

Definegi(y) = α such that∀β 6= α ∈ Fp, py,α > py,β with ties broken arbitrarily. With this

meaning of plurality, for alli ∈ [p − 2] ∪ {0}, gi can be written as:

gi(y) = pluralityy1,··· ,yk+1

[
f(y) − T i

f(y − y1, y2, · · · , yk+1, y1)
]
. (7.10)

Further we define

ηi
def
= Pry1,··· ,yk+1,b[T

i
f (y1, · · · , yk+1, b) 6= 0] (7.11)

The next lemma follows from a Markov-type argument.

Lemma 7.9. For a fixedf : F
n
p → Fp, let gi, ηi be defined as above. Then,δ(f, gi) 6 2ηi.

Proof. If for somey ∈ F
n
p , Pry1,··· ,yk+1

[f(y) = f(y)− T i
f (y − y1, y2, · · · , yk+1, y1)] > 1/2,

theng(y) = f(y). Thus, we only need to worry about the set of elementsy such that

Pry1,··· ,yk+1
[f(y) = f(y) − T i

f (y − y1, y2, · · · , yk+1, y1)] 6 1/2. If the fraction of such

elements is more than2ηi then that contradicts the condition that

ηi = Pry1,··· ,yk+1,b[T
i
f(y1, · · · , yk+1, b) 6= 0]

= Pry1,y2,··· ,yk+1,b[T
i
f(y1 − b, y2, · · · , yk+1, b) 6= 0]

= Pry,y1,··· ,yk+1
[f(y) 6= f(y) − T i

f (y − y1, y2, · · · , yk+1, y1)].

Therefore, we obtainδ(f, gi) 6 2ηi.

165

Note that Pry1,··· ,yk+1
[gi(y) = f(y) − T i

f(y − y1, y2, · · · , yk+1, y1)] > 1
p
. We now show

that this probability is actually much higher. The next lemma gives a weak bound in that

direction following the analysis in [93]. For the sake of completeness, we present the proof.

Lemma 7.10. ∀y ∈ F
n
p , Pry1,··· ,yk+1∈Fn

p
[gi(y) = f(y) − T i

f (y − y1, y2, · · · , yk+1, y1)] >

1 − 2pk+1ηi.

Proof. We will useI, J, I ′, J ′ to denote(k+1) dimensional vectors overFp. Now note that

− gi(y) = Pluralityy1,··· ,yk+1∈Fn
p
[

∑

I∈F
k+1
p ;I 6=〈1,0,··· ,0〉

I i
1f(I1(y − y1) +

k+1∑

t=2

Ityt + y1)]

= Pluralityy−y1,y2,··· ,yk+1∈Fn
p
[

∑

I∈F
k+1
p ;I 6=〈0,··· ,0〉

(I1 + 1)if(I1(y − y1)

+

k+1∑

t=2

Ityt + y)]

= Pluralityy1,··· ,yk+1∈Fn
p
[

∑

I∈F
k+1
p ;I 6=〈0,··· ,0〉

(I1 + 1)if(
k+1∑

t=1

Ityt + y)] (7.12)

Let Y = 〈y1, · · · , yk+1〉 andY ′ = 〈y′
1, · · · , y′

k+1〉. Also we will denote〈0, · · · , 0〉 by

0. Now note that

1 − ηi 6 Pry1,··· ,yk+1,b[T
i
f (y1, · · · , yk+1, b) = 0]

= Pry1,··· ,yk+1,b[
∑

I∈F
k+1
p

I i
1f(b + I · Y) = 0]

= Pry1,··· ,yk+1,b[f(b + y1) +
∑

I∈F
k+1
p ;I 6=〈1,0,··· ,0〉

I i
1f(b + I · Y) = 0]

= Pry1,··· ,yk+1,y[f(y) +
∑

I∈F
k+1
p ;I 6=〈1,0,··· ,0〉

I i
1f(y − y1 + I · Y) = 0]

= Pry1,··· ,yk+1,y[f(y) +
∑

I∈F
k+1
p ;I 6=〈0,··· ,0〉

(I1 + 1)if(y + I · Y) = 0]

166

Therefore for any givenI 6= 0 we have the following:

PrY,Y ′ [f(y + I · Y) =
∑

J∈F
k+1
p ;J 6=0

−(J1 + 1)if(y + I · Y + J · Y ′)] > 1 − ηi

and for any givenJ 6= 0,

PrY,Y ′ [f(y + J · Y ′) =
∑

I∈F
k+1
p ;I 6=0

−(I1 + 1)if(y + I · Y + J · Y ′)] > 1 − ηi.

Combining the above two and using the union bound we get,

PrY,Y ′




∑

I∈F
k+1
p ;I 6=0

(I1 + 1)if(y + I · Y)





=
∑

I∈F
k+1
p ;I 6=0

∑

J∈F
k+1
p ;J 6=0

−(I1 + 1)i(J1 + 1)if(y + I · Y + J · Y ′)

=
∑

J∈F
k+1
p ;J 6=0

(J1 + 1)if(y + J · Y ′)]

> 1 − 2(pk+1 − 1)η > 1 − 2pk+1ηi (7.13)

The lemma now follows from the observation that the probability that the same object

is drawn from a set in two independent trials lower bounds theprobability of drawing the

most likely object in one trial: Suppose the objects are ordered so thatpi is the probability

of drawing objecti, andp1 > p2 > · · · . Then the probability of drawing the same object

twice is
∑

i p
2
i 6

∑

i p1pi 6 p1.

However, when the degree being tested is larger than the fieldsize, we can improve the

above lemma considerably. The following lemma strengthensLemma 7.10 whent > p− 1

or equivalentlyk > 1. We now focus on theF3 case. The proof appears in Section 7.4.3.

Lemma 7.11. ∀y ∈ F
n
3 , Pry1,··· ,yk+1∈F

n
3
[gi(y) = f(y) − T i

f (y − y1, y2, · · · , yk+1, y1)] >

1 − (4k + 14)ηi.

Lemma 7.11 will be instrumental in proving the next lemma, which shows that suffi-

ciently smallηi impliesgi is the self-corrected version of the functionf (the proof appears

in Section 7.4.4).

167

Lemma 7.12. Over F3, if ηi < 1
(4k+14)3k+1 , then the functiongi belongs toPt (assuming

k > 1).

By combining Lemma 7.9 and Lemma 7.12 we obtain that iff is Ω(1/(k3k))-far from

Pt thenηi is at leastΩ(1/(k3k)). We next consider the case in whichηi is small. By Lemma

7.9, in this case, the distanceδ = δ(f, g) is small. The next lemma shows that in this case

the test rejectsf with probability that is close to3k+1δ. This follows from the fact that in

this case, the probability over the selection ofy1, · · · , yk+1, b, that among the3k+1 points
∑

i ciyi + b (wherec1, . . . , ck+1 ∈ F3), the functionsf andg differ in precisely one point,

is close to3k+1 · δ. Observe that if they do, then the test rejects.

Lemma 7.13. Suppose0 6 ηi 6 1
(4k+14)3k+1 . Let δ denote the relative distance between

f and g and ℓ = 3k+1. Then, wheny1, · · · , yk+1, b are chosen randomly, the probability

that for exactly one pointv among theℓ points
∑

i ciyi + b (where(c1, . . . , ck+1) ∈ F
k+1
3),

f(v) 6= g(v) is at least
(

1−ℓδ
1+ℓδ

)
ℓδ.

Observe thatηi is at leastΩ(3k+1δ). The proof of Lemma 7.13 is deferred to Sec-

tion 7.4.5.

Proof of Theorem 7.4: Clearly if f belongs toPt, then by Claim 7.1 the tester acceptsf

with probability 1.

Therefore letδ(f,Pt) > ε. Let d = δ(f, gr), wherer is as in algorithmTest-Pt. If

η < 1
(4k+14)3k+1 then by Lemma 7.12gr ∈ Pt and, by Lemma 7.13,ηi is at leastΩ(3k+1 ·d),

which by the definition ofε is at leastΩ(3k+1ε). Henceηi > min
(

c(3k+1ε), 1
(4k+14)3k+1

)

,

for some fixed constantc > 0. �

Remark 7.4. Theorem7.2 follows from a similar argument.

7.4.3 Proof of Lemma 7.11

Observe that the goal of Lemma 7.11 is to show that at any fixed point y, if gi is interpolated

from a random hyperplane, then w.h.p. the interpolated value is the most popular vote. To

168

ensure this we show that ifgi is interpolated on two independently random hyperplanes,

then the probability that these interpolated values are thesame, that is the collision prob-

ability, is large. To estimate this collision probability,we show that the difference of the

interpolation values can be rewritten as a sum ofT i
f on small number of random hyper-

planes. Thus if the test passes often (that is,T i
f evaluates to zero w.h.p.), then this sum (by

a simple union bound) evaluates to zero often, which proves the high collision probability.

The improvement will arise because we will express differences involvingT i
f(· · ·) as a

telescoping series to essentially reduce the number of events in the union bound. To do this

we will need the following claims. We note that a similar claim for p = 2 was proven by

expanding the terms on both sides in [1]. However, the latterdoes not give much insight

into the general case i.e., forFp. We provide proofs that have a much cleaner structure

based on the underlying geometric structure, i.e., flats or pseudoflats.

Claim 7.14. For everyl ∈ {2, · · · , k+1}, for everyy(= y1), z, w, b, y2, · · · , yl−1, yl+1, · · · ,

yk+1 ∈ F
n
p , let let

Sl
f(y, z)

def
= T 0

f (y, y2, · · · , yl−1, z, yl+1, · · · , yk+1, b).

The the following holds:

Sl
f (y, w)− Sl

f(y, z) =
∑

e∈F∗
p

[
Sl

f (y + ew, z) − Sl
f(y + ez, w)

]
.

Proof. Assumey, z, w are independent. If not then both sides are equal to0 and hence the

equality is trivially satisfied. To see why this claim is truefor the left hand side, recall the

definition ofT 0
f (·) and note that the sets of points in the flat generated byy, y2, · · · , yl−1, w,

yl+1, · · · , yk+1 at b and the flat generated byy, y2, · · · , yl−1, z, yl+1, · · · , yk+1 at b are the

same. A similar argument works for the expression on the right hand side of the equality.

We claim that it is enough to prove the result fork = 1 andb = 0. A linear transform

(or renaming the co-ordinate system appropriately) reduces the case ofk = 1 andb 6= 0

to the case ofk = 1 and b = 0. We now show how to reduce the case ofk > 1 to

169

thek = 1 case. Fix some valuesc2, · · · , cl−1, cl+1, · · · , ck+1 and note that one can write

c1y + c2y2 + · · · cl−1yl−1 + clw + cl+1yl+1 + ck+1yk+1 + b asc1y + clw + b′, whereb′ =
∑

j∈{2,··· ,l−1,l+1,··· ,k+1} cjyj + b. Thus,

Sl
f (y, w) =

k−1∑

(c2,··· ,cl−1,cl+1,··· ,ck+1)∈Fp

∑

(c1,cl)∈F2
p

f(c1y + clw + b′).

One can rewrite the otherSl
f(·) terms similarly. Note that for a fixed vector(c2, · · · , cl−1,

cl+1, · · · , ck+1), the value ofb′ is the same. Finally note that the equality in the general case

is satisfied ifpk−1 similar equalities hold in thek = 1 case.

Now consider the spaceH generated byy, z and w at 0. Note thatSl
f (y, w) (with

b = 0) is justf ·1L, where1L is the incidence vector of the flat given by the equationz = 0.

Therefore1L is equivalent to the polynomial(1−zp−1) overFp. SimilarlySl
f (y, z) = f ·1L′

whereL′ is given by the polynomial(1−wp−1) overFp. We use the following polynomial

identity (inFp)

wp−1 − zp−1 =
∑

e∈F∗
p

[
[1 − (ew + y)p−1] − [1 − (ez + y)p−1]

]
(7.14)

Now observe that the polynomial(1 − (ew + y)p−1) is the incidence vector of the flat

generated byy − e−1w andz. Similarly, the polynomial(1− (ez + y)p−1) is the incidence

vector of the flat generated byy − e−1z andw. Therefore, interpreting the above equation

in terms of incidence vectors of flats, Observation 7.4 completes the proof assuming (7.14)

is true.

We complete the proof by proving (7.14). Consider the sum:
∑

e∈F∗
p
(ew + y)p−1. Ex-

panding the terms and rearranging the sums we get
∑p−1

j=0

(
p−1

j

)
wp−1−jyj

∑

e∈F∗
p
ep−1−j.

By Lemma 7.1 the sum evaluates to(−wp−1 − yp−1). Similarly,
∑

e∈F∗
p
(ez + y)p−1 =

(−zp−1 − yp−1) which proves (7.14).

We will also need the following claim.

170

Claim 7.15. For everyi ∈ {1, · · · , p − 2}, for everyl ∈ {2, · · · , k + 1} and for every

y(= y1), z, w, b, y2, · · · , yl−1, yl+1, · · · , yk+1 ∈ F
n
p , denote

Si,l
f (y, w)

def
= T i

f (y, y2, · · · , yl−1, w, yl+1, · · · , yk+1, b).

Then there existsci such that

Si,l
f (y, w)− Si,l

f (y, z) = ci

∑

e∈F∗
p

[

Si,l
f (y + ew, z) − Si,l

f (y + ez, w)
]

.

Proof. As in the proof of Claim 7.14, we only need to prove the claim for k = 1 and

b = 0. Observe thatSi,l
f (y, z) = f · ELi

, whereELi
denotes the(2, i)-pseudoflat vector

of the pseudoflatL generated byy, z at b exponentiated alongy. Note that the polynomial

definingELi
is justyi(wp−1−1). Similarly we can identify the other terms with polynomials

overFp. To complete the proof, we need to prove the following identity (which is similar

to the one in (7.14)):

yi(wp−1 − zp−1) = ci

∑

e∈F∗
p

[
(y + ew)i[1 − (y − ew)p−1] − (y + ez)i[1 − (y − ez)p−1]

]
.

(7.15)

whereci = 2i. Before we prove the identity, note that(−1)j
(

p−1
j

)
= 1 in Fp. This is

because for1 6 m 6 j, m = (−1)(p − m). Thereforej! = (−1)j (p−1)!
(p−j−1)!

holds inFp.

Substitution yields the desired result. Also note that
∑

e∈F∗
p
(y + ew)i = −yi (expand and

apply Lemma 7.1). Now consider the sum

∑

e∈F∗
p

(y + ew)i(y − ew)p−1 =
∑

e∈F∗
p

∑

06j6i;
06m6p−1

(−1)m

(
i

j

)(
p − 1

m

)

yp−1+i−j−mwj+mej+m

=
∑

06j6i;
06m6p−1

(−1)m

(
i

j

)(
p − 1

m

)

yp−1+i−j−mwj+m
∑

e∈F∗
p

ej+m

= −yp−1+i + (−1)p

i∑

j=0

(
i

j

)(
p − 1

p − 1 − j

)

(−1)j

︸ ︷︷ ︸

=1

yiwp−1]

= (−1)[yi + yiwp−12i] (7.16)

171

Similarly one has
∑

e∈F∗
p
(y + ez)i(y − ez)p−1 = (−1)[yi + yizp−12i]. Substituting and

simplifying one gets (7.15).

Finally, we will also need the following claim.

Claim 7.16. For everyi ∈ {1, · · · , p − 2}, for everyl ∈ {2, · · · , l + 1} and for every

y(= yl), z, w, b, y2, · · · , yl−1, yl+1, · · · , yk+1 ∈ F
n
p , there existsci ∈ F

∗
p such that

Si,l
f (w, y)− Si,l

f (z, y) =
∑

e∈F∗
p

[

Si,l
f (y + ew, y − ew) − Si,l

f (w + ey, w − ey)+

Si,l
f (z + ey, z − ey) − Si,l

f (y + ez, y − ez)

+ci

[

Si,l
f (y + ew, z) − Si,l

f (y + ez, w)
]]

Proof. As in the proof of Claim 7.15, the proof boils down to proving apolynomial identity

overFp. In particular, we need to prove the following identity overFp:

wi(1−zp−1)−zi(1−wp−1) = (wi−yi)(1−zp−1)−(zi−yi)(1−wp−1)+yi(wp−1−zp−1).

We also use that
∑

e∈F∗
p
(w + ey)i = −wi and Claim 7.15 to expand the last term. Note that

ci = 2i as before.

We need one more simple fact before we can prove Lemma 7.11. For a probabil-

ity vector v ∈ [0, 1]n,
∥
∥
∥v
∥
∥
∥
∞

= Maxi∈[n]{vi} > Maxi∈[n]{vi} · (
∑n

i=1 vi) =
∑n

i=1 vi ·

Maxi∈[n]{vi} >
∑n

i=1 v2
i =

∥
∥
∥v
∥
∥
∥

2

2
.

Proof of Lemma 7.11: We first prove the lemma forg0(y). We fix y ∈ F
n
3 and letγ

def
=

Pry1,··· ,yk+1∈F
n
3
[g0(y) = f(y) − T 0

f (y − y1, y2, · · · , yk+1, y1)]. Recall that we want to lower

boundγ by 1 − (4k + 14)η0. In that direction, we bound a slightly different but related

probability. Define

µ = Pry1,··· ,yk+1,z1,··· ,zk+1∈F
n
3
[T 0

f (y − y1, y2, · · · , yk+1, y1) = T 0
f (y − z1, z2, · · · , zk+1, z1)]

DenoteY = 〈y1, · · · , yk+1〉 and similarlyZ. Then by the definitions ofµ andγ we have,

γ > µ. Note that we have

µ = Pry1,··· ,yk+1,z1,··· ,zk+1∈F
n
3
[T 0

f (y−y1, y2, · · · , yk+1, y1)−T 0
f (y−z1, z2, · · · , zk+1, z1) = 0].

172

We will now use a hybrid argument. Now, for any choice ofy1, · · · , yk+1 andz1, · · · ,

zk+1 we have:

T 0
f (y − y1, y2, · · · , yk+1, y1) − T 0

f (y − z1, z2, · · · , zk+1, z1)

= T 0
f (y − y1, y2, · · · , yk+1, y1) − T 0

f (y − y1, y2, · · · , yk, zk+1, y1)

+ T 0
f (y − y1, y2, · · · , yk, zk+1, y1) − T 0

f (y − y1, y2, · · · , yk−1, zk, zk+1, y1)

+ T 0
f (y − y1, · · · , yk−1, zk, zk+1, y1) − T 0

f (y − y1, · · · , yk−2, zk−1, zk, zk+1, y1)

...

+ T 0
f (y − y1, z2, z3, · · · , zk+1, y1) − T 0

f (y − z1, z2, · · · , zk+1, y1)

+ T 0
f (y − z1, z2, z3, · · · , zk+1, y1) − T 0

f (y − y1, z2, · · · , zk+1, z1)

+ T 0
f (y − y1, z2, z3, · · · , zk+1, z1) − T 0

f (y − z1, z2, · · · , zk+1, z1)

Consider any pairT 0
f (y − y1, y2, · · · , yl, zl+1, · · · , zk+1, y1) − T 0

f (y − y1, y2, · · · , yl−1, zl,

· · · , zk+1, y1) that appears in the firstk “rows” in the sum above. Note thatT 0
f (y −

y1, y2, · · · , yl, zl+1, · · · , zk+1, y1) andT 0
f (y − y1, y2, · · · , yl−1, zl, · · · , zk+1, y1) differ only

in a single parameter. We apply Claim 7.14 and obtain:

T 0
f (y− y1, y2, · · · , yl, zl+1, · · · , zk+1, y1)−T 0

f (y− y1, y2, · · · , yl−1, zl, · · · , zk+1, y1) =

T 0
f (y−y1+yl, y2, · · · , yl−1, zl, · · · , zk+1, y1)+T 0

f (y−y1−yl, y2, · · · , yl−1, zl, · · · , zk+1, y1)

−T 0
f (y−y1+zl, y2, · · · , yl, zl+1, · · · , zk+1, y1)−T 0

f (y−yl−zl, y2, · · · , yl, zl+1, · · · , zk+1, y1).

Recall thaty is fixed andy2, · · · , yk+1, z2, · · · , zk+1 ∈ F
n
3 are chosen uniformly at

random, so all the parameters on the right hand side of the equation are independent and

uniformly distributed. Similarly one can expand the pairsT 0
f (y−y1, z2, z3, · · · , zk+1, y1)−

T 0
f (y−z1, z2, · · · , zk+1, y1) andT 0

f (y−y1, z2, z3, · · · , zk+1, z1)−T 0
f (y−z1, z2, · · · , zk+1, z1)

into fourT 0
f with all parameters being independent and uniformly distributed3. Finally no-

tice that the parameters in bothT 0
f (y−z1, z2, z3, · · · , zk+1, y1) andT 0

f (y−z1, z2, · · · , zk+1, y1)

are independent and uniformly distributed. Further recallthat by the definition ofη0,

3SinceT 0
f (·) is symmetric in all but its last argument.

173

Prr1,··· ,rk+1
[T 0

f (r1, · · · , rk+1) 6= 0] 6 η0 for independent and uniformly distributedris.

Thus, by the union bound, we have:

Pry1,··· ,yk+1,z1,··· ,zk+1∈F
n
3
[T 0

f (y1, · · · , yk+1)−T 0
f (z1, · · · , zk+1) 6= 0] 6 (4k +10)η0. (7.17)

Thereforeγ > µ > 1 − (4k + 10)η0. A similar argument proves the lemma forg1(y). The

only catch is thatTf1(.) is not symmetric– in particular in its first argument. Thus, we use

another identity as given in Claim 7.16 to resolve the issue and get four extra terms than in

the case ofg0, which results in the claimed bound of(4k + 14)ηi. �

Remark 7.5. Analogously, in the caseFp we have: for everyy ∈ F
n
p , Pry1,y2,··· ,yk+1∈Fn

p
[gi(y)

= f(y) − T i
f(y − y1, y2, · · · , yk+1, y1) + f(y)] > 1 − 2((p − 1)k + 6(p − 1) + 1)ηi.

The proof is similar to that of Lemma 7.11 where it can be shownµi > 1 − 2((p − 1)k +

6(p − 1) + 1)ηi, for eachµi defined forgi(y).

7.4.4 Proof of Lemma 7.12

From Theorem 7.1, it suffices to prove that ifηi < 1
(4k+14)3k+1 thenT i

gi
(y1, · · · , yk+1,

b) = 0 for every y1, · · · , yk+1, b ∈ F
n
3 . Fix the choice ofy1, · · · , yk+1, b. DefineY =

〈y1, · · · , yk+1〉. We will expressT i
gi
(Y, b) as the sum ofT i

f (·) with random arguments. We

uniformly select(k+1)2 random variableszi,j overFn
3 for 1 6 i 6 k+1, and1 6 j 6 k+1.

DefineZi = 〈zi,1, · · · , zi,k+1〉. We also select uniformly(k + 1) random variablesri over

F
n
3 for 1 6 i 6 k +1. We usezi,j andri’s to set up the random arguments. Now by Lemma

7.11, for everyI ∈ F
k+1
3 (i.e. think ofI as an ordered(k + 1)-tuple over{0, 1, 2}), with

probability at least1 − (4k + 14)ηi over the choice ofzi,j andri,

gi(I ·Y +b) = f(I ·Y +b)−T i
f(I ·Y +b−I ·Z1−r1, I ·Z2+r2, · · · , I ·Zk+1+rk+1, I ·Z1+r1),

(7.18)

where for vectorsX, Y ∈ F
k+1
3 , Y · X =

∑k+1
i=1 YiXi, holds.

Let E1 be the event that (7.18) holds for allI ∈ F
k+1
3 . By the union bound:

Pr[E1] > 1 − 3k+1 · (4k + 14)ηi. (7.19)

174

Assume thatE1 holds. We now need the following claims. LetJ = 〈J1, · · · , Jk+1〉 be a

(k + 1) dimensional vector overF3, and denoteJ ′ = 〈J2, · · · , Jk+1〉.

Claim 7.17. If (7.18) holds for allI ∈ F
k+1
3 , then

T 0
g0

(Y, b) =
∑

06=J ′∈F
k
3

[

−T 0
f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b +

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈F
k
3

[

−T 0
f (2y1 − z1,1 +

k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +

k+1∑

t=2

Jtzt,(k+1),

2b − r1 +

k+1∑

t=2

Jtrt)

+ T 0
f (z1,1 +

k+1∑

t=2

Jtzt,1, · · · , z1,k+1 +

k+1∑

t=2

Jtzt,(k+1), r1 +

k+1∑

t=2

Jtrt)

]

(7.20)

Proof.

T 0
g0

(Y, b) =
∑

I∈F
k+1
3

g0(I · Y + b)

=
∑

I∈F
k+1
3

[
−T 0

f (I · Y + b − I · Z1 − r1, I · Z2 + r2, · · · , I · Zk+1 + rk+1,

I · Z1 + r1) +f(I · Y + b)]

= −
∑

I∈F
k+1
3








∑

∅6=J ′∈Fk
3

f(I · Y + b +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)





+




∑

J ′∈F k
3

(

f(2I · Y + 2b − I · Z1 − r1 +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)

+f(I · Z1 + r1 +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)

)]]

= −
∑

06=J ′∈F
k
3




∑

I∈F
k+1
3

f(I · Y + b +

k+1∑

t=2

Jtrt +

k+1∑

t=2

JtI · Zt)





−
∑

J ′∈F
k
3








∑

I∈F
k+1
3

f(2I · Y + 2b − I · Z1 − r1 +
k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)





175

+




∑

I∈F
k+1
3

f(I · Z1 + r1 +
k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)









=
∑

06=J ′∈F
k
3

[

−T 0
f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +
k+1∑

t=2

Jtzt,(k+1), b +
k+1∑

t=2

Jtrt)

]

+
∑

J ′∈F
k
3

[

−T 0
f (2y1 − z1,1 +

k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +
k+1∑

t=2

Jtzt,(k+1),

2b − r1 +

k+1∑

t=2

Jtrt)

+ T 0
f (z1,1 +

k+1∑

t=2

Jtzt,1, · · · , z1,k+1 +
k+1∑

t=2

Jtzt,(k+1), r1 +
k+1∑

t=2

Jtrt)

]

Claim 7.18. If (7.18) holds for allI ∈ F
k+1
3 , then

T 1
g1

(Y, b) =
∑

06=J ′∈F
k
3

[

−T 1
f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +
k+1∑

t=2

Jtzt,(k+1), b +
k+1∑

t=2

Jtrt)

]

+
∑

J ′∈F
k
3

[

T 1
f (2y1 − z1,1 +

k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +
k+1∑

t=2

Jtzt,(k+1),

2b − r1 +
k+1∑

t=2

Jtrt)

]

. (7.21)

Proof.

T 1
g1

(Y, b) =
∑

I∈F
k+1
3

I1g1(I · Y + b)

=
∑

I∈F
k+1
3

I1

[
−T 1

f (I · Y + b − I · Z1 − r1, I · Z2 + r2, · · · , I · Zk+1 + rk+1,

I · Z1 + r1) + f(I · Y + b)]

= −
∑

I∈F
k+1
3

I1








∑

∅6=J ′∈F
k
3

f(I · Y + b +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)





+




∑

J ′∈F k
3

f(2I · Y + 2b − I · Z1 − r1 +
k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)









176

= −
∑

06=J ′∈F
k
3




∑

I∈F
k+1
3

I1f(I · Y + b +
k+1∑

t=2

Jtrt +
k+1∑

t=2

JtI · Zt)





−
∑

J ′∈F
k
3




∑

I∈F
k+1
3

I1f(2I · Y + 2b − I · Z1 − r1 +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)





=
∑

06=J ′∈F
k
3

[

−T 1
f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b +

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈F
k
3

[

T 1
f (2y1 − z1,1 +

k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +
k+1∑

t=2

Jtzt,(k+1),

2b − r1 +
k+1∑

t=2

Jtrt)

]

LetE2 be the event that for everyJ ′ ∈ F
k
3, T

i
f(y1+

∑

t Jtzt,1, · · · , yk+1+
∑

t Jtzt,(k+1), b+
∑

t=2 k + 1Jtrt) = 0, T i
f(2y1−z1,1+

∑k+1
t=2 Jtzt,1, · · · , 2yk+1−z1,k+1+

∑k+1
t=2 Jtzt,(k+1), 2b−

r1+
∑k+1

t=2 Jtrt) = 0, andT 0
f (z1,1+

∑k+1
t=2 Jtzt,1, · · · , z1,k+1+

∑k+1
t=2 Jtzt,k+1, r1+

∑k+1
t=2 Jtrt) =

0. By the definition ofηi and the union bound, we have:

Pr[E2] > 1 − 3k+1ηi. (7.22)

Suppose thatηi 6 1
(4k+14)3k+1 holds. Then by (7.19) and (7.22), the probability thatE1

andE2 hold is strictly positive. In other words, there exists a choice of thezi,j ’s andri’s

for which all summands in either Claim 7.17 or in Claim 7.18, whichever is appropriate, is

0. This implies thatT i
gi
(y1, · · · , yk+1, b) = 0. In other words, ifηi 6 1

(4k+14)3k+1 , thengi

belongs toPt. �

Remark 7.6. Over Fp we have: ifηi < 1
2((p−1)k+6(p−1)+1)pk+1 , thengi belongs toPt (if

k > 1).

In case ofFp, we can generalize (7.18) in a straightforward manner. LetE ′
1 denote the

event that all such events holds. We can similarly obtain

Pr[E ′
1] > 1 − pk+1 · 2((p − 1)k + 6(p − 1) + 1)ηi. (7.23)

177

Claim 7.19. Assume equivalent of (7.18) holds for allI ∈ F
k+1
p , then

T i
gi
(Y, b) =

∑

06=J ′∈Fk
p

[

−T i
f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b +

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈Fk
p




∑

J1∈Fp;J1 6=1

J i
1

[

−T i
f (J1y1 − (J1 − 1)z1,1 +

k+1∑

t=2

Jtzt,1, · · · , J1yk+1−

(J1 − 1)z1,(k+1) +
k+1∑

t=2

Jtzt,(k+1), J1b − (J1 − 1)r1 +
k+1∑

t=2

Jtrt)

]]

(7.24)

Proof.

T i
gi
(Y, b) =

∑

I∈F
k+1
p

I i
1gi(I · Y + b)

=
∑

I∈F
k+1
p

I i
1

[
−T i

f (I · Y + b − I · Z1 − r1, I · Z2 + r2, · · · , I · Zk+1 + rk+1,

I · Z1 + r1) + f(I · Y + b)]

= −
∑

I∈F
k+1
p

I i
1








∑

∅6=J ′∈Fk
p

f(I · Y + b +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)





+




∑

J1∈Fp,J1 6=1

J i
1




∑

J ′∈Fk
p

f(J1I · Y + J1b − (J1 − 1)I · Z1 − (J1 − 1)r1

+
k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)

]]

= −
∑

06=J ′∈Fk
p




∑

I∈F
k+1
p

I i
1f(I · Y + b +

k+1∑

t=2

Jtrt +
k+1∑

t=2

JtI · Zt)





−
∑

J ′∈Fk
p




∑

J1∈Fp;J1 6=1

J i
1




∑

I∈F
k+1
p

I i
1f(J1I · Y + J1b − (J1 − 1)I · Z1 − (J1 − 1)r1

+

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)

]]

178

=
∑

06=J ′∈Fk
p

[

−T i
f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b +

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈Fk
p




∑

J1∈Fp;J1 6=1

J i
1

[

−T i
f (J1y1 − (J1 − 1)z1,1 +

k+1∑

t=2

Jtzt,1, · · · , J1yk+1

−(J1 − 1)z1,(k+1) +
k+1∑

t=2

Jtzt,(k+1), J1b − (J1 − 1)r1 +
k+1∑

t=2

Jtrt)

]]

Let E ′
2 be the event analogous to the eventE2 in Claim 7.18. Then by the definition of

ηi and the union bound, we have

Pr[E ′
2] > 1 − 2pk+1ηi. (7.25)

Then if we are given thatηi < 1
2((p−1)k+6(p−1)+1)pk+1 , then the probability thatE ′

1 andE ′
2

hold is strictly positive. Therefore, this impliesT i
gi
(y1, · · · , yk+1, b) = 0.

7.4.5 Proof of Lemma 7.13

For eachC ∈ F
k+1
3 , let XC be the indicator random variable whose value is 1 if and only if

f(C ·Y + b) 6= g(C ·Y + b), whereY = 〈y1, . . . , yk+1〉. Clearly, Pr[XC = 1] = δ for every

C. It follows that the random variableX =
∑

C XC which counts the number of pointsv

of the required form in whichf(v) 6= g(v) has expectationE[X] = 3k+1δ = ℓ · δ. It is not

difficult to check that the random variablesXC are pairwise independent, since for any two

distinctC1 = (C1,1, . . . , Ci,k+1) andC2 = (C2,1, . . . , C2,k+1), the sums
∑k+1

i=1 C1,iyi + b

and
∑k+1

i=1 C2,iyi + b attain each pair of distinct values inFn
3 with equal probability when

the vectors are chosen randomly and independently. SinceXC ’s are pairwise independent,

Var[X] =
∑

C Var[XC]. SinceXC ’s are boolean random variables, we note

Var[XC] = E[X2
C] − (E[XC])2 = E[XC] − (E[XC])2 6 E[XC].

179

Thus we obtain Var[X] 6 E[X], soE[X2] 6 E[X]2 + E[X]. Next we use the following

well known inequality which holds for a random variableX taking nonnegative, integer

values,

Pr[X > 0] >
(E[X])2

E[X2]
.

Indeed ifX attains valuei with probabilitypi, then we have

(E[X])2 =

(
∑

i>0

ipi

)2

=

(
∑

i>0

i
√

pi
√

pi

)2

6

(
∑

i>0

ipi

)(
∑

i>0

pi

)

= E[X] · Pr[X > 0],

where the inequality follows by the Cauchy-Schwartz inequality. In our case, this implies

Pr[X > 0] >
(E[X])2

E[X2]
>

(E[X])2

E[X] + (E[X])2
=

E[X]

1 + E[X]
.

Therefore,

E[X] > Pr[X = 1] + 2Pr[X > 2] = Pr[X = 1] + 2

(
E[X]

1 + E[X]
− Pr[X = 1]

)

=
2E[X]

1 + E[X]
− Pr[X = 1].

After simplification we obtain,

Pr[X = 1] >
1 − E[X]

1 + E[X]
· E[X].

The proof is complete by recalling thatE[X] = ℓ · δ. �

7.5 A Lower Bound and Improved Self-correction

7.5.1 A Lower Bound

The next theorem is a simple modification of a theorem in [1] and essentially implies that

our result is almost optimal.

Proposition 7.20. Let F be any family of functionsf : F
n
p → Fp that corresponds to

a linear codeC. Let d denote the minimum distance of the codeC and let d̄ denote the

minimum distance of the dual code ofC.

180

Every one-sided testing algorithm for the familyF must performΩ(d̄) queries, and if the

distance parameterε is at mostd/pn+1, thenΩ(1/ε) is also a lower bound for the necessary

number of queries.

Lemma 7.4 and Proposition 7.20 gives us the following corollary.

Corollary 7.5. Every one-sided tester for testingPt with distance parameterε must per-

formΩ(max(1
ε
, (1 + ((t + 1) mod(p − 1)))p

t+1
p−1)) queries.

7.5.2 Improved Self-correction

From Lemmas 7.9, 7.11 and 7.12 the following corollary is immediate:

Corollary 7.6. Consider a functionf : F
n
3 → F3 that isε-close to a degree-t polynomial

g : F
n
3 → F3, whereε < 1

(4k+14)3k+1 . (Assumek > 1.) Then the functionf can be

self-corrected. That is, for any givenx ∈ F
n
3 , it is possible to obtain the valueg(x) with

probability at least1 − 3k+1ε by queryingf on3k+1 points onF
n
3 .

An analogous result may be obtained for the general case. We,however, improve the

above corollary slightly. The above corrector does not allow any error in the3k+1 points it

queries. We obtain a stronger result by querying on a slightly larger flatH, but allowing

some errors. Errors are handled by decoding the induced Reed-Muller code onH.

Proposition 7.21.Consider a functionf : F
n
p → Fp that isε-close to a degree-t polynomial

g : F
n
p → Fp. Then the functionf can be self-corrected. That is, assumeK > (k + 1),

then for any givenx ∈ F
n
p , the value ofg(x) can be obtained with probability at least

1 − ε
(1−ε·pk+1)2

· p−(K−2k−3) with pK queries tof .

Proof. Our goal is to correct the RMp(t, n) at the pointx. Assumet = (p − 1) · k + R,

where0 6 R 6 (p − 2). Then the relative distance of the codeδ is (1 − R/p)p−k. Note

that2p−k−1 6 δ 6 p−k. Recall that the local testability test requires a(k + 1)-flat, i.e., it

tests
∑

c1,··· ,ck+1∈Fp
cp−2−R
1 f(y0 +

∑k+1
i=1 ciyi) = 0, whereyi ∈ F

n
p .

181

We choose a slightly larger flat, i.e., aK-flat with K > (k + 1) to be chosen later.

We consider the code restricted to thisK-flat with pointx being the origin. We queryf

on thisK-flat. It is known that a majority logic decoding algorithm exists that can decode

Reed-Muller codes up to half the minimum distance for any choice of parameters (see [99]).

Thus if the number of errors is small we can recoverg(x).

Let the relative distance off from the code beε and letS be the set of points where it

disagrees with the closest codeword. Let the randomK-flat beH = {x +
∑K

i=1 tiui|ti ∈
F, ui ∈R F

n
p}. Let the random variableY〈t1,··· ,tK〉 take the value1 if x+

∑K
i=1 uiti ∈ S and 0

otherwise. LetD = F
K \ {0} andU = 〈u1, · · · , uK〉. DefineY =

∑

〈t1,··· ,tK〉∈D Y〈t1,··· ,tK〉

andℓ = (pK − 1). We would like to bound the probability

PrU [|Y − εℓ| > (δ/2 − ε)ℓ].

Since PrU [Yt1,··· ,tK = 1] = ε, by linearity we getEU [Y] = εℓ. Let T = 〈t1, · · · , tK〉. Now

V ar[Y] =
∑

T∈FK−{0}
V ar[YT] +

∑

T 6=T ′

Cov[YT , YT ′]

= ℓ(ε − ε2) +
∑

T 6=λT ′

Cov[YT , YT ′] +
∑

T=λT ′;16=λ∈F∗

Cov[YT , YT ′]

6 ℓ(ε − ε2) + ℓ · (p − 2)(ε − ε2)

= ℓ(ε − ε2)(p − 1)

The above follows from the fact that whenT 6= λT ′ then the corresponding eventsYT and

YT ′ are independent and thereforeCov[YT , YT ′] = 0. Also, whenYT andYT ′ are dependent

thenCov[YT , YT ′] = EU [YT YT ′] − EU [YT]EU [YT ′] 6 ε − ε2.

Therefore, by Chebyshev’s inequality we have (assumingε < p−(k+1))

PrU [|Y − εℓ| > (δ/2 − ε)ℓ] 6
ℓε(1 − ε)(p − 1)

(δ/2 − ε)2ℓ2

182

Now note(δ/2 − ε) > (p−k−1 − ε) = (1 − ε · pk+1)p−k−1. We thus have

PrU [|Y − εℓ| > (δ/2 − ε)ℓ] 6
ε(1 − ε)(p − 1)

(1 − ε · pk+1)2p−2k−2ℓ

6
εp

(1 − ε · pk+1)2p−2k−2(ℓ + 1)

=
ε

(1 − ε · pk+1)2
· p−(K−2k−3).

7.6 Bibliographics Notes

The results presented in this chapter appear in [72].

As was mentioned earlier, the study of low degree testing (along with self-correction)

dates back to the work of Blum, Luby and Rubinfeld ([21]), where an algorithm was re-

quired to test whether a given function is linear. The approach in [21] later naturally ex-

tended to yield testers for low degree polynomials over fields larger than the total degree.

Roughly, the idea is to project the given function on to a random line and then test if the

projected univariate polynomial has low degree. Specifically, for a purported degreet func-

tion f : F
n
q → Fq, the test works as follows. Pick vectorsy andb from F

n
q (uniformly at

random), and distincts1, · · · , st+1 from Fq arbitrarily. Query the oracle representingf at

thet+1 pointsb+siy and extrapolate to a degreet polynomialPb,y in one variables. Now

test for a randoms ∈ Fp if

Pb,y(s) = f(b + sy)

(for details see [93],[42]). Similar ideas are also employed to test whether a given function

is a low degree polynomial in each of its variable (see [36, 8,6]).

Alon et al. give a tester over fieldF2 for any degree up to the number of inputs to the

function (i.e., for any non-trivial degree) [1]. In other words, their work shows that Reed-

Muller codes are locally testable. Under the coding theory interpretation, their tester picks

a random minimum-weight codeword from the dual code and checks if it is orthogonal to

183

the input vector. It is important to note that these minimum-weight code words generate

the Reed-Muller code.

Specifically their test works as follows: given a functionf : {0, 1}n → {0, 1}, to test if

the given functionf has degree at mostt, pick (t + 1)-vectorsy1, · · · , yt+1 ∈ {0, 1}n and

test if
∑

∅6=S⊆[t+1]

f(
∑

i∈S

yi) = 0.

Independent of [72], Kaufman and Ron, generalizing a characterization result of [42],

gave a tester for low degree polynomials over general finite fields (see [74]). They show

that a given polynomial is of degree at mostt if and only if the restriction of the polyno-

mial to every affine subspace of suitable dimension is of degree at mostt. Following this

idea, their tester chooses a random affine subspace of a suitable dimension, computes the

polynomial restricted to this subspace, and verifies that the coefficients of the higher degree

terms are zero4. To obtain constant soundness, the test is repeated many times. An advan-

tage of the approach presented in this chapter is that in one round of the test (over the prime

field) we test only one linear constraint, whereas their approach needs to test multiple linear

constraints.

A basis of RM consisting of minimum-weight codewords was considered in [28, 29].

We extend their result to obtain a different exact characterization for low-degree polyno-

mials. Furthermore, it seems likely that their exact characterization can be turned into a

robust characterization following analysis similar to ourrobust characterization. However,

our basis is cleaner and yields a simpler analysis. We point out that for degree smaller than

the field size, the exact characterization obtained from [28, 29] coincides with [21, 93, 42].

This provides an alternate proof to the exact characterization of [42] (for more details, see

Remark 7.3 and [42]).

In an attempt to generalize our result to more general fields,we obtain an exact char-

acterization of low degree polynomials over general finite fields [71] (see [86] for more

4Since the coefficients can be written as linear sums of the evaluations of the polynomial, this is equivalent
to check several linear constraints

184

details). This provides an alternate proof to the result of Kaufman and Ron [74] described

earlier. Specifically the result says that a given polynomial is of degree at mostt if and

only if the restriction of the polynomial to every affine subspace ofdimension⌈ t+1
q−q/p

⌉ (and

higher) is of degree at mostt.

Recently Kaufman and Litsyn ([73]) show that the dual of BCH codes are locally

testable. They also give a sufficient condition for a code to be locally testable. The con-

dition roughly says that if the number of fixed length codewords in the dual of the union

of the code and itsε-far coset is suitably smaller than the same in the dual of thecode,

then the code is locally testable. Their argument is more combinatorial in nature and needs

the knowledge of weight-distribution of the code and thus differs from the self-correction

approach used in this work.

185

Chapter 8

TOLERANT LOCALLY TESTABLE CODES

In this chapter, we revisit the notion of local testers (as defined in Section 2.3) that was

the focus of Chapter 7.

8.1 Introduction

In the definition of LTCs, there is no requirement on the tester for input strings that are

very close to a codeword (it has to reject “far” away receivedwords). This “asymmetry” in

the way the tester accepts and rejects an input reflects the way Probabilistically Checkable

Proofs (or PCPs) [6, 5] are defined, where we only care about accepting perfectly correct

proofs with high probability. However, the crux of error-correcting codes is to tolerate and

correct a few errors that could occur during transmission of the codeword (and not just

be able to detect errors). In this context, the fact that a tester can reject received words

with few errors is not satisfactory. A more desirable (and stronger) requirement in this

scenario would be the following– we would like the tester to make a quick decision on

whether or not the purported codeword is close to any codeword. If the tester declares that

there is probably a close-by codeword, we then use a decodingalgorithm to decode the

received word. If on the other hand, the tester rejects, thenwe assume with high confidence

that the received word is far away from all codewords and not run our expensive decoding

algorithm.

In this chapter, we introduce the concept oftolerant testers. These are testers which

reject (w.h.p) received words far from every codeword (likethe “standard” local testers)

and accept (w.h.p) close-by received words (unlike the “standard” ones which only need to

accept codewords). We will refer to codes that admit a tolerant tester as tolerant LTCs. In

186

particular we get tolerant testers that (i) makeO(1) queries and work with codes of near

constant rate codes and (ii) make sub-linear number of queries and work with codes of

constant rate.

8.2 Preliminaries

Recall that for any two vectorsu, v ∈ [q]n, δ(u, v) denotes the (relative) Hamming distance

between them. We will abuse the notation a bit and for anyS ⊆ [q]n, useδ(u, S) to denote

minv∈S δ(u, v). We now formally define atoleranttester.

Definition 8.1. For any linear codeC overFq of block lengthn and distanced, and0 6

c1 6 c2 6 1, a (c1, c2)-tolerant testerT for C with query complexityp(n) (or simplyp when

the argument is clear from the context) is a probabilistic polynomial time oracle Turing

machine such that for every vectorv ∈ F
n
q :

1. If δ(v, C) 6 c1d
n

, T upon oracle access tov accepts with probability at least2
3

(toler-

ance),

2. If δ(v, C) > c2d
n

, T rejects with probability at least2
3

(soundness),

3. T makesp(n) probes into the string (oracle)v.

A code is said to be(c1, c2, p)-testable if it admits a(c1, c2)-tolerant tester of query com-

plexityp(·).

A tester hasperfect completenessif it accepts any codeword with probability1. As

pointed out earlier, local testers are just(0, c2)-tolerant testers with perfect completeness.

We will refer to these asstandardtesters henceforth. Note that our definition of tolerant

testers is per se not a generalization of standard testers since we do not require perfect

completeness for the case when the inputv is a codeword. However, all our constructions

will inherit this property from the standard testers we obtain them from.

187

Recall one of the applications of tolerant testers mentioned earlier: a tolerant tester is

used to decide if the expensive decoding algorithm should beused. In this scenario, one

would like to set the parametersc1 andc2 such that the tester is tolerant up to the decoding

radius. For example, if we have an unique decoding algorithmwhich can correct up tod
2

errors, a particularly appealing setting of parameters would bec1 = 1
2

andc2 as close to1
2

as possible. However, we would not be able to achieve such large c1. In general we will

aim for positive constantsc1 andc2 with c2
c1

being as small as possible while minimizing

p(n).

One might hope that the existing standard testers could alsobe tolerant testers. We give

a simple example to illustrate the fact that this is not the case in general. Consider the tester

for the Reed-Solomon (RS) codes of dimensionk+1: pickk+2 points uniformly at random

and check if the degreek univariate polynomial obtained by interpolating on the first k + 1

points agrees with the input on the last point. It is well known that this is a standard tester

[96]. However, this is not a tolerant tester. Assume we have an input which differs from a

degreek polynomial in only one point. Thus, for
(

n−1
k+1

)
choices ofk + 2 points, the tester

would reject, that is, the rejection probability is
(n−1

k+1)
(n

k+2)
= k+2

n
which is greater than1

3
for

high rate RS codes.

Another pointer towards the inherent difficulty in coming upwith a tolerant tester is the

work of Fischer and Fortnow [39] which shows that there are certain boolean properties

which have a standard tester with constant number of queriesbut for which every tolerant

tester requires at leastnΩ(1) queries.

In this chapter, we examine existing standard testers and convert some standard testers

into tolerant ones. In Section 8.3 we record a few general facts which will be useful in

performing this conversion. The ultimate goal, if this can be realized at all, would be to

construct tolerant LTCs of constant rate which can be testedusingO(1) queries (we remark

that such a construction has not been obtained even without the requirement of tolerance).

In this work, we show that we can achieve either constant number of queries with slightly

sub-constant rate (Section 8.4) as well as constant rate with sub-linear number of queries

188

(Section 8.5.1). That is, something non-trivial is possible in both the domains: (a) constant

rate, and (b) constant number of queries. Specifically, in Section 8.4 we discuss binary

codes which encodek bits into codewords of lengthn = k · exp(logε k) for anyε > 0, and

can be tolerant tested usingO(1/ε) queries. In Section 8.5.1, following [14], we will study

the simple construction of LTCs using products of codes — this yields asymptotically good

codes which are tolerant testable using a sub-linear numbernγ of queries for any desired

γ > 0. An interesting common feature of the codes in Section 8.4 and 8.5.1 is that they

can be constructed from any code that has good distance properties and which in particular

need not admit a local tester with sub-linear query complexity. In Section 8.6 we discuss

the tolerant testability of Reed-Muller codes, which were considered in Chapter 7.

The overall message from this chapter is that a lot of the workon locally testable code

constructions extends fairly easily to also yield tolerantlocally testable codes. However,

there does not seem to be a generic way to “compile” a standardtester to a tolerant tester

for an arbitrary code.

8.3 General Observations

In this section we will spell out some general properties of tolerant testers and subsequently

use them to design tolerant testers for some existing codes.All the testers we refer to are

non-adaptive testerswhich decide on the locations to query all at once based only on the

random choices. The motivation for the definition below willbe clear in Section 8.4.

Definition 8.2. Let 0 < α 6 1. A testerT is (〈s1, q1〉, 〈s2, q2〉, α)-smoothif there exists a

setA ⊆ [n] where|A| = αn with the following properties:

• T queries at mostq1 points inA, and for everyx ∈ A, the probability that each of

these queries equals locationx is at mosts1

|A| , and

• T queries at mostq2 points in[n] \ A, and for everyx ∈ [n] \ A, the probability that

each of these queries equals locationx is at most s2

n−|A| .

189

As a special case a(〈1, q〉, 〈0, 0〉, 1)-smooth tester makes a total ofq queries each of

them distributed uniformly among then possible probe points. The following lemma fol-

lows easily by an application of the union bound.

Lemma 8.1. For any0 < α < 1, a (〈s1, q1〉, 〈s2, q2〉, α)-smooth(0, c2)-tolerant testerT

with perfect completeness is a(c1, c2)-tolerant testerT ′, wherec1 = nα(1−α)
3d max{q1s1(1−α), q2s2α} .

Proof. The soundness follows from the assumption onT . Assumeδ(v, C) 6 c1d
n

and let

f ∈ C be the closest codeword tov. Suppose thatf differs fromv in a setA′ of yd places

among locations inA, and a setB′ of (β − y)d places among locations in[n] \ A, where

we haveβ 6 c1 and0 6 y 6 β. The probability that any of the at mostq1 (resp. q2)

queries ofT into A (resp. [n] \ A) falls in A′ (resp. B′) is at mosts1yd
αn

(resp. s2(β−y)d
(1−α)n

).

Clearly, wheneverT does not query a location inA′ ∪ B′, it accepts (sinceT has perfect

completeness). Thus, an easy calculation shows that the probability thatT rejectsv is at

most
c1d

n
max{s1q1

α
,

s2q2

1 − α
}

which is1/3 for the choice ofc1 stated in the lemma.

The above lemma is not useful for us unless the relative distance and the number of

queries are constants. Next we sketch how to design toleranttesters from existingrobust

testers with certain properties. We first recall the definition of robust testers from [14].

A standard testerT has two inputs: an oracle for the received wordv and a random

strings. Depending ons, T generatesq query positionsi1, · · · , iq, fixes a circuitCs and

then accepts ifCs(vf (s)) = 1 wherevf (s) = 〈vi1, · · · , viq〉. The robustness ofT on inputs

v ands, denoted byρT (v, s), is defined to be the minimum, over all stringsy such that

Cs(y) = 1, of δ(vf (s), y). The expected robustness ofT on v is the expected value of

ρT (v, s) over the random choices ofs and would be denoted byρT (v).

A standard testerT is said to bec-robust forC if for everyv ∈ C, the tester accepts with

probability1, and for everyv ∈ F
n
q , δ(v, C) 6 c · ρT (v).

190

The tolerant versionT ′ of the standardc-robust testerT is obtained by accepting an

oraclev on random inputs, if ρT (v, s) 6 τ for some thresholdτ . (Throughout the chapter

τ will denote the threshold.) We will sometimes refer to such atester as one with threshold

τ . Recall that a standard testerT accepts ifρT (v, s) = 0. We next show thatT ′ is sound.

The following lemma follows from the fact thatT is c-robust:

Lemma 8.2. Let 0 6 τ 6 1, and letc2 = (τ+2)cn
3d

. For anyv ∈ F
n
q , if δ(v, C) > c2d

n
, then

the tolerant testerT ′ with thresholdτ rejectsv with probability at least2
3
.

Proof. Let v ∈ F
n
q be such thatδ(v, C) > c2d

n
. By the definition of robustness, the expected

robustness,ρT (v) is at leastc2d
nc

, and thus at least(τ + 2)/3 by the choice ofc2. By the

standard averaging argument, we can haveρT (v, s) 6 τ on at most a fraction1/3 of the of

the random choices ofs for T (and henceT ′). Therefore,ρT (v, s) > τ with probability at

least2/3 over the choice ofs and thusT ′ rejectsv with probability at least2/3. �

We next mention a property of the query pattern ofT which would makeT ′ tolerant.

Let S be the set of all possible choices for the random strings. Further for eachs, let pT (s)

be the set of positions queried byT .

Definition 8.3. A testerT has apartitionedquery pattern if there exists a partitions1 ∪
· · · ∪ Sm of the random choices ofT for somem, such that for everyi,

• ∪s∈Si
pT (s) = {1, 2, · · · , n}, and

• For all s, s′ ∈ Si, pT (s) ∩ pT (s′) = ∅ if s 6= s′.

Lemma 8.3. Let T have a partitioned query pattern. For anyv ∈ F
n
q , if δ(v, C) 6 c1d

n
,

wherec1 = nτ
3d

, then the tolerant testT ′ with thresholdτ rejects with probability at most1
3
.

Proof. Let S1, · · · , Sm be the partition ofS, the set of all random choices of the testerT .

For eachj, by the properties ofSj,
∑

s∈Sj
ρT (v, s) 6 δ(v, C). By an averaging argument

and by the assumption onδ(v, C) and the value ofc1, at least2
3

fraction of the choices ofs

in Sj haveρT (v, s) 6 τ and thus,T ′ accepts. Recalling thatS1, · · · , Sm was a partition of

S, for at least2
3

of the choices ofs in S, T ′ accepts. This completes the proof.�

191

8.4 Tolerant Testers for Binary Codes

One of the natural goals in the study of tolerant codes is to design explicit tolerant binary

codes with constant relative distance and as large a rate as possible. In the case of stan-

dard testers, Ben-Sasson et al [11] give binary locally testable codes which mapk bits to

k · exp(logε k) bits for anyε > 0 and which are testable withO(1/ε) queries. Their con-

struction uses objects called PCPs of Proximity (PCPP) which they also introduce in [11].

In this section, we show that a simple modification to their construction yields tolerant

testable binary codes which mapk bits tok · exp(logε k) bits for anyε > 0. We note that a

similar modification is used by Ben-Sasson et al to give a relaxed locally decodable codes

[11] but with worse parameters (specifically they gives codes with block lengthk1+ε).

8.4.1 PCP of Proximity

We start with the definition1 of of a Probabilistic Checkable proof of Proximity (PCPP).

A pair language is simply a language whose elements are naturally a pair of strings, i.e.,

it is some collection of strings(x, y). A notable example isCIRCUITVAL = {〈C, a〉 |
Boolean circuitC evaluates to1 on assignmenta}.

Definition 8.4. Fix 0 6 γ 6 1. A probabilistic verifierV is a PCPP for a pair languageL

with proximity parameterγ and query complexityq(·) if the following conditions hold:

• (Completeness) If(x, y) ∈ L then there exists a proofπ such thatV accepts by

accessing the oracley ◦ π with probability1.

• (Soundness) Ify is γ-far from L(x) = {y|(x, y) ∈ L}, then for all proofsπ, V

accepts by accessing the oracley ◦ π with probability strictly less than1
4
.

• (Query complexity) For any inputx and proofπ, V makes at mostq(|x|) queries in

y ◦ π.

1The definition here is a special case of the general PCPP defined in [11] which would be sufficient for
our purposes.

192

Note that a PCPP differs from a standard PCP in that it has a more relaxed soundness

condition but its queries into part of the inputy are also counted in its query complexity.

Ben-Sasson et. al. give constructions of PCPPs with the following guarantees:

Lemma 8.4 ([11]). Let ε > 0 be arbitrary. There exists a PCP of proximity for the pair

languageCIRCUITVAL = {(C, x)|C is a boolean circuit andC(x) = 1} whose proof

length, for inputs circuits of sizes, is at mosts · exp(logε/2 s) and for t = 2 log log s
log log log s

the

verifier of proximity has query complexityO(max{ 1
γ
, 1

ε
}) for any proximity parameterγ

that satisfiesγ > 1
t
. Furthermore, the queries of the verifier are non-adaptive and each of

the queries which lie in the input partx are uniformly distributed among the locations ofx.

The fact that the queries to the input part are uniformly distributed follows by an exam-

ination of the verifier construction in [11]. In fact, in the extended version of that paper, the

authors make this fact explicit and use it in their construction of relaxed locally decodable

codes (LDCs). To achieve a tolerant LTC using the PCPP, we will need all queries of the

verifier to be somewhat uniformly or smoothly distributed. We will now proceed to make

the queries of the PCPP verifier that fall into the “proof part” π near-uniform. This will

follow a fairly general method suggested in [11] to smoothenout the query distribution,

which the authors used to obtain relaxed locally decodable codes from the PCPP. We will

obtain tolerant LTCs instead, and in fact will manage to do sowithout a substantial increase

in the encoding length (i.e., the encoding length will remain k · 2logε k). On the other hand,

the best encoding length achieved for relaxed LDCs in [11] isk1+ε for constantε > 0. We

begin with the definition of a mapping that helps smoothen outthe query distribution.

Definition 8.5. Given anyv ∈ F
n
q and ~p = 〈pi〉ni=1 with pi > 0 for all i ∈ [n] and

∑n
i=1 pi = 1, we define the mappingRepeat(·, ·) as follows:Repeat(v, ~p) ∈ F

n′

q such that

vi is repeated⌊4npi⌋ times inRepeat(v, ~p) andn′ =
∑n

i=1⌊4npi⌋.

We now show why the mapping is useful. A similar fact appears in [11], but for the

sake of completeness we present its proof here.

193

Lemma 8.5. For anyv ∈ F
n
q let a non-adaptive verifierT (with oracle access tov) make

q(n) queries and letpi be the probability that each of these queries probes location i ∈ [n].

Let ci = 1
2n

+ pi

2
and~c = 〈ci〉ni=1. Consider the mapRepeat(v,~c) : F

n
q → F

n′

q . Then there

exists another testerT ′ for strings of lengthn′ with the following properties:

1. T ′ makes2q(n) queries onv′ = Repeat(v,~c) each of which probes locationj, for

anyj ∈ [n′], with probability at most2
n′ , and

2. for everyv ∈ F
n
q , the decision ofT ′ on v′ is identical to that ofT on v. Further,

3n < n′ 6 4n.

Proof. We first addq dummy queries toT each of which are uniformly distributed, and

then permute the2q queries in a random order. Note that each of the2q queries is now

identically distributed. Moreover, any position inv is probed with probability at least1
2n

for each of the2q queries. For the rest of the proof we will assume thatT makes2q queries

for each of which anyi ∈ [n] is probed with probabilityci = pi

2
+ 1

2n
. Let ri = ⌊4nci⌋.

Note thatri 6 4nci andri > 4nci − 1. Recalling thatn′ =
∑n

i=1 ri and
∑n

i=1 ci = 1, we

have3n < n′ 6 4n.

T ′ just simulatesT in the following manner: ifT queriesvi for anyi ∈ [n], T ′ queries

one of theri copies ofvi in v′ uniformly at random. It is clear that the decision ofT ′ on

v′ = Repeat(v,~c) is identical to that ofT on v. We now look at the query distribution of

T ′. T ′ queries anyj ∈ [n′], wherev′
j = vi, with probabilityp′j = ci · 1

ri
. Recalling the lower

bound onri, we havep′j 6 ci

4nci−1
which is at most1

2n
since clearlyci > 1

2n
. We showed

earlier thatn′ 6 4n which impliesp′j 6 2
n′ as required.

One might wonder if we can use Lemma 8.5 to smoothen out the queries made by the

verifier of an arbitrary LTC to obtain a tolerant LTC. That is,whether the above allows one

to compile the verifier for any LTC in a black-box manner to obtain a tolerant verifier. We

will now argue (informally) that this technique alone will not work. LetC1 be an[n, k, d]q

LTC with a standard testerT1 that makesq identically distributed queries with distribution

194

pi, 1 6 i 6 n, such thatpi > 1/2n for eachi. Create a new[n + 1, k, d]q codeC2 whose

(n + 1)’th coordinate is just a copy of then’th coordinate, i.e., corresponding to each

codeword(c1, c2, . . . , cn) ∈ F
n
q of C1, we will have a codeword(c1, c2, . . . , cn, cn) ∈ F

n+1
q

of C2. Consider the following testerT2 for C2: Given oracle access tov ∈ F
n+1
q , with

probability1/2 check whethervn = vn+1, and with probability1/2 run the testerT1 on the

first n coordinates ofv. Clearly,T2 is a standard tester forC2.

Now, consider what happens in the conversion procedure of Lemma 8.5 to get(C ′, T ′)

from (C2, T2). Note that by Lemmas 8.5 and 8.3,T ′ is tolerant. Let~q = (q1, . . . , qn+1) be

the query distribution ofT2. SinceT2 queries(vn, vn+1) with probability1/2, the combined

number of locations ofv′ = Repeat(v, ~q) corresponding tovn, vn+1 will be about1/2 of

the total lengthn′. Now letv′ be obtained from a codeword ofC ′ by corrupting just these

locations. The testerT ′ will accept such av′ with probability at least1/2, which contradicts

the soundness requirement sincev′ is 1/2-far fromC ′. Therefore, using the behavior of the

original testerT2 as just a black-box, we cannot in general argue that the construction of

Lemma 8.5 maintains good soundness.

Applying the transformation of Lemma 8.5 to the proximity verifier and proof of prox-

imity of Lemma 8.4, we conclude the following.

Proposition 8.6. Let ε > 0 be arbitrary. There exists a PCP of proximity for the pair lan-

guageCIRCUITVAL = {(C, x)|C is a boolean circuit andC(x) = 1} with the following

properties:

1. The proof length, for inputs circuits of sizes, is at mosts · exp(logε/2 s), and

2. for t = 2 log log s
log log log s

the verifier of proximity has query complexityO(max{ 1
γ
, 1

ε
}) for

any proximity parameterγ that satisfiesγ > 1
t
.

Furthermore, the queries of the verifier are non-adaptive with the following properties:

1. Each query made to one of the locations of the inputx is uniformly distributed among

the locations ofx, and

195

2. each query to one of the locations in the proof of proximityπ probes each location

with probability at most2/|π| (and thus is distributednearly uniformlyamong the

locations ofπ).

8.4.2 The Code

We now outline the construction of the locally testable codefrom [11]. The idea behind the

construction is to make use of a PCPP to aid in checking if the received word is a codeword

is far away from being one. Details follow.

Suppose we have a binary codeC0 : {0, 1}k → {0, 1}m of distanced defined by a

parity check matrixH ∈ {0, 1}(m−k)×m that is sparse, i.e., each of whose rows has only an

absolute constant number of1’s. Such a code is referred to as a low-density parity check

code (LDPC). For the construction below, we will use any suchcode which is asymptoti-

cally good (i.e., has ratek/m and relative distanced/m both positive asm → ∞). Explicit

constructions of such codes are known using expander graphs[95]. Let V be a verifier of a

PCP of proximity for membership inC0; more precisely, the proof of proximity of an input

stringw ∈ {0, 1}m will be a proof thatC̃0(w) = 1 whereC̃0 is a linear-sized circuit which

performs the parity checks required byH on w (the circuit will have sizeO(m) = O(k)

sinceH is sparse andC0 has positive rate). Denote byπ(x) be the proof of proximity

guaranteed by Proposition 8.6 for the claim that the inputC0(x) is a member ofC0 (i.e.,

satisfies the circuit̃C0). By Proposition 8.6 and fact that the size ofC̃0 is O(k), the length

of π(x) can be made at mostk exp(logε/2 k).

The final code is defined asC1(x) = (C0(x)t, π(x)) where t = (log k−1)|π(x)|
|C0(x)| . The

repetition of the code partC0(x) is required in order to ensure good distance, since the

length of the proof partπ(x) typically dominates and we have no guarantee on how far

apartπ(x1) andπ(x2) for x1 6= x2 are.

For the rest of this section letℓ denote the proof length. The testerT1 for C1 on an input

w = (w1, · · · , wt, π) ∈ {0, 1}tm+ℓ picksi ∈ [t] at random and runs the PCPP verifierV on

wi ◦ π. It also performs a few rounds of the following consistency checks: picki1, i2 ∈ [t]

196

andj1, j2 ∈ [m] at random and check ifwi1(j1) = wi2(j2). Ben-Sasson et al in [11] show

thatT1 is a standard tester. However,T1 need not be a tolerant tester. To see this, note that

the proof part ofC1 forms a 1
log k

fraction of the total length. Now consider a received word

wrec = (w0, · · · , w0, π
′) wherew0 ∈ C0 but π′ is not a correct proof forw0 being a valid

codeword inc0. Note thatwrec is close toC1. However,T1 is not guaranteed to acceptwrec

with high probability.

The problem with the construction above was that the proof part was too small: a natural

fix is to make the proof part a constant fraction of the codeword. We will show that this is

sufficient to make the code tolerant testable. We also remarkthat a similar idea was used by

Ben-Sasson et. al. to give efficient constructions for relaxed locally decodable codes [11].

Construction 8.1. Let 0 < β < 1 be a parameter,C0 : {0, 1}k → {0, 1}m be a good2

binary code andV be a PCP of proximity verifier for membership inC0. Finally let π(x)

be the proof corresponding to the claim thatC0(x) is a codeword inC0. The final code is

defined asC2(x) = (C0(x)r1 , π(x)r2) with r1 = (1−β) log k|π(x)|
m

andr2 = β log k.3

For the rest of the section the proof length|π(x)| will be denoted byℓ. Further the

proximity parameter and the number of queries made by the PCPP verifierV would be

denoted byγp andqp respectively. Finally letρ0 denote the relative distance of the codeC0.

The testerT2 for C2 is also the natural generalization ofT1. For a parameterqr (to be

instantiated later) and inputw = (w1, · · · , wr1, π1, · · · , πr2) ∈ {0, 1}r1m+r2l, T2 does the

following:

1. Repeat the next two steps twice.

2. Picki ∈ [r1] andj ∈ [r2] randomly and runV onwi ◦ πj .

2This means thatm = O(k) and the encoding can be done by circuits of nearly linear sizes0 = Õ(k).

3The factorlog k overhead is overkill, and a suitably large constant will do,but since the proof length
|π(x)| will anyway be larger than|x| by more than a polylogarithmic factor in the constructions we use,
we can afford this additionallog k factor and this eases the presentation somewhat.

197

3. Do qr repetitions of the following: picki1, i2 ∈ [r1] andj1, j2 ∈ [m] randomly and

check ifwi1(j1) = wi2(j2).

The following lemma captures the properties of the codeC2 and its testerT2.

Lemma 8.7. The codeC2 in Construction 8.1 and the testerT2 (with parametersβ andqr

respectively) above have the following properties:

1. The codeC2 has block lengthn = log k · ℓ with minimum distanced lower bounded

by (1 − β)ρ0n.

2. T2 makes a total ofq = 2qp + 4qr queries.

3. T2 is (〈1, q〉, 〈2, 2qp〉, 1 − β)-smooth.

4. T2 is a (c1, c2)-tolerant tester withc1 = nβ(1−β)
6d max{(2qr+qp)β, 2(1−β)qp} and c2 = n

d
(γp +

4
qr

+ β).

Proof. From the definition ofC2, it has block lengthn = r1m + r2ℓ = (1−β)ℓ log k
m

· m +

β log k · ℓ = log k · ℓ. Further asC0 has relative distanceρ0, C2 has relative distance at least
r1ρ0m
ℓ log k

= (1 − β)ρ0.

T2 makes the same number of queries asV which isqp in Step 2. In Step 3,T2 makes

2qr queries. AsT2 repeats Steps 2 and 3 twice, we get the desired query complexity.

To show the smoothness ofT2 we need to define the appropriate subsetA ⊂ [n] such

that |A| = (1 − β)n. Let A be the set of indices with the code part: i.e.A = [r1m].

T2 makes2qr queries inA in Step 3 each of which is uniformly distributed. Further by

Proposition 8.6,T2 in step 2 makes at mostqp queries inA which are uniformly distributed

and at mostqp queries in[n] \ A each of which are within a factor2 of being queried

uniformly at random. To complete the proof of property3 note thatT2 repeats step 2 and 3

twice.

The tolerance ofT2 follows from property3 and Lemma 8.1. For the soundness part

note that ifw = (w1, · · · , wr1, π1, · · · , πr2) ∈ {0, 1}r1m+r2l is γ-far from C2 thenw′ =

198

(w1, · · · , wr1) is at leastγn−r2ℓ
n

= γn−βn
n

= γ − β far from the repetition codeC ′ =

{C0(x)r1 |x ∈ {0, 1}k}. For γ = c2d/n with the choice ofc2 in the lemma, we have

γ − β > γp + 4/qr. The rest of the proof just follows the proof in [11] (also see[68,

Chap. 12]) of the soundness of the testerT1 for the codeC1– for the sake of completeness

we complete the poof here. We will show that one invocation ofSteps 2 and 3 results in

T2 acceptingw with probability strictly less than1
2
. The two repetitions of Steps 2 and 3

reduces this error to at most1
4
.

Let u ∈ {0, 1}m be the string such thatut is the “repetition sequence” that is closest to

w′, that is one that minimizes∆(w′, ut) =
∑r1

i=1 ∆(wi, u). We now consider two cases:

• Case 1: ∆(w′, ut) > r1m/qr. In this case, a single execution of the test in Step 3

rejects with probability

Ei1,i2∈[r1] [∆(wi1 , wi2)/m] =
1

m(r1)2

∑

i2

∑

i1

∆(wi1 , wi2)

>
1

m(r1)2

∑

i2

∑

i1

∆(wi1 , u)

=
1

mr1

r1∑

i1=1

∆(wi1 , u)

= ∆(w′, ut)/(mr1)

> 1/qr,

where the first inequality follows from the choice ofu and the second inequality

follows from the case hypothesis. Thus, afterqr repetitions the test will accept with

probability(1 − 1/qr)
qr < 1/e < 1/2.

• Case 2: ∆(w′, ut) < r1m/qr. In this case we have the following (where for any

subsetS of vectors and a vectoru, we will use∆(u, S) = minv∈S ∆(u, v)):

∆(u, C0)

r1
=

∆(ut, C ′)

r1m
>

∆(w′, C ′) − ∆(w′, ut)

r1m
> γp + 4/qr − 1/qr = γp + 3/qr,

(8.1)

199

where the first inequality follows from the triangle inequality and the last inequality

follows from the case hypothesis (and the fact thatw′ is γp +4/qr-far fromC ′). Now

by the case hypothesis, for an averagei, ∆(wi, u) 6 m/qr. Thus, by a Markov

argument, at most one thirds of thewi’s are3/qr-far from u. Sinceu is γp + 3/qr-far

from C0 (by (8.1)), this implies (along with triangle inequality) that for at least two

thirds of thewi’s areγp-far from C0. Thus, by the property of the PCPP, for each

suchwi the test in Step 2 should accept with probability at most1/4. Thus the total

acceptance probability in this case is at most1
3
· 1 + 2

4
· 1

4
= 1

2
, as desired.

Thus, in both cases the tester acceptsw with probability at most1/2, as required.

Fix any 0 < γ < 1 and letβ = γ
2
, γp = γ

6
, qr = 12

γ
. With these settings we get

γp + 4
qr

+ β = γ andqp = O(1
γ
) from Proposition 8.6 with the choiceε = 2γ. Finally,

q = 2qp + 4qr = O(1
γ
). Substituting the parameters inc2 andc1, we getc2 = γn

d
and

c1d

n
=

γ

24 max{γ(qr + qp/2), (2 − γ)qp}
= Ω(γ2) .

Also note that the minimum distanced > (1− β)ρ0n = (1− γ
2
)ρ0n >

ρ0

2
n. Thus, we have

the following result for tolerant testable binary codes.

Theorem 8.1.There exists an absolute constantα0 > 0 such that for everyγ, 0 < γ < 1,

there exists an explicit binary linear codeC : {0, 1}k → {0, 1}n wheren = k · exp(logγ k)

with minimum distanced > α0n which admits a(c1, c2)-tolerant tester withc2 = O(γ),

c1 = Ω(γ2) and query complexityO(1
γ
).

The claim about explicitness follows from the fact that the PCPP of Lemma 8.4 and

hence Proposition 8.6 has an explicit construction. The claim about linearity follows from

the fact that the PCPP for CIRCUITVAL is a linear function of the input when the circuit

computes linear functions — this aspect of the constructionis discussed in detail in Chapter

9 in [68].

200

8.5 Product of Codes

Tensor product of codes(or just product of codes) is simple way to construct new codes

from existing codes such that the constructed codes have testers with sub-linear query com-

plexity even though the original code need not admit a sub-linear complexity tester [14].

We start with the definition of product of codes.

Definition 8.6 (Tensor Product of Codes). GivenC1 andC2 that are[k1, n1, d1] and[k2, n2, d2]

codes, their tensor product, denoted byC1⊗C2, consists ofn2×n1 matrices such that every

row of the matrix is a codeword inC1 and every column is a codeword inC2.

It is well known thatC1 ⊗ C2 is an[n1n2, k1k2, d1d2] code.

A special case in which we will be interested is whenC1 = C2 = C. In such a case, given

an [n, k, d]q codeC, the product ofC with itself, denoted byC2, is a[n2, k2, d2]q code such

that a codeword (viewed as an×n matrix) restricted to any row or column is a codeword in

C. It can be shown that this is equivalent to the following [100]. Given thek × n generator

matrixM of C, C2 is precisely the set of matrices in the set{MT · X · M | X ∈ F k×k
q }.

8.5.1 Tolerant Testers for Tensor Products of Codes

A very natural test forC2 is to randomly choose a row or a column and then check if the

restriction of the received word on that row or column is a codeword inC (which can be

done for example by querying all then points in the row or column). Unfortunately, as we

will see in Section 8.5.2, this test is not robust in general.

Ben-Sasson and Sudan in [14] considered the more general product of codesCt for

t > 3 (whereCt denotesC tensored with itselft−1 times) along with the following general

tester: Choose at randomb ∈ {1, · · · , t} andi ∈ {1, · · · , n} and check ifbth coordinate of

the received word (which is an element ofF
nt

q) when restricted4 to i is a codeword inCt−1.

It is shown in [14] that this test is robust, in that if a received word is far fromCt, then many

4For thet = 2 caseb signifies either row or column andi denotes the row/column index.

201

of the tested substrings will be far fromCt−1. This tester lends itself to recursion: the test

for Ct−1 can be reduced to a test forCt−2 and so on till we need to check whether a word in

F
n2

q is a codeword ofC2. This last check can done by querying all then2 points, out of the

nt points in the original received word, thus leading to a sub-linear query complexity. As

shown in [14], the reduction can be done inlog t stages by the standard halving technique.

Thus, even thoughC might not have a tester with a small query complexity, we can test

Ct with a polylogarithmic number of queries.

We now give a tolerant version of the test for product of codesgiven by Ben-Sasson and

Sudan [14]. In what followst > 4 will be a power of two. As mentioned above the testerT

for the tensor productCt reduces the test to checking if some restriction of the givenstring

belong toC2. For the rest of this section, with a slight abuse of notationlet vf ∈ F
n2

q denote

the final restriction being tested. In what follows we assumethat by looking at all points in

anyv ∈ F
n2

q one can determine ifδ(v, C2) 6 τ in time polynomial inn2.

The tolerant version of the test of [14] is a simple modification as mentioned in Section

8.3: reduce the test onCt to C2 as in [14] and then accept ifvf is τ -close toC2.

First we make the following observation about the test in [14]. The test recurseslog t

times to reduce the test toC2. At stepl , the test chooses an random coordinatebl (this will

just be a random bit) and fixes the value of thebth
l coordinate of the currentC t

2l to an index

il (whereil takes values in the range1 6 il 6 nt/2l
). The key observation here is that for

each fixed choice ofb1, · · · , blog t, distinct choices ofi1, · · · , ilog t correspond to querying

disjoint setsn2 points in the originalv ∈ F
nt

q string, which together form a partition of all

coordinates ofv. In other words,T has apartitionedquery pattern, which will be useful to

argue tolerance. For soundness, we use the results in [14], which show that their tester is

C log t-robust forC = 232.

Applying Lemmas 8.2 and 8.3, therefore, we have the following result:

Theorem 8.2. Let t > 4 be a power of two and0 < τ 6 1. There exist0 < c1 < c2 6 1

with c2
c1

= C log t(1 + 2/τ) such that the proposed tolerant tester forCt is a (c1, c2)-tolerant

202

tester with query complexityN2/t whereN is the block length ofCt. Further,c1 andc2 are

constants (independent ofN) if t is a constant andC has constant relative distance.

Corollary 8.3. For everyγ > 0, there is an explicit family of asymptotically good binary

linear codes which are tolerant testable usingnγ queries, wheren is the block length of the

concerned code. (The rate, relative distance and thresholds c1, c2 for the tolerant testing

depend onγ.)

8.5.2 Robust Testability of Product of Codes

Recall that a standard tester for a code is robust if for everyreceived word which is far from

being a codeword, the tester not only rejects the codeword with high probability but also

with high probability the tester’s local view of the received word is far from any accepting

view (see Section 8.3 for a more formal definition).

As was mentioned before for the product codeC1 ⊗ C2, there is a natural tester (which

we call TC1⊗C2)– flip a coin; if it is heads check if a random row is a codeword in C1; if

it is tails, check if a random column is a codeword inC2. This test is indeed robust in a

couple of special cases– for example, when bothC1 andC2 are Reed-Solomon codes (see

Section 8.6.1 for more details) and when bothC1 andC2 are themselves tensor product of a

code [14].

P. Valiant showed that there are linear codesC1 andC2 such thatC1 ⊗ C2 is not robustly

testable [103]. Valiant constructs linear codesC1, C2 and a matrixv such that every row

(and column) ofv is “close” to some codeword inC1 (andC2) while v is “far” from every

codeword inC1 ⊗ C2 (where close and far are in the sense of hamming distance).

However, Valiant’s constructiondoes notwork whenC1 andC2 are the same code. In

this section, we show a reduction from Valiant’s construction to exhibit a codeC such that

C2 is not robustly testable.

203

Preliminaries and Known Results

C is said to be robustly testable if it has aΩ(1)-robust tester. For a given codeC of block

lengthn overFq and a vectorv ∈ Fq, the (relative) Hamming distance ofv to the closest

codeword inC is denoted byδC(v).

Asking whetherTC1⊗C2 is a robust tester has the following nice interpretation. The q

queriesi1, · · · , iq are either rows or columns of the received wordv. Let the row or column

corresponding to the random seeds be denoted byvs. Then the robustness ofTC1⊗C2 on

inputs(v, s), ρTC1⊗C2 (v, s) is justδC1(v
s) whenis corresponds to a row andδC2(v

s) whenis

corresponds to a column. Therefore the expected robustnessof TC1⊗C2 on v is the average

of the following two quantities: the average relative distance of the rows ofv from C1 and

the average relative distance of the columns ofv from C2.

In particular, ifTC1⊗C2 is Ω(1)-robust then it implies that for every received wordv such

that all rows (and columns) ofv areo(1)-close toC1 (andC2), v is o(1)-close toC1 ⊗ C2. P.

Valiant proved the following result.

Theorem 8.4([103]). There exist linear codes[n1, k1, d1 = n1/10] and [n2 = n2
1, k2, d2 =

n2/10] (call themC1 andC2) and an2 × n1 received wordv such that every row ofv is

1/n1-close toC1 and every column ofv is a codewordC2 butv is 1/20-far fromC1 × C2.

Note that in the above construction,n2 6= n1 and in particularC1 andC2 are not the

same code.

Reduction from the Construction of Valiant

In this section, we prove the following result.

Theorem 8.5. Let C1 6= C2 be [n1, k1, d1 = Ω(n1)] and [n2, k2, d2 = Ω(n2)] codes respec-

tively (withn2 > n1) and letv be an2 ×n1 matrix such that every row (and column) ofv is

g(n1)-close toC1 (g(n2)-close toC2) butv is ρ-far fromC1 ⊗ C2. Then there exists a linear

204

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������������������������

��

��

����

4a

4a

2a

a a

Figure 8.1: The construction of the new received wordv′ from v for the case whenn1 = a,
n2 = 2a andm = 2. The shaded boxes representv and the unshaded regions has all0s.

codeC with parametersn, k, d = Ω(n) and a received wordv′ such that such that every

row (and column) ofv′ is g(n1)/2-close (andg(n2)/2-close) toC butv′ is ρ/4-far fromC2.

Proof. We will first assume thatn1 dividesn2 and letm = n2

n1
. For anyx ∈ Σk1 and

y ∈ Σk2 , let

C(〈x, y〉) = 〈(C1(x))m, C2(y)〉

Thus,k = k1 + k2 andn = mn1 + n2. Also asd1 = Ω(n1) andd2 = Ω(n2), d = Ω(n).

We now construct then×n matrixv′ from v. The lower leftn2 ×mn1 sub-matrix ofv′

contains the matrixvm wherevm is the horizontal concatenation ofm copies ofv (which is

an2 × n1 matrix). Every other entry inv′ is 0. See figure 8.1 for an example withm = 2.

Let w be the codeword inC1 ⊗ C2 closest tov and constructw′ in the same manner

asv′ was constructed fromv. We first claim thatw′ is the codeword in5 C2 closest tov′.

For the sake of contradiction, assume that there is some other codewordw′′ in C2 such that

∆(v′, w′′) < ∆(v′, w′). For any2n′ × 2n′ matrix u let ulb denote the lower leftn′ × n′

sub-matrix ofu. Note that by definition ofC, w′′
lb = xm wherex ∈ C1 ⊗ C2. Further, as

5Note thatw′ ∈ C2 as the all zeros vector is a codeword in bothC1 andC2 andw ∈ C1 ⊗ C2.

205

v′ (necessarily) has0 everywhere other thanv′
lb and∆(v′, w′′) < ∆(v′, w′), it holds that

∆(v, w) > ∆(v, x) which contradicts the definition ofw.

Finally, it is easy to see that

δC2(v′) = ∆(v′, w′)/n2 = ∆(v, w)m/(mn1 + n2)
2 = ∆(v, w)/(4n1n2) =

ρ

4

and if for any row (or column), the relative distance ofv restricted to that row (or column)

from C1 (C2) is at mostα then for every row (or column), the relative distance ofv′ restricted

to that row (or column) fromC is at mostα/2.

This completes the proof for the case whenn1 dividesn2. For the case whenn1 does

not dividen2 a similar construction works if one definesC in the following manner (for any

x ∈ Σk1 andx2 ∈ Σk2)

C(〈x, y〉) = 〈(C1(x))ℓ/n1 , (C2(y))ℓ/n2〉

whereℓ = lcm(n1, n2). The received wordv′ in this case would have its lower leftℓ × ℓ

matrix asv(ℓ/n1,ℓ/n2) (wherev(m1,m2) is the matrix obtained by vertically concatenatingm2

copies ofvm1) and it has0s everywhere else.

Theorem 8.4 and 8.5 imply the following result.

Corollary 8.6. There exist a linear codeC with linear distance such that the testerTC2 is

notΩ(1)-robust forC2.

8.6 Tolerant Testing of Reed-Muller Codes

In this section, we discuss testers for codes based on multivariate polynomials.

8.6.1 Bivariate Polynomial Codes

As we saw in Section 8.5.2, one cannot have a robust standard testers forC2 in general. In

this subsection, we consider a special case whenC = RS[n, k + 1, d = n − k]q, that is,

the Reed–Solomon code based on evaluation of degreek polynomials overFq atn distinct

206

points in the field. We show that the tester forC2 considered in Section 8.5.2 is tolerant

for this special case. It is well-known (see, for example, Proposition 2 in [88]) that in this

caseC2 is the code with codewords being the evaluations of bivariate polynomials overFq

of degreek in each variable. The problem of low-degree testing for bivariate polynomials

is a well-studied one: in particular we use the work of Polishchuk and Spielman [88] who

analyze a tester using axis parallel lines. Call a bivariatepolynomial to be one of degree

(k1, k2) if the maximum degrees of the two variables arek1 andk2 respectively. In what

follows, we denote byQ′ ∈ F
n×n
q the received word to be tested (thought of as ann × n

matrix), and letQ(x, y) be the degree(k, k) polynomial whose encoding is closest toQ′.

We now specify the tolerant testerT ′. The upper bound of1 −
√

1 − d/n on τ comes

from the fact that this is largest radius for which decoding an RS[n, k +1, d] code is known

to be solvable in polynomial time [63].

1. Fix τ where0 6 τ 6 1 −
√

1 − d/n.

2. With probability1
2

chooseb = 0 or b = 1.

• If b = 0, choose a rowr randomly and reject ifδ(Q′(r, ·), P (·)) > τ for every

univariate polynomialP of degreek and accept otherwise.

• If b = 1, choose a columnc randomly and reject ifδ(Q′(·, c), P (·)) > τ for

every univariate polynomialP of degreek and accept otherwise.

The following theorem shows thatT ′ is a tolerant tester.

Theorem 8.7.There exists an absolute constantc0 > 0 such that forτ 6 1−
√

1 − d/n, the

testerT ′ with thresholdτ is a(c1, c2,
√

N)-tolerant tester forC2 (whereC = RS[n, k+1, d])

wherec1 = nτ
3d

, c2 = 2nc0(τ+2)
3d

andN is the block length ofC2.

Proof. To analyzeT ′ let R∗(r, ·) be the closest degreek univariate polynomial (breaking

ties arbitrarily) for each rowr. Similarly constructC∗(·, c). We will use the following

refinement of the Bivariate testing lemma of [88]:

207

Lemma 8.8([88, 13]). There exists an universal constantc0 6 128 such that the following

holds. If8k 6 n thenδ(Q′, C2) = δ(Q′, Q) 6 c0 · (δ(R∗, Q′) + δ(C∗, Q′)).

The following proposition shows that the standard tester version ofT ′ (that isT ′ with

τ = 0) is a robust tester–

Proposition 8.9. T ′ with τ = 0 is a2c0 robust tester, wherec0 is the constant from Lemma

8.8.

Proof. By the definition of the row polynomialR, for any row indexr, the robustness of

the tester withb = 0 andr, ρ(Q′, 〈b, r〉) = δ(Q′(r, ·), R∗(r, ·)). Similarly for b = 1, we

haveρ(Q′, 〈b, c〉) = δ(Q′(·, c), C∗(·, c)). Now the expected robustness of the test is given

by

ρ(Q′) = Pr[b = 0]
n∑

i=1

Pr[r = i] · δ(Q′(r, ·), R∗(r, ·)) +

Pr[b = 1]

n∑

j=1

Pr[c = j] · δ(Q′(·, c), C∗(·, c))

=
1

2
(δ(Q′, R∗) + δ(Q′, C∗)) .

Using Lemma 8.8, we getδ(Q′, Q) 6 2c0ρ(Q′), as required.�

From the description ofT ′, it is clear that it has apartitionedquery pattern. There

are two partitions: one for the rows (corresponding to the choice b = 0) and one for the

columns (corresponding to the choiceb = 1).

Lemmas 8.2 and 8.3 prove Theorem 8.7 wherec0 is the constant from Lemma 8.8.

8.6.2 General Reed-Muller Codes

We now turn our attention to testing of general Reed-Muller codes. Recall that RMq(k, m)

the linear code consisting of evaluations ofm-variate polynomials overFq of total degreeat

mostk at all points inF
m
q . 6 To test codewords of RMq(k, m), we need to, given a function

6The results of the previous section were for polynomials which had degree in eachindividual variable
bounded by some value; here we study the total degree case.

208

f : F
m
q → Fq as a table of values, test iff is close to anm-variate polynomial of total

degreek. We will do this using the following natural and by now well-studiedlow-degree

test which we call thelines test: pick a random line inFm
q and check if the restriction of

f on the line is a univariate polynomial of degree at mostk. In order to achieve tolerance,

we will modify the above test to accept if the restriction off on the picked line is within

distanceτ from some degreek univariate polynomial, for a thresholdτ . Using the analysis

of the low-degree test from [42], we can show the following.

Theorem 8.8. For 0 6 τ 6 1 −
√

k/q and q = Ω(k), RMq(k, m) is (c1, c2, p) testable

with c1 = nτ
3d

, c2 = 3(τ+2)n
d

andp = n1−1/m wheren = qm andd are the block length and

the distance of the code.

Proof. Recall that our goal is to test if a given functionf : F
m
q → Fq is close to anm-variate

polynomial of total degreek. For anyx, h ∈ F
m
q , a line passing throughx in directionh

is given by the setLx,h = {x + th|t ∈ Fq}. Further defineP f
x,h(·) to be the univariate

polynomial of degree at mostk which is closest (in Hamming distance) from the restriction

of f onLx,h. We will use the following result.

Theorem 8.9([42]). There exists a constantc such that for allk, if q is a prime power that

is at leastck, then given a functionf : F
m
q → Fq with

ρ
def
= Ex,h∈Fm

q
Prt∈Fq [P

f
x,h(t) 6= f(x + th)] 6

1

9
,

there exists anm-variate polynomialg of total degree at mostk such thatdist(f, g) 6 2ρ.

The above result clearly implies that the line test is robustwhich we record in the

following corollary.

Corollary 8.10. There exists a constantc such that the line test forRMq(k, m) with q > ck

is 9-robust.

The line test picks a random line by choosingx andh randomly. Consider the case

whenh is fixed. It is not hard to check that for there is a partition ofF
m
q = X1 ∪ · · · ∪ Xq

where eachXi has sizeqm−1 such that∪x∈Xi
Lx,h = F

m
q . In other words:

209

Proposition 8.10.The line test has a partitioned query pattern.

The proposed tolerant tester for RMq(k, m) is as follows: pickx, h ∈ F
m
q uniformly at

random and check if the input restricted toLx,h is τ -close to some univariate polynomial of

degreek. If so accept, otherwise reject. When the thresholdτ satisfiesτ 6 1 −
√

k/q, the

test can be implemented in polynomial time [63]. From Corollary 8.10, Proposition 8.10,

Lemmas 8.2 and 8.3, the above is indeed a tolerant tester for RMq(k, m), and Theorem 8.8

follows.

8.7 Bibliographic Notes and Open Questions

The results in this chapter (other than those in Section 8.5.2) were presented in [57]. Results

in Section 8.5.2 appear in [26].

In the general context of property testing, the notion of tolerant testing was introduced

by Parnaset al. [83] along with the related notion of distance approximation. Parnaset

al. also give tolerant testers for clustering. We feel that codeword-testing is a particularly

natural instance to study tolerant testing. (In fact, if LTCs were defined solely from a

coding-theoretic viewpoint, without their relevance and applications to PCPs in mind, we

feel that it is likely that the original definition itself would have required tolerant testers.)

The question of whether the natural tester forC1⊗C2 is a robust one was first explicitly

asked by Ben-Sasson and Sudan [14]. P. Valiant showed that ingeneral, the answer to the

question is no. Dinur, Sudan and Wigderson [30] further showthat the answer is positive

if at least one ofC1 or C2 is asmoothcode, for a certain notion of smoothness. They also

show that any non-adaptive andbi-regularbinary linear LTC is a smooth code. A bi-regular

LTC has a tester that in every query probes the same number of positions and every bit in

the received word is queried by the same number of queries. The latter requirement (in the

terminology of this chapter) is that the tester is(〈1, q〉, 〈0, 0〉, 1)-smooth, where the tester

makesq queries. The result of [30] however only works with constantquery complexity.

Note that for such an LTC, Lemma 8.1 implies that the code is also tolerant testable.

210

Obtaining non-trivial lower bounds on the the block length of codes that are locally

testable with very few (even3) queries is an extremely interesting question. This problem

has remained open and resisted even moderate progress despite all the advancements in

constructions of LTCs. The requirement of having a tolerantlocal tester is a stronger re-

quirement. While we have seen that we can get tolerance with similar parameters to the best

known LTCs, it remains an interesting question whether the added requirement of tolerance

makes the task of proving lower bounds more tractable. In particular,

Open Question 8.1.Does there exists a code with constant rate and linear distance that

has a tolerant tester that makes constant number of queries ?

This seems like a good first step in making progress towards understanding whether

locally testable codes with constant rate and linear distance exist, a question which is ar-

guably one of the grand challenges in this area. For interesting work in this direction which

proves that such codes, if they exist, cannot also becyclic, see [10].

The standard testers for Reed-Muller codes considered in Section 8.6 (and hence, the

tolerant testers derived from them) work only for the case when the size of the field is larger

than the degree of the polynomial being tested. Results in Chapter 7 and those in [74]

give a standard tester for Reed-Muller codes which works forall fields. These testers do

have a partitioned query pattern– however, it is not clear ifthe testers are robust. Thus, our

techniques to convert it into a tolerant tester fail. It willbe interesting to show the following

result.

Open Question 8.2.Design tolerant testers for RM codes over any finite field.

211

Chapter 9

CONCLUDING REMARKS

9.1 Summary of Contributions

In this thesis, we looked at two different relaxation of the decoding problems for error

correcting codes: list decoding and property testing.

In list decoding we focused on the achieving the best possible tradeoff between the

rate of a code and the fraction of errors that could be handledby an efficient list decod-

ing algorithm. Our first result was an explicit constructionof a family of code along with

efficient list decoding algorithm that achieves the list decoding capacity. That is, for any

rate0 < R < 1, we presented folded Reed-Solomon codes of rateR along with poly-

nomial time list decoding algorithms that can correct up to1 − R − ε fraction of errors

(for anyε > 0). This was the first result to achieve the list decoding capacity for any rate

(and over any alphabet) and answered one of the central open questions in coding theory.

We also constructed explicit codes that achieve the tradeoff above with alphabets of size

2O(ε−4 log(1/ε)), which are not that much bigger than the optimal size of2Ω(1/ε).

For alphabets of fixed size, we presented explicit codes along with efficient list decoding

algorithms that can correct a fraction of errors up to the so called Blokh-Zyablov bound.

In particular, these give binary codes of rateΩ(ε3) that can be list decoded up to a1/2 − ε

fraction of errors. These codes have rates that come close tothe optimal rate ofΘ(ε2) that

can be achieved by random codes with exponential time list decoding algorithms.

A key ingredient in designing codes over smaller alphabets was to come up with optimal

list recovery algorithms. We also showed that the list recovery algorithm for Reed-Solomon

codes due to Guruswami and Sudan is the best possible. We alsopresented some explicit

bad list decoding configurations for list decoding Reed Solomon codes.

212

Our contributions in property testing of error correcting codes are two-fold. First, we

presented local testers for Reed-Muller codes that use nearoptimal number of queries to

test membership in Reed-Muller codes over fixed alphabets. Second, we defined a natu-

ral variation of local testers called tolerant testers and showed that they had comparable

parameters with those of the best known LTCs.

9.2 Directions for Future Work

Even though we made some algorithmic progress in list decoding and property testing of

error correcting codes, there are many questions that are still left unanswered. We have

highlighted the open questions throughout the thesis. In this section, we focus on some of

the prominent ones (and related questions that we did not talk about earlier).

9.2.1 List Decoding

The focus of this thesis in list decoding was on the optimal tradeoff between the rate and

list decodability of codes. We first highlight the algorithmic challenges in this vein (most

of which have been highlighted in the earlier chapters).

• The biggest unresolved question from this thesis is to come up with explicit codes

over fixed alphabets that achieve the list decoding capacity. In particular is there a

polynomial time construction of a binary codes of rateΩ(ε2) that be list decoded in

polynomial time up to1/2 − ε fraction of errors? (Open Question 4.1)

• A less ambitious goal than the one above would be to give a polynomial time con-

struction of a binary code with rateΩ(ε) that can be list decoded up to1− ε fraction

of erasures? Erasures are a weaker noise model that we have not considered in this

thesis. In the erasure noise model, the only kind of errors that are allowed is the

“dropping” of a symbol during transmission. Further, it is assumed that the receiver

knows which symbols have been erased. For this weaker noise model, one can show

that for rateR the optimal fraction of errors that can be list decoded is1 − R.

213

• Another less ambitious goal would be to resolve the following question. Is there a

polynomial time construction of a code that can be list decoded up to1/2−ε fraction

of errors with rate that is asymptotically better thanε3?

• Even though we achieved list decoding capacity for large alphabets (that is, for rate

R code, list decode1−R − ε fraction of errors), the worst case list size wasnΩ(1/ε),

which is very far from theO (1/ε) worst case list size achievable by random codes.

A big open question is to come up with explicit codes that achieve the list decoding

capacity with constant worst case list size. As a less ambitious goal would be to

reduce the worst case list size tonc for some constantc that is independent ofε. (See

Section 3.7)

We now look at some questions that relate to the combinatorial aspects of list decoding.

• For a rateR Reed-Solomon code, can one list decode more than1 −
√

R fraction of

errors in polynomial time? (Open Question 6.2)

• To get to withinε of list decoding capacity can one prove a lower bound on the worst

case list size? For random codes it is known that list of sizeO(1/ε) suffice but no

general lower bound is known.1

• For codes of rateR over fixed alphabet of sizeq > 2, can one show existence of linear

codes that haveqo(1/ε) many codewords in any Hamming ball of radius1−Hq(R)−ε?

(See discussion in Section 2.2.1)

9.2.2 Property Testing

Here are some open questions concerning property testing ofcodes.

1For high fraction of errors, tight bounds are known [65].

214

• The biggest open question in this area is to answer the following question. Are there

codes of constant rate and linear distance that can be locally tested with constant

many queries?

• A less ambitious (but perhaps still very challenging) goal is to show that the answer

to the question above is no for3 queries.

• Can one show that the answer to the first question (or even the second) is no, if one

also puts in the extra requirement of tolerant testability?(Open Question 8.1)

215

BIBLIOGRAPHY

[1] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Test-
ing Reed-Muller codes.IEEE Transactions on Information Theory, 51(11):4032–
4039, 2005.

[2] Noga Alon and Joel Spencer.The Probabilistic Method. John Wiley and Sons, Inc.,
1992.

[3] Sigal Ar, Richard Lipton, Ronitt Rubinfeld, and Madhu Sudan. Reconstructing al-
gebraic functions from mixed data.SIAM Journal on Computing, 28(2):488–511,
1999.

[4] Sanjeev Arora, László Babai, Jacques Stern, and Z Sweedyk. The hardness of ap-
proximate optima in lattices, codes, and systems of linear equations. Journal of
Computer and System Sciences, 54:317–331, 1997.

[5] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the intractibility of approximationproblems. Journal of the
ACM, 45(3):501–555, 1998.

[6] Sanjeev Arora and Shmuel Safra. Probabilistic checkingof proofs: A new charac-
terization of NP.Journal of the ACM, 45(1):70–122, 1998.

[7] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications.
Combinatorica, 23(3):365–426, 2003.

[8] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking com-
putations in polylogarithmic time. InProceedings of the 23rd Annual ACM Sympo-
sium on the Theory of Computing(STOC), pages 21–31, 1991.

[9] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols.Computational Complexity, 1:3–40, 1991.

[10] László Babai, Amir Shpilka, and Daniel Stefankovic.Locally testable cyclic codes.
IEEE Transactions on Information Theory, 51(8):2849–2858, 2005.

216

[11] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs and application to coding. InProceedings
of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages 1–10,
2004.

[12] Eli Ben-Sasson, Swastik Kopparty, and Jaikumar Radhakrishnan. Subspace polyno-
mials and list decoding of Reed-Solomon codes. InProceedings of the 47th Annual
Symposium on Foundations of Computer Science (FOCS), pages 207–216, 2006.

[13] Eli Ben-Sasson and Madhu Sudan. Simple PCPs with poly-log rate and query com-
plexity. In Proceedings of 37th ACM Symposium on Theory of Computing (STOC),
pages 266–275, 2005.

[14] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of
codes.Random Structures and Algorithms, 28(4):387–402, 2006.

[15] Elwyn Berlekamp.Algebraic Coding Theory. McGraw Hill, New York, 1968.

[16] Elwyn Berlekamp. Factoring polynomials over large finite fields. Mathematics of
Computation, 24:713–735, 1970.

[17] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the
inherent intractability of certain coding problems.IEEE Transactions on Information
Theory, 24:384–386, 1978.

[18] Daniel Bleichenbacher, Aggelos Kiayias, and Moti Yung. Decoding of interleaved
Reed Solomon codes over noisy data. InProceedings of the 30th International Col-
loquium on Automata, Languages and Programming (ICALP), pages 97–108, 2003.

[19] E. L. Blokh and Victor V. Zyablov. Existence of linear concatenated binary codes
with optimal correcting properties.Prob. Peredachi Inform., 9:3–10, 1973.

[20] E. L. Blokh and Victor V. Zyablov.Linear Concatenated Codes. Moscow: Nauka,
1982. (in Russian).

[21] Manuel Blum, Micahel Luby, and Ronit Rubinfeld. Self-testing/correcting with
applications to numerical problems.Journal of Computer and System Sciences,
47(3):549–595, 1993.

[22] Donald G. Chandler, Eric P. Batterman, and Govind Shah.Hexagonal, information
encoding article, process and system.US Patent Number 4,874,936, October 1989.

217

[23] C. L. Chen and M. Y. Hsiao. Error-correcting codes for semiconductor memory
applications: A state-of-the-art review.IBM Journal of Research and Development,
28(2):124–134, 1984.

[24] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A.
Patterson. RAID: High-performance, reliable secondary storage. ACM Computing
Surveys, 26(2):145–185, 1994.

[25] Qi Cheng and Daqing Wan. On the list and bounded distancedecodability of Reed-
Solomon codes.SIAM Journal on Computing, 37(1):195–209, 2007.

[26] Don Coppersmith and Atri Rudra. On the robust testability of product of codes. In
Electronic Colloquium on Computational Complexity (ECCC)Tech Report TR05-
104, 2005.

[27] Don Coppersmith and Madhu Sudan. Reconstructing curves in three (and higher)
dimensional spaces from noisy data. InProceedings of the 35th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 136–142, June 2003.

[28] Philippe Delsarte, Jean-Marie Goethals, and FlorenceJessie MacWilliams. On gen-
eralized Reed-Muller codes and their relatives.Information and Control, 16:403–
442, 1970.

[29] Peng Ding and Jennifer D. Key. Minimum-weight codewords as generators of gen-
eralized Reed-Muller codes.IEEE Trans. on Information Theory., 46:2152–2158,
2000.

[30] Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of tensor
products of LDPC codes. InProceedings of the 10th International Workshop on
Randomization and Computation (RANDOM), pages 304–315, 2006.

[31] Rodney G. Downey, Michael R. Fellows, Alexander Vardy,and Geoff Whittle. The
parametrized complexity of some fundamental problems in coding theory. SIAM
Journal on Computing, 29(2):545–570, 1999.

[32] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating
the minimum distance of a linear code.IEEE Transactions on Information Theory,
49(1):22–37, 2003.

[33] Ilya I. Dumer. Concatenated codes and their multilevelgeneralizations. In V. S.
Pless and W. C. Huffman, editors,Handbook of Coding Theory, volume 2, pages
1911–1988. North Holland, 1998.

218

[34] Peter Elias. List decoding for noisy channels.Technical Report 335, Research Lab-
oratory of Electronics, MIT, 1957.

[35] Peter Elias. Error-correcting codes for list decoding. IEEE Transactions on Infor-
mation Theory, 37:5–12, 1991.

[36] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. Journal of the ACM,
43(2):268–292, 1996.

[37] Uriel Fiege and Daniele Micciancio. The inapproximability of lattice and coding
problems with preprocessing.Journal of Computer and System Sciences, 69(1):45–
67, 2004.

[38] Eldar Fischer. The art of uninformed decisions: A primer to property testing.Bulletin
of the European Association for Theoretical Computer Science, (75):97–126, 2001.

[39] Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for boolean
properties.Theory of Computing, 2(9):173–183, 2006.

[40] G. David Forney.Concatenated Codes. MIT Press, Cambridge, MA, 1966.

[41] G. David Forney. Generalized Minimum Distance decoding. IEEE Transactions on
Information Theory, 12:125–131, 1966.

[42] Katalin Friedl and Madhu Sudan. Some improvements to total degree tests. In
Proceedings of the 3rd Israel Symp. on Theory and Computing Systems (ISTCS),
pages 190–198, 1995.

[43] Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigder-
son. Self-testing/correcting for polynomials and for approxiamte functions. InPro-
ceeding of the 23rd Symposium on the Theory of Computing (STOC), pages 32–42,
1991.

[44] Oded Goldreich. Short locally testable codes and proofs (Survey).ECCC Technical
Report TR05-014, 2005.

[45] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connec-
tion to learning and approximation.Journal of the ACM, 45(4):653–750, 1998.

[46] Oded Goldreich and Madhu Sudan. Locally testable codesand PCPs of almost linear
length. InProceedings of 43rd Symposium on Foundations of Computer Science
(FOCS), pages 13–22, 2002.

219

[47] Andrew Granville. The arithmetic properties of binomial coefficients. In
http://www.cecm.sfu.ca/organics/papers/granville/, 1996.

[48] Venkatesan Guruswami. Limits to list decodability of linear codes. InProceedings
of the 34th ACM Symposium on Theory of Computing (STOC), pages 802–811, 2002.

[49] Venkatesan Guruswami.List decoding of error-correcting codes. Number 3282 in
Lecture Notes in Computer Science. Springer, 2004. (Winning Thesis of the 2002
ACM Doctoral Dissertation Competition).

[50] Venkatesan Guruswami. Algorithmic results in list decoding. InFoundations and
Trends in Theoretical Computer Science (FnT-TCS), volume 2. NOW publishers,
2006.

[51] Venkatesan Guruswami, Johan Håstad, Madhu Sudan, andDavid Zuckerman. Com-
binatorial bounds for list decoding.IEEE Transactions on Information Theory,
48(5):1021–1035, 2002.

[52] Venkatesan Guruswami and Piotr Indyk. Expander-basedconstructions of efficiently
decodable codes. InProceedings of the 42nd Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 658–667, 2001.

[53] Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meeting
Gilbert-Varshamov bound for low rates. InProceedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 756–757, 2004.

[54] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes
with near-optimal rate.IEEE Transactions on Information Theory, 51(10):3393–
3400, October 2005.

[55] Venkatesan Guruswami and Anindya C. Patthak. Correlated Algebraic-Geometric
codes: Improved list decoding over bounded alphabets. InProceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), October
2006.

[56] Venkatesan Guruswami and Atri Rudra. Limits to list decoding Reed-Solomon
codes. InProceedings of the 37th ACM Symposium on Theory of Computing(STOC),
pages 602–609, May 2005.

[57] Venkatesan Guruswami and Atri Rudra. Tolerant locallytestable codes. InProceed-
ings of the 9th International Workshop on Randomization andComputation (RAN-
DOM), pages 306–317, 2005.

220

[58] Venkatesan Guruswami and Atri Rudra. Explicit capacity-achieving list-decodable
codes. InProceedings of the 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 1–10, May 2006.

[59] Venkatesan Guruswami and Atri Rudra. Limits to list decoding Reed-Solomon
codes.IEEE Transactions on Information Theory, 52(8), August 2006.

[60] Venkatesan Guruswami and Atri Rudra. Better binary list-decodable codes via mul-
tilevel concatenation. InProceedings of the 11th International Workshop on Ran-
domization and Computation (RANDOM), 2007. To Appear.

[61] Venkatesan Guruswami and Atri Rudra. Concatenated codes can achieve list decod-
ing capacity.Manuscript, June 2007.

[62] Venkatesan Guruswami and Atri Rudra. Explicit bad listdecoding configurations
for Reed Solomon codes of constant rate.Manuscript, May 2006.

[63] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon
and algebraic-geometric codes.IEEE Transactions on Information Theory, 45:1757–
1767, 1999.

[64] Venkatesan Guruswami and Madhu Sudan. Extensions to the Johnson bound.
Manuscript, February 2001.

[65] Venkatesan Guruswami and Salil Vadhan. A lower bound onlist size for list de-
coding. InProceedings of the 9th International Workshop on Randomization and
Computation (RANDOM), pages 318–329, 2005.

[66] Venkatesan Guruswami and Alexander Vardy. Maximum-likelihood decoding of
Reed-Solomon codes is NP-hard.IEEE Transactions on Information Theory,
51(7):2249–2256, 2005.

[67] Richard W. Hamming. Error Detecting and Error Correcting Codes.Bell System
Technical Journal, 29:147–160, April 1950.

[68] Prahladh Harsha.Robust PCPs of Proximity and Shorter PCPs. PhD thesis, Mas-
sachusetts Institute of Technology, 2004.

[69] Edward F. Assmus Jr. and Jennifer D. Key. Polynomial codes and finite geometries.
In V. S. Pless and W. C. Huffman, editors,Handbook of Coding Theory, volume 2,
pages 1269–1343. North Holland, 1998.

221

[70] Jørn Justesen and Tom Høholdt. Bounds on list decoding of MDS codes.IEEE
Transactions on Information Theory, 47(4):1604–1609, May 2001.

[71] Charanjit S. Jutla, Anindya C. Patthak, and Atri Rudra.Testing polynomials over
general fields. manuscript, 2004.

[72] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, andDavid Zuckerman. Testing
low-degree polynomials over prime fields. InProceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 423–432, 2004.

[73] Tali Kaufman and Simon Litsyn. Almost orthogonal linear codes are locally testable.
In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 317–326, 2005.

[74] Tali Kaufman and Dana Ron. Testing polynomials over general fields.SIAM Journal
on Computing, 36(3):779–802, 2006.

[75] Victor Y. Krachkovsky. Reed-Solomon codes for correcting phased error bursts.
IEEE Transactions on Information Theory, 49(11):2975–2984, November 2003.

[76] Michael Langberg. Private codes or Succinct random codes that are (almost) perfect.
In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 325–334, October 2004.

[77] Rudolf Lidl and Harald Niederreiter.Introduction to Finite Fields and their applica-
tions. Cambridge University Press, Cambridge, MA, 1986.

[78] Yu. V. Linnik. On the least prime in an arithmetic progression. I. The basic theorem.
Mat. Sbornik N. S., 15(57):139–178, 1944.

[79] Antoine C. Lobstein. The hardness of solving subset sumwith preprocessing.IEEE
Transactions on Information Theory, 36:943–946, 1990.

[80] Florence Jessie MacWilliams and Neil J. A. Sloane.The Theory of Error-Correcting
Codes. Elsevier/North-Holland, Amsterdam, 1981.

[81] Robert J. McEliece. On the average list size for the Guruswami-Sudan decoder. In
7th International Symposium on Communications Theory and Applications (ISCTA),
July 2003.

[82] D. E. Muller. Application of boolean algebra to switching circuit design and to error
detection.IEEE Transactions on Computers, 3:6–12, 1954.

222

[83] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and dis-
tance approximation.Journal of Computer and System Sciences, 72(6):1012–1042,
2006.

[84] Farzad Parvaresh and Alexander Vardy. Multivariate interpolation decoding beyond
the Guruswami-Sudan radius. InProceedings of the 42nd Allerton Conference on
Communication, Control and Computing, 2004.

[85] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the Guruswami-
Sudan radius in polynomial time. InProceedings of the 46th Annual IEEE Sympo-
sium on Foundations of Computer Science, pages 285–294, 2005.

[86] Anindya C. Patthak.Error Correcting Codes : Local-testing, List-decoding, and
Applications to Cryptography. PhD thesis, University of Texas at Austin, 2007.

[87] Larry L. Peterson and Bruce S. Davis.Computer Networks: A Systems Approach.
Morgan Kaufmann Publishers, San Francisco, 1996.

[88] A. Polishchuk and D. A. Spielman. Nearly-linear size holographic proofs. InPro-
ceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC),
pages 194–203, 1994.

[89] Irving S. Reed. A class of multiple-error-correcting codes and the decoding scheme.
IEEE Transactions on Information Theory, 4:38–49, 1954.

[90] Irving S. Reed and Gustav Solomon. Polynomial codes over certain finite fields.
SIAM Journal on Applied Mathematics, 8:300–304, 1960.

[91] Oded Regev. Improved inapproximability of lattice andcoding problems with pre-
processing.IEEE Transactions on Information Theory, 50:2031–2037, 2004.

[92] Dana Ron. Property Testing. In S. Rajasekaran, P. M. Pardalos, J. H. Reif, and
J. D. P. Rolim, editors,Handbook of Randomization, pages 597–649, 2001.

[93] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing.SIAM Journal on Computing, 25(2):252–271, 1996.

[94] Claude E. Shannon. A mathematical theory of communication. Bell System Techni-
cal Journal, 27:379–423, 623–656, 1948.

[95] Michael Sipser and Daniel Spielman. Expander codes.IEEE Transactions on Infor-
mation Theory, 42(6):1710–1722, 1996.

223

[96] Madhu Sudan.Efficient Checking of Polynomials and Proofs and the Hardness of
Approximation Problems. ACM Distinguished Theses Series. Lecture Notes in Com-
puter Science, no. 1001, Springer, 1996.

[97] Madhu Sudan. Decoding of Reed-Solomon codes beyond theerror-correction
bound.Journal of Complexity, 13(1):180–193, 1997.

[98] Madhu Sudan. List decoding: Algorithms and applications. SIGACT News, 31:16–
27, 2000.

[99] Madhu Sudan. Lecture notes on algorithmic introduction to coding theory, Fall 2001.
Lecture 15.

[100] Madhu Sudan. Lecture notes on algorithmic introduction to coding theory, Fall 2001.
Lecture 6.

[101] Amnon Ta-Shma and David Zuckerman. Extractor Codes.IEEE Transactions on
Information Theory, 50(12):3015–3025, 2001.

[102] Christian Thommesen. The existence of binary linear concatenated codes with Reed-
Solomon outer codes which asymptotically meet the Gilbert-Varshamov bound.
IEEE Transactions on Information Theory, 29(6):850–853, November 1983.

[103] Paul Valiant. The tensor product of two codes is not necessarily robustly testable. In
Proceedings of the 9th International Workshop on Randomization and Computation
(RANDOM), pages 472–481, 2005.

[104] Jacobus H. van Lint.Introduction to Coding Theory. Graduate Texts in Mathematics
86, (Third Edition) Springer-Verlag, Berlin, 1999.

[105] Stephen B. Wicker and Vijay K. Bhargava, editors.Reed-Solomon Codes and Their
Applications. John Wiley and Sons, Inc., September 1999.

[106] John M. Wozencraft. List Decoding.Quarterly Progress Report, Research Labora-
tory of Electronics, MIT, 48:90–95, 1958.

[107] Chaoping Xing. Nonlinear codes from algebraic curvesimproving the Tsfasman-
Vladut-Zink bound. IEEE Transactions on Information Theory, 49(7):1653–1657,
2003.

[108] Victor A. Zinoviev. Generalized concatenated codes.Prob. Peredachi Inform.,
12(1):5–15, 1976.

224

[109] Victor A. Zinoviev and Victor V. Zyablov. Codes with unequal protection.Prob.
Peredachi Inform., 15(4):50–60, 1979.

[110] Victor V. Zyablov and Mark S. Pinsker. List cascade decoding. Problems of In-
formation Transmission, 17(4):29–34, 1981 (in Russian); pp. 236-240 (in English),
1982.

225

VITA

Atri Rudra was born in Dhanbad, India which is also where he grew up. He got a

Bachelors in Technology in Computer Science and Engineering from Indian Institute of

Technology, Kharagpur in 2000. After spending two years at IBM India Research Lab in

New Delhi, he joined the graduate program at University of Texas at Austin in 2002. He

moved to the Computer Science and Engineering department atthe University of Washing-

ton in 2004, where he earned his Master of Science and Doctor of Philosophy degrees in

2005 and 2007 respectively under the supervision of Venkatesan Guruswami. Beginning

September 2007, he will be an Assistant Professor at the University at Buffalo, New York.

	List of Figures
	List of Tables
	Introduction
	Basics of Error Correcting Codes
	Historical Background and Modeling the Channel Noise

	List Decoding
	Going Beyond Half the Distance Bound
	Why is List Decoding Any Good ?
	The Challenge of List Decoding (and What Was Already Known)

	Property Testing of Error Correcting Codes
	A Brief History of Property Testing of Codes

	Contributions of This Thesis
	List Decoding
	Property Testing
	Organization of the Thesis

	Preliminaries
	The Basics
	Basic Definitions for Codes
	Code Families
	Linear Codes

	Preliminaries and Definitions Related to List Decoding
	Rate vs. List decodability
	Results Related to the q-ary Entropy Function

	Definitions Related to Property Testing of Codes
	Common Families of Codes
	Reed-Solomon Codes
	Reed-Muller Codes

	Basic Finite Field Algebra

	List Decoding of Folded Reed-Solomon Codes
	Introduction
	Folded Reed-Solomon Codes
	Description of Folded Reed-Solomon Codes
	Why Might Folding Help?
	Relation to Parvaresh Vardy Codes

	Problem Statement and Informal Description of the Algorithms
	Trivariate Interpolation Based Decoding
	Facts about Trivariate Interpolation
	Using Trivariate Interpolation for Folded RS Codes
	Root-finding Step

	Codes Approaching List Decoding Capacity
	Extension to List Recovery
	Bibliographic Notes and Open Questions

	Results via Code Concatenation
	Introduction
	Code Concatenation and List Recovery

	Capacity-Achieving Codes over Smaller Alphabets
	Binary Codes List Decodable up to the Zyablov Bound
	Unique Decoding of a Random Ensemble of Binary Codes
	List Decoding up to the Blokh Zyablov Bound
	Multilevel Concatenated Codes
	Linear Codes with Good Nested List Decodability
	List Decoding Multilevel Concatenated Codes
	Putting it Together

	Bibliographic Notes and Open Questions

	List Decodability of Random Linear Concatenated Codes
	Introduction
	Preliminaries
	Overview of the Proof Techniques
	List Decodability of Random Concatenated Codes
	Using Folded Reed-Solomon Code as Outer Code
	Preliminaries
	The Main Result

	Bibliographic Notes and Open Questions

	Limits to List Decoding Reed-Solomon Codes
	Introduction
	Overview of the Results
	Limitations to List Recovery
	Explicit ``Bad'' List Decoding Configurations
	Proof Approach

	BCH Codes and List Recovering Reed-Solomon Codes
	Main Result
	Implications for Reed-Solomon List Decoding
	Implications for List Recovering Folded Reed-Solomon Codes
	A Precise Description of Polynomials with Values in Base Field
	Some Further Facts on BCH Codes

	Explicit Hamming Balls with Several Reed-Solomon Codewords
	Existence of Bad List Decoding Configurations
	Low Rate Reed-Solomon Codes
	High Rate Reed-Solomon Codes

	Bibliographic Notes and Open Questions

	Local Testing of Reed-Muller Codes
	Introduction
	Connection to Coding Theory
	Overview of Our Results
	Overview of the Analysis

	Preliminaries
	Facts from Finite Fields

	Characterization of Low Degree Polynomials over Fp
	A Tester for Low Degree Polynomials over Fpn
	Tester in Fp
	Analysis of Algorithm Test-Pt
	Proof of Lemma 7.11
	Proof of Lemma 7.12
	Proof of Lemma 7.13

	A Lower Bound and Improved Self-correction
	A Lower Bound
	Improved Self-correction

	Bibliographics Notes

	Tolerant Locally Testable Codes
	Introduction
	Preliminaries
	General Observations
	Tolerant Testers for Binary Codes
	PCP of Proximity
	The Code

	Product of Codes
	Tolerant Testers for Tensor Products of Codes
	Robust Testability of Product of Codes

	Tolerant Testing of Reed-Muller Codes
	Bivariate Polynomial Codes
	General Reed-Muller Codes

	Bibliographic Notes and Open Questions

	Concluding Remarks
	Summary of Contributions
	Directions for Future Work
	List Decoding
	Property Testing

	Bibliography

