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Abstract

List Decoding and Property Testing of Error Correcting Code

Atri Rudra

Chair of the Supervisory Committee:
Associate Professor Venkatesan Guruswami
Department of Computer Science and Engineering

Error correcting codes systematically introduce redurgiamto data so that the original in-
formation can be recovered when parts of the redundant datoaupted. Error correcting
codes are used ubiquitously in communication and datagstora

The process of recovering the original information fromraopted data is called decod-
ing. Given the limitations imposed by the amount of redurnyarsed by the error correct-
ing code, an ideal decoder should efficiently recover frormasy errors as information-
theoretically possible. In this thesis, we consider twaxations of the usual decoding
procedurelist decodingandproperty testing

A list decoding algorithm is allowed to output a small listafssibilities for the original
information that could result in the given corrupted datdnisTrelaxation allows for effi-
cient correction of significantly more errors than what isgble through usual decoding

procedure which is always constrained to output the trattechinformation.

e We present the first explicit error correcting codes alonthwificient list-decoding
algorithms that can correct a number of errors that appresttre information-theoretic

limit. This meets one of the central challenges in the the@dsrror correcting codes.

e We also present explicit codes defined over smaller symbalscan correct signifi-

cantly more errors using efficient list-decoding algoriththan existing codes, while






using the same amount of redundancy.

e We prove that an existing algorithm for a specific code farndlled Reed-Solomon

codes is optimal for “list recovery,” a generalization dtldecoding.

Property testing of error correcting codes entails “spatakiing” corrupted data to
quickly determine if the data is very corrupted or has fewoesr Such spot checkers are

closely related to the beautiful theory of Probabilistig&heckable Proofs.

e We present spot checkers that only access a nearly optimabeuof data symbols
for an important family of codes called Reed-Muller codesir @sults are the first

for certain classes of such codes.

e We define a generalization of the “usual” testers for errarexiing codes by en-
dowing them with the very natural property of “tolerance,hich allows slightly

corrupted data to pass the test.
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Chapter 1
INTRODUCTION

Corruption of data is a fact of life. Error-correcting cod@s just codes) are clever
ways of representing data so that one can recover the origiimamation even if parts of
it are corrupted. The basic idea is to judiciously introdue@undancy so that the original
information can be recovered even when parts of the (reduipdata have been corrupted.

Perhaps the most natural and common application of erreectimg codes is for com-
munication. For example, when packets are transmitted thesinternet, some of the
packets get corrupted or dropped. To deal with this, mdtigyers of the TCP/IP stack use
a form of error correction called CRC Checksuml[87]. Codeswaed when transmitting
data over the telephone line or via cell phones. They arewssd in deep space commu-
nication and in satellite broadcast (for example, TV sigrak transmitted via satellite).
Codes also have applications in areas not directly relaiesbmmunication. For exam-
ple, codes are used heavily in data storage. CDs and DVDs fivarleven in presence of
scratches precisely because they use codes. Codes arenuRedundant Array of Inex-
pensive Disks (RAID)[[24] and error correcting memdryl[28jodes are also deployed in
other applications such as paper bar codes, for exampléaheode used by UPS called
MaxiCode [22].

In this thesis, we will think of codes in the communicatioesario. In this framework,
there is a sender who wants to send (Saypessage symbols over a noisy channel. The
sender firsencodeghe &k message symbols into symbols (called @&odeword and then
sends it over thehannel The receiver gets eeceived wordconsisting ofn symbols.

The receiver then tries tdecodeand recover the originat message symbols. The main



challenge in coding theory is to come up with “good” codesglwith efficient encoding
and decoding algorithms. In the next section, we will defirremprecisely the notion of
codes and the noise model.

Typically, the definition of a code gives the encoding althorn “for free.” The decoding
procedure is generally the more challenging algorithms&tadn this thesis, we concentrate
more on the decoding aspect of the problem. In particularilleonsider two relaxations
of the “usual” decoding problem in which either the algamtbutputs the original message
that was sent or gives up (when too many errors have occurréte two relaxations
are calledlist decodingand property testing The motivations for considering these two
notions of decoding are different: list decoding is motadhby a well known limit on the
number of errors one can decode from using the usual notialecdding while property
testing is motivated by a notion of “spot-checking” of ra@s words that has applications
in complexity theory. Before we delve into more details a#th notions, let us first review

the basic definitions that we will need.

1.1 Basics of Error Correcting Codes

We will now discuss some of the basic notions of error comgctodes that are needed to

put forth the contributions of this therThese are the following.

e Encoding Theencoding functiowith parameters;, n is a functiont : X¢ — X7,
whereY is called thealphabet The encoding functior takes amessagen ¢ %*
and converts it into aodewordFE (m). We will refer to the algorithm that implements

the encoding function as ancoder

e Error Correcting Code An error correcting codeor just acodecorresponding to an
encoding functiorn¥ is just the image of the encoding function. In other wordss it

the collection of all the codewords. A codewith encoding function® : ¥F — ¥»

Iwe will define some more “advanced” notions later.



is said to havelimensiont andblock lengthn. In this thesis, we will focus on codes

of large block length.

e Rate TheratioR = k/n is called theate of a code. This notion captures the amount
of redundancy used in the code. This is an important pararoégecode which will

be used throughout this thesis.

e Decoding Consider the basic setup for communication.sénderhas a message
that it sends as a codeword after encoding. During transomisbe codeword gets
distorted due to errors. Theceivergets a noisyeceived wordrom which it has
to recover the original message. This “reverse” processobéing is achieved via
a decoding functionD : ¥ — ¥*. That is, given a received word, the decoding
function picks a message that it thinks was the message twsant. We will refer

to the algorithm that implements the decoding function ds@der

¢ Distance Theminimum distancéor justdistance of a code is a parameter that cap-
tures how much two different codewords differ. More forngathe distance between
any two codewords is the number of coordinates in which tliégrdThe (minimum)
distance of a code is the minimum distance between any twimcli€odewords in

the code.

1.1.1 Historical Background and Modeling the Channel Noise

The notions of encoding, decoding and the rate appeareceiseminal work of Shan-
non [94]. The notions of codes and the minimum distance wetréopth by Hamming([617].
Shannon modeled the noipeobabilistically. For such a channel, he also defined a real
number called theapacity which is an upper bound on the rate of a code for which one
can have reliable communication. Shannon also proved thecse result. That is, there

existcodes for any rate less than the capacity of the channel famhndne can have reliable



communication. This striking result essentially kicksgtd the fields of information theory
and coding theory.

Perhaps an undesirable aspect of Shannon’s noise modat issteffectiveness depends
on how well the noise is modeled. In some cases it might notdssiple to accurately
model the channel. In such a scenario, one option is to mbdeldiseadversarialy This
was proposed by Hamming. In Hamming's noise model, we thinthe channel as an
adversary who has the full freedom in picking the locatiowa$l as nature of errors to
be introduced. The only restriction is on the number of exrd¥e will consider this noise

model in the thesis.

Alphabet Size and the Noise Model

We would like to point out that the noise model is intimataldtwith the alphabet. A
symbol in the alphabet is the “atomic” unit on which the noésts. In other words, a
symbol that is fully corrupted and a symbol that is partiatyrupted are treated as the
same. That is, the smaller the size of the alphabet, the mwegfained the noise. This
implies that the decoder has to take care of more error patter a code defined over a
smaller alphabet. As a concrete example, say we want tordegigcoder that can handle
50% of errors. Consider a cod€ that is defined over an alphabet of sitdi.e., each
symbols consists of two bits). Now, letbe an error pattern in which every alternate bit of
a codeword irC'is flipped. Note that this implies thatl the symbols of the codeword have
been corrupted and hence the decoder does not need to récmaer However, ifC' were
defined over the binary alphabet then the decoder would lerezbver frome. Thus, it is
harder to design decoders for codes over smaller alphabets.

Further, the noise introduced by the channel should be enldgnt of the message
length. However, in this thesis, we will study codes thatdetned over alphabets whose
size depends on the message length. In particular, the muohbgs required to represent
any symbol in the alphabet would be logarithmic in the mesdaggth. The reason for

this is two-fold: As was discussed in the paragraph abov&gdang decoding algorithms



is strictly easier for codes over larger alphabets. Segonadd will use such codes as a
starting point to design codes over fixed sized alphabets.
With the basic definitions in place, we now turn our attentothe two relaxations of

the decoding procedure that will be the focus of this thesis.
1.2 List Decoding

Let us look at the decoding procedure in more detail. Upotirgethe noisy received
word, the decoder has to output a message (or equivalendgenord) that it thinks was
actually transmitted. If the output message is differearfithe message that was actually
transmitted then we say that a decoding error has taken.fracehe first part of the thesis,
we will consider decoders that do not make any decoding.elngtead, we will consider
the following notion calledunique decoding For any received word, a unique decoder
either outputs the message that was transmitted by the isendggorts a decoding failure.

One natural question to ask is how many errors such a unigoedeée can tolerate.
That is, is there a bound on the number of errors (gay, sopy is the fraction of errors)
such that for any error pattern with total error at mpgt:, the decoder always outputs the
transmitted codeword?

We first argue thap;, < 1 — R. Note that the codeword af symbols really contains
k symbols of information. Thus, the receiver should have astle uncorrupted symbols
among then symbols in the received word to have any hope of recoveriegrdmsmitted
message. In other words, the information theoretic limittbe number of errors from
which one can recover is — k. This implies thatoy < (n — k)/n = 1 — R. Can this
information theoretic limit be achieved ?

Before answering the question above, we argue that thedisotsatisfiep,, < d/(2n),
where we assume that the distance of the abdeeven. Consider two distinct messages
m1, my such that the distance betwegitm,) and £(m.) is exactlyd. Now say that the
sender sends the codewafdm,) over the channel and the channel introdu¢gserrors

and distorts the codeword into a received wgrdhat is at a distance af/2 from both



E(m,) andE(m,) (see Figur€Tl1).

E(my)

-

| n—d T TR

Figure 1.1: Bad example for unique decoding. The picturéneneft shows two codewords
E(my) and E(m,) that differ in exactlyd positions while the received wonddiffers from
both £ (my) and E(my) in d/2 many positions. The picture on the right is another view
of the same example. Everysymbol vector is now drawn on the plane and the distance
between any two points is the number of positions they diffelhus,E(m,) and E(ms)

are at a distance andy is at a distancé/2 from both. Further, note that any point that is
strictly contained within one of the balls of radid$2 has a unique closest-by codeword.

Now, when the decoder gegsas an input it has no way of knowing whether the original
transmitted codeword wal(m,) or E(msy)H Thus, the decoder has to output a decoding
failure when it receivess and so we havey < d/(2n). How far isd/(2n) from the
information theoretic bound df — R ? Unfortunately the gap is quite big. By the so called
Singleton boundd < n — k + 1 ord/n < 1 — R. Thus, the limit ofd/(2n) is at most
half the information theoretic bound. We note that even ¢fothe limits differ by “only a
small constant,” in practice the potential to correct twioce number of errors is a big gain.

Before we delve further into this gap between the informatizeoretic limit and half
the distance bound, we next argue that the the bourddis in fact tight in the following

sense. Ifpyn = d/2 — 1, then for an error pattern with at mogtn errors, there is

2Throughout this thesis, we will be assuming that the only eamication between the sender and the
receiver is through the channel and that they do not sharsidasyinformation/channel.



always a unique transmitted codeword. Suppose that thie metrtrue and lef’(m,) be

the transmitted codeword and lgtbe the received word such thgtis within distance
pun from both E(m;) and E(ms). Then by the triangle inequality, the distance between
E(m,) and E(my) is at mospyn = d — 2 < d, which contradicts the fact thatis the
minimum distance of the code (also see Fiduré 1.1). Thusrasdspyn = d/2 — 1, the
decoder can output the transmitted codeword. So if one warde unique decoding then
one can correct up to half the distance of the code (but nbdurt Due to this “half the
distance barrier”, much effort has been devoted to desgpoinles with as large a distance

as possible.

However, all the discussion above has not addressed onetempaspect of decoding.
We argued that fopyn = d/2 — 1, thereexistsa unique transmitted codeword. However,
the argument sheds no light on whether the decoder can findasaodewordcefficiently
Of course, before we can formulate the question more prgcise need to state what we
mean by efficient decoding. We will formulate the notion méoemally later on but for
now we will say that a decoder is efficient if its running tingepolynomial in the block
length of the code (which is the number of symbols in the reszkivord). As a warm up,
let us consider the following naive decoding algorithm. Teeoder goes through all the
codewords in the code and outputs the codeword that is ¢lasése received word. The
problem with this brute-force algorithm is that its runnitiigpe is exponential in the block
length for constant rate codes (which will be the focus offilet part of the thesis) and
thus, is not an efficient algorithm. There is a rich body ofuigal work that focuses on
designing efficient algorithms for unique decoding for méayilies of codes. These are

discussed in detail in any standard coding theory texts aac[80/104].

We now return to the gap between the half the distance anchfbemation theoretic

limit of n — k.



1.2.1 Going Beyond Half the Distance Bound

Let us revisit the bound of half the minimum distance on urigkecoding. The bound
follows from the fact that there exists an error pattern fdristh one cannot do unique
decoding. However, such bad error patterns are rare. THan® from the nature of the
space that the codewords (and the received words) “sit"rirparticular, one can think of
a code of block length as consisting of non-overlapping spheres of radiis where the
codewords are the centers of the spheres (see Higlre 1 2arghaiment for half the distance
bound uses the fact that at least two such spheres touch.otibkihg point corresponds
to the received worg that was used in the argument in the last section. Howeendy
the spheres pack in high dimension (recall the dimensioruoh & space is equal to the
block length of the code), almost every point in the ambient space has a unique bgstios
codeword at distances well beyodd (see FiguréI]2).

Thus, by insisting oralwaysgetting back the original codeword, we are giving up on
correcting from error patterns from which we can recover thiginal codeword. One
natural question one might ask is if one can somehow meariggtlax this stringent
constraint.

In the late 1950s, Elias and Wozencraft independently mega@ nice relaxation of
unique decoding that gets around the barrier of half theadist bound 34, 106]. Under
list decodingthe (list) decoder needs to output a “small” list of answeitk the guarantee
that the transmitted codeword is present in th£liMore formally, for a given error bound
pn and a received worgt, the list-decoding algorithm has to output all codeworas dre
at a distance at mogt: from y. Note that wherpn is an upper bound on the number of
errors that can be introduced by the channel, the list retliby the list-decoding algorithm
will have the transmitted codeword in the list.

There are two immediate questions that arise: (i) Is lisbdewy a useful relaxation of

3The condition on the list size being small is important. @ise, here is a trivial list-decoding algo-
rithm: output all codewords in the code. This, however is iy weefficient and more pertinently a useless
algorithm. We will specify more carefully what we mean by dinists soon.



Figure 1.2: Four close by codeword®m, ), £ (ms), E(ms) and E(m,4) with two possible
received wordy andy’. E(m,), E(my) andy form the bad example of Figufe1.1. How-
ever, the bad examples lie on the dotted lines. For exangpls,at a distance more than
d/2 from its (unique) closest codewords(ms). In high dimension, the space outside the
balls of radiusi/2 contains almost the entire ambient space.

unique decoding? (ii) Can we correct a number of errors thatase to the information

theoretic limit using list decoding ?

Before we address these questions, let us first concentiaenew parameter that this
new definition throws into the mix: the worst case list sizaléss mentioned otherwise, we
will use L to denote this parameter. Note that the running time of tledieg algorithm
is (L) as the decoder has to output every codeword in the list. Sircare interested
in efficient, polynomial time, decoding algorithms, thistpana priori requirement that
L be a polynomial in the block length of the code. For a constat& code, which has
exponentially many codewords, the polynomial bound.os very small compared to the
total number of codewords. This bound was what we meant byl éista while defining

list decoding.
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Maximum Likelihood Decoding

We would like to point out that list decoding is not the onlyanangful relaxation of unique
decoding. Another relaxation calledaximum likelihood decodin@r MLD) has been
extensively studied in coding theory. Under MLD, the decadest output the codeword
that is closest to the received word. Note that if the numbbermrs is at mostd — 1)/2,
then MLD and unique decoding coincide. Thus, MLD is indee@iasgalization of unique
decoding.

MLD and list decoding are incomparable relaxations. On the loand, if one can list
decode efficiently up to the maximum number of errors thatti@nel can introduce then
one can do efficient MLD. On the other hand, MLD does not put i@sgriction on the
number of errors it needs to tolerate (whereas such a réstrics necessary for efficient
list decoding). The main problem with MLD is that is turns ¢otbe computationally in-
tractable in general [17, 79 4,131,137] 91] as well as for gjpdfamilies of codes[[66]. In
fact, there is no non-trivial family of codes known for whistLD can be done in polyno-
mial time. However, list decoding is computationally teale for many interesting families
of codes (some of which we will see in this thesis).

We now turn to the questions that we raised about list degpdin

1.2.2 Why is List Decoding Any Good ?

We will now devote some time to address the question of whédittedlecoding is a mean-
ingful relaxation of the unique decoding problem. Furthehat does one do when the
decoder outputs a list ?

In the communication setup, where the receiver might noeleaw side information,
the receiver can still use a list-decoding algorithm to dortnal” decoding. It runs the
list-decoding algorithm on the received word. If the listumed has just one codeword
in it, then the receiver accepts that codeword as the tratentodeword. If the list has

more than one codeword, then it declares a decoding faikirst we note that this is no
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worse than the original unique decoding setup. Indeed ihtimaber of errors is at most
d/2 — 1, then by the discussion in Sectibnll.2 the list is going tat@onone codeword
and we would be back in the unique decoding regime. Howesesas argued in the last
section, formosterror patterns (with total number of errors well beyo#@®) there is a

unique closest by codeword. In other words, the list sizesfarh error patterns would
be one. Thus, list decoding allows us to correct from morergpatterns than what was
possible with unique decoding.

We now return to the question of whether list decoding caovalls to correct errors
up to the information theoretic limit of — R ? In short, the answer is yes. Using random
coding arguments one can show that for any 0, with high probability a random code of
rate R, has the potential to correct up 10— R — ¢ fraction of errors with a worst case list
size of O(1/¢) (see Chaptd2 for more details). Further, one can showdnauich codes,

the list size is one fomostreceived word§g.

Other Applications of List Decoding

In addition to the immense practical potential of corregtmore than half the distance
number of errors in the communication setup, list decodiag found many surprising
applications outside of the coding theory domain. The re&desferred to the survey by
Sudan[[98] and the thesis of Guruswamil[49] (and the refa®ticerein) for more details
on these applications. A key feature in all these applicatis that there is some side
information that one can use to sift through the list retdrbg the list-decoding algorithm
to pick the “correct” codeword. A good analogy is that of alspleecker. Whenever a word
Is mis-spelt, the spell checker returns to the user a lisbskjble words that the user might
have intended to use. The user can then prune this list tosetibe word that he or she had
intended to use. Indeed, even in the communication setupe ifender and the receiver

can use a side channel (or have some shared informationptieecan use list decoding to

“4This actually follows using the same arguments that Shaosed to establish his seminal result.
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do “unambiguous” decoding [76].

1.2.3 The Challenge of List Decoding (and What Was Alreadynx)

In the last section, we argued that list decoding is a me#&mimglaxation of unique de-
coding. More encouragingly, we mentioned that random cbdes the potential to correct
errors up to the information theoretic limit using list delany. However, there are two
major issues with the random codes result. First, thesescadenot explicit. In real world
applications, if one wants to communicate messages thenaeeus an explicit code. How-
ever, depending on the application, one might argue thaigdbrute force search for such
a code might work as this is a “one-off” cost that one has to féne second and perhaps
more serious drawback is that the lack of structure in randodes implies that it is hard
to come up with efficient list decodable algorithms for suodes. Note that for decoding,
one cannot use a brute-force list-decoding algorithm.

Thus, the main challenge of list decoding is to come up withlieit codes along with
efficient list-decoding (and encoding) algorithms that carrect errors close to the infor-
mation theoretic limit of, — k.

The first non-trivial list-decoding algorithm is due to Sud@7)], which built on the
results in [3]. Sudan devised a list-decoding algorithmefepecific family of codes called
Reed-Solomon codes[90] (widely used in practice [105])icivicould correct beyond half
the distance barrier for Reed-Solomon codes of rate at m@st This result was then
extended to work for all rates by Guruswami and Sudai [63k Worthwhile to note that
even though list decoding was introduced in the late 19%5@set results came nearly forty
years later. There was no improvement to the Guruswami+suelsult until the recent
work of Parvaresh and Vard{/ [B5], who designed a code thal&ed to Reed-Solomon
codes and presented efficient list-decoding algorithmisdbald correct more errors than
the Guruswami-Sudan algorithm. However, the result of &ash and Vardy does not meet
the information theoretic limit (see Chapiér 3 for more dsj}a Further, for list decoding

Reed-Solomon codes there has been no improvementiover [63].
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This concludes our discussion on the background for lisbdeg. We now turn to

another relaxation of decoding that constitutes the sepantbf this thesis.
1.3 Property Testing of Error Correcting Codes

Consider the following communication scenario in which tiennel is very noisy. The
decoder, upon getting a very noisy received word, does itspcation and ultimately
reports a decoding failure. Typically, the decoding altfori is an expensive procedure and
it would be nice if one could quickly test if the received wasdfar” from any codeword (in
which case it should reject the received word) or is “closeSsame codeword (in which case
it should accept the received word). In the former case, weldvoot run our expensive
decoding algorithm and in the latter case, we would then gedcto run the decoding
algorithm on the received word.

The notion of efficiency that we are going to consider for sspht checkers is going
to be a bit different from that of decoding algorithms. Welwéquire the spot checker
to probe only a few positions in the received word during tbarse of its computation.
Intuitively this should be possible as spot checking is &threasier task than decoding.
Further, the fact that the spot checkers need to make theisida based on a portion of
the received word should make spot checking very efficierttr éxample, if one could
design spot checkers that look at only constant many paositimdependent of the block
length of the code), then we would have a spot checkers thahmonstant time. However,
note that since the spot checker cannot look at the wholevestgvord it cannot possibly
predict accurately if the received word is “far” from all tbedewords or is “close” to some
codeword. Thus, this notion of testing is a relaxation ofubeal decoding as one sacrifices
in the accuracy of the answer while gaining in terms of nundbgrositions that one needs
to probe.

A related notion of such spot checkers is that of locallyabk codes (LTCs). LTCs
have been the subject of much research over the years ardithiebeen heightened activ-
ity and progress on them recently [46] L1] [74, (14,13, 44]. 4 &€ codes that have spot
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checkers as those discussed above with one crucial diferéhey only need to differenti-
ate between the cases when the received word is far fromadheords and the case when it
isa codeword. LTCs arise in the construction of ProbabilélycCheckable Proofs (PCPs)
[5,[6] (see the survey by Goldreidh ]44] for more details omititerplay between LTCs and
PCPs). Note that in the notion of LTC, there is no requireno@rthe spot checker for input
strings that are very close to a codeword. This “asymmeimmythie way the spot checker
accepts and rejects an input reflects the way PCPs are defihede the emphasis is on
rejecting “wrong” proofs.

Such spot checkers fall under the general purviewroperty testingsee for example
the surveys by Rori [92] and Fisch&r][38]). In property tagtfior some property?, given
an object as an input, the spot checker has to decide if tlea @ibject satisfies the property
P oris “far’ from satisfying P. LTCs are a special case of property testing in which the
property P is membership in some code and the objects are received words

The ideal LTCs are codes with constant rate and linear distéimat can be tested by
probing only constant many position in the received wordwigeer, unlike the situation in
list decoding (where one can show the existence of codesthgttideal” properties), it is

not knownf such LTCs exist.

1.3.1 A Brief History of Property Testing of Codes

The field of codeword testing, which started with the work d@ifd, Luby and Rubin-
feld [21] (who actually designed spot checkers for a var@tpumerical problems), later
developed into the broader field of property testing [93, 45]Cs were first explicitly de-
fined in [42,[98] and the systematic study of whether ideal £T& discussed at the end
of the last section) was initiated in]46]. Testing for RéddHer codes in particular has
garnered a lot of attention [R2[L] 9] 8,136, 4Z2] BB[17, 1, 74],hey were crucial building
blocks in the construction of PCES [6, 5], Kaufman and Lit&8] gave a sufficient con-
dition on an important class of codes that imply that the dsdmn LTC. Ben-Sasson and
Sudan[[1B] built LTCs from a variant of PCPs called the Prdlsilzally Checkable Proof
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of Proximity— this “method” of constructing LTCs was initél by Ben-Sasson et &l J11].

1.4 Contributions of This Thesis

The contributions of this thesis are in two parts. The first gaals with list decoding while

the second part deals with property testing of codes.

1.4.1 List Decoding

This thesis advances our understanding of list decoding r&ults can be roughly divided
into three parts: (i) List decodable codes of optimal raterdarge alphabets, (ii) List
decodable codes over small alphabets, and (iii) Limitssiodecodability. We now look at

each of these in more detail.

List Decodable Codes over Large Alphabets

Recall that for codes of ratR, it is information theoretically not possible to correciybed
1— R fraction of errors. Further, using random coding argumert can show the existence
of codes that can correct upte- R—e fraction of errors for any > 0 (using list decoding).
Since the first non-trivial algorithm of Suddn[97], theresleeen a lot of effort in designing
explicit codes along with efficient list-decoding algonth that can correct errors close to
the information theoretic limit. In Chaptél 3, we preserg ttulmination of this line of
work by presenting explicit codes (which are in turn extensiof Reed-Solomon codes)
along with polynomial time list-decoding algorithm thanhceorrectl — R — ¢ fraction of
errors in polynomial time (for every raté < R < 1 and any=s > 0). This answers a
question that has been open for close to 50 years and meets threecentral challenges in
coding theory.

This work was done jointly with Venkatesan Guruswami and puasished in the pro-
ceedings of the 38th Symposium on Theory of Computing (STQR@)6 [58] and is under

review for the journal IEEE Transactions on Information ®he
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List Decodable Codes over Small Alphabets

The codes mentioned in the last subsection are defined qleatadts whose size increases
with the block length of the code. As discussed in Sedfionll] this is not a desirable
feature. In Chaptdi4, we show how to use our codes from Ch@paéong with known
techniques otode concatenatioandexpander graph$o design codes over alphabets of
size29¢"" that can still correct up td — R — ¢ fraction of errors for any > 0. To get to
within ¢ of the information theoretic limit of. — £, it is known that one needs an alphabet

of size2="") (see Chaptdd2 for more details).

However, if one were interested in codes over alphabets eflfsize, the situation is
different. First, it is known that for fixed size alphabetse information theoretic limit
is much smaller tham — & (see Chaptdr?2 for more details). Again, one can show that
random codes meet this limit. In Chapliér 4, we present explices along with efficient
list-decoding algorithms that correct errors up to the dtedaBlokh-Zyablov bound. These
results are the currently best known via explicit codesygiothe number of errors that can

be corrected is much smaller than the limit achievable bgoamcodes.

This work was done jointly with Venkatesan Guruswami andeapg in two different
papers. The first was published in in the proceedings of thie Sgmposium on Theory of
Computing (STOC), 2006_[58] and is under review for the j@lifcEE Transactions on
Information Theory. The second paper will appear in the pealings of the 11th Interna-
tional Workshop on Randomization and Computation (RANDQBU).

Explicit codes over fixed alphabets, considered in Chdpterelconstructed usirgpde
concatenation However, as mentioned earlier, the fraction of errors thath codes can
tolerate via list decoding is far from the information thete limit. A natural question to
ask is whether one can use concatenated codes to achievédhmaation theoretic limit?
In Chaptellb we give a positive answer to this question irofeihg sense. We present a
random ensemble of concatenated codes that with high pititpabeet the information

theoretic limit: That is, they can potentially list decode large a fraction of errors as



17

general random codes, though with larger lists.
This work was done jointly with Venkatesan Guruswami anchisiapublished

manuscript([6/].

Limits to List Decoding Reed-Solomon Codes

The results discussed in the previous two subsections dhe dbllowing flavor. We know
that random codes allow us to list decode up to a certain numwiberrors, and that is
optimal. Can we design more explicit codes (maybe with effitlist-decoding algorithms)
that can correct close to the number of errors that can besciad by random codes?
However, consider the scenario where one is constrainedatk with a certain family of
codes, say Reed-Solomon codes. Under this restriction isliaé most number of errors
from which one can hope to list decode?

The result of Guruswami and Suddn]63] says that one caneefflgi correct up to
n — v/nk many errors for Reed-Solomon codes. However, is this the pEssible? In
Chaptelb, we give some evidence that the Guruswami-Sugdarithim might indeed be the
best possible. Along the way we also give some explicit gontbns of “bad list-decoding
configurations.” A bad list-decoding configuration referatreceived worg along with an
error boundp such that there are super-polynomial ¢inmany Reed-Solomon codewords
within a distance opn from y.

This work was done jointly with Venkatesan Guruswami andegpg in two different
papers. The first was published in in the proceedings of thle S3ymposium on Theory
of Computing (STOC), 2005 156] as well as in the IEEE Transaston Information The-
ory [59]. The second paper is an unpublished manus¢rpt [62]

1.4.2 Property Testing

We now discuss our results on property testing of error abimg codes.
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Testing Reed-Muller Codes

Reed-Muller codes are generalizations of Reed-Solomoesxo&Reed-Muller codes are
based on multivariate polynomials while Reed-Solomon s@dle based on univariate poly-
nomials. Local testing of Reed-Muller codes was instruraleimt many constructions of
PCPs. However, the testers were only designed for ReedeMeidides over large alpha-
bets. In fact, the size of the alphabet of such codes depemdiseoblock length of the
codes. In Chaptdd 7, we present near-optimal local tesberRded-Muller codes defined
over (a class of) alphabets of fixed size.

This work was done jointly with Charanjit Jutla, Anindya tatk and David Zuckerman
and was published in the proceedings of the 45th SymposiuRoandation of Computer
Science (FOCS), 2005]72] and is currently under reviewterjournal Random Structures

and Algorithms.

Tolerant Locally Testable Codes

Recall that the notion of spot checkers that we were intedeisthad to accept the received
word ifitis far from all codewords and reject when it is cldsesome codeword (as opposed
to LTCs, which only require to accept when the received we@dcodeword). Surprisingly,
such testers were not considered in literature before. lmp@h(B, we define such testers,
which we call tolerant testers. Our results show that in gdid Cs do not imply tolerant
testability, though most LTCs that achieve the best pararaetiso have tolerant testers.

As a slight aside, we look at certain strong form of localdegity (calledrobust testa-
bility) of certainproduct of codesProduct of codes are also special cases of certain con-
catenated codes considered in Chalpter 4. We show that imajecertain product of codes
cannot be robustly testable.

This work on tolerant testing was done jointly with Venkate<suruswami and was
published in the proceedings of the 9th International Wookson Randomization and

Computation (RANDOM)[[57]. The work on robust testabilitygroduct of codes is joint
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work with Don Coppersmith and is an unpublished manusd@6}.|

1.4.3 Organization of the Thesis

We start with some preliminaries in Chaplkér 2. In Chapter 8 present the main result
of this thesis: codes with optimal rate over large alphab€lss result is then used to de-
sign new codes in Chaptdik 4 ddd 5. We present codes overaptabets in Chaptét 4,
which are constructed by a combination of the codes from @mnBpandcode concatena-

tion. In Chapteflb, we show that certain random codes constrisstetde concatenation
also achieve the list-decoding capacity. In Chapler 6, vesgmt some limitations to list
decoding Reed-Solomon codes. We switch gears in Chidptet Frasent new local testers
for Reed-Muller codes. We present our results on tolerastabglity in Chaptefd8. We

conclude with the major open questions in Chapter 9.
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Chapter 2

PRELIMINARIES

In this chapter we will define some basic concepts and natsttbat will be used
throughout this thesis. We will also review some basic tssial list decoding that will
set the stage for our results. Finally, we will look at somedfic families of codes that

will crop up frequently in the thesis.

2.1 The Basics

We first fix some notation that will be used frequently in thisriy most of which is stan-
dard.

For any integern > 1, we will use[m] to denote the sefl, ..., m}. Given positive
integersn. andm, we will denote the set of all length vectors ovefm] by [m]™. Unless
mentioned otherwise, all vectors in this thesis will be rogctors. log x will denote the
logarithm ofx in base2. In x will denote the natural logarithm af. For bases other than
2 ande, we will specify the base of the logarithm explicitly: foraxple logarithm of: in

baseg will be denoted byog, z.

A finite field with ¢ elements will be denoted By, or GF(q). For any real value in
the range) < z < 1, we will useH,(r) = xlog, (¢ — 1) —zlog, z — (1 —z)log, (1 —z) to
denote thej-ary entropy functionFor the special case gf= 2, we will simply useH (z)
for H,(z). For more details on the-ary entropy function, see SectibnZ12.2.

For any finite setS, we will use|.S| to denote the size of the set.

We now move on to the definitions of the basic notions of erarexting codes.
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2.1.1 Basic Definitions for Codes

Letq > 2 be an integer.

Code, Blocklength, Alphabet size :

e An error correcting codgor simply acodg C'is a subset ofg]™ for positive integers

g andn. The elements of’ are calledcodewords

e The parameteq is called thealphabet sizef C'. In this case, we will also refer 1@

as ag-ary code Wheng = 2, we will refer toC' as abinary code

e The parameter is called theblock lengthof the code.
Dimension and Rate :

e Forag-ary codeC, the quantityk = log, |C| is called thedimensiorof the code (this
terminology makes more sense for certain classes of cotled taear codes, which

we will discuss shortly).

e For ag-ary codeC' with block lengthn, itsrate is defined as the rati® = Log, 1],
Often it will be useful to use the following alternate way obking at a code. We will
think of ag-ary codeC' with block lengthn and|C| = M as a functiorfM| — [¢]". Every
elementr in [M] is called amessagandC'(z) is itsassociated codewordf 1/ is a power
of ¢, then we will think of the message as lengtivector in[¢]*. Viewed this way,C
provides a systematic way to add redundancy such that messddengthk over [¢] are
mapped to: symbols ovefq].
(Minimum) Distance and Relative distance : Given any two vectors = (vy,...,v,)
andu = (uy,...,u,) in [g|", their Hamming distancéor simply distance), denoted by

A(v,u), is the number of positions that they differ in. In other ward (v, u) = |{i|u; #

v; }.



22

e The (minimum) distanc®f a codeC' is the minimum Hamming distance between

any two codewords in the code. More formally

dist(C) = Clnéigc Aley, ).
0’17502 7

e Therelative distancef a codeC' of block lengthn is defined ag = di%(c).

2.1.2 Code Families

The focus of this thesis will be on the asymptotic perforneaofcdecoding algorithms. For
such analysis to make sense, we need to work with an infinitdyfaof codes instead of
a single code. In particular, an infinite family g@fary code<’ is a collection{C;|i € Z},
where for evenyi, C; is ag-ary code of lengthw; andn; > n;_;. The rate of the family¢ is

defined as

log, |C:
R(C):hmmf{ogq| |}.

i n;
The relative distance of such a family is defined as
0(C) = liminf {dlL(CZ)} :
i n;

From this point on, we will overload notation by referringan infinite family of codes
simply as a code. In particular, from now on, whenever we gatlodeC' of lengthn, rate
R and relative distance, we will implicitly assume the following. We will think of, as
large enough so that its raféand relative distancé are (essentially) same as the rate and
the relative distance of the corresponding infinite famiigodes.

Given this implicit understanding, we can talk about thenagstptics of different algo-
rithms. In particular, we will say that an algorithm that wemwith a code of block length

n is efficientif its running time isO(n°) for some fixed constarat

2.1.3 Linear Codes

We will now consider an important sub-class of codes cailegdlr codes.
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Definition 2.1. Letq be a prime power. A-ary codeC of block length: is said to bdinear

if itis a linear subspace (over some fidig)) of the vector spacky.

The size of ag-ary linear code is obviously* for some integek. In fact, it is the
dimension of the corresponding subspacéin Thus, the dimension of the subspace is
same as the dimension of the code. (This is the reason bdteridrminology of dimension
of a code.)

We will denote ag-ary linear code of dimensioh, lengthn and distancel as an
[n, k,d], code. (For a general code with the same parameters, we \iéll te it as an
(n, k,d), code.) Most of the time, we will drop the distance part and jager to the code
as an[n, k|, code. Finally, we will drop the dependence @if the alphabet size is clear
from the context.

We now make some easy observations algearty linear codes. First, the zero vector is
always a codeword. Second, the minimum distance of a liree s equal to the minimum
Hamming weighof the non-zero codewords, where the Hamming weight of aovesthe
number of positions with non-zero values.

Any [n, k], codeC can be defined in the following two ways.

e C can be defined as a sptG|x € F!}, whereG is ank x n matrix overF,. G is

called agenerator matrixof C'.

e C can also be characterized by the following subsp@ade € F; andHc” = 0},
whereH is an(n — k) x n matrix overF,. H is called theparity check matriof
C. The code withH as its generator matrix is called tdeal of C' and is generally
denoted byC+.

The above two representations imply the following two tisifigr an[n, k], codeC.
First, given the generator matri% and a message € F”, one can computé’(x) using

O(nk) field operations (by multiplying” with G). Second, given a received woyde Fy
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and the parity check matrii for C', one can check i € C usingO(n(n —k)) operations
(by computingH'y and checking if it is the all zeroes vector).

Finally, given ag-ary linear code”, we can define the following equivalence relation.
x =¢ yifand only ifx —y € C. Itis easy to check that sine@ is linear this indeed
is an equivalence relation. In particulatc partitionskFy into equivalence classes. These
are calledcosetsf C' (note that one of the cosets is the caddéself). In particular, every
coset is of the formy + C, where eithety = 0 ory ¢ C andy + C' is shorthand for
{y +c|ceC}.

We are now ready to talk about definitions and preliminaredi$t decoding and prop-

erty testing of codes.

2.2 Preliminaries and Definitions Related to List Decoding

Recall that list decoding is a relaxation of the decodingopgm, where given a received
word, the idea is to output all “close-by” codewords. More@sely, given an error bound,
we want to output all codewords that lie within the given efsound from the received
word. Note that this introduces a new parameter into the thig:worst case list size. We
will shortly define the notion of list decoding that we will erking with in this thesis.
Givenintegerg > 2,n > 1,0 < e < n and a vectok € [¢|", we define th&edamming
ball aroundx of radiuse to be the set of all vectors ilg]” that are at Hamming distance at

moste from x. That is,
B,(x,e) ={yly € [¢|" andA(y,x) < e}.
We will need the following well known result.

Proposition 2.1([80]). Letq > 2 ande,n > 1 be integers such that < (1 — 1/¢)n.
Definep = e¢/n. Then the following relations are satisfied.
: n 7 e/n)n n
|B4(0, ¢)| :; <¢><q—1> < gl = g, (2.1)

|B,(0,¢)| = gatoin=otm), (2.2)
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We will be using the following definition quite frequently.

Definition 2.2 (List-Decodable Codes) et C be ag-ary code of block length. Let > 1
be an integer and < p < 1 be areal. TherC is called (p, L)-list decodable if every
Hamming ball of radiusn has at most. codewords in it. That is, for every € F7,
|B(y,pn)NC| < L.

In the definitions above, the paramefecan depend on the block length of the code.
In such cases, we will explicitly denote the list sizeby:), wheren is the block length.

We will also frequently use the notion of list-decoding r@liwhich is defined next.

Definition 2.3 (List-Decoding Radius)Let C' be ag-ary code of block length. Let0 <
p < 1 be areal and define = pn. C'is said to have a list-decoding radius @for ¢) with

list sizeL if p (or e) is themaximumvalue for whichC'is (p, L)-list decodable.

We will frequently use the terrist-decoding radiusvithout explicitly mentioning the
list size in which case the list size is assumed to be at masedoxed polynomial in
the block length. Note that one way to show that a codeas a list-decoding radius of
at leastp is to present a polynomial time list-decoding algorithmttban list decode”
up to ap fraction of errors. Thus, by abuse of notation, given an igfficlist-decoding
algorithm for a code that can list decodepdraction (ore number) of errors, we will
say that the list-decoding algorithm has a list-decodimtjusof p (or €). In most places,
we will be exclusively talking about list-decoding algbis in which case we will refer
to their list-decoding radius agecoding radiusor justradius. In such a case, the code
under consideration is said to be list decodable up to theesponding decoding radius
(or just radius). Whenever we are talking about a differestton of decoding (say unique
decoding), we will refer to the maximum fraction of erroratlta decoder can correct by
qualifying the decoding radius with the specific notion otadding (for examplainique
decoding radiuk

We will also use the following generalization of list decogli
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Definition 2.4 (List-Recoverable Codes) et C be ag-ary code of block length. Let
¢, L > 1beintegers an® < p < 1 be areal. TherC' is called(p, ¢, L)-list recoverable if
the following is true. For every sequence of s&ts. .., S,, whereS; C [¢] and|S;| < /¢
for everyl < i < n, there are at most codewords: = (cy, ..., ¢,) € C such that; € S;
for at least(1 — p)n positionsi.

Further, codeC is said to(p, ¢)-list recoverable in polynomial timéit is (p, ¢, L(n))-
list recoverable for some polynomially bounded functiop), and moreover there is a
polynomial time algorithm to find the at moktn) codewords that are solutions to any

(p, ¢, L(n))-list recovery instance.

List recovery has been implicitly studied in several wotke name itself was coined in
[52]. Note thatdp, 1, L)-list recoverable code is(@, L)-list decodable code and hence, list
recovery is indeed a generalization of list decoding. Lestvery is useful in list decoding
codes obtained by a certain code composition procedurendtugal list decoder for such
a code is a two stage algorithm, where in the first stage theetincodes are list decoded
to get a sequence of lists, from which one needs to recovesvomdls from the “outer”
code(s). For such an algorithm to be efficient, the outer soded to be list recoverable.

We next look at the most fundamental tradeoff that we wouldnhberested in for list

decoding.

2.2.1 Rate vs. List decodability

In this subsection, we will consider the following questidaiven limitsZ > 1 and0 <

p < 1 on the worst case list size and the fraction of errors that \@atwo tolerate, what

is the maximum rate that @, L)-list decodable code can achieve? The following results
were implicit in [T10] but were formally stated and proved@%]. We present the proofs
for the sake of completeness.

We first start with a positive result.
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Theorem 2.1([110,[35]) Letq > 2 be an integer an@ < § < 1 be areal. For any integer
L > 1andanyreal < p < 1— 1/q, there exists &p, L)-list decodable;-ary code with

rate atleastl — Hy(p) — 717 — -

Proof. We will prove the result by using the probabilistic methbll [2hoose a codé’ of
block lengthn and dimensiork = [(1 — H,(p) — 55)n — n'~°] at random. That is, pick
each of the;* codewords irC’ uniformly (and independently) at random frdni. We will
show that with high probability;' is (p, L)-list decodable.

Let |C| = M = ¢*. We first fix the received worgt € [¢]". Consider ar{L + 1)-tuple
of codewords(c', ..., c) in C. Now if all these codewords fall in a Hamming ball of
radiuspn aroundy, thenC' is not(p, L)-list decodable. In other words, thig + 1)-tuple
forms a counter-example f@r having the required list decodable properties. What is the
probability that such an event happens ? For any fixed codewar C', the probability

that it lies inB(y, pn) is exactly
| B(y, pn)|
qn
Now since every codeword is picked independently, the gridibathat the tuple(c?, . . .,
ct*t1) forms a counter example is

(|B(Y> Pn)|)L+1 < q—(L—i-l)n(l—Hq(p))’
7

where the inequality follows from Propositibn P.1 (and thetfthat the volume of a Ham-

ming ball is translation invariant). Since there éﬁl) < ML+ different choices of. + 1

tuples of codewords fromy', the probability that there exists at least ahe- 1-tuple that

lies in B(y, pn) is at most (by the union bound):

MEtL .q—(L+1)N(1—Hq(p)) — q—(L+1)N(1—Hq(P)—R)

Y

where R = k/n is the rate ofC. Finally, since there are at mogt choices fory, the

probability that there exists some Hamming ball with- 1 codewords fronC' is at most

n - n(l— - n(l— —hR— —nl=9
q" - g~ EFOnU=Halp)=R) — ((L+Dn(1=Hy(p)=R=1/(L+1) 7
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where the last inequality follows ds/n > 1 — H,(p) — 1/(L + 1) — 1/n°. Thus, with
probability 1 — ¢~ > 0 (for large enough), C is a (p, L)-list decodable code, as
desired. O

The following is an immediate consequence of the above émeor

Corollary 2.2. Letq > 2 be aninteger an@ < p < 1 — 1/q. For everye > 0, there exists

ag-ary code with rate at least — H,(p) — ¢ thatis(p, O(1/¢))-list decodable.
We now move to an upper bound on the rate of good list decodaioles.

Theorem 2.3([110,[35]) Letq > 2 be aninteger an® < p < 1 — 1/q. For everye > 0,
there do not exist any-ary code with ratel — H,(p) + ¢ that is (p, L(n))-list decodable

for any functionZ(n) that is polynomially bounded in.

Proof. The proof like that of Theorefnd.1 uses the probabilistichodt LetC' be anyq-
ary code of block length with rate R = 1 — H,(p) + ¢. Pick a received worgt uniformly

at random frommg|™. Now, the probability that for some fixade C, A(y,c) < pnis

[ B(0, pn)|

> (Halp)=D)—o(n)
q?’L

where the inequality follows from Propositign P.1. Thuse #xpected number of code-

words within a Hamming ball of radiys: aroundy is at least

IC| - qn(Hq(p)—l)—O(n) — qn(R—(l—Hq(p)))—O(n)’
which by the value ofR? is ¢*™). Since the expected number of codewords is exponential,
this implies that there exists a received wgrdhat has exponentially many codewords
from C within a distancepn from it. Thus,C' cannot bep, L(n))-list decodable for any

polynomially bounded (in fact any subexponential) funetid ). O
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List decoding capacity

Theorem§2Z]1 arldd.3 say that to correptfeaction of errors using list decoding with small
list sizes the best rate that one can hope for and can aclsiéve H,(p). We will call this
quantity thelist-decoding capacity

The terminology is inspired by the connection of the resalftsve to Shannon’s theorem
for the special case of thesymmetric channel (which we will denote IgyyC,). In this
channel, every symbol (frony]) remains untouched with probability — p while it is
changed to each of the other symbols$ghwith probabilityq%l. Shannon’s theorem states
that one can have reliable communication with code of rage thanl — H,(p) but not
with rates larger tham — H,(p). Thus, Shannon’s capacity fo6C, is 1 — H,(p), which
matches the expression for the list-decoding capacity.

Note that ingSC,, the expected fraction of errors when a codeword is trartehis p.
Further, as the errors on each symbol occur independeméy;hernoff bound implies that
with high probability the fraction of errors is concentrat@oundyp. However, Shannon’s
proof crucially uses the fact that these (roughiyfjaction of errors occur randomly. What
TheoremdZ]1 andd.3 say is that even with &action of adversarialerrorﬁ one can
have reliable communication via codes of rate H,(p) with list decoding using lists of
sufficiently large constant size.

We now consider the list-decoding capacity in some moreildétiast we note the fol-
lowing special case of the expression for list-decodingacdyp for large enough alphabets.
Whenq is 2°1/2) 1 — p — ¢ is a good approximation df,(p) (see Proposition2.2). Recall
that in Sectiofi 112, we saw that- p is the information theoretic limit for codes over any
alphabet. The discussion above states that we match thigllfoularge alphabets.

The proof of Theorei 211 uses a general random code. A najuedtion to ask is if
one can prove Theorem 2.1 for special classes of codes: fonghe, linear codes. For
g = 2 itis known that Theoreri 2.1 is true for linear codesl [51]. Heer, unlike general

Where both théocationand thenatureof errors are arbitrary.
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codes, where Theorem 2.1 (with< 1) holds for random codes with high probability, the
result in [51] doesiot hold with high probability. Foy; > 2, it is only known that random
linear codes (with high probability) afg, L)-list decodable with rate at least- H,(p) —

L~ —o(1).

log, (L+1)

Achieving List-Decoding Capacity with Explicit Codes

There are two unsatisfactory aspects of Thedrednh 2.1: (i)cbides are not explicit and (ii)
There is no efficient list-decoding algorithm. In light of@dren{ZL, we can formalize the
challenge of list decoding that was posed in Sedfionll.2f8l&svs:

Grand Challenge. Letq > 2 and let0 < p < 1 —1/g ande > 0 be reals. Give an explicit
constructioH of ag-ary codeC with ratel — H,(p) — ¢ thatis(p, O(1/¢))-list decodable.
Further, design a polynomial time list-decoding algorittinat can correctp fraction of

errors while using lists of siz€(1/¢).

We still do not know how to meet the above grand challengesiaritirety. In Chaptéi 3,
we will show how to meet the challenge above for large enoughadets (with lists of

larger size).

2.2.2 Results Related to theary Entropy Function

We conclude our discussion on list decoding by recording femperties of thej-ary en-
tropy function that will be useful later.

We first start with a calculation where theary entropy function naturally pops up. This
hopefully will give the reader a feel for the function (andeasonus will pretty much prove
the lower bound in Propositidn 2.1). Let< » < 1 andg > 2. We claim that the quantity

(")(g — 1) is approximated very well by«(*" for large enough.. To see this, let us

nx

2By explicit construction, we mean an algorithm that in tir@ymomial in the block length of the code
can output some succinct description of the code. For afinede, such a description could be the
generator matrix of the code.
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first use Stirling’s approximation of.! by (m/e)™ (for large enoughnﬂ to approximate

()’

n n! nhenTen—nz qn log, n
< ) - (nx)l<n — nx)' ~ (nx)naz(n _ nx)n—n:cen - qnmlogq(nm)qn(l—x)logq(n(l—x))

_ q—n(:c log, z+(1-z) log,(1-z))

Thus, we have

(nnx) (g —1)" ~ q—n(xlogq x+(1—x) log,(1—x)) ‘qn:clogq(q—l) _ qu(:c)n’

as desired.

Figure[2Z gives a pictorial view of theary function for the first few values af.

>

H)

0 0.2 0.4 0.6 0.8 1

Figure 2.1: A plot ofH,(x) for ¢ = 2,3 and4. The maximum value of is achieved at
r=1-1/q.

We now look at they-ary entropy function for large.

3There is a/27n factor that we are ignoring.
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Proposition 2.2. For small enougle, 1 — H,(p) > 1 —p —cforevery0 < p <1—1/qif
and only ifq is 20(1/2),

Proof. We first note thati,(p) = plog,(¢—1)—plog, p—(1—p)log,(1—p) = plog, (q¢—
1) + H(p)/logy q. Now if ¢ = 2%, we get thatH,(p) < p + ¢ aslog,(¢ — 1) < 1 and
H(p) < 1. Next we claim that for small enough if ¢ > 1/¢* thenlog, (¢ —1) > 1 — .
Indeedlog,(¢q—1) =1+ (1/Ing)In(1-1/¢g) =1-0 (L) which is at least — ¢ for

qlng

g > 1/22. Finally, if ¢ = 2°() (butq > 1/<2), then for fixedp, H(p)/ log ¢ = =-w(1). Then
plog,(q—1)+H(p)/logq = p—e+e-w(l) > p+e, whichimpliesthal — H,(p) < 1—p—e,

as desired. O
Next, we look at the entropy function when its value is veryse tol.
Proposition 2.3. For small enougls > 0,
1 2
Hy(1——-—¢) <1—ce”,
q
¢, Is constant that only depends gn

Proof. The intuition behind the proof is the following. Since theidate of H,(z) is zero
atz = 1—1/q, in the Taylor expansion af/,(1 — 1/q — ¢) thee term will vanish. We will
now make this intuition more concrete. We will think @fs fixed and /= as growing. In

particular, we will assume that< 1/q. Consider the following equalities:

- {14 (5259 (o 1)
I
) () ()
gty (2

52q2 €2q2
LT ET) | (23
dg—1p 4T 2)} 3)
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B o 1 [ £2¢? £2¢? _Ezqzq 2)
S Pl TP i R PR ) @9
€2q2 )
B 2Ing(q—1) o)
2.2
<1- ot
4Ing(qg—1)
(2.5)
&3) follows from the fact that fofz| < 1, In(1 + z) = =z — 2?/2 +2%/3 — ... and by

collecting the=® and smaller terms in(c?). (2Z:4) follows by rearranging the terms and by

absorbing the? term ino(£?). The last step is true assumings small enough. 0J

We will also work with the inverse of thg-ary entropy function. Note thd{,(-) on the
domain[0, 1 — 1/¢] is an bijective map int0, 1]. Thus, we defingZ; ' (y) = « such that

H,(z) = yand0 < 2 < 1 — 1/q. Finally, we will need the following lower bound.
Lemma 2.4. For every0 < y < 1 — 1/q and for every small enough> 0,

H Wy —¢e*/d) > H'(y) —e,

q q

wherec, > 1 is a constant that depends only gn

Proof. It is easy to check tha”f{q—l(y) is a strictly increasing convex function in the range
y € [0,1]. This implies that the derivate off,'(y) increases withy. In particular,
(H;')'(1) = (H;")(y) for every0 < y < 1. In other words, for every < y < 1,
and (small enoughy > 0, Hgl(y)‘fgl(y“s) < H‘;l(l)‘f‘;l(l“”. Propositio 21 along with

the facts thath—l(l) =1-1/q anqu—1 is increasing completes the proof if one picks
¢, =max(1,1/¢,) andd = */c,,. O
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2.3 Definitions Related to Property Testing of Codes

We first start with some generic definitions. lget 2, n > 1 beintegersand lét < = < 1
be a real. Given a vector € [¢]” and a subset C [¢]", we say that is c-closeto S
if there exist ay € S such thati(x,y) < ¢, whered(x,y) = A(x,y)/n is therelative
Hamming distanceetweenx andy. Otherwisex is e-far from S.

Given ag-ary codeC of block lengthn, an integer- > 1 and reald) < ¢ < 1, we say

that a randomized algorithffi: is an(r, ¢)-tester forC' if the following conditions hold:

e (Completeness) For every codeworg € C, Pr[T¢(y) = 1] = 1, thatis, T always

acceptsa codeword.

e (Soundness) For everyy € [¢|" that ise-far from C, Pr[T(y) = 1] < 1/3, that is,
with probability at leas®/3, T rejectsy.

e (Query Complexity) For every random choice made by, the tester only probes at

mostr positions iny.

We remark that the above definition only makes sense whbkas large distance. Oth-
erwise we could choos€ = [g]" and the trivial tester that accepts all received words is
a (0, ¢)-tester. For this thesis, we will adopt the convention thaemever we are taking
about testers for a code, C' will have some non trivial distance (in most cagéwiill have
linear distance).

The above kind of tester is also calledbae-sided testeas it never makes a mistake
in the completeness case. Also, the choice/gfin the soundness case is arbitrary in the
following sense. The probability of rejection can be made ¢ for any§ > 0, as long as
we are happy witlD(r) many queries, which is fine for this thesis as we will be irdgezd
in the asymptotics of the query complexity. The numbeyuéries(or ) can depend on.
Note that there is a gap in the definition of the completenedssaundness of a tester. In

particular, the tester can have arbitrary output when theived wordy is not a codeword
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but is stille-close toC'. In particular, the tester can still reject (very) closedmdewords.
We will revisit this in Chaptel8.

We say that gr, <) tester is docal testerif it makes sub-linear number of querHes
that is,” = o(n) ande is some small enough constant. A code is callédeally Testable
Code(or LTC), if it has a local tester. We also say that a local tester fmoageC' allows for

locally testingC'.

2.4 Common Families of Codes

In this section, we will review some code families that wil bsed frequently in this thesis.

2.4.1 Reed-Solomon Codes

Reed-Solomon codes (named after their inventors [90]) iseal code that is based on
univariate polynomials over finite fields. More formally, gn % + 1], Reed-Solomon code
with £ < n andq > n is defined as follows. Let;, ..., a, be distinct elements from,
(which is why we needed > n). Every messagm = (my, ..., my) € Fi*! is thought of
as a degreg polynomial ovefF, by assigning thé + 1 symbols to the: + 1 coefficients of
a degreé: polynomial. In other wordsP,,(X) = mo+m; X +- - -+m; X*. The codeword

corresponding tan is defined as follows
RS(m) = <Pm(a1)7 R Pm(an)>

Now a degreé: polynomial can have at moktroots in any field. This implies that any two

distinct degreé: polynomials can agree in at mosplaces. In other words,
Proposition 2.5. An[n, k + 1], Reed-Solomon code is én k + 1,d = n — k], code.

By the Singleton bound (see for examgilel[80]), the distari@g code of dimension
k+ 1 and lengtm is at mostn — k. Thus, Reed-Solomon codes have the optimal distance:

such codes are callddaximum Distance Separab{er MDS) codes. The MDS property

4Recall that in this thesis we are implicitly dealing with edi@milies.
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along with its nice algebraic structure has made Reed-Smhornde the center of a lot of
research in coding theory. In particular, the algebraigprtes of these codes have been
instrumental in the algorithmic progress in list decodifd,[63,85]. In addition to their
nice theoretical applications, Reed-Solomon codes hawaedfavidespread use in practical
applications. In particular, these codes are used in CDDHPanhd other storage media,
deep space communications, DSL and paper bar codes. Wethefezader to[[105] for

more details on some of these applications of Reed-Solormdesc

2.4.2 Reed-Muller Codes

Reed-Muller codes are generalization of Reed-Solomonso#®r integerd > 1 and

m > 1, the message space is the set of all polynomials Byen ¢ variables that have
total degree at most.. The codeword corresponding to a message is the evaluation o
the corresponding-variate polynomial over distinct points inIFg (note that this requires

¢" > n). Finally, note that whed = 1 andm = k, we get ann, k + 1], Reed-Solomon
code. Interestingly, Reed-Muller codes1[82Z] 89] were disced before Reed-Solomon

codes.

2.5 Basic Finite Field Algebra

We will be using a fair amount of finite field algebra in the tise$n this section, we recap
some basic notions and facts about finite fields.

A field consists of a set of elements that is closed under iadditultiplication and
(both additive and multiplicative) inversion. It also hatspecial elementsand1, which
are the additive and multiplicative identities respedyiva field is called &finite fieldif its
set of elements is finite. The set of integers modulo someggirform the finite fieldF,.

The ring of univariate polynomials with coefficients frafnwill be denoted byF[X]|.
A polynomial E(X) is said to be irreducible if for every way of writing(X) = A(X) -
B(X), eitherA(X) or B(X) is a constant polynomial. A polynomial is calletbnig if the
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coefficient of its leading term is.

If £(X) is an irreducible polynomial of degrekover a fieldF, then the quotient ring
F[X]/(E(X)), consisting of all polynomials i X] modulo £(X) is itself a finite field
and is calledield extensiowf F. The extension field also forms a vector space of dimension
d overF.

All finite fields are eithetl, for prime p or is an extension of a prime field. Thus, the
number of elements in a finite field is a prime power. Furtharainy prime power there
exists only one finite field (up to isomorphism). For anthat is a power of prime, the
field F, hascharacteristicof p. The multiplicative groups of non-zero elements of a field
IF,, denoted byF;, is known to be cyclic. In other word®; = {1,,*,...,797*} for
some element € I, \ {0}. v is also called th@rimitive elemenbr generatorof ;.

The following property of finite fields will be crucial. Any fpynomial f(.X) of degree
at mostd in F[X] has at mostl roots, wherex € F is a root of f(X) if f(a) = 0. We
would be also interested in finding roots of univariate polyrals (over extension fields)

for which we will use a classical algorithm due to Berlekafif][

Theorem 2.4([L6]). Letp be a prime. There exists a deterministic algorithm that guuin
a polynomial inF,: [ X ] of degreel, can find all the irreducible factors (and hence the roots)

in time polynomial ind, p andt.
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Chapter 3
LIST DECODING OF FOLDED REED-SOLOMON CODES

3.1 Introduction

Even though list decoding was defined in the late 1950s, thaseessentially no algorith-
mic progress that could harness the potential of list dewpthr nearly forty years. The
work of Sudan[[97] and improvements to it by Guruswami anda®uid [63], achieved effi-
cient list decoding up to aqs(R) = 1 — /R fraction of errors for Reed-Solomon codes of
rate R. Note thatl — v R > py(R) = (1— R)/2for every rateR, 0 < R < 1, so this result
showed that list decoding can be effectively used to go beyioa unique decoding radius
for every rate (see Figufe—3.1). The ratigs(R)/puv(R) approacheg for ratesR — 0,
enabling error-correction when the fraction of errors agmhes 100%, a feature that has
found numerous applications outside coding theory, seeXamplel[98],[[40, Chap. 12].

Unfortunately, the improvement provided tiy [63] over ureglecoding diminishes for
larger rates, which is actually the regime of greater pcatinterest. For rateR — 1, the
ratio ’fUS—((R’? approaches, and already for ratd? = 1/2 the ratio is at most.18. Thus,
while the results of[[97,63] demonstrated that list decgdilways, for every rate, enables
correcting more errors than unique decoding, they fell sbiealizing the full quantitative
potential of list decoding (recall that the list-decodirgpacity promises error correction
upto al — R = 2py(R) fraction of errors).

The boundvgs(R) stood as the best known decoding radius for efficient lisbdem
(for any code) for several years. In fact constructipgL)-list decodable codes of rate
R for p > pas(R) and polynomially bounded, regardless of the complexity of actually
performing list decoding to radiys itself was elusive. Some of this difficulty was due to

the fact thatl — v/R is the largest radius for which small list size can be showregeally,
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via the so-called Johnson bound which argues about the mwhbedewords in Hamming
balls using only information on the relative distance of tbee, cf. [48].

In a recent breakthrough pap&r]85], Parvaresh and Vardsepted codes that are list-
decodable beyond the- v/ R radius for low ratesk. The codes they suggest are variants of
Reed-Solomon (or simply RS) codes obtained by evaluating 1 correlated polynomials
at elements of the underlying field (with = 1 giving RS codes). For any. > 1, they
achieve the list-decoding radiy§?’ (R) = 1 — "*V/m™R™. For ratesk — 0, choosing
m large enough, they can list decode up to radius O(Rlog(1/R)), which approaches
the capacityl — R. However, fork > 1/16, the best choice af: (the one that maximizes
pUW(R)) is in factm = 1, which reverts back to RS codes and the list-decoding radius
1 — V/R. (See Figurd_311 where the boumd- v/4R? for the casen = 2 is plotted
— except for very low rates, it gives a small improvement opg§(R).) Thus, getting
arbitrarily close to capacity for some rate, as well as epthel — /R bound for every
rate, both remained open before our wbrk

In this chapter, we describe codes that get arbitrarilyetoghe list-decoding capacity
for every rate (for large alphabets). In other words, we gxglicit codes of ratd? together
with polynomial time list decoding up to a fractidn— R — ¢ of errors for every rateR
and arbitrary= > 0. As mentioned in Section 2.2.1, this attains the best plessiade-
off one can hope for between the rate and list-decoding saditis is the first result that
approaches the list-decoding capacitydowrate (and over any alphabet).

Our codes are simple to describe: they fokeled Reed-Solomon codesghich are in
fact exactlyReed-Solomon codes, but viewed as codes over a larger a&phglcareful
bundling of codeword symbols. Given the ubiquity of RS codl@s is an appealing feature
of our result, and in fact our methods directly yield bettecdding algorithms for RS codes

when errors occur iphased burstéa model considered in[75]).

lIndependent of our work, Alex Vardy (personal communiaatizonstructed a variant of the code defined
in [B5] which could be list decoded with fraction of errors radhanl — /R for all ratesR. However, his
construction gives only a small improvement overthev/R bound and does not achieve the list-decoding
capacity.
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Our result extends easily to the problemlist recovery(recall DefinitionlZ#). The
biggest advantage here is that we are able to achieve a atie thdependent of the size of
the input lists. This is an extremely useful feature that bé used in Chaptefd 4 aht 5 to
design codes over smaller alphabets. In particular, weocaistruct new codes from folded
Reed-Solomon codes that achieve list-decoding capac#lyamnstant sized alphabets (the
folded Reed-Solomon codes are defined over alphabets wizeseaeases with the block
length of the code).

Our work builds on existing work of Guruswami and Sudanl [68¢l #arvaresh and
Vardy [85]. See Figure:3 1 for a comparison of our work witkygous known list-decoding

algorithms (for various codes).
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Figure 3.1: List-decoding radiys plotted against the rat® of the code for known algo-
rithms. The best possible trade-off, i.e., list-decodiagacity, isp = 1 — R, and our work
achieves this.

We start with the description of our code in Section 3.2 ane gome intuition why
these codes might have good list decodable properties. @&ept the main ideas in our

list-decoding algorithms for the folded Reed-Solomon sdideSectiol313. In Sectidn3.4,
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we present and analyze a polynomial time list-decodingrélga for folded RS codes of
rate R that can correct roughly — v/ R? fraction of errors . In Sectiol 3.5, we extend
the results in Sectioi 3.4 to present codes that can be efficiist decoded up to the

list-decoding capacity. Finally, we extend our resultssbrecovery in Section 3 6.
3.2 Folded Reed-Solomon Codes

In this section, we will define a simple variant of Reed-Saboncodes called folded Reed-
Solomon codes. By choosing parameters suitably, we wilbtess list-decoding algorithm

that can decode close to the optimal fractior R of errors with rateR.

3.2.1 Description of Folded Reed-Solomon Codes

Consider dn, k + 1], Reed-Solomon cod€ consisting of evaluations of degrégolyno-
mials overlF, at the seff;. Note thaty = n + 1. Lety be a generator of the multiplicative
grouplF;, and let the evaluation points be ordered as, 72, ..., y" L. Using all nonzero
field elements as evaluation points is one of the most comynesed instantiations of

Reed-Solomon codes.

flar) | fla2)

flxs) f(zs)

f(xe)

\f (n-2)

f (o) f(z4) \f (2n-1)

Fao) | (e
Fe) | fs) f(xs)
fa (s | (22)
) | £ (1)

Figure 3.2: Folding of the Reed-Solomon Code with Parameter 4.

Letm > 1 be an integer parameter called floéding parameter For ease of presenta-

tion, we will assume that: dividesn = ¢ — 1.
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Definition 3.1 (Folded Reed-Solomon Code)he m-folded version of the RS code,
denoted'RSr, .k, IS @ code of block lengthv = n/m overF7’, wheren = ¢ — 1. The
encoding of a messagg X ), a polynomial ovetf, of degree at most, has as itsj’th
symbol, for0 < j < n/m, them-tuple (f(17™), f(7™F1), -+, f(##™™=1)). In other
words, the codewords @’ = FRSg, -, are in one-one correspondence with those of
the RS cod€’ and are obtained by bundling together consecutivuple of symbols in

codewords of”.

The way the above definition is stated the message alphabgtwbile the codeword
alphabet isF7" whereas in our definition of codes, both the alphabets weredame. This
can be easily taken care of by bundlingconsecutive message symbols fréinto make
the message alphabet tolg. We will however, state our results with the message symbols

as coming front, as this simplifies our presentation.

We illustrate the above construction for the choige= 4 in Figure[3:2. The polyno-
mial f(X) is the message, whose Reed-Solomon encoding consists wdlthes of f at
xo, 71, ..., T,_1 Wherex; = ~'. Then, we perform a folding operation by bundling together

tuples of4 symbols to give a codeword of lengthi4 over the alphabéﬂ‘;*.

Note that the folding operation does not change theRatéthe original Reed-Solomon
code. The relative distance of the folded RS code also mieetSihgleton bound and is at

leastl — R.

Remark 3.1(Origins of term “folded RS codes”)The terminology of folded RS codes was
coined in [/%], where an algorithm to correct random errorssuch codes was presented
(for a noise model similar to the one used Inl[£27] 18]: see Baf8.q for more details).
The motivation was to decode RS codes from many random “gHasgst” errors. Our
decoding algorithm for folded RS codes can also be likewis&ed as an algorithm to
correct beyond thé — /R bound for RS codes if errors occur in large, phased bursts (th

actual errors can be adversarial).
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3.2.2 Why Might Folding Help?

Since folding seems like such a simplistic operation, amdrésulting code is essentially
just a RS code but viewed as a code over a large alphabet,hetwanderstand why it can

possibly give hope to correct more errors compared to thethdor RS codes.

Consider the folded RS code with folding parameter= 4. First of all, decoding the
folded RS code up to a fractigm of errors is certainly not harder than decoding the RS
code up to the same fractignof errors. Indeed, we can “unfold” the received word of the
folded RS code and treat it as a received word of the origiat®de and run the RS list-
decoding algorithm on it. The resulting list will certainityclude all folded RS codewords
within distancep of the received word, and it may include some extra codewwtdsh we

can, of course, easily prune.

In fact, decoding the folded RS code is a strictly easier.tdslsee why, say we want to
correct a fractiorl /4 of errors. Then, if we use the RS code, our decoding algordghght
to be able to correct an error pattern that corrupts evétysymbol in the RS encoding
of f(X) (i.e., corruptsf(z4;) for 0 < i < n/4). However, after the folding operation,
this error pattern corrupts every one of the symbols oveddhger aIphabeFé, and thus
need not be corrected. In other words, for the same fracti@nrors, the folding operation
reduces the total number of error patterns that need to breated, since the channel has

less flexibility in how it may distribute the errors.

Itis of course far from clear how one may exploit this to atijueorrect more errors. To
this end, algebraic ideas that exploit the specific natutb@folding and the relationship
between a polynomiaf (X) and its shifted counterpayt(y.X) will be used. These will

become clear once we describe our algorithms later in thpteha

We note that the above simplification of the channel is nairaéd for free since the
alphabet size increases after the folding operation. Flolirfg parameterm that is an
absolute constant, the increase in alphabet size is medamdtthe alphabet remains poly-

nomially large in the block length. (Recall that the RS cods hn alphabet size that is
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linear in the block length.) Still, having an alphabet sizattis a large polynomial is some-
what unsatisfactory. Fortunately, existing alphabet otida techniques, which are used in

ChaptefH, can handle polynomially large alphabets, salthes not pose a big problem.

3.2.3 Relation to Parvaresh Vardy Codes

In this subsection, we relate folded RS codes to the Paivarasly (PV) coded]85], which
among other things will help make the ideas presented in teeiqus subsection more
concrete.

The basic idea in the PV codes is to encode a polynoatl degreek by the evalu-
ations ofs > 2 polynomialsfy = £, fi,..., fs—1 Wheref;(X) = fi_1(X)¢ mod E(X)
for an appropriate powetf (and some irreducible polynomiél (X)) of some appropriate
degree) — let us calt the order of such a code. Our first main idea is to pick the irre-
ducible polynomialE(X) (and the parametef) in such a manner that every polynomfal
of degree at most satisfies the following identityf(vX) = f(X)¢ mod E(X), where
~ is the generator of the underlying field. Thus, a folded RSeaeth bundling using an
~ as above is in fact exactly the PV code of order m for the set of evaluation points
{1,4™m, 4%, ... v/m=1m1 This is nice as it shows that PV codes can meet the Singleton
bound (since folded RS codes do), but as such does not lead, tbedter codes for list
decoding.

We now introduce our second main idea. Let us compare thedoRS code to a PV
code of order2 (instead of ordern wherem dividesn) for the set of evaluation points
{17, . oM 2 ym o ymtl L y2me2 e gnemdl An=21 0 We find that in the
PV encoding off, for every0 < i« < n/m — 1 and every0 < j < m — 1, f(y™")
appears exactly twice (once #&y™*7) and another time af (y~'v™*7)), whereas it ap-
pears only once in the folded RS encoding. (See Fifgule 3.8rf@xample whem = 4
ands = 2.) In other words, the PV and folded RS codes have the samematmn, but
the rate of the folded RS codes is bigger by a facto%ﬁg}2 =2— % Decoding the folded

RS codes from a fractiop of errors reduces to correcting the same fracjasf errors for



45

------ f (o) F(wo) | f(za)
L T (o) F(yzo) | f(yzs)
' gf,,— F(*wo) e e

' 7(50) o) £
| W I (R
N ‘\ \ FRS codeword
N \

A \\\‘ \

o) | Fomo) | £ fed) | Foven) |72
Fowo) | F(20)| FOrao)| flvan) | F2an)| £ (P

PV codeword

Figure 3.3: The correspondence between a folded Reed-$alande (withm =

4 and x; = ~%) and the Parvaresh Vardy code (of order = 2) evaluated over
{1,992~ ...,y ...,y 2}. The correspondence for the first block in the folded
RS codeword and the first three blocks in the PV codeword igvshexplicitly in the left
corner of the figure.

the PV code. But the rate vs. list-decoding radius tradesdsetter for the folded RS code
since it has (for large enough, almost) twice the rate of the PV code.

In other words, our folded RS codes are chosen such that teespanpressed forms of
suitable PV codes, and thus have better rate than the conmds PV code for a similar
error-correction performance. This is where our gain ig] asing this idea we are able to
construct folded RS codes of rafethat are list decodable up to radius roughly *v/R*
for anys > 1. Pickings large enough lets us get within any desiredf list-decoding

capacity.

3.3 Problem Statement and Informal Description of the Algoithms

We first start by stating more precisely the problem we wil/ean the rest of the chapter.
We will give list-decoding algorithms for the folded Reedi@mon codel'RSg, - . Of

rate R. More precisely, for everyy < s < m andé > 0, given a received worg =
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((Yoy -+ Ym=1) s Yn—m, - --»Yn—1)) (Where recalln = ¢ — 1), we want to output all
codewords inFRSg, -« that disagree witly in at mostl — (1 + §) (=22) R¥/GHD

fraction of positions in polynomial time. In other words, weed to output all degree

k polynomialsf(X) such that for at leastl + §) (—2~) R*/**" fraction of 0 < i <
n/m —1, f(y"™*) = y;ny; (for every0 < j < m — 1). By picking the parameters, s
ando carefully, we will get folded Reed-Solomon codes of r&téhat can be list decoded
up to al — R — ¢ fraction of errors (for any > 0).

We will now present the main ideas need to design our lisbdeg algorithm. Readers
familiar with list-decoding algorithms of [97,-68,185] cakijg the rest of this section.

For the ease of presentation we will start with the case whenn. As a warm up, let
us consider the case whenr= m = 1. Note that forn = 1, we are interested in list decod-
ing Reed-Solomon codes. More precisely, given the reces@dy = (yo, ..., yn_1), We
are interested in all degrdepolynomialsf(X) such that for at leastl + §)v/R fraction
of positionsd < i < n — 1, f(7*) = y;. We now sketch the main ideas of the algorithms
in [87,[63]. The algorithms have two main steps: the first isrd@rpolationstep and the
second one is eoot findingstep. In the interpolation step, the list-decoding aldwnifinds

a bivariate polynomial)( X, Y') thatfitsthe input. That is,
for every position, Q(+*, y;) = 0.

Such a polynomial)(-, -) can be found in polynomial time if we search for one with large
enough total degree (this amounts to solving a system adiliequations). After the inter-
polation step, the root finding step finds all factorsgfX, V') of the formY — f(X). The

crux of the analysis is to show that

for every degreé: polynomial f(X) that satisfiesf (v') = y; for at least(1 +
§)V/R fraction of positions, Y — f(X) is indeed a factor of)(X,Y).

However, the above is not true for every bivariate polyndigX, V) that satisfie) (v*, y;)

= 0 for all positionsi. The main ideas il [97, 3] were to introduce more constsaimt
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Q(X,Y). In particular, the work of Sudaf [97] added the constrdiat & certain weighted
degree of@Q(X,Y) is below a fixed upper bound. Specifically(X,Y") was restricted
to have a non-trivially bounde(l, k)-weighted degree. Thél, k)-weighted degree of a
monomialX*Y” isi+jk and the(1, k)-weighted degree of a bivariate polynomia| X, Y)

is the maximum(1, k)-weighted degree among its monomials. The intuition bekigfih-
ing such a weighted degree is that give(X, Y) with weighted(1, k) of D, theunivariate
polynomial Q(X, f(X)), where f(X) is some degreé polynomial, has total degree at
mostD. The upper bound is chosen carefully such thatff X) is a codeword that needs
to be output, therd)(X, (X)) has more thaD zeroes and thuQ (X, f(X)) = 0, which
in turn implies thaty” — f(X) dividesQ(X,Y). To get to the bound of — (1 + §)V/R,
Guruswami and Sudan i [63], added a further constrain@QOX, Y") that required it to
haver roots at(+?, y;), wherer is some parameter (in[®7]= 1 while in [63], r is roughly
1/0).

We now consider the next non-trivial casenaf = s = 2 (the ideas for this case
can be easily generalized for the general= s case). Note that now given the received
word ((yo, v1), (Y2,Y3), - - -, (Yn—2,Yn—1)) We want to find all degre& polynomialsf(X)
such that for at leas?(1 + &)v/R? fraction of positions) < i < n/2 — 1, f(7%) =
yo; and f (2 = yy41. As in the previous case, we will have an interpolation and
a root finding step. The interpolation step is a straightbovgeneralization ofn = 1
case: we find a trivariate polynomi&}(X,Y, Z) that fits the received word, that is, for
every0 < i < n/2 —1, Q(v*, y2i, y2i:1) = 0. Further,Q(X,Y, Z) has an upper bound
on its (1, k, k)-weighted degree (which is a straightforward generalwabf the (1, k)-
weighted degree for the bivariate case) and has a multiplafir at every point. These
straightforward generalization and their various projgsrare recorded in Sectibn 34.1.
For the root finding step, it suffices to show that for everyrded polynomial f (X) that
needs to be outpd@@ (X, f(X), f(7X)) = 0. This, however does not follow from weighted
degree and multiple root properties @f( X, Y, Z). Here we will need two new ideas,

the first of which is to show that for some irreducible polyriah¥ (X) of degreey — 1,
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f(X)? = f(vX) mod (E(X)) (thisis Lemm&3}4). The second idea, due to Parvaresh and
Vardy [85], is the following. We first obtain the bivariatelpoomial (over an appropriate
extension field)'(Y, Z) = Q(X,Y, Z) mod (F(X)). Note that by our first idea, we are
looking for solutions on the curv& = Y7 (Y corresponds tg(X) andZ corresponds to
f(yX) in the extension field). The crux of the argument is to showahadhe polynomials
f(X) that need to be output correspond to (in the extension fieltesoot of the equation
T(Y,Y?) = 0. See Section3.4.3 for the details.

As was mentioned earlier, the extension of the= s = 2 case to the generah =
s > 2 case is fairly straightforward (and is presented in part esinad3.5). To go from
s = mto anys < m requires another simple idea: We will reduce the problemisif |
decoding folded Reed-Solomon code with folding parameteo the problem of list de-
coding folded Reed-Solomon code with folding parameatekVe then use the algorithm
outlined in the previous paragraph for the folded Reed-®olo code with folding param-
eters. A careful tracking of the agreement parameter in the rednctbrings down the
final agreement fraction (that is required for the origirelbbd Reed-Solomon code with
folding parametem) from m(1+¢§) ™/ R™ (which can be obtained without the reduction)

to (1+40) (22+) “VRe. This reduction is presented in detail in Secflod 3.4 forsthe 2

case. The generalization to any m is presented in Sectidn_3.5.
3.4 Trivariate Interpolation Based Decoding

As mentioned in the previous section, the list-decodingtlgm for RS codes fron{[97,
[63] is based on bivariate interpolation. The key factor iddvthe agreement parameter
needed for the decoding to be successful was(thé: {-weighted) degre® of the interpo-
lated bivariate polynomial. Our quest for an improved aidpon for folded RS codes will
be based on trying to lower this degrBeby using more degrees of freedom in the interpo-
lation. Specifically, we will try to usérivariate interpolationof a polynomialQ (X, Y7, V)
throughn points inF?. This enables us to perform the interpolation within O((k?n)"/3),

which is much smaller than th®(v/kn) bound for bivariate interpolation. In principle,



49

this could lead to an algorithm that works for agreementtfomck?/? instead ofR'/2. Of
course, this is a somewhat simplistic hope and additiorelsdare needed to make this ap-
proach work. We now turn to the task of developing a trivariaterpolation based decoder

and proving that it can indeed decode up tb-a R?/? fraction of errors.

3.4.1 Facts about Trivariate Interpolation

We begin with some basic definitions and facts concerningriate polynomials.

Definition 3.2. For a polynomialQ (X, Y;,Ys) € F,[X,Y1,Y3], its (1, k, k)-weighted de-
gree is defined to be the maximum valué-pf:j, 4k j, taken over all monomial& ‘Y7 Y3
that occur with a nonzero coefficient@( X, Y1, Ys). If Q(X, Y1, Y2) = 0 thenits(1, k, k)-
weighted degree 6.

Definition 3.3 (Multiplicity of zeroes) A polynomialQ(X, Y3, Y>) overF, is said to have
a zero of multiplicity > 1 at a point(c, 3y, 8;) € F? if Q(X + a, Y1 4 $1,Y2 + (32) has
no monomial of degree less thamvith a nonzero coefficient. (The degree of the monomial
X'Y{7'Y{? equalsi + j; + ja.)

Lemma 3.1.Let{(as, yi1, ¥i2) }i-, be an arbitrary set of. triples fromF?. LetQ(X, Y1, Y>)

e IF,[X, Y1, Y5] be a nonzero polynomial ¢t, &, k)-weighted degree at most that has a
zero of multiplicityr at (o, yi1, yio) for everyi € [n]. Let f(X), g(X) be polynomials of
degree at most such that for at least > D/r values ofi € [n], we havef(a;) = y;; and
9(@) = yi. ThenQ(X, f(X), g(X)) = 0.

Proof. If we defineR(X) = Q(X, f(X),g(X)), thenR(X) is a univariate polynomial of
degree at mosb, and for everyi € [n] for which f(«;) = y;; andg(a;) = yio, (X — ;)"
dividesR(X). Therefore ifrt > D, then R(X) has more roots (counting multiplicities)

than its degree, and so it must be the zero polynomial. O

Lemma 3.2. Given an arbitrary set of, triples { (i, yi1, yi2) };=, fromF? and an integer
parameterr > 1, there exists a nonzero polynomi@l X, Y, Y;) over F, of (1,k,k)-

weighted degree at mostsuch that) (X, Y1, Y5) has a zero of multiplicity at («;, vi1, yio)



50

for all i € [n], provided2; > n("}?). Moreover, we can find such@(X, Y1, Ys) in time

polynomial inn, r by solving a system of homogeneous linear equationslgver

Proof. We begin with the following claims. (i) The condition th@{ X, Y7, Y5) has a zero
of multiplicity r at (o, y:1,9:) for all i € [n] amounts tm("gz) homogeneous linear
conditions in the coefficients af; and (ii) The number of monomials i@ (X, Y}, Y3)
equals the number, says(k, D), of triples (i, 71, j2) of nonnegative integers that obey
i+ kj+kjp < Disat Ieast(f’TP; Hence, |fD2 > n("?), then the number of unknowns
exceeds the number of equations, and we are guaranteed erasoiution.

To complete the proof, we prove the two claims. To prove tret @laim, it suffices to
show that for any arbitrary tuplev, 3, ), the condition tha®) (X, Y, Z) has multiplicityr
at point(«, 3, ) amounts t((’””) many homogeneous linear constraints. By the definition
of multiplicities of roots, this amounts to setting the daénts of all monomials of total
degree in Q(X +a«,Y + 3, Z++)to be zero. In particular, the coefficient of the monomial
XYtz is given by 3o o Do, D s, (2)(2) (Zé)(Ji’l,i;.igoéill_“6i5_i27i5‘i3, where
ai, a1, is the coefficient ofX"1Y2Z% in Q(X,Y, Z). Thus, the condition on multiplici-
ties on roots ofQ(X, Y, Z) at («, 3,7) follows if the following is satisfied by for every
triple (i1, io, 73) such that; + iy + i3 < 7

£ £ £ ()@t

{21 44 >ig i >3

The claim follows by noting that the number of integral smuos toi; + ir + i3 < r IS
().

To prove the second claim, following [85], we will first sholat the numbeN; (&, D)
is at least as large as the volume of the 3-dimensional reBien{x + ky; + kys < D |
z,y1,y2 = 0} C R®. Consider the correspondence between monomidfs|ili, Y, Z] and
unit cubes iMR3: XY 7% — C(iy,1s,13), WhereC (i, io,i3) = [i1,41 + 1) X [i9, 45+ 1) X
i3, i3 + 1). Note that the volume of each such cubé.isThus, N5 (k, D) is the volume of

the union of cube€ (i, i», i3) for positive integers, i,, i3 such that; + ki, + kis < D:
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let/ denote this union. It is easy to see tiiatC ¢/. To complete the claim we will show

that the volume of? equalsZ;. Indeed the volume oP is

D pr(D-2)/k (D—z)/k— D r(D-w)/k /),
/ / / dyy dy, dx = / / ( —yl) dy, dx
o Jo 0 o Jo k
D )2
_ / L=
0 2k2

I

D3
6k’

where the third equality follows by substituting= D — x. O

3.4.2 Using Trivariate Interpolation for Folded RS Codes

Let us now see how trivariate interpolation can be used icémeext of decoding the folded
RS codeC’ = FRSy, ,m,, Of block lengthN = (¢ — 1)/m. (Throughout this section, we
denoten = ¢ — 1.) Given a received word € (F;")" for C’ that needs to be list decoded,
we definey € I} to be the corresponding “unfolded” received word. (Formadt the;'th
symbol ofz be (z;,...,2zjm-1) for 0 < j < N. Theny is defined byy;,,.; = z;, for
0<j<Nandd <l <m.)

Suppose thaf (X)) is a polynomial whose encoding agrees withn at least locations
(note that the agreement is on symbols frbf). Then, here is an obvious but important

observation:

For at least(m — 1) values ofi, 0 < ¢ < n, boththe equalities (7*) = y; and

f(1) = ;41 hold.

Define the notationg(X) = f(vX). Therefore, if we consider the triples (7', y;, yir1) €
F3 for i = 0,1,...,n — 1 (with the conventiory, = ), then for at least(m — 1)
triples, we havef (7%) = y; andg(y?) = y;,1. This suggests that interpolating a polynomial
Q(X,Y1,Y3) through these triples and employing Lemnia3.1, we can hope §i{&) will
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satisfyQ(X, f(X), f(~X)) = 0, and then somehow use this to fifidX'). We formalize
this in the following lemma. The proof follows immediatelpi the preceding discussion
and Lemm&3]1.

Lemma 3.3. Letz € (Fg”)N and lety € I} be the unfolded version af LetQ(X, Y}, Y3)
be any nonzero polynomial ovéy, of (1, k, k)-weighted degree ab that has a zero of
multiplicity r at (7", y;, y;+1) fori = 0,1, ..., n—1. Lett be aninteger such that> ﬁ.
Then every polynomiagf(X) € F,[X] of degree at most whose encoding according to

FRSk, »,m,» agrees withz on at least locations satisfie§ (X, f(X), f(7X)) = 0.

Lemmad 3P anfi3.3 motivate the following approach to listodéng the folded RS
codeFRSk, ,m.. Herez € (Fg”)N is the received word angd = (yo, y1, ..., Yn_1) € Fy
is its unfolded version. The algorithm uses an integer mplitity parameter- > 1, and is

intended to work for an agreement parametet ¢t < N.

Algorithm Trivariate-FRS-decoder:

Step 1 (Trivariate Interpolation) Define the degree parameter

D= |Vknr(r+1)(r+2)]+1. (3.1)

Interpolate a nonzero polynomig}(X, Y;,Y>) with coefficients fromF, with the
following two properties: (i) has(1, k, k)-weighted degree at mo#?, and (ii) )
has a zero of multiplicity: at (v, y;, yir1) fori = 0,1,...,n — 1 (Wherey,, = o).
(Lemmd33P guarantees the feasibility of this step as wetsamputability in time

polynomial inn, r.)

Step 2 (Trivariate “Root-finding”) Find a list of all degre€ % polynomialsf(X) € F,[X]
such that)(X, f(X), f(vX)) = 0. Output those whose encoding agrees withn

at leastt locations.

Ignoring the time complexity of Step 2 for now, we can alreathim the following

result concerning the error-correction performance of gigorithm.
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Theorem 3.1.The algorithmTrivariate-FRS-decoder successfully list decodes the folded
Reed-Solomon cod&R Sk, -, x Up to a radius ofV — {Nmﬂ_ {’/2—2 (1+1)(1+ %)J —2.

1

Proof. By Lemmd3.B, we know that anf(.X ) whose encoding agrees wittont or more

locations will be output in Step 2, provided> ﬁ. For the choice oD in (1), this

condition is met for the choice= 1 + R/L’{ (1+YH(1+2)+ ﬁJ Indeed, we

(m—1)3 m—1

have

D 1 s
m—Tr S m=1)r (Viznrr+ 1) +2) + 1)

1, 1 2 1
= a1+ ) (14 2)r —
m—1 n( +7")(%—7")%—(771—1)7"

[ (1) (4]t

=t

where the first inequality follows froni.{3.1) and the factttfar any realz > 0, |z] < z
while the second inequality follows from the fact that foyaealx > 0, z < |z] + 1. The
decoding radius is equal t§ — ¢, and recalling that = m/V, we get bound claimed in the

lemma. O

The rate of the folded Reed-Solomon cod&is- (k+1)/n > k/n, and so the fraction
of errors corrected (for large enoughis 1 — -~ k%3, Letting the parameter. grow, we

can approach a decoding radiuslof R?/.

3.4.3 Root-finding Step

In light of the above discussion, the only missing piece in @ecoding algorithm is an

efficient way to solve the following trivariate “root-findii problem:

Given a nonzero polynomid@) (X, Y1, Ys) with coefficients from a finite field

F,, a primitive elementy of the fieldF,, and an integer parameter< ¢ — 1,
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find the list of all polynomialg (X') of degree at most such that) (X, f(X), f(vX)) =
0.

The following simple algebraic lemma is at the heart of oduson to this problem.

Lemma 3.4. Lety be a primitive element that generat€s Then we have the following

two facts:

def

1. The polynomiakE(X) = X! — v isirreducible overF,,.

2. Every polynomiaf(X) € F,[X] of degree less thap— 1 satisfiesf (y.X) = f(X)?
mod F(X).

Proof. The fact thatF'(X) = X9 '—~ isirreducible oveff, follows from a known, precise
characterization of all irreducible binomials, i.e., pobmials of the formX* — ¢, see for
instancel[/l7, Chap. 3, Sec. 5]. For completeness, and diicestan easy special case,
we now prove this fact. Suppog€ X) is not irreducible and some irreducible polynomial
f(X) € F,[X] of degreeb, 1 < b < ¢ — 1, divides it. Let{ be a root off(X) in the
extension fieldF . We then havg? ! = 1. Also, f(¢) = 0 implies E(¢) = 0, which
implies ! = ~. These equations together imp‘yytqu%11 = 1. Now, v is primitive in
F,, so thaty® = 1 iff a is divisible by (¢ — 1). We conclude that — 1 must divide
qu_—‘ll = 14q+¢*+---+¢"'. Thisis, however, impossible sinte-g+¢*+- - -+¢*' =b
(mod (¢ — 1)) and0 < b < ¢ — 1. This contradiction proves thdi(.X ) has no such factor
of degree less thap— 1, and is therefore irreducible.

For the second part, we have the simple but useful ideyfitily)? = f(X?) that holds
for all polynomials inF,[X]. Therefore,f(X)? — f(vX) = f(X9) — f(vX). Since
X7 = ~X implies f(X?) = f(vX), f(X9) — f(vX) is divisible by X? — vX, and
thus also byX?! — ~. Hencef(X)? = f(vX) (mod E(X)) which implies thatf (X )¢
mod F(X) = f(vX) since the degree gf(yX) is less thary — 1. ]

Armed with this lemma, we are ready to tackle the trivariatet+finding problem.
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Lemma 3.5. There is a deterministic algorithm that on input a finite fi&ld a primitive
elementy of the fieldF,, a nonzero polynomiad (X, Y1, Ys) € F,[X, Y7, Y5] of degree less
thang in Y3, and an integer parametér < ¢ — 1, outputs a list of all polynomialg(X ') of
degree at most satisfying the conditio® (X, f(X), f(7X)) = 0. The algorithm has run

time polynomial in.

Proof. Let E(X) = X7 ' — ~. We know by Lemm&3]4 that'(X) is irreducible. We
first divide out the largest power @f( X)) that divides) (X, Y7, Y5) to obtainQ, (X, Y1, Ys)
whereQ(X,Y:,Ys) = E(X)*Qo(X,Y),Y,) for someb > 0 and E(X) does not divide
Qo(X,Y1,Y2). Note that asF(X) is irreducible, f(X) does not divideF (X). Thus, if
f(X) satisfiesQ(X, f(X), f(vX)) = 0, thenQo(X, f(X), f(7X)) = 0 as well, so we
will work with @), instead of). Let us viewQ, (X, Y1, Y>) as a polynomialy (Y7, Ys) with
coefficients fromF,[X]. Further, reduce each of the coefficients modBloX) to get a
polynomialT'(Y7, Y3) with coefficients from the extension fiel.-: (which is isomorphic
to F,[X]|/(E(X)) as E(X) is irreducible overF,). We note that/’'(Y;,Y>) is a nonzero
polynomial sincely (X, Y3, Y2) is not divisible byE (X).

In view of Lemmal:3H, it suffices to find degree % polynomials f(X) satisfying
Qo(X, f(X), f(X)9) (mod E(X)) = 0. In turn, this means it suffices to find elements
I' € Fp satisfyingZ'(I',I'?) = 0. If we define the univariate polynomidt(Y;) o
T(Y1,Y)"), this is equivalent to finding all' € F.-: such thatR(I") = 0, or in other words
the roots inf -1 of R(Y}).

Now R(Y}) is a nonzero polynomial sincB(Y;) = 0 iff Y — Y}’ dividesT'(Y1, Y2),
and this cannot happen @3Y7, Y5) has degree less thann Y;. The degree of2(Y;) is at
mostdq whered is the total degree af) (X, Y7, Y2). The characteristic df -1 is at most
q, and its degree over the base field is at mdst;. Therefore, by Theoreind.4 we can find
all roots of R(Y;) by a deterministic algorithm running in time polynomialdng. Each of
the roots will be a polynomial i, [.X | of degree less thap— 1. Once we find all the roots,

we prune the list and only output those rog{sX ) that have degree at mostand satisfy
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With this, we have a polynomial time implementation of thgasithmTrivariate-FRS-
decoder. There is the technicality that the degreeXfX, Y1, Y5) in Y; should be less than
q. This degree is at mog/k, which by the choice ob in @) is at mostr + 3)¢/n/k <
(r + 3)¢*/®. For a fixedr and growingg, the degree is much smaller than(In fact, for
constant rate codes, the degree is a constant independent B8ly letting m, » grow in
Theoren 311, and recalling that the running time is polyranin, r, we can conclude the

following main result of this section.

Theorem 3.2.For everyé > 0 and R, 0 < R < 1, there is a family ofn-folded Reed-
Solomon codes far in O(1/0) that have rate at leask and that can be list decoded up

to a fraction1 — (1 + &) R** of errors in time polynomial in the block length ands.

Remark 3.2 (Optimality of degreeg of relation betweery(X) and f(7X)). Let Fy -1

be the extension fieldl,[X|/(E(X)) — its elements are in one-one correspondence with
polynomials of degree less than- 1 overF,. Letl' : F 1 — F, -1 be such that for
everyf(X) € Fo1, I'(f(X)) = f(G(X)) for some polynomials overF,. (In the above,
we hadl'(f(X)) = f(X)? mod (E(X)) andG(X) = v.X; as a polynomial ovef -1,
I'(Z) = Z4, and hence had degreg) Any such map’ is anF,-linear function onF .1,

and is therefore dinearizedpolynomial, cf. [/¥, Chap. 3, Sec. 4], which has only terms
with exponents that are powersgfincludingq® = 1). It turns out that for our purposes

cannot have degreg and so it must have degree at least

3.5 Codes Approaching List Decoding Capacity

Given that trivariate interpolation improved the decodnaglius achievable with rat&
from 1 — RY? to 1 — R?3, it is natural to attempt to use higher order interpolation t
improve the decoding radius further. In this section, weaks the quite straightforward

technical changes needed for such a generalization.
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Consider again thex-folded RS cod€” = FRSk,_ . x- Lets be an integerin the range
1 < s < m. We will develop a decoding algorithm based on interpotatin(s+ 1)-variate
polynomial Q(X, Y1, Ys, ..., Y;). The definitions of thél, k. k, ..., k)-weighted degree
(with & repeated; times) ofQ and the multiplicity at a pointe, 31, 62, . . ., f;) € Fi* are
straightforward extensions of Definitiohs13.2 3.3.

As before lety = (yo, 41, - .-, yn—1) be the unfolded version of the received ward:
(F:)™ of the folded RS code that needs to be decoded. For convenieetiney, =
Yi modn fOr j = n. Following algorithmTrivariate-FRS-decoder, for suitable integer
parameter®, r, the interpolation phase of tlie+ 1)-variate FRS decoder will fit a nonzero

polynomialQ (X, Y3, ..., Y;) with the following properties:

1. Ithas(1,k, k, ..., k)-weighted degree at most

2. It has a zero of multiplicity at (v, v, yit1,- - Yizs_1) fOri=0,1,...,n— 1.
The following is a straightforward generalization of Lensfia2 and313.

Lemma 3.6. (a) Provided(s%;lw > n(]7}), a nonzero polynomial)(X,Ys,...,Y;)
with the following properties exist§(X, Y1, ..., Ys) has(1,k, ..., k) weighted de-
gree at mosD and has roots with multiplicity at (v*, y;, yi+1, - - -, yirs_1) fOr every
i €{0,...,n— 1}. Moreover such &(X, Y, ...,Y;) can be found in time polyno-

mial in n, ¢ and D! /5.

(b) Lett be an integer such that> m. Then every polynomigi(X) € F,[X] of
degree at most whose encoding according RSy, - ., agrees with the received

word z on at least locations satisfie§(X, f(X), f(vX), ..., f(v* X)) = 0.

Proof. The first part follows from (i) a simple lower bound on the nwenlbf monomials
XYy Vb with a+k(by +by+- - - +b,) < D, which gives the number of coefficients of
Q(X,Y1,...,Y;), and (i) an estimation of the number @Gf+ 1)-variate monomials of total

degree less than which gives the number of interpolation conditions pef 1)-tuple. We
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now briefly justify these claims. By a generalization of thigianent in Lemma=312, one
can lower bound the number of monomi&l€Y;” - - - Y such that. + k(b, 4 - - - b,) < D
by the volume ofP; p = {z + ky, + kys + - - - + kys < Dz, y1,92, ... ys = 0}. We will
use induction ory to prove that the volume dP; p, is (sﬁﬁ The proof of Lemm&_3]2
shows this fos = 2. Now assume that the volumeBf_,  is exactlyslk?. Note that the
subset ofP, , where the value of; = « is fixed is exactlyP;_; p_r, Thus, the volume of

Ps.p is exactly

DIk (D — Fy.)$ 1 D s+l
/ 7( s) dys = / 22dz =
0 0 (

slks—1 slks s+ 1)k’

where the second equality follows by substituting D — ky,. Further, a straightforward
generalization of the argument in the proof of Lenima 3.2y&hthhat the condition on the
multiplicity of the polynomialQ(X,Y;, ..., Y) is satisfied if for every € {0,...,n — 1}
and every tuplél, ji, ..., js) such thal + j; + j5 - - - + j5 < r the following is0O

S () (5t O i

>l ]’>]1 ]é}]g Jjhi>gs

whereqy j ;. ;. is the coefficient of the monomi@fl'Ylj1 Y i QXL YA, YD),
The number of positive integral solutions fof j; + j, - - -+ j, < r is exactly(’T}). Thus,
the total number of constraints is( ;). Thus, the condition in part (a) of the lemma,
implies that the set of homogeneous linear equations have waoiables than constraints.
Hence, a solution can be found in time polynomial in the nunobgariables € D**!/k*)
and constraints (at most-°(®)).

The second part is similar to the proof of Lemimd 3.3((lK') has agreement on at least
locations ofz, then for at least(m —s+1) of the (s+1)-tuples(v, ys, Yit1, - - - » Yitrs_1), WE
havef(y7) =y, forj =0,1,...,s — 1. As in Lemmd3lL, we conclude th&(X) = o
QX, f(X), f(vyX),. .., f(ys‘lX)) has a zero of multiplicity at+* for each suctis+1)-
tuple. Also, by design?(X) has degree at mo#2. Hence ift(m — s+ 1)r > D, then

R(X) has more zeroes (counting multiplicities) than its degaeel thusk(X) =0. O
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Note the lower bound condition ol above is met with the choice
D= L(k‘snr(r Y1)t s))1/<8+1>J 41, (3.2)

The task of finding the list of all degréepolynomialsf(X) € IF,[X] satisfying
QX, f(X), f(X),..., f(»*"'X)) = 0 can be solved using ideas similar to the proof
of Lemmal3.b. First, by dividing out by (X) enough times, we can assume that not all
coefficients of@(X, Y3, ..., Y;), viewed as a polynomial i3, . . ., Y, with coefficients in
F,[X], are divisible byE(X). We can then go modul&(.X') to get a nonzero polynomial
T(Y1,Ys,...,Y;) over the extension fieldl ,—» = F,[X]/(£(X)). Now, by Lemmd3H4,
we havef(17/X) = f(X)? mod E(X) for everyj > 1. Therefore, the task at hand
reduces to the problem of finding all roofs € F -1 of the polynomialR(Y;) where
R(Y1) =TV, Y{, ..., qusfl). There is the risk thaR(Y;) is the zero polynomial, but it
is easily seen that this cannot happen if the total degré@éisiess tham. This will be the
case since the total degree is at mbgt, which is at mostr + s)(n/k)"/ ) < q.

The degree of the polynomid(Y;) is at mosty®, and therefore all its roots i1
can be found in®® time (by TheoreniZl4). We conclude that the “root-findinggstan
be accomplished in polynomial time.

The algorithm works for agreement>- —2_— which for the choice oD in @3) is

(m—s+1)r’
satisfied if
Esp) 1/ (s+1)
£> (1 + f) (Bon) 70
r/ m—s-+1
Indeed,

D - 1
(m—s+1)r ~ (m—s+1)r

1 \
< ——m——- ((r+$) Vksn + 1)
(m—s+1)r
S0 )1/ (s+1)

_ (1 N f) (k°n) N 1
r/ m—s+1  r(m—s+1)
<1+§> (k,sn)l/(s—i-l)
r/ m—s+1

' (s+\1/ksw(r+ - (r+4s)+ 1)

+2

N

t,
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where the first inequality follows froni{3.2) along with thacf that for any reak > 0,
|z] < x while the second inequality follows by upper boundingi by r + s for every0 <

1 < s. We record these observations in the following, which is dtivariate generalization
of Theoren{311.

Theorem 3.3. For every integerm > 1 and everys, 1 < s < m, the (s + 1)-variate
FRS decoder successfully list decodesithtolded Reed-Solomon col& Sy, - ., Up to
aradiusn/m — t as long as the agreement parametaatisfies

§> (ksn)l/(s+1)

t><1+
m—s-+1

2. (3.3)

r

The algorithm runs im©®) time and outputs a list of size at mdsY* = (n + 1)°.

Recalling that the block length &fRSp, .z IS N = n/m and the rate ik + 1)/n,

the above algorithm can decode a fraction of errors appiogch

1 (1 n f) M R/t (3.4)
r/ m—s+1

using lists of size at most’. By picking r, m large enough compared tQ the decoding
radius can be made larger than- (1 + §)R*/(*Y) for any desired > 0. We state this

result formally below.

Theorem 3.4.For every0 < § < 1, integers > 1 and0 < R < 1, there is a family of
m-folded Reed-Solomon codes for< 4s/4 that have rate at leask and which can be
list decoded up to @ — (1 + §)R*/**1) fraction of errors in timeg Nm)°) and outputs a
list of size at mostNm)°®) whereN is the block length of the code. The alphabet size of

the code as a function of the block lengthis (Nm)°™,

Proof. We first instantiate the parameterandm in terms ofs andé:

35 (s=DB+9)

o o

Note that a9 < 1, m < 4s/6. With the above choice, we have

s m 5\ 2
1+-)———m—=(14+= 14+9.
<+7~)m—3+1 < +3) s
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Together with the bound{3.4) on the decoding radius, we lcolechat the s + 1)-variate
decoding algorithm certainly list decodes up to a fraction (1 + &) R*/¢+1) of errors.

The worst case list size ig and the claim on the list size follows by recalling that
¢ =n+1andN = n/m. The alphabet size ig" = (Nm)°™. The running time
has two major components: (1) Interpolating the 1-variate polynomial)(-), which by
Lemmd3®b ignr*)°M; and (2) Finding all the roots of the interpolated polynoimigich
takesg®®®) time. Of the two, the time complexity of the root finding stegninates, which
is (Nm)°®), O

In the limit of larges, the decoding radius approaches the list-decoding caphaeitR,

leading to our main result.

Theorem 3.5(Explicit capacity-approaching codesjor every0 < R < 1 and0 < ¢ < R,
there is a family of folded Reed-Solomon codes that haveatdéastR and which can be

list decoded up to @ — R — ¢ fraction of errors in time (and outputs a list of size at most)
(N/e2)0E"loa(1/R) whereN is the block length of the code. The alphabet size of the code

as a function of the block lengthi is (N/2)00/%),

Proof. Givene, R, we will apply Theoreniz3]4 with the choice

[ log(1/R) _e(I-R)
s = [mw and 0= m . (3.5)

Note that ag < R, § < 1. Thus, the list-decoding radius guaranteed by Thedrelns3a i

least

1—(1+6)R/EHY) = 1 - R(1+06)(1/R)VEHD
> 1—R(1+6)(1+¢) (bythe choice of in Z3))

= 1—(R+¢) (using the value of) .

We now turn our attention to the time complexity of the deocgdalgorithm and the

alphabet size of the code. To this end we first claim thas O(1/£?). First we note that
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by the choice of,
2In(1/R) - 41In(1/R)
S n(l+e) e

where the second inequality follows from the fact thatox. = < 1, In(1 + z) > z/2.

Thus, we have

el RO+e) o R 32 Rh(/R) 32
) e(1—-R)

"e1-R) & 1-R e’

where for the last step we uskd1/R) <  —1for 0 < R < 1. The claims on the running
time, worst case list size and the alphabet size of the cdibsffrom Theoren3# and the
facts thatn is O(1/¢%) ands is O( ' log(1/R)). O

Remark 3.3 (Upper bound orz in Theoren3.B) A version of Theoreifi-3.5 can also be
proven fore > R. The reason it is stated far< R, is that we generally think af as much
smaller thanR (this is certainly true when we apply the generalization bedremZ33b
(Theoren316) in Chapteid 4 abdl 5). However, if one wants R, first note that the

theorem is trivial for= > 1 — R. ThenifR < ¢ < 1 — R, can do a proof similar to the one

e(1-R)
R(1+¢)

above. However, in this range= can be strictly greater tham. In such a case we
apply Theoreri 314 with = 1 (note that applying Theorefn"8.4 with a smaldethan what
we want only increases the decoding radius). This implieswe haven < 4s, in which

case both the worst case list and the alphabet size be¢dneg(1/R) /) oe(/1),

Remark 3.4(Minor improvement to decoding radiud} is possible to slightly improve the

s/(s+1)
bound of [ZH) ta — (1+ ¢ ) (-2L)
use only a fractiorim — s + 1)/m of then (s + 1)-tuples for interpolation. Specifically,

with essentially no effort. The idea is to not

we omit tuples with’ for i mod m > m — s. This does not affect the number(ef+ 1)-
tuples for which we have agreement (this remains at lgast— s + 1)), but the number of
interpolation conditions is reduced t¥(m — s + 1) = n(m — s + 1)/m. This translates
into the stated improvement in list-decoding radius. Farity of presentation, we simply

chose to use aklk tuples for interpolation.
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Remark 3.5 (Average list size) Theoren 315 states that the worst case list size (over all
possible received words) is polynomial in the block lengtlthe codeword (for fixed?
ande). One might also be interested in what is #neeragdist size (over all the possible
received words within a distange: from some codeword). It is known that for Reed-
Solomon codes of rat& the average list size i 1 even forp close tol — R [BI].
Since folded Reed-Solomon codes are just Reed-Solomonarddevith symbols bundled
together, the arguments in [B1] extend easily to show thahewer folded Reed-Solomon

codes, the average list size<s 1.
3.6 Extension to List Recovery

We now present a very useful generalization of the list deapdesult of Theoreri 315 to
the setting of list recovery. Recall that under the list ey problem, one is given as input
for each codeword position, not just one but a set of seveagl/, alphabet symbols. The
goal is to find and output all codewords which agree with sofement of the input sets
for several positions. Codes for which this more generabj@m can be solved turn out to
be extremely valuable as outer codes in concatenated cod#rections. In short, this is
because one can pass a set of possibilities from decodirtge @iner codes and then list
recover the outer code with those sets as the input. If we loadiya list-decodable code at
the outer level, we will be forced to make a unique choice icodéng the inner codes thus
losing valuable information.

This is a good time to recall the definition of list recovembbdes (Definitiof214).

Theoren3b can be generalized to list recover the folded ®f8éx: Specifically, for
a FRS code with parameters as in Secfion 3.5, for an arbitangtant’ > 1, we can

(¢, 0)-list recover in polynomial time provided

s\ CVnlks
(1— (N> (1 + ;) T (3.6)

where N = n/m. We briefly justify this claim. The generalization of thetigecoding

algorithm of Sectiof 315 is straightforward: instead of amerpolation condition for each
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symbol of the received word, we just impokg| < ¢ many interpolation conditions for
each position € {1,2,...,n} (whereS; is thes'th input set in the list recovery instance).
The number of interpolation conditions is at magt and so replacing by n/ in the bound
of Lemma3.b guarantees successful deccﬂiiff@is in turn implies that the condition on
the number of agreement I(B.3) generalizes to the o@H:Ihis simple generalization
to list recovery is a positive feature of all interpolatioased decoding algorithms 97,163,
[89] beginning with the one due to Sudani[97].

Pickingr > s andm > s in (3.8), we get(, ¢)-list recoverable codes with rafe for
(<1— (ERS)I/(SH). Now comes the remarkable fact: we can pick a suitabte ¢ and
perform (¢, ¢)-list recovery with( < 1 — R — ¢ which is independent of ! We state the

formal result below (Theoref 3.5 is a special case whent).

Theorem 3.6. For every integer > 1, forall R, 0 < R < 1and0 < ¢ < R, and

for every primep, there is anexplicit family of folded Reed-Solomon codes over fields of
characteristicp that have rate at leask and which arg1 — R—¢, ¢, L(n))-list recoverable

in polynomial time, wherd.(n) = (N/e2)0¢ "1e(/R) - The alphabet size of a code of
block lengthV in the family is(/V/£2)0(e ™ loat/(1=R))

Proof. (SketchlUsing the exact same arguments as in the proof of The@remo3tHet
agreement condition of (3.6), we get that one can list reciomgolynomial time as long as

¢ <1—(140)(£R*)YEHD forany0 < § < 1. The arguments to obtain an upper bound of
1 — R — ¢ are similar to the ones employed in the proof of theokerh 3&wéler,s needs

to be defined in a slightly different manner:

sl

2In fact, this extension also works when the average sizeeoitre is at most, that isy 1, i < On.

3We will also need the condition thét + s)(nf/k)'/(*+1) < ¢. This condition is required to argue that
in the “root finding” step, the “final” polynomiaR(Y;) is not the zero polynomial. The condition is met
for constant rate codes #f< ¢° (recall that we think of; as growing whiler ands are fixed). In all our
applications of list recovery for folded Reed-Solomon dhe parametgrwill be a constant, so this is
not a concern.
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Also this implies thain is O ((11_"%52), which implies the claimed bound on the alphabet

size of the code as well dgn). O

We also note that increasing the folding parametesnly helps improve the result (at
the cost of a larger alphabet). In particular, we have thiefohg corollary of the theorem

above.

Corollary 3.7. For every integer? > 1, for all constants) < ¢ < R, for all R, R/;

0 < R < R' < 1, and for every prime, there is arexplicit family of folded Reed-Solomon
codes, over fields of characterispichat have rate at leask and which can bél — R —

e, ¢, L(N))-list recovered in polynomial time, where for codes of bllesigth N, L(N) =
(N/£2)0"loslt/R) and the code is defined over alphabet of giXge2)0( ~loa £/(1-R"),

Note that one can trivially increase the alphabet of a codenimking of every symbol
as coming from a larger alphabet. However, this trivial fanmation decreases the rate
of the code. Corollarf3]7 states that for folded Reed-Solvndes, we can increase the
alphabet while retaining the rate and the list recovergbpiroperties. At this point this

extra feature is an odd one to state explicitly, but we wiaéhis result in Chapté&t 4.

Remark 3.6 (Soft Decoding) The decoding algorithm for folded RS codes from Theorem
B3 can be further generalized to handle soft informatiohere for each codeword posi-
tion ¢ the decoder is given as input a non-negative weight for each possible alphabet
symbolz. The weightsv; . can be used to encode the confidence information concerning
the likelihood of the the'th symbol of the codeword being For anye > 0, for suitable

choice of parameters, our codes of ratever alphabet have a soft decoding algorithm

that outputs all codewords= (cy, cs, . . ., cy) that satisfy
N N 1/(s+1)
> wie <<1+e><RN>S(ZZw;f)> .
i=1 i=1 zeXl

For s = 1, this soft decoding condition is identical to the one for ®R&dlomon codes in

[63].
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3.7 Bibliographic Notes and Open Questions

We have solved the qualitative problem of achieving listaténg capacity over large al-
phabets. Our work could be improved with some respect to quemameters. The size
of the list needed to perform list decoding to a radius thatithin ¢ of capacity grows
asn®/¢) wheren is the block length of the code. It remains an open questidorita
this list size down to a constant independent:pbr even tof(¢)n® with an exponent
independent of (we recall that the existential random coding argumentskwath a list
size ofO(1/¢)).

These results in this chapter were first reported’id [58]. Wil like to point out
that the presentation in this chapter is somewhat différent the original paper$ [85, 58]
in terms of technical details, organization, as well as oblogy. Our description closely
follows that of a survey by Guruswanii [50]. With the benefithofdsight, we believe
this alternate presentation to be simpler and more selfado&d than the description in
[58], which used the results of Parvaresh-Vardy as a blaok-Below, we discuss some
technical aspects of the original development of this ni@ten order to shed light on the

origins of our work.

Two independent works by Coppersmith and Sudan [27] andcBégibacher, Kiayias
and Yung [18] considered the variant of RS codes where thesagesconsists of two (or
more) independent polynomials over some figld and the encoding consists of the joint
evaluation of these polynomials at elementsFpf(so this defines a code ovEr)ll A
naive way to decode these codes, which are also calledéatexd Reed-Solomon codes,”
would be to recover the two polynomials individually, by ning separate instances of
the RS decoder. Of course, this gives no gain over the pedioce of RS codes. The
hope in these works was that something can possibly be gawedploiting that errors

in the two polynomials happen at “synchronized” locatiokawever, these works could

4The resulting code is in fact just a Reed-Solomon code wierewaluation points belong to the subfield
F, of the extension field ovef, of degree two.
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not give any improvement over the— /R bound known for RS codes for worst-case
errors. Nevertheless, foandom errors where each error replaces the correct symbol by a
uniform random field element, they were able to correct wejldnd a fractionl — /R of
errors. In fact, as the order of interleaving (i.e., numidendependent polynomials) grows,
the radius approaches the optimal value R. This model of random errors is not very
practical or interesting in a coding-theoretic settingyugh the algorithms are interesting
from an algebraic viewpoint.

The algorithm of Coppersmith and Sudan bears an intriguahgtion to multivariate
interpolation. Multivariate interpolation essentialljnaunts to finding a non-trivial linear
dependence among the rows of a certain matrix (that coradiie evaluations of appropri-
ate monomials at the interpolation points). The algorithif£iZ], instead finds a non-trivial
linear dependence among tbelumnsof this same matrix! The positions corresponding
to columns not involved in this dependence are erased (thiegspond to error locations)
and the codeword is recovered from the remaining symbotgjusiasure decoding.

In [84], Parvaresh and Vardy gave a heuristic decoding #tgarfor these interleaved
RS codes based on multivariate interpolation. Howeverptbeable performance of these
codes coincided with thé — /R bound for Reed-Solomon codes. The key obstacle
in improving this bound was the following: for the case whée messages are pairs
(f(X),g(X)) of degree: polynomials, two algebraically independent relationsenezeded
to identify bothf(X) andg(X). The interpolation method could only provide one such re-
lation in general (of the form) (X, f(X), (X)) = 0 for atrivariate polynomiad) (X, Y, 7)).
This still left too much ambiguity in the possible values(¢f X ), ¢(X)). (The approach
in [B4] was to find several interpolation polynomials, butra was no guarantee that they
were not all algebraically dependent.)

Then, in[85], Parvaresh and Vardy put forth the ingenioesidf obtaining the extra al-
gebraic relation essentially “for free” by enforcing it asapriori condition satisfied at the
encoder. Specifically, instead of letting the second patyiabg(.X ') to be an independent

degreek polynomial, their insight was to make it correlated wjthX ') by a specific alge-
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braic condition, such ag(X) = f(X)? mod E(X) for some integed and an irreducible
polynomial £(X) of degreek + 1.

Then, once we have the interpolation polynondj@lX, Y, 7), f(X) can be obtained as
follows: Reduce the coefficients ¢f( X, Y, Z) moduloE(X) to get a polynomial (Y, Z)
with coefficients fromF,[X]/(£(X)) and then find roots of the univariate polynomial
T(Y,Y%). This was the key idea il [85] to improve the- v/R decoding radius for rates
less thanl /16. For rateskR — 0, their decoding radius approached- O(Rlog(1/R)).

The modification to using independent polynomials, howesees not come for free.
In particular, since one sends at least twice as much infoomas in the original RS code,
there is no way to construct codes with rate more thahin the PV scheme. If we use
s > 2 correlated polynomials for the encoding, we incur a fadtor loss in the rate. This
proves quite expensive, and as a result the improvementsR&veodes offered by these
codes are only manifest at very low rates.

The central idea behind our work is to avoid this rate loss bkimg the correlated poly-
nomial g(X') essentially identical to the first (sayX) = f(vX)). Then the evaluations
of g(X) can be inferred as a simple cyclic shift of the evaluationg (0f), so intuitively

there is no need to explicitly include those too in the enagdi



69

Chapter 4
RESULTS VIA CODE CONCATENATION

4.1 Introduction

In ChapteB, we presented efficient list-decoding algargHor folded Reed-Solomon
codes that can corredt— R — ¢ fraction of errors with rateR (for anys > 0). One
drawback of folded Reed-Solomon codes is that they are de@iner alphabets whose size
is polynomial in the blocklength of the code. This is an unidéxe feature of the code and
we address this issue in this chapter.

First, we show how to convert folded Reed-Solomon codesétadad code that can still
be list decoded up tb— R—e¢ fraction of errors with ratd? (for anys > 0). However, unlike
folded Reed-Solomon codes these codes are defined ovebatpha size20( " log(1/2))
Recall that codes that can be list decoded up-toR — ¢ fraction of errors need alphabets
of size2%=™") (see sectioRZ2.1).

Next, we will show how to use folded Reed-Solomon codes taioltodes ovefixed
alphabets (for example, binary codes). We will presentieitdinear codes over fixed
alphabets that achieve tradeoffs between rate and fracficarrors that satisfy the so
called Zyablov and Blokh-Zyablov bounds (along with effididist-decoding algorithms
that achieve these tradeoffs). The codes list decodabl® tipet Blokh-Zyablov bound
tradeoff are the best known to date for explicit codes ovedialphabets. However, unlike
ChapteB, these results do not get close to the list-degazhipacity (see Figuie4.1). In
particular, for binary codes, if /2 — ~ fraction of errors are targeted, our codes have rate
Q(~*). By contrast, codes on list-decoding capacity will have f&ty?). Unfortunately (as
has been mentioned before), the only codes that are knowahtewve list-decoding capac-

ity are random codes for which no efficient list-decodingoagipms are known. Previous
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to our work, the best known explicit codes had réte/*) [51] (these codes also had effi-
cient list-decoding algorithms). We choose to present tues that are list decodable up
to the Zyablov bound (even though the code that are list dadedip to the Blokh Zyablov
have better rate vs. list decodability tradeoff) becaug@efollowing reasons (i) The con-
struction is much simpler and these codes give the same asgoate for the high error

regime and (ii) The worst case list sizes and the code cartgirutime are asymptotically

smaller.

List decodiné capacity
Zyablov bound (Section 4.3) - - - -
Blokh Zyablov bound (Section 4.4) -------

0.8 |

0.6 [t

R (RATE) —>

04

02

0 0.1 0.2 0.3 0.4 0.5
p (ERROR-CORRECTION RADIUS) --->

Figure 4.1: RateR of our binary codes plotted against the list-decoding ragdiwf our
algorithms. The best possible trade-off, i.e., list-désgdapacityy = H~'(1— R) is also
plotted.

All our codes are based on code concatenation (and theirgeaions called multi-
level code concatenation). We next turn to an informal dpson of code concatenation.
4.1.1 Code Concatenation and List Recovery

Concatenated codes were defined in the seminal thesis oéy[#Hi]. Concatenated codes

are constructed from two different codes that are defined apdabets of different sizes.



71

Table 4.1: Values of rate at different decoding radius fastldecoding capacityHc.,),
Zyablov bound 27) and Blokh Zyablov boundKz) in the binary case. For rates above
0.4, the Blokh Zyablov bound i8 up to 3 decimal places, hence we have not shown this.

p 0.01| 0.02| 003 | 0.05| 0.10| 0.15| 0.20 | 0.25| 0.30 | 0.35
Reqp | 0.919] 0.858| 0.805| 0.713| 0.531| 0.390| 0.278| 0.188| 0.118| 0.065
R, |0.572| 0.452| 0.375| 0.273| 0.141| 0.076| 0.041| 0.020| 0.009| 0.002
Rpz | 0.739] 0.624| 0.539| 0.415| 0.233| 0.132| 0.073| 0.037| 0.017| 0.006

Say we are interested in a code oYgr(in this chapter, we will always think of > 2 as
being a fixed constant). Then tloaiter codeC,,; is defined ovefQ], whereQ = ¢* for
some positive integet. The second code, called tivemer codeis defined ovefq| and is
of dimensionkt (Note that the message space&pf and the alphabet af',,; have the same
size). The concatenated code, denoted’by: C,; o C;,, is defined as follows. Let the
rate ofC,,; be R and let the blocklengths @f,,,; andC;,, be N andn respectively. Define
K = RN andr = k/n. The input toC is a vectorm = (m,...,mg) € ([¢/*)¥. Let

Cout(m) = (xq,...,2y). The codeword irC' corresponding ten is defined as follows
C(m) = (Cin(z1), Cin(x2), - .., Cin(xN))-

It is easy to check that’ has rate" R, dimensionk K and blocklengtm V.

Notice that to construct g-ary codeC' we use anothej-ary codeC;,. However, the
nice thing about’;,, is that it has small blocklength. In particular, sinBeandr are con-
stants (and typicallyy) and N are polynomially related); = O(log N). This implies that
we can use up exponential time @) to search for a “good” inner code. Further, one can
use the brute force algorithm to (list) decodg.

Finally, we motivate why we are interested in list recoveonsider the following
natural decoding algorithm for the concatenated a@gg o C;,,. Given a received word in
([g/™)", we divide itintoN blocks from[q]". Then we use a decoding algorithm gy, to
get an intermediate received word to feed into a decodingyékgn for C,,,;. Now one can

use unique decoding far;, and list decoding fo€’,,;. However, this loses information in
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the first step. Instead, one can use the brute force listelleg@lgorithm forC;, to get a
sequence of lists (each of which is a subsetg). Now we use a list-recovery algorithm
for C,,; to get the final list of codewords.

The natural algorithm above is used to design codes over &kathbets that are list
decodable up to the Zyablov bound in Sectiod 4.3 and (alornly @ipanders) to design
codes that achieve list-decoding capacity (but have muetisnalphabet size as compared
to those for folded Reed-Solomon codes) in Sediioh 4.2.

4.2 Capacity-Achieving Codes over Smaller Alphabets

Theoren3b has two undesirable aspects: both the alphiakearsd worst-case list size
output by the list-decoding algorithm are a polynomial e§adegree in the block length.
We now show that the alphabet size can be reduced to a cotistéigiepends only on the

distance: to capacity.

Theorem 4.1.For everyR, 0 < R < 1, everye > 0, there is a polynomial time con-
structible family of codes over an alphabet of s22& *1s(1/¢)) that have rate at leask

and which can be list decoded up to a fractidn— R — ¢) of errors in polynomial time.

Proof. The theorem is proved using the code construction schent s&uruswami
and Indyk in [54] for linear time unigue decodable codes withimal rate, with different
components appropriate for list decoding plugged in. Weflyridescribe the main ideas
behind the construction and proof below. The high level apph is to concatenate two
codesC,,; and(},, and then redistribute the symbols of the resulting coddwsing an
expander graph. Assume that (1 — R)/7 and let§ = 2.

The outer cod€,,,, will be a code of raté1 — 2¢) over an alphabet of sizen®/9°""
that can bees, O(1/¢))-list recovered in polynomial time (to recall definitionsrfaéning to
list recovery, see Definitiond.4), as guaranteed by The@d&n That is, the rate of',

will be close tol, and it can bé(, [)-list recovered for largé and¢ — 0.
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The inner code”;, will be a ((1 — R — 4¢),0(1/¢))-list decodable code with near-
optimal rate, say rate at leadt + 3¢). Such a code is guaranteed to exist over an alphabet
of sizeO(1/£?) using random coding arguments. A naive brute-force for sucbde, how-
ever, is too expensive, since we need a code {¥ith= nY) codewords. Guruswami and
Indyk [52], see also[[49, Sec. 9.3], prove that there is a k(gabsi-polynomial sized)
sample space giseudolinear codem which most codes have the needed property. Fur-
thermore, they also present a deterministic polynomiaetoonstruction of such a code
(using derandomization techniques), seé [49, Sec. 9.3.3].

The concatenation af’,,, andC;, gives a code’.,,..; Of rate at leastl — 2¢)(R +
3¢) > R over an alphabet of size|X| = O(1/?). Moreover, given a received word of
the concatenated code, one can find all codewords that agtte¢he received word on a
fraction R + 4¢ of locations in at leastl — ¢) fraction of the inner blocks. Indeed, we can
do this by running the natural list-decoding algorithm,| @@alA, for C.....; that decodes
each of the inner blocks to a radius(@f— R — 4¢) returning up td = O(1/¢) possibilities
for each block, and thefk, [)-list recoveringC,,; in polynomial time.

The last component in this construction ifla= O(1/e*)-regular bipartite expander
graph which is used to redistribute symbols of the concaéeheode in a manner so that
an overall agreement on a fractiéi+ 7¢ of the redistributed symbols implies a fractional
agreement of at leagt + 4= on most (specifically a fractiofil — <)) of the inner blocks
of the concatenated code. In other words, the expandettribdies symbols in a manner
that “smoothens” the distributions of errors evenly amdmg\arious inner blocks (except
for possibly & fraction of the blocks). This expander based redistributiwurs no loss in
rate, but increases the alphabet siz&ta /c2)0(1/e") = 20(=loa(1/))

We now discuss some details of how the expander is used. Seppat the block length
of the folded Reed-Solomon codg,,; is N; and that ofC}, is N,. Let us assume tha,
is a multiple of D, say N, = ny D (if this is not the case, we can make it so by padding
at mostD — 1 dummy symbols at a negligible loss in rate). Therefore caads/of C;,,

and therefore also af'.,...;, can be thought of as being composed of block®a&ymbols
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Figure 4.2: The cod€* used in the proof of Theorein 4.1. We start with a codeword
(uq,...,un,) in Cyy. Then every symbol is encoded by, to form a codeword irt.,,,q:
(this intermediate codeword is marked by the dotted box)e 3ymbols in the codeword
for C.onear @re divided into chunks ab symbols and then redistributed along the edges of
an expandeé of degreeD. In the figure, we usé = 3 for clarity. Also the distribution

of three symbols, b andc (that form a symbol in the final codeword @f) is shown.

each. LetN = N, n,, so that codewords af..,.... can be viewed as elements(if”)?.

Let G = (L, R, E) be aD-regular bipartite graph withV vertices on each side (i.e.,
|L| = |R| = N), with the property that for every subsgtC R of size at leastR + 7<) N,
the number of vertices belonging fothat have at mostR + 6¢) D of their neighbors i’
is at mosty N (for 6 = £2). It is a well-known fact (used also i [64]) thatdf is picked
to be the double cover of a Ramanujan expander of deree4/(d<?), thenG will have

such a property.
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We now define our final cod€* = G (Coneat) € (XP)¥ formally. The codewords in
C* are in one-one correspondence with thos€'gf..... Given a codeword € Copcat, ItS
N D symbols (each belonging %) are placed on th&/ D edges of~, with the D symbols
in its 7'th block (belonging ta=?, as defined above) being placed on thedges incident
on thei'th vertex of L (in some fixed order). The codeworddri corresponding te has as
its 'th symbol the collection of> symbols (in some fixed order) on the edges incident

on the:'th vertex of R. See Figur€4]2 for a pictorial view of the construction.

Note that the rate of ™ is identical to that’,,,..;, and is thus at least. Its alphabet
size is|X|P = O(1/£2)00/=") = 20(""1e(1/2)) a5 claimed. We will now argue ho@* can

be list decoded up to a fractign — R — 7<) of errors.

Given a received word € (3”)%, the following is the natural algorithm to find all
codewords of>* with agreement at leasR+ 7<) N with r. Redistribute symbols according
to the expander backwards to compute the received wdut C..,,... which would result

in r. Then run the earlier-mentioned decoding algoritdronr’.

We now briefly argue the correctness of this algorithm. c.et C* be a codeword with
agreement at leasi? + 7<) N with r. Let ¢’ denote the codeword @f,.,...; that leads t@
after symbol redistribution by, and finally suppose” is the codeword of’,,; that yields
¢’ upon concatenation b¥;,. By the expansion properties 6f, it follows that all but a
fraction of N D-long blocks of’ have agreement at leggt+6¢) D with the corresponding
blocks ofc’. By an averaging argument, this implies that at least aitra¢t — v/§) of the
N, blocks ofc’ that correspond to codewords ©f, encoding theV; symbols ofc”, agree
with at least a fractiorfl — v/6)(R + 6¢) = (1 — &)(R + 6¢) > R + 4¢ of the symbols
of the corresponding block af. As argued earlier, this in turn implies that the decoding
algorithm A for C..,.oc When run on input’ will output a polynomial size list that will

includec’. O
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4.3 Binary Codes List Decodable up to the Zyablov Bound

Concatenating the folded Reed-Solomon codes with suitailer codes also gives us
polytime constructible binary codes that can be efficiehsiiydecoded up to the Zyablov
bound, i.e., up to twice the radius achieved by the stand&d @ecoding of concate-
nated codes [41]. The optimal list recoverability of thedfedl Reed-Solomon codes plays

a crucial role in establishing such a result.

Theorem 4.2.Forall 0 < R,r < 1 and alle > 0, there is a polynomial time constructible
family of binary linear codes of rate at leakt- » which can be list decoded in polynomial

time up to a fraction(1 — R)H (1 — r) — ¢ of errors.

Proof. Lety > 0 be a small constant that will be fixed later. We will constrictary codes
with the claimed property by concatenating two codgsandCs. For C4, we will use a
folded Reed-Solomon code over a field of characteristiath block lengthn, rate at least
R, and which can bél — R—~, [)-list recovered in polynomial time fdr= [10/~]. Let the
alphabet size of’; be2 whereM is O(y2log(1/7)(1 — R)~*logn,) (by Theoreni3l6,
such a; exists). ForCs;, we will use a binary linear code of dimensidh and rate at least
r which is (p, [)-list decodable fop = H~'(1 — r — «). Such a code is known to exist
via a random coding argument that employs the semi-randothad€¢51]. Also, a greedy
construction of such a code by constructing/itsbasis elements in turn is presented in
[51] and this process tak@$™) time. We conclude that the necessary inner code can be
constructed im0 (1R ee(/9) time The code’;, being a folded Reed-Solomon code
over a field of characteristig, is [Fo-linear, and therefore when concatenated with a binary
linear inner code such &, results in a binary linear code. The rate of the concatehate
code is at leask - r.

The decoding algorithm proceeds in a natural way. Given @ived word, we break it
up into blocks corresponding to the various inner encodimgé’,. Each of these blocks
is list decoded up to a radiys returning a set of at mostpossible candidates for each

outer codeword symbol. The outer code is thién- R — ~,[)-list recovered using these
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sets, each of which has size at mfsas input. To argue about the fraction of errors this
algorithm corrects, we note that the algorithm fails to resrca codeword only if on more
than a fractior(1 — R — ) of the inner blocks the codeword differs from the receiveddvo
on more than a fractiop of symbols. It follows that the algorithm correctly list detes up
toaradiugl—R—v)p = (1—R—~)H '(1—r—~). If we pick an appropriate in ©(s?),
then by Lemm&2144 (1 —r—~) > H Y(1—r)—¢/3(@nd(1—R—~) > 1— R—¢/3),
which implies(1 — R—~vy)H (1 —r—v) > (1— R)H'(1 —r) —casdesired. [

Optimizing over the choice of inner and outer codes ratésin the above results, we
can decode up to the Zyablov bound, see Fiflurk 4.1. For agtanekpression, se¢€(4.2)
with s = 1.

Remark 4.1. In particular, decoding up to the Zyablov bound implies tivatcan correct a
fraction (1/2 —¢) of errors with rateQ(&?) for smalle — 0, which is better than the rate of
Q(e?/log(1/¢)) achieved in[[55]. However, our construction and decodingypexity are
nO*loa(1/) whereas these are at mogts)n® for an absolute constantin [65]. Also,
we bound the list size needed in the worst-casedy ' °5(1/2)) while the list size needed

in the construction in[B5] i1 /¢)C(oglos(1/2),
4.4 Unique Decoding of a Random Ensemble of Binary Codes

We will digress a bit to talk about a consequence of (the pofoTheorenf4.P.

One of the biggest open questions in coding theory is to comeith explicit binary
codes that are on the Gilbert Varshamov (or GV) bound. Inqadr, these are codes that
achieve relative distancewith ratel — H(J). There exist ensembles of binary codes for
which if one picks a code at random then with high probabilityes on the GV bound.
Coming up with an explicit construction of such a code, hosvehias turned out to be an
elusive task.

Given the bleak state of affairs, some attention has beeahtpahe following prob-

lem. Give a probabilistic construction of binary codes tmaet the GV bound (with high



78

probability) together with efficient (encoding and@coding up to half the distanaé the
code. Zyablov and Pinsker [110] give such a constructiorbfoary codes of rate about
0.02 with subexponentigime decoding algorithms. Guruswami and Indyki[53] givelsuc
a construction for binary linear codes up to rates ahoat with polynomialtime encoding
and decoding algorithms. Next we briefly argue that Thedredncdn be used to extend
the result of [58] to work till rates of about02. In other words, we get the rate achieved
by the construction of [11.0] but (liké [53]) we gpblynomialtime encoding and decoding
(up to half the GV bound).

We start with a brief overview of the construction 6f[53], ieh is based on code
concatenation. The outer code is chosen to be the Reed-8olomde (of say lengthv and
rate R) while there areéV linear binary inner codes of rate(recall that in the “usual” code
concatenation only one inner code is used) that are chostarmty (and independently)
at random. A result of Thommesen [102] states that with higibability such a code
lies on the GV bound provided the rates of the codes safisty a(r)/r, wherea(r) =
1 — H(1—27"1). Guruswami and Indyk then give list-decoding algorithmssfach codes
such that for (overall) rate R < 10~*, the fraction of errors they can correct is at least
1. H=1(1 — rR) (that is, more than half the distance on the GV bound) as \gedbdisfy

2
the constraint in Thommesen'’s result.

Given TheoreniL4]2, here is the natural way to extend thetre$(53]. We pick the
outer code of raté to be a folded Reed-Solomon code (with the list recoveratupegrties
as required in Theorein 4.2) and the pitkindependent binary linear codes of ratas
the inner codes. It is not hard to check that the proof of Th@sen also works when the
outer code is folded Reed-Solomon. That is, the constmgtist mentioned lies on the
GV bound with high probability. It is also easy to check tha proof of Theorer 412 also
works when all the inner codes are different (basically teiedecoding for the inner code
in TheorenT 4P is done by brute-force, which of course onedmaven if all theV inner
codes are different). Thus, ifR < «a(r), we can list decode up tad — R)H (1 — r)

fraction of errors and at the same time have the propertywhidt high probability, the
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constructed code lies on the GV bound. Thus, all we now neelb tig to check what is
the maximum rate' R one can achieve while at the same time satisfyiRg< «(r) and
(1-R)H'(1—r) > §H '(1—rR). This rate turns out to be around)2 (see Figur&Zl3).

0.5
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Truncated Zyablov bound - - - -
Limit of the method -------- |
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Figure 4.3: Tradeoffs for decoding certain random ensemmbt®ncatenated codes. “Half
the GV bound” is the curve% - H7Y(1 — Ry) while “Truncated Zyablov bound” is the
limit till which we can list decode the concatenated codesl &till satisfy the Thommesen
condition, that is for inner and outer ratesand R, rR = Ry < «(r)). “Limit of the
method” is the best tradeoff one can hope for using list dexpdf code concatenation
along with the Thommesen result.

Thus, we have argued the following.

Theorem 4.3.There is a probabilistic polynomial time procedure to const codes whose
rate vs. distance tradeoff meets the Gilbert-Varshamowbdauth high probability for all
rates up t00.02. Furthermore, these codes can be decoded in polynomialuprie half

the relative distance.

One might hope that this method along with ideas of multileancatenated codes
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(about which we will talk next) can be used to push the oveed# significantly up from

0.02 that we achieve here. However, the following simple argunsbows that one cannot
go beyond a rate di.04. If we are targeting list decoding up pofraction of errors (and

use code concatenation), then the inner rateust be at most — H(p) (see for example

#@3)). Now by the Thommesen condition the overall rate imasta(r). Itis easy to check

thata(-) is an increasing function. Thus, the maximum overall rate the can achieve is
a(l — H(p))— this is the curve titled “Limit of the method” in Figufe"4.®ne can see
from Figure[4B, the maximum rate for which this curve stidts half the GV bound is at
most0.04.

4.5 List Decoding up to the Blokh Zyablov Bound

We now present linear codes over any fixed alphabet that canrstructed in polynomial
time and can be efficiently list decoded up to the so callekiBlByablov bound (Fig-
ure[41). This achieves a sizable improvement over the afadehieved by codes from
Sectiof4.B (see Figufe4.1 and Tdbld 4.1).

Our codes are constructed via multilevel concatenatedscalle will provide a formal

definition later on — we just sketch the basic idea here. Fantagers > 1, a multilevel

concatenated codg overF, is obtained by combining“outer” codesC? ., C2 .. ... Cs.t!
of the same block length , say, over large alphabets of size sgy, ¢*, ..., ¢% !, respec-

tively, with a suitable “inner” code. The inner code is of &@nsionug+a; - - -+a,_1. Given
messages:’, m!, ..., m*! for thes outer codes, the encoding as per the multilevel gener-

alized concatenation codes proceeds by first encodingreéaes perc’

out*

Then for every

1 < i < N, the collection of theth symbols ofC?

out

(m?) for 0 < j < s — 1, which can be
viewed as a string ovéf, of lengthay +a; + - - - + a,_1, is encoded by the inner code. For
s = 1 this reduces to the usual definition of code concatenation.

We present a list-decoding algorithm fOr given list-recovery algorithms for the outer
codes and list-decoding algorithms for the inner code amdesof its subcodes. What

makes this part more interesting than the usual code cammi#e (like those in Section
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H.3), is that the inner code in addition to having good listadable properties, also needs
to have good list-decodable properties for certain subso&pecifically, the subcodes of
dimensiona; + a;41 + - - - + as_; oOf the inner code obtained by arbitrarily fixing the first
ap + - - - + aj_; symbols of the message, must have better list-decodapiityerties for
increasingj (which is intuitively possible since they have lower rath).turn, this allows
the outer code§” , to have rates increasing with leading to an overall improvement in
the rate for a certain list-decoding radius.

To make effective use of the above approach, we also proaerviapplication of the
probabilistic method, that a random linear code a¥gihas the required stronger condi-
tion on list decodability. By applying the method of condital expectation [(]2]), we can
construct such a code deterministically in time singly engttial in the block length of the
code (which is polynomial if the inner code encodes messafjiengthO(log N)). Note
that constructing such an inner code, given the existensaidi codes, is easy in quasi-
polynomial time by trying all possible generator matric8he lower time complexity is

essential for constructing the final codein polynomial time.

45.1 Multilevel Concatenated Codes

We will be working with multilevel concatenation coding sches|[3B]. We start this sec-
tion with the definition of multilevel concatenated codes the name suggests, these are
generalizations of concatenated codes. Recall that foneatenated code, we start with
a codeC,,; over a large alphabet (called the outer code). Then we need&(g,, that
maps all symbols of the larger alphabet to strings over alsmalphabet (called the inner
code). The encoding for the concatenated code (denotéd by C;,) is done as follows.
We think of the message as being a string over the large adjpplaetol then encode it using
C,ui. Now we useC;,, to encode each of the symbols in the codeword’gj; to get our
codeword (inC,,; o C;,,) over the smaller alphabet.

Multilevel code concatenation generalizes the usual codeatenation in the following

manner. Instead of there being one outer code, there arepteudiuter codes. In partic-
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ular, we “stack” codewords from these multiple outer coded eonstruct a matrix. The
inner codes then act on the columns of these intermediatexm@te now formally define
multilevel concatenated codes.

There ares > 1 outer codes, denoted 6y ., C2 .. ..., C5. . Forevery0 <i < s—1,
C . is a code of block lengttV and rateR; and defined over a fielfl,,. The inner code
Cin is code of block lengthv and rater that maps tuples frorfig, x Fg, x --- x Fg, , to

symbols inF,. In other words,

Ci : (FQi)RiN - (FQi)Nv

out *
Cin : Fou X Fo, x -+ X Fo,_, — (Fg)".

L X ..C5 ) 0 Oy, s a map of

out

The multilevel concatenated code, denoted ®,, x C!

ou

the following form:

(Cout X Coup X - - Coug') 0 Cl = (Fg) ™ x (B, )™ - x (Fq_y) ™ — (F)™.

ou out

We now describe the encoding scheme. Given a mesgsagen', ..., m*!) € (Fg, )" x
(Fo,)N x - x (Fg,_, )1V, we first construct am x N matrix M, whose:i™ row is
the codeword”"”

out
Fg, x --+ x Fg,__,. Let the;j*™ column (forl < j < N) be denoted by//;. The codeword

(m"). Note that every column a#/ is an element from the sé,, x

1

corresponding to the multilevel concatenated cadé< (CO, x CL. x...C5 1) 0Cy,)

ou out

is defined as follows
C(mO, mI, ce >ms_1) = (Cm(Ml), Cm(M2), te 7Cm(MN)) .

(The codeword can be naturally be thought of asrar N matrix, whosei'th column

corresponds to the inner codeword encoding:ttiesymbols of thes outer codewords.)
For the rest of the chapter, we will only consider outer coolesr the same alphabet,

thatis,Qy = Q1 = --- = Q,_1 = Q. Further,) = ¢* for some integet. > 1. Note that if

0., ..., C: andCy, are allF, linear, then so i$CY , x CL . x -+ x C5.1) o Cyy.

out’ * out ou out
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The gain from using multilevel concatenated codes comas famking at the inner
code(;,, along with its subcodes. For the rest of the section, we waifisider the case
when C;, is linear (though the ideas can easily be generalized foemgértodes). Let
G € Fy**" be the generator matrix faf',,. Letry = as/n denote the rate of’;,. For
0 < j < s—1,definer; = (1 — j/s), and letG,; denoter;n x n submatrix ofG

containing the last;n rows of G. Denote the code generated Gy by C? : the rate ofC?,

is ;. For our purposes we will actually look at the subcod€’pf where one fixes the first
0 < 7 < s— 1 message symbols. Note that for eveémhese are just cosets é‘fn We will
be looking atC;,,, which in addition to having good list decoding propertissad'whole,”
also has good list-decoding properties for each of its sdbélﬁn.

The multilevel concatenated code(= (C9, x --- x C.1) o C;,) has rateR(C) that

out

satisfies

R(C)=—=> k. (4.1)

The Blokh-Zyablov bound is the trade-off between rate amatike distance obtained
when the outer codes meet the Singleton bound (i'e,,has relative distance— R;), and
the various subcode@fn of the inner code, including the whole inner cadg = C?,, lie on
the Gilbert-Varshamov bound (i.e., have relative distahce 4, *(1—-7;)). The multilevel
concatenated code then has relative distance at ieast ;<,_1(1 — R;)H, ' (1 — r;).
Expressing the rate in terms of distance, the Blokh-Zyallound says that there exist
multilevel concatenated code with relative distance at leastwith the following rate:

s—1

r )
s _ _ L , 4.2
52 (C) 0<r§112—u1({q(5) T ZZ:; H (1 —7r+7i/s) (4.2)

As s increases, the trade-off approaches the integral

1—Hq () "
Rpz(C) =1— H,(6) — 5/0 ﬁ . (4.3)

The convergence aR5;,(C) to Rpz(C) happens quite quickly even for smallsuch as
s = 10.



84

Nested List Decoding

We will need to work with the following generalization of tidecoding. The definition

looks more complicated than it really is.

Definition 4.1 (Nested linear list decodable cod&iven a linear cod€’' in terms of some
generator matrixG € IF’;X”, an integers that dividesk, a vectorL. = (Lg, Ly, ..., Ls_1) oOf
integersL,; (0 < j < s — 1), avectorp = (pg, p1 ..., ps—1) With0 < p; < 1, and a vector
r = (rg,...,rs_1) Of reals wherec = k/nand0 < r,_; < --- <r; <rgy Ciscalled an
(r, p, L)-nested list decodable if the following holds:

For every0 < j < s — 1, (Y is arater; code that if p;, L;)-list decodable, wheré"”

is the subcode af' generated by the the lasfn rows of the generator matri.

4.5.2 Linear Codes with Good Nested List Decodability

In this section, we will prove the following result concergithe existence (and con-
structibility) of linear codes over any fixed alphabet withogl nested list-decodable prop-

erties.

Theorem 4.4.For any integers > landreals) < r,_1 < 71,0 < --- <11 <719 < 1,
e>0,letp; = H'(1 —r; —2) forevery0 < j < s — 1. Letr = (ro,...,751),
p = {po,p1,---,ps—1)andL = (Lo, Ly,..., Ly ), whereL; = ¢*/¢. For large enough
n, there exists a linear code (over fixed alphaBgtthat is (r, p, L)-nested list decodable.

Further, such a code can be constructed in tigh&/=).

Proof. We will show the existence of the required codes via a simpke af the proba-
bilistic method (in fact, we will show that a random lineadechas the required properties
with high probability). We will then use the method of conaiital expectation [(]2]) to
derandomize the construction with the claimed time comiplex

Definek; = |r;n] forevery0 < j < s—1. We will pick a randon¥, x n matrix G with

entries picked independently frofy. We will show that the linear cod€ generated byr
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has good nested list decodable properties with high prdibathiet C;, for0 < j <s—1
be the code generated by the “bottoky’rows of G. Recall that we have to show that
with high probabilityC; is (p;, ¢'/¢) list decodable for everg < j < s — 1 (C; obviously
has rater;). Finally for integers/,k > 1, and a prime powey, let Ind(g, k, J) denote
the collection of subsets:!, 2%, ..., 2’} C F} such that all vectors', . . ., 7 are linearly
independent over,,.

We recollect the following two straightforward facts: (iyM&n any L distinct vectors
from IF’; for somek > 1, at least[log, L] of them are linearly independent; (ii) Any set
of linearly independent vectors Iﬂ; are mapped to independent random vectorE/irpy
arandomk x n matrix overlF,. The first claim is obvious. For the second claim, first note
that for anyv € F’; and a randonk x n matrix G (where each of thén values are chosen
uniformly and independently at random frdi) the values at the different positions in
v - G are independent. Further, the value at positicq i < n, is given byv - G;, where
G; is thei'" column of G. Now for fixed v, v - G; takes values fronf, uniformly at
random (note thattx; is a random vector frorfﬁ";). Finally, for linearly independent vectors
vl ..., v™ by a suitable linear invertible map can be mapped to the starhsis vectors
e, ...,e,. Obviously, the values; - G, ..., e,, - G; are independent.

We now move on to the proof of existence of linear codes withdgpnested list de-
codability. We will actually do the proof in a manner that Wacilitate the derandom-
ization of the proof. Define/ = [logq(ql/6 + 1)]. For any vectory € F”, integer
0<j<s—1,subsetl’ = {z!,... 27} € Ind(q, k;, J) and any collectiors of subsets
S1,52,...,5; € {1,...,n} of size at mosp,n, define an indicator variabl&(j,y, T, S)
in the following manner!/(j,y,T,S) = 1if and only if for everyl < i < J, C(z") differs
from y in exactly the sefS;. Note that if for some) < j < s — 1, there areg'/ + 1
codewords irC; all of which differ from some received worgd in at mostp;n places, then
this set of codewords is a “counter-example” that shows ¢hat not (y, p, L)-nested list
decodable. Since thg/s + 1 codewords will have some s&tof .J linearly independent

codewords, the counter example will imply that,y, 7, S) = 1 for some collection of
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subsetsS. In other words, the indicator variable captures the setaof &vents we would

like to avoid. Finally define the sum of all the indicator \adies as follows:

s—1
O S D DD SR (A}
j=0 y€F? T€lnd(q,kj,J)  S={S1,..,5},
SiC{1,...,n},|Si|<pjn
Note that if Sc = 0, thenC'is (y, p, L)-nested list decodable as required. Thus, we can
prove the existence of suchcaif we can show thaEc[Sc] < 1. By linearity of expecta-

tion, we have

»
|
—_

E[Sc] = > > El(y.T.S). (4.4)
j=0 y€F? T€lnd(q,kj,J)  S={S1,..,5},
SiC{1,...,n},|Si|<pjn

I\
o

Fix some arbitraryj, y, T = {z%,2*,...,27},8 = {51, S,,...,S;} (in their correspond-

ing domains). Then we have

E[1(j,y,T,8)] = Prll(5,y,T,5) = 1]

= H Pr[C(2") differ from y in exactly the positions it;]
€T
J _ 1S5 n—|Sil
: H(—q ) (E> s
i1 q q
T (g — 1)I5il
- 14— 1) (4.6)

i=1
where the second and the third equality follow from the d&bniof the indicator variable,
the fact that vectors ifi’ are linearly independent and the fact that a random matrppsma

linearly independent vectors to independent uniformlyd@m vectors irff;. Using [4.5)

in @4), we get

J — 1)lsi
E[Sc] = > > I

y€F? Telnd(q,k;,J)  S={S1,...5;}, i=1
S;C{1,...,n},|Si|<pjn

R (0

J=0 yng Telnd(qvkjvj) (61762 7777 ZJ)E{O71 """ pjn}J i=1

»
|
—_

<.
Il
o
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e s (S0

Jj=0 y€Fy Telnd(q,k;,J) \{=0

d(g,k
s—1
< Z Z an(Hq(Pj)_l)
j=0 y€Fz Telnd(q,k;,J)
s—1
< an ) quj .an(Hq(pj)—l)
j=0
s—1
< anJ(l/J-i-?“j-‘rl—’“j_za_l)
j=0
P 4.7)

The first inequality follows from Propositidn2.1. The sedanequality follows by upper
bounding the number of linearly independent vectors Iﬁ’{jf by ¢’%i. The third inequality
follows from the fact thak; = [r;n| andp; = H;'(1 — r; — 2¢), The final inequality
follows from the fact that/ = [log,(¢"/* + 1)].

Thus, [4Y) shows that there exists a cdddin fact with high probability) that is
(y, p, L)-nested list decodable. In fact, this could have been progety a simpler argu-
ment. However, the advantage of the argument above is thaaweaow apply the method
of conditional expectations to derandomize the above proof

The algorithm to deterministically generate a linear cétthat is(y, p, L)-nested list
decodable is as follows. The algorithm consists:afteps. At any step < i < n, we
choose theé'" column of the generator matrix to be the vakiec F’;O that minimizes the
conditional expectatioft[Sc|G; = v!,...,G;_; = vi™! G; = v'], whereG, denotes
the:** column of G andv!, ..., v~! are the column vectors chosen in the previous1
steps. This algorithm would work if for any < i < n and vectorsv!, ..., v?, we can
exactly computéE[Sq |G, = v!, ..., G, = v|. Indeed from[Z}), we haviB[S¢ |G, =

vl . Gy =V]is

> E[I(j,y.T,8)|G, =v',...,G;=v'].

7=0 yEIF‘g TEInd(q,kj,J) S§={51,..,57},
SiC{Lmh[Si]<pgm
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Thus, we would be done if we can compute the following for gwaalue of j,y, T =
{t, .. 27}, S = {S1,..., 8} E[l(4,y,T,S) = 1|G; = v},...,G; = vi]. Note
that fixing the firsti columns ofG implies fixing the value of the codewords in the fiist
positions. Thus, the indicator variableigor in other words, the conditional expectation we
need to compute i8) if for some message, the corresponding codeword does sagdie
with y exactly as dictated bg in the firsti positions. More formally/(j,y,7,S) = 0 if
the following is true for somé < ¢ < iand0 < @' < J: 2 - Gy # y,, if £ ¢ Sy and
' - G, = y, otherwise. However, if none of these conditions hold, theingiargument

similar to the ones used to obtaln{¥.6), one can show that

A n—i—|S}|
i —1 £ 1 ‘
E[I(j’y’T7S>|G1:Vla-..7Gi:VZ] = | [(q—) (_) )

whereS; = S, \ {1,2,...,i} foreveryl </ < J.

To complete the proof, we need to estimate the time complexithe above algorithm.
There aren steps and at every stépthe algorithm has to considef < ¢" different
choices ofv’. For every choice of?, the algorithm has to compute the conditional ex-
pectation of the indicator variables for all possible valoéj,y,T,S. Itis easy to check
that there ar®"°_, ¢" - ¢’% - 277 < s¢"1+27) possibilities. Finally, the computation of the
conditional expected value of a fixed indicator variableetattimeO (sn.J). Thus, in all the

total time taken i€)(n - ¢" - s¢"+?/) . sn.J) = ¢°"/?), as required. O

4.5.3 List Decoding Multilevel Concatenated Codes

In this section, we will see how one can list decode multie@ancatenated codes, pro-
vided the outer codes have good list recoverability and timern code has good nested
list decodability. We have the following result, which gesiezes Theorerir4l2 for regular

concatenated codes (the case 1).

Theorem 4.5.Lets > 1 and/ > 1 be integers. Leb < Ry < Ry < --- < R, < 1,

0 < rg < 1berationalsand) < &, -+ ,&-1 < 1,0 < pg, -+ ,ps—1 < L ande > 0 be
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reals. Letq be a prime power and lef) = ¢* for some integer, > 1. Further, letC?,,
(0 < j < s—1) beanlF,-linear code oveff, of rate R; and block lengthV thatis(¢;, ¢, L)-
list recoverable. Finally, leC;,, be alinear(r, p, L)-nested list decodable code ovéy of
rate o and block lengthh = as/ro, wherer = (rg,--- ,rs_1) withr; = (1 — i/s)ro,
p="{(po, - ,ps_1)andL = ({,¢,--- ). ThenC = (CY, x --- x C5.1) o Cy, is alinear
(min; &; - p;, L*)-list decodable code. Further, if the outer ca@é,, can be list recovered
in time 7;(N) and the inner cod€’;,, can be list decoded in timg(n) (for the ;" level),

thenC' can be list decoded in time <Zj;é L (T;(N) + N - tj(n))>.

Proof. Given list-recovery algorithms fof” , and list-decoding algorithms fag;,, (and
its subcodeﬁfn), we will design a list-decoding algorithm fa@¥. Recall that the received
word is ann x N matrix overF,. Each consecutive “chunk” of/s rows should be decoded

to a codeword irC” .. The details follow.

out*

Before we describe the algorithm, we will need to fix some tiota Defined =
min; {;p;. Let’Y € F;N be the received word, which we will think of as anx N
matrix overF, (note thats dividesn). For anyn x N matrix M/ and for anyl <i < N, let
M; € F! denote the™ column of the matrix\/. Finally, for every0 < j < s —1, let c’
denote the subcode 6f;,, generated by all but the firgt: rows of the generator matrix of
Cin. We are now ready to describe our algorithm.

Recall that the algorithm needs to output all codeword§'ithat differ fromY in at
most ¢ fraction of positions. For the ease of exposition, we wilhsmler an algorithm
that outputs matrices fror@? , x --. x C5.'. The algorithm has phases. At the end

of phasej (0 < j < s — 1), the algorithm will have a list of matrices (callet}) from
CO, % xCY

ou out?

where each matrix i ; is a possible submatrix of some matrix that will
be in the final list output by the algorithm. The following g$eare performed in phage
(where we are assuming that the list-decoding algorithmit?grreturns a list of messages

while the list-recovery algorithm fof”,, returns a list of codewords).

1. Set; to be the empty set.
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2. Foreveryc = (& ---,¢7 1) € L£;_; repeat the following steps (if this is the first

phase, that ig = 0, then repeat the following steps once):

(@) LetG, be the firstaj rows of the generator matrix @f;,. Let X = (G;)" - c,
where we think ofc as anja x N matrix overF,. LetZ =Y — X (for j =0
we use the convention th3 is the all0s matrix). For everyl < i < N, use
the list-decoding algorithm fof?, on columnZ; for up to p; fraction of errors
to obtain listS! C (F,)*~. LetT’ C F,, be the projection of every vector in

S7 on to its first component.

(b) Run the list-recovery algorithm fat”,, on set of Iists{Tf}i obtained from the
previous step for up tg; fraction of errors. Store the set of codewords returned
in ;.

(c) Add{(c,v)|v € I;} to £;.

At the end, remove all the matricég < L, ,, for which the codewordC;,, (M, ),
Cin(My),- -, Ci(My)) is at a distance more tharfrom Y. Output the remaining matri-
ces as the final answer.

We will first talk about the running time complexity of the akithm. It is easy to check
that each repetition of steps 2(a)-(c) takes ti@;(N) + N - t;(n)). To compute the final
running time, we need to get a bound on number of times stepepeated in phasg It
is easy to check that the number of repetitions is exdelly,|. Thus, we need to bound
|, _1]. By the list recoverability property of?,,, we can bound’;| by L. This implies

that|£;| < L|L;_:|, and therefore by induction we have
L] < L™t fori=0,1,...,5—1. (4.8)

Thus, the overall running time and the size of the list oulpyuthe algorithm are as claimed
in the statement of the theorem.
We now argue the correctness of the algorithm. That is, we baghow that for every

M e CY, x ---x Cs1 such tha( C;, (M), Cin(My) - - -, Cir(My)) is at a distance at
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Figure 4.4: Different variables in the proof of TheorEml 4.5.

mosté fromY (call such an\/ agoodmatrix), M € L, ;. In fact, we will prove a stronger
claim: for every good matrix// and every0 < j < s — 1, M’ € L;, where)M’ denotes

the submatrix of\/ that lies inC? , x --- x C? , (that is the firstj “rows” of M). For the

rest of the argument fix an arbitrary good matfik Now assume that the stronger claim
above holds fo’ — 1 (< s — 1). In other wordsM?'~* € £;_;. Now, we need to show
that M7’ € L;.

For concreteness, lét/ = (m°,--- ,m* 17, As M is a good matrix and < &;/pj,
Cin(M;) can disagree witlY; on at least a fractiop;, of positions for at mosg;: fraction
of column indices. The next crucial observation is that for any column indeX;,, (M) =
(G)T (M9, md ™ + (G \ G)T - (m? -+ m:™"), whereG}, is as defined in step
2(a),G\ G is the submatrix of7 obtained by “removingG ;. andm{' is thei*® component
of the vectorm?’. Figure[ZZ5.B might help the reader to visualize the difieneariables.
Note thatG \ G is the generator matrix df?j;. Thus, for at mos¢; fraction of column

indicesi, (m? - ,mih) - (G\ Gy) disagrees withy; — X, on at leasp; fraction of

7
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places, wher& is as defined in Step 2(a), aiXl denotes the’th column of X. As Cj,;
is (p;, £)-list decodable, for at least— ¢, fraction of column index, M?" will be in 57
(Wherer' is M, projected on it’s last — ;' co-ordinates and?f/ is as defined in Step
2(a)). In other wordsyn! is in 77 for at leastl — ¢, fraction ofi's. Further, ag5’'| < ¢,

|Tij/| < (. This implies with the list recoverability property o’

out

thatm’" € I;;, where
I, is as defined in step 2(b). Finally, step 2(c) implies thét € £, as required.
The proof of correctness of the algorithm along wiih14.8)wh thatC' is (9, L*)-list

decodable, which completes the proof. O

4.5.4 Putting it Together

We combine the results we have proved in the last couple dfestiions to get the main

result of this section.

Theorem 4.6. For every fixed field,, reals0 < § < 1,0 < r < 1 — H,(d),e > 0 and
integers > 1, there exists linear codes overF, of block lengthV that are(d — e, L(N))-
list decodable with raté? such that

r )
RZT_EZHq—l(l—erri/s)’ (4.9)

and L(N) = (N/&2)°(s= %/t (1=1)=9)) Finally, ' can be constructed in time
(N/£2)0/(9) and list decoded in time polynomial i¥i.

Proof. Let v > 0 (we will define its value later). For every < j < s — 1 define
T = T(l—j/S) andR‘ =1- T
code(C?,,x- - -x -1 oy, whereC?

out

The code&”' is going to be a multilevel concatenated
is the code from Corollay3.7 of rafe; and block
length N’ (overF,.) andC;, is an((ro, ..., 7s-1), p, L)-nested list decodable code as guar-
anteed by Theore 4.4, where fo j < s—1,p; = H;'(1 —r; —2y%) andL; = g’
Finally, we will use the property af? , thatitis(1—R; —, ¢!/, (N’ /4?)00 *les(1/R;)).

list recoverable for ang < v < R;. Corollarnyf3.Y implies that such codes exist with (where
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we apply Corollanf317 with?’ = max; R; =1 —§/H (1 —r/s))
g" = (N J42)00 H a=r/s)/5). (4.10)

Further, as codes from Corolldiy B.7 d&'glinear,C is a linear code.

The claims on the list decodability ¢f follows from the choices of?; andr;, Corol-
lary 31 and Theorenis 4.4 abd¥.5. In particular, note thainmeke Theoreniz4]5 with
the following parameters¢; = 1 — R; — y andp; = H_'(1 — r; — 27*) (which by
LemmalZH# implies that thatp; > 6 — ¢ as long asy = O(¢)), £ = ¢"/7" and L =
(N'/4?)00 " leelt/R5)  The choices of and~y imply that L = (N/£2)0¢ " leg(l/5)  Now
log(1/R;) < log(1/Rpin), WhereR,,;, = min; R; = 1—§/H_ ' (1—r). Finally, we use the
fact that for any) < y < 1,1In(1/y) < 1/y — 1 to getthatog(1/R;) < O(1/Rypin — 1) =
O(6/(H;'(1 —r) —9)). The claimed upper bound df(N) follows asL(N) < L* (by
Theoren4Db).

By the choices of?; andr; and [4.1), the rate af' is as claimed. The construction time
for C' is the time required to construct,,, which by TheoreniZ14 ig°"/7*) wheren is
the block length of”;,,. Note thatn = as/r, which by [410D) implies that the construction
time is (N /£2)0( *sHy ' (1=r/9)/(r8) The claimed running time follows by using the bound
H'(1—-r/s) <1

We finally consider the running time of the list-decodingalthm. We list decode
the inner code(s) by brute force, which tak&&™ time, that is,t;(n) = 2°™. Thus,
Corollary[3.F, Theoref4l5 and the boundofV) implies the claimed running time com-
plexity. O

Choosing the parameterin the above theorem so as to maximizel(4.9) gives us linear
codes over any fixed field whose rate vs. list-decoding rattageoff meets the Blokh-
Zyablov bound[[412). As grows, the trade-off approaches the integral forml(4.3hef t
Blokh-Zyablov bound.
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4.6 Bibliographic Notes and Open Questions

We managed to reduce the alphabet size needed to approaatitgdap a constant inde-
pendent ofn. However, this involved a brute-force search for a rathegydacode. Ob-
taining a “direct” algebraic construction over a constaized alphabet (such as variants of
algebraic-geometric codes, or AG codes) might help in ashiling these two issues. To this
end, Guruswami and Patthék [55] defiomrrelated AG codesand describe list-decoding
algorithms for those codes, based on a generalization dP#nearesh-Vardy approach to
the general class of algebraic-geometric codes (of whigdFR&nlomon codes are a special
case). However, to relate folded AG codes to correlated A@esdike we did for Reed-
Solomon codes requires bijections on the set of rationaitpaif the underlying algebraic
curve that have some special, hard to guarantee, propehig step seems like a highly
intricate algebraic task, and especially so in the int@rgsisymptotic setting of a family

of asymptotically good AG codes over a fixed alphabet.

Our proof of existence of the requisite inner codes with goedted list decodable
properties (and in particular the derandomization of thestaction of such codes using
conditional expectation) is similar to the one used to dstlallist decodability properties
of random “pseudolinear” codes in52] (see al§al [49, Sek]) 9.

Concatenated codes were defined in the seminal thesis oy {#6]. Its generaliza-
tions to linear multilevel concatenated codes were intoediuby Blokh and Zyablov [20]
and general multilevel concatenated codes were introdbgedinoviev [108]. Our list-
decoding algorithm is inspired by the argument for “unecgrabr protection” property of
multilevel concatenated codés [109].

The results on capacity achieving list decodable codessmmall alphabets (Sectin#.2)
and binary linear codes that are list decodable up to the ldydibund (Sectiof’413) ap-
peared in[[58]. The result on linear codes that are list dabtedup to the Blokh Zyablov
bound (Sectiof415) appeared In][60].

The biggest and perhaps most challenging question lefisotwed by our work is the
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following.

Open Question 4.1.For every0 < p < 1/2 and every > 0 give explicit construction of
binary codes that ar¢p, O(1/¢))-list decodable with ratéd — H(p) — . Further, design

polynomial time list decoding algorithms that can correptta p fraction of errors.

In fact, just resolving the above question &yfixed p (even with an exponential time

list-decoding algorithm) is widely open at this point.
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Chapter 5

LIST DECODABILITY OF RANDOM LINEAR CONCATENATED
CODES

5.1 Introduction

In ChaptefR, we saw that for any fixed alphabet of gize 2 there exist codes of ratg@
that can be list decoded up 6, ' (1 — R — ¢) fraction of errors with list of sizeD(1/<).
For linear codes one can show a similar result with lists p&8f(1/<). These results are
shown by choosing the code at random. However, as we saw ipt€iid the explicit
constructions of codes over finite alphabets are nowheredio achieving list-decoding
capacity.

The linear codes in ChaptEr 4 are based on code concatenatioatural question to
ask is whether linear codes based on code concatenatioretas @ list-decoding capacity
for fixed alphabets.

In this chapter, we answer the question above in the affiumatn particular, in Sec-
tion[2.4 we show that if the outer code is random linear codktha inner codes are also
(independent) random linear codes, then the resultingatenated codes can get to within
e of the list-decoding capacity with list of constant size eleging ore only. In Sectioi 515,
we also show a similar result when the outer code is the foRieeld-Solomon code from
ChaptefB. However, we can only show the latter result witlyqamial-sized lists.

The way to interpret the results in this chapter is the foltgyy We exhibit an ensemble
of random linear codes with more structure than generaloan@inear) codes that achieve
the list-decoding capacity. This structure gives rise ®hbpe of being able to list decode
such arandom ensemble of codes up to the list-decodingitafaerthermore, for design-

ing explicit codes that meet the list-decoding capacitg, cen concentrate on concatenated
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codes. Another corollary of our result is that we need fevaadom bits to construct a code
that achieves the list-decoding capacity. In particulge@eral random linear code requires
number of random bits that grows quadratically with the kl@ngth. On the other hand,
random concatenated codes with outer codes as folded Redehé&h code require number

of random bits that grows quasi-linearly with the block léng

The results in this chapter (and their proofs) are inspingthle following results due to
Blokh and Zyablovl[19] and Thommesén[102]. Blokh and Zykbaleow that random con-
catenated linear binary codes (where both the outer and outes are chosen uniformly
at random) have with high probability the same minimum distaas general random lin-
ear codes. Thommesen shows a similar result when the outerisdhe Reed-Solomon
code. The rate versus distance tradeoff achieved by rant@arlcodes satisfies the so
called Gilbert-Varshamov (GV) bound. However, like listcddability of binary codes,
explicit codes that achieve the GV bound are not known. Cgrim with such explicit

constructions is one of the biggest open questions in catieqgyy.

5.2 Preliminaries

We will consider outer codes that are defined duigr where@) = ¢* for some fixed; > 2.
The outer code will have rate and block lengthfand N respectively. The outer code
Coue Will either be a random linear code ovEf, or the folded Reed-Solomon code from
ChaptefB. In the case when,,,; is random, we will pickC,,; by selectingk = RN
vectors uniformly at random froﬁﬁg to form the rows of the generator matrix. For every
position1 < ¢ < N, we will choose an inner cod€;, to be a random linear code over
IF, of block lengthn and rater = k/n. In particular, we will work with the corresponding
generator matrice&;, where evenyG; is a randonk x n matrix overF,. All the generator
matricesG; (as well as the generator matrix fét,,;,, when we choose a randofy),,;) are

chosen independently. This fact will be used crucially in poofs.

Given the outer cod€',,; and the inner codes!

wmn?

the resulting concatenated cade=
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Cout o (CL ..., CN)is constructed as foIIOV\HsFor every codeworth = (uy,...,uy) €

ml

Cout, the following codeword is it

l,lG déf (ulGl, UQGQ, ey uNGN),

where the operations are ovEy.

We will need the following notions of the weight of a vectorvén a vectow € IF{;N,
its Hamming weight is denoted byt(v). Given a vectoty = (y,...,yy) € (F2)V
and a subse$ C [N], we will usewts(y) to denote the Hamming weight ovEy, of the
subvector(y;);cs. Note thatwt(y) = wtn(y).

We will need the following lemma due to Thommesen, which &est in a slightly

different form in [102]. For the sake of completeness we glesent its proof.

Lemma 5.1([102]). Given a fixed outer cod€,,,; of block lengthV and an ensemble of
random inner linear codes of block lengthgiven by generator matrices, ..., Gy the
following is true. Lety € F2. For any codeword: € C.,;, any non-empty subsgtC [N]
such thatu; # 0 for all i € S and any integeh < nl|S| - <1 - %)

Pr[wts(uG — y) < h] g q_n‘s|(1_H‘1(n\hS\))

Y

where the probability is taken over the random choice&of. . ., Gy.

Proof. Let | S| = s and w.l.0.g. assume that= [s|. As the choices fofz,,..., Gy are
made independently, it is enough to show that the claimeblgtndity holds for the random
choices forGq,...,G,. Foranyl < i < s and anyy € F”, sinceu; # 0, we have
Prg,[w;G; = y|] = ¢~ ™. Further, these probabilities are independent for evefijhus, for
anyy = (y1,...,¥s) € (F;)*, Pra, ..c.[wG; = y; foreveryl < i < s] = ¢7". This

implies that:

h
ns .
Pre,. . luts(uG ~y) < 1= 3 (") (g 1)

j=0

INote that this is a slightly general form of code concatemathat is considered in Chapfdr 4. We did
consider the current generalization briefly in Secfion 4.4.



99

The claimed result follows from the Proposition]2.1. O

Figure 5.1: Geometric interpretations of functiong-) and .. »(+).

For0 < z < 1 define

au(2) =1—H,(1—qg ). (5.1)
We will need the following property of the function above.
Lemma 5.2. Letq > 2 be an integer. For every < z < 1,
a,(2) < =
Proof. The proof follows from the subsequent sequence of relations
a(2)=1-H,(1—¢ "
=11 =g Nlog,(g—1)+ (1 — ¢ log,(1 = ¢ ") + ¢ (- 1)

z— z— q_l
=2 (1 —=¢h) (1—logq (1_q2_1))

< 7,

where the last inequality follows from the facts that* < 1 and1 — ¢*=' < 1 - 1/q,
which implies thatog, (ﬂ) > 1. O

1_qul
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We will consider the following function

foa@) =(0—0)""" Hq‘l(l — Oz),
where0 < ¢,z < 1. We will need the following property of this functi(gm

Lemma 5.3([L02]). Letq > 2 be aninteger. For any: > 0 and0 < y < ay(x)/z,

min f,,(0) = (1 — y)_lHq_l(l — xy).

0<0<y

Proof. The proof follows from the subsequent geometric intergietes of f, ,(-) and
a,(+). See FiguréBll for a pictorial illustration of the argungensed in this proof (for
q=2).

First, we claim that for ang < z, < 1, o, (2) satisfies the following property: the line
segment betweefay, (), H, ' (1 — a,(20))) and(z, 0) is tangent to the curvel (1 — z)
ata,(2o).

Thus, we need to show that

—Hq_l(l — aq(20))
20 — aq(20)

One can check thaf/ ') (1—z) = =L = 1

HY(Hg'(1-x)) — log,(¢—1)~log,(Hy ' (1—z))+log,(1-Hy ' (1-2))

= (H;')'(1 = ag(20))- (5.2)

Now,

20— ag(z0) = 29— 1+ (1 —¢* log,(q—1) — (1 — ¢ ") log, (1 — g™
—q* (2~ 1)
= (1=¢°7") - (log,(g = 1) = log,(1 = ¢* ™) + 2 — 1)
= Hy' (1= ay(2)) - (log,(q — 1) —log,(H, (1 — ag(20)))

+logq( 2 (1= ag(20))))

(1 aq(20))
( )’(1—%( 0))’

2 LemmaZ.B was proven i [1D2] for the= 2 case. Here we present the straightforward extension of
the result for general.
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which proves[(52) (where we have used the expressionfor) and(H,")'(1 — z) and
the fact thatl — ¢*~' = H_ (1 — ay(2))).

We now claim thatf, ,(9) is the intercept of the line segment through0) and
(0x, H;'(1—#6z)) on the %-axis.” Indeed, theg-coordinate” increases b/, ' (1 —fz) in
the line segment from to fx. Thus, when the line segment crosses thaXis”, it would
cross at an intercept af/ (1 — 6) times the “gain” going frome to 6. The lemma follows
from the fact that the functiom{q—l(l — r) is a decreasing (strictly) convex function of

and thus, the minimum of, ,(#) would occur a¥ = y providedyz < a,(z). O
5.3 Overview of the Proof Techniques

In this section, we will highlight the main ideas in our preofOur proofs are inspired by
Thommesen'’s proof of the following resuli [102]. Binarydiar concatenated codes with
an outer Reed-Solomon code and independently and randdmm$en inner codes meet the
Gilbert-Varshamov bourH:i Given that our proof builds on the proof of Thommesen, we
start out by reviewing the main ideas in his proof.

The outer code&’,,; in [102] is a Reed-Solomon code of length and rateR (over
Fg) and the inner codes (ovéY, such that) = ¢* for somek > 1) are generated by
randomly chosert x n generator matrice& = (Gq,...,Gy), wherer = k/n. Note
that since the final code will be linear, to show that with hpghbability the concatenated
code will have distance close (1 — rR), it is enough to show that the probability
of the Hamming weight ofiG overF, being at most{H (1 — rR) — ¢)nN (for some
Reed-Solomon codewond = (uy, ..., uy)), is small. Let us now concentrate on a fixed
codewordu € C,,,. Now note that if for somd < ¢ < N, u; = 0, then for every
choice of G;, u;G; = 0. Thus, only the non-zero symbols afcontribute towt(uG).
Further, for a non-zeray;, u;G; takes all the values iif;, with equal probability over

the random choices dix;. Also for two different non-zero positions # i, in u, the

3A binary code of ratéR satisfies the Gilbert-Varshamov bound if it has relativéatise at leastf ~ (1 —
R).



102

random variables;, G;, andu;, G;, areindependentas the choices fo&,;, andG,, are
independent). This implies thaiG takes each of the possibje ‘™ values inIFgN with
the same probability. Thus, the total probability th&* has a Hamming weight of at most
his Sty (i) gt ¢ "0 (55w)) | The rest of the argument follows by
doing a careful union bound of this probability for all noraeodewords inC,,,; (using
the known weight distribution of Reed-Solomon cdijes

Let us now try to extend the idea above to show a similar rdeulist decoding of a
code similar to the one above (the inner codes are the sanveebmight change the outer
code). We want to show that for any Hamming ball of radius asthe= (H~'(1 —rR) —
e)nN has at mosL codewords from the concatenated c@adéassuming we want to show
thatL is the worst case list size). To show this let us look at a sétef codewords front'
and try to prove that the probability that all of them lie witlsome ball of radiug is small.
Letu!,...,u**! be the corresponding codewordsdh,,. As a warm up, let us try and
show this for a Hamming ball centered aroundr hus, we need to show that all of the-1
codewordsu'G, ..., u**'G have Hamming weight at moét Note thatL = 0 reverts
back to the setup of Thommesen, that is, any fixed codewordveaght at most: with
small probability. However, we need all the codewords toehsmall weight. Extending
Thommesen’s proof would be straightforward if the randomalgdes corresponding to
each ofu’G having small weight were independent. In particular, if va@ show that for
every positionl < i < N, all the non-zero symbols ifu}, u?, ..., u**'} are linearly
independthoverIFq then the generalization of Thommesen’s proof is immediate.

Unfortunately, the notion of independence discussed abloesnot hold for every
L + 1 tuple of codewords front,,;. A fairly common trick to get independence when
dealing with linear codes is to look at messages that aradipnendependent. It turns out

that if C,,; is a random linear code ové&y, then we have a good approximation of the the

4In fact, the argument works just as well for any code that hagight distribution that is close to that
of the Reed-Solomon code. In particular, it also works fédéal Reed-Solomon codes— we alluded to this
fact in Sectiol ZK.

®Recall thaff . is isomorphic taf* and hence, we can think of the symbolsfig as vectors ovef,.
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notion of independence above. Specifically, we show thdt wery high probability for a
linearly independent (ovéf,) set of messagﬁsnl, ...,m**! the set of codewords' =
Cout(mt), ... u" = C,,(m") have the following approximate independence property.
For most of the positions < i < N, most of the non-zero symbols {u}, ..., ul¥} are
linearly independent ovef,. It turns out that this approximate notion of independeisce i
enough for Thommesen'’s proof to go through. Generalizirgalgument to the case when
the Hamming ball is centered around an arbitrary vector fﬂgﬁﬁ is straightforward.

We remark that the notion above crucially uses the fact timbuter code is a random
linear code. However, the argument is bit more tricky widey;, is fixed to be (say) the
Reed-Solomon code. Now even if the messagés. .., m’*! are linearly independent
it is not clear that the corresponding codewords will sgtisfe notion of independence
in the above paragraph. Interestingly, we can show thatrthi®n of independence is
equivalent to showing good list recoverability properties C,,;. Reed-Solomon codes
are however not known to have optimal list recoverabilityhigh is what is required in our
case). In fact, the results in Chapfér 6 show that thismossibl€or Reed-Solomon codes
in general. However, as we saw in Chajpller 3, folded ReedrSmiaccodeslo have optimal

list recoverability and we exploit this fact in this chapter
5.4 List Decodability of Random Concatenated Codes

In this section, we will look at the list decodability of catenated codes when both the
outer code and the inner codes are (independent) randoar oees.

The following is the main result of this section.

Theorem 5.1. Let ¢ be a prime power and lél < r» < 1 be an arbitrary rational. Let
0 < € < o(r) be an arbitrary real, wherey,(r) is as defined in[[8l1), and < R <

(ay(r) — €)/r be arational. Then the following holds for large enough getesn, N such

6Again any set ofL + 1 messages need not be linearly independent. However, isisteaee that some
subset of/ = [log, (L + 1)] of messages are indeed linearly independent. Hence, weocdinee the
argument by replacing + 1 with J.
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that there exist integers and K that satisfyk = rn and K = RN. LetC,,; be a random
N

be random linear codes ovéY,, whereC!, is generated by a randoix n matrix G; and

linear code oveff . that is generated by a randofix N matrix overF .. LetC} , ..
the random choices far,;, G1, ..., Gy are all independent. Then the concatenated code
C=Couo(Ch,....Ch)isa (Hq_l(l — Rr) —¢, qo<€2<§nm)) -list decodable code with

probability at leastl — ¢—**N) over the choices of,;, G1, ..., Gy. Further, with high
probability, C' has rater R.

In the rest of this section, we will prove the above theorem.

DefineQ = ¢*. Let L be the worst-case list size that we are shooting for (we wliit§
value at the end). The first observation is that &nyi -tuple of messagdsn®, ..., m*!) €
(F§)"*! contains at leasf = [log, (L + 1)] many messages that are linearly independent
overFg. Thus, to prove the theorem it suffices to show that with higbbpbility, no
Hamming ball ovef of radius(H_ '(1 — rR) — e)n.N contains a/-tuple of codewords
(C(m'),...,C(m’)), wherem!, ... m’ are linearly independent ov&,.

Definep = Hq‘l(l — Rr) — e. For everyJ-tuple of linearly independent messages
(m',...,m”’) e (F§)’ and received worg € F;", define an indicator random variable
I(y,m!,...,m’) as follows.I(y,m!,...,m’) = 1if and only if for everyl < j < J,

wt(C'(m’) —y) < pnN. That is, it captures the bad event that we want to avoid. Befin

Xeo = Z Z I(y,m',...,m’)

yEF2N (m!,...m7)end(Q,K,J)
whereInd(Q, K, J) denotes the collection of subsetslbf-linearly independent vectors
from Fg of size.J. We want to show that with high probabilitfy = 0. By Markov’s
inequality, the theorem would follow if we can show that:
EXc]= ) > E[I(y,m',...,m”’)]is ¢ %", (5.3)
yGIF'(’ILN (ml,...m7)elnd(Q,K,J)
Note that the number of distinct possibilities form!, ..., m” is upper bounded by*" -

QFNJ = gnNOU+TR) Fix some arbitrary choice of, m', ..., m’. To prove [&.B), we will
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show that
g NaFrRI) E[I(y,m',...,m7)]is g U, (5.4)

Before we proceed, we need some more notation. Given veators. ,u’ ¢ FY, we
defineZ(u!,... , u’) = (Zy,..., Zy) as follows. Forevery < i < N, Z; C [J] denotes
the largest subset such that the eleménjﬁsjezi are linearly independent ovéy, (in case
of a tie choose the lexically first such set), wheve= (u),...,u)). A subset off, is
linearly independent ovef, if its elements, when viewed as vectors frdi?{p (recall that
IF is isomorphic tdF’;) are linearly independent ovéy,. If uf € Z; then we will calluf
agoodsymbol. Note that a good symbol is always non-zero. We walbalefine another
partition of all the good symbol& (u', ..., u’) = (13, ..., T;) by settingl; = {i|j € Z;}
forl <j<J.

Sincem', ..., m’ are linearly independent ovél,, the corresponding codewords in
Cou are distributed uniformly iff). In other words, for any fixe@u', ..., u’) € (Fy)’,
J
Pre,., L/\ Cout(mj) = uj] = Q—NJ _ q—rnNJ. (5.5)
=1

Recall that we denote the (random) generator matrices foirther codeC?, by G, for
everyl <i < N. Also note that everyu', ..., u’) € (F7)’ has a uniqué&(u',... u’).
In other words, the"” choices ofZ partition the tuples ifFy)”.

Let h = pnN. Consider the following calculation (where the dependesfcg and T

onu!, ..., u’ have been suppressed for clarity):
J .
E[I(Y7 m17 7mJ>] = Z PrG:(Gl ,,,,, Gpy) [/\ wt<ujG - y) < h (56)
(ul,...,ul)e(FN)J =1




106

(5.8)

=gy HPrG [wtr, (WG —y) < I (5.9)

In the above[(&]6) follows from the fact that the (random)icks forC,,; and G =
(G1,...,Gy) are all independent{3.7) follows from(b.5).(5.8) follefvom the simple
fact that for everyy € (F)" andT" C [N], wtr(y) < wt(y). &3) follows from the subse-
guent argument. By definition of conditional probabiliBy.g [/\ _wtp (WG —y) < h}

is the same as

J—1 J—1
Pre [wtr,(0/G —y) < h| J\ wtr, (WG —y) < h] - Prg [/\ wtr, (WG —y) < h] .

J=1 J=1

Now as all symbols corresponding ¥ are good symbols, for every € T, the value
of u/G, is independent of the values ¢i1!G,,...,u/'G,}. Further since each of
Gy, ..., Gy are chosen independently (at random), the event(u/G —y) < his in-
dependent of the eveft’"| wtr, (WG —y) < h. Thus Prg [/\}]:1 wtr, (WG —y) < h

is
J-1
PI‘G [thJ<uJG — y) < h:| . PI‘G [/\ thj(ujG — y) < hl| .

j=1

Inductively applying the argument above givEs)5.9).
Further,

E[I(y,m',....,m’)] = > H N Prg [wtr, (WG —y) < h] (5.10)

(ul,..ul)e(Fy)7 i=1

Prg [whr, (WG —y) <
S [ e otnlG s

(d1,...,dy)e{0,....N}/ (ul,.., u‘])E(Fg)‘] J=1
(IT1|=d,...,|Ty|=d)

n

(5.11)
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< Z qJN—i—(rn-i—J)Z}.’:ldj ﬁ Prg [thj(ujG —y) < h}

(d1,...,dy) j= qT”N
€{0,...,N}/ |T5|=d;
(5.12)
T Prg [wty (WG —y) < h
- Z H G,E(_id(—N)_"dy )N> } (5.13)

(d1,nd s )E{0,.0., N}

In the abovel(5.10)[{51 1], (5113) follow from rearrangargd grouping the summands.
(B.12) uses the following argument. Given a fixée= (74, ..., Zy), the number of tuples
(u',...,u’) such thaZ(u',...,u’) = Zis at most/ = [\, ¢/%k . ¢/%|/~1Z) where
the¢%* is an upper bound on the number|&f| linearly independent vectors froﬁ)§ and
q'%1=1Z follows from the fact that every bad symbjl? } ;. has to take a value that is a
linear combination of the symbo{a’ };cz,. Now U < [, ¢lZ!(k+7) = ¢+ N L, 121 —
g" N1 1T Finally, there ar@’N < ¢/ distinct choices fo.

(&13) implies the following

qu(l-l—rRJ) X E[I(y, ml’ . mJ)]

N
&

where
Ej _ q—n(—r(dj—N(l—R))—¥_Tj_%> - Prg [thj (UjG _ y) < h} )
We now proceed to upper bourd by ¢=) for every1 < j < J. Note that this
will imply the claimed result as there are at most + 1)’ = ¢°*¥) choices for different

values ofd;’s.

We first start with the case wheh) < d*, where

d*=N(1—-R— ),

for some parametdi < v < 1 — R to be defined later. In this case we use the fact that

Prg [wir, (u;G —y) < h] < 1. Thus, we would be done if we can show that

N . N
(r(dj—N(l—R))+—+‘]d’+—> < —0' <0,

J n n

1
N
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for somed’ > (0 that we will choose soon. The above would be satisfied if

d; 1/1 Jd; 1 o

T <(1-R—-—-|5+—2+-|-—

N ( ) T (J TN T n) r’

which is satisfied if we choose > 2 <§ + % + %) + & asd; < d*. Note that ifn >
de H I _ 4

2J (T + 1) and if we set’ = 7, itis enough to choosg = —-.

We now turn our attention to the case whgrn> d*. The arguments are very similar to
the ones employed by Thommesen in the proof of his main theard102]. In this case,
by Lemmdg&]l we have

ndi (1— h N _p(1_NO-R)\_ N _J_ N
El_ g q dJ (1 Hq('rLdj) (1 dj ) de n 7Ldj>‘

J

The above implies that we can show thigtis ¢—*"N(1=£=) provided we show that for

everyd* <d < N,

h/(nd)ng(l—r(l—W) N o N)_&

for 6 = ¢/3. Now if n > 2J2, then bothZ < = and & < S-. In other words,

24 N < I Using the fact that/ ! is increasing, the above is satisfied if

h/(nd) < H' (1 _y (1 _ W) QN) _s,

By LemmdB5.}, as long as > 4¢, /(6*(1 — R)) (and the conditions on are satisfied), the

above can be satisfied by picking
h/(nN)=H; (1 —rR)— 35 =p,

as required. We now verify that the conditions @rin LemmalS¥ are satisfied by our

choice ofy = -£. Note that if we choosg = 4¢//(62(1 — R)), we will havey = ZU_%)

q

Now, asR < 1, we also havey < §*/(rc,). Finally, we show that < (1 — R)/2. Indeed

7:<52(1—R)_52(1—R)<e3(1—R)<ozq(r)(1_R) _ 1—R

- ~ ~
cflr 9c;r Or 9r 2
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where the first inequality follows from the facts thgt > 1 ande < 1. The second
inequality follows from the assumption @n The third inequality follows from Lemnia3.2.
Note thatJ = O (

ment of the theorem.

=h ) which impliesL = QP1/((1=R)*) 35 claimed in the state-
We still need to argue that with high probability the rate bé tcodeC' = C,,; o
(@

ny

CN)is rR. One way to argue this would be to show that with high probabil
ity all of the generator matrices have full rank. Howevers i not the case: in fact, with
some non-negligible probability at least one of them wilt have full rank. However, we
claim that with high probabilityC' has distance- 0. Note that as”' is a linear code, this
implies that for every distinct pair of messages # m? ¢ Fg are mapped to distinct
codewords, which implies that hasq™"*" codewords, as desired. We now briefly argue
why C' has distance- 0. The proof above in fact implies that with high probabilityhas
distance about/, (1 — rR)nN. Itis easy to see that to show th@thas distance at least
h, it is enough to show that with high probabiIiEmeF;Q{ I(0,m) = 0. Note that this is

a special case of our proof, with = 1 andy = 0 and hence, with probability at least

1 — ¢2N) the code” has large distance. The proof is complete.

Remark 5.1. In a typical use of concatenated codes, the block lengthkeofriner and
outer codes satisfy = O(log N), in which case the concatenated code of Thedrein 5.1 is
list decodable with lists of siz&7(c*0=R") " However, the proof of Theordb.1 also
works with smallen. In particular as long as: is at least3.J?, the proof of Theorefn 3.1
goes through. Thus, within ©(.J?), one can get concatenated codes that are list decodable

up to the list-decoding capacity with lists of swg%( =R,

Lemma 5.4. Let ¢ be a prime power, and < n < N be integers. Led < r, R < 1 be

rationals ando > 0 be a real such thaRk < (ay(r) —J)/r andd < «a,(r), wherea,(r)

is as defined in{&l1). Let > 0 be a real such thay < min (TR, —) wherec, is the

/

constant that depends only grfrom Lemmd=2]4. Then for all integers > m and
h < (H;'(1—rR)—25)nN the following is satisfied. For every integer— R — )N <
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h . N1-R-7)\ 2N
b (1o (1- 02 RZ) amy 514

Proof. Using the facth‘1 is an increasing function[[{5.J14) is satisfied if the follogiis
true (whered* = (1 — R — v)N):

h d\ ., N(1-R-~)\ 2N
W<d33531v{<ﬁ)'ﬂq <1_T<1_ d TaT)

Define anew variablé = 1 — N(1— R—+)/d. Note thatag* = (1-R—~)N <d < N,
0<60< R++.Alsod/N = (1— R—~)(1—0)"'. Thus, the above inequality would be

satisfied if

h , IR 2
ny S R- ”ogﬁgﬁﬂ{(l‘@) H, (1 —r m)}
Again using the fact thqu—1 is an increasing function along with the fact thatl (1 —

R)/2 , we get that the above is satisfied if

h 4
N p : N Y S S N
oy SU-E=) 0<O< R+ {(1 o)A, (1 o (1— R)J)}

By LemmalZh, it/ > 5ty . thet Ht (1= 76— b)) > H,' (1= 19) — 6. Since
forevery0 <0 < R+~,(1—-R—7)(1—-0)"16 < 4, the above equation would be satisfied
if

h
ay SU—R=7) g Fral6) =0

Note that the assumptions < ¢°/(r¢,) < 0/r (asd < landc, > 1) andR <
(ay(r) — 9)/r, we haveR + v < ayu(r)/r. Thus, by using LemmB8.3 we get that
(1 = R — ) mingcg<riy frg(0) = Hy'(1 — rR — ry). By LemmalZH, the facts that
v < 6%/(rc,) andH, ! is increasing, we havB ' (1—-rR—rvy) > H,'(1—-rR)—¢. This
implies that[5.TW) is satisfied if/(nN) < H,'(1 — rR) — 24, as desired. O

"We also use the fact thﬂ;l is increasing.



111

5.5 Using Folded Reed-Solomon Code as Outer Code

In this section, we will prove a result similar to Theoréml5with the outer code being
the folded Reed-Solomon code from Chajpler 3. The proof walkencrucial use of the list
recoverability of folded Reed-Solomon codes. Before wearbeg will need the following

definition and results.

5.5.1 Preliminaries
We will need the following notion of independence.

Definition 5.1 (Independent tuples).et C' be a code of block lengtN and rateR defined
overF. LetJ > 1 and0 < dy,...,d; < N be integers. Letl = (d;,...,d;). An
ordered tuple of codewordg’, ..., ¢’), ¢ € C is said to be(d, F,)-independent if the
following holds.d; = wt(c') and for everyl < j < J, d; is the number of positionssuch

thatc! is F-independent of the vectofs}, ..., ¢/ '}, wherec’ = (¢!, ..., c%).

Note that for any tuple of codewords', . . ., ¢’) there exists a uniqué such that it is
(d, F,)-independent.

The next result will be crucial in our proof.

Lemma 5.5. Let C be a folded Reed-Solomon code of block lengtthat is defined over
Fo with Q@ = ¢* as guaranteed by Theordm13.6. For abstuple of codewords fror,
whereL > J - (N/2)0(= " 71oe@/R) (wheres > 0 is same as the one in Theor&ml3.6),
there exists a sub-tuple dfcodewords such that thetuple is(d, F,)-independent, where
d=(dy,...,d;)suchthatforevery <j<.J,dj>(1—R—¢)N.

Proof. The proof is constructive. In particular, given &rtuple of codewords, we will con-
struct aJ sub-tuple with the required property. The correctness eftocedure will hinge
on the list recoverability of the folded Reed-Solomon coslgaaranteed by Theordm1B3.6.
We will construct the final sub-tuple iteratively. In the fistep, pick any non-zero
codeword in thel-tuple— call itc!. Note that ag” has distancél — R)N (and0 € O),
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¢! is non-zero in at least, > (1 — R)N > (1 — R — )N many places. Note that is
vacuously independent of the “previous” codewords in thesstions. Now, say that the
procedure has chosen codewords . ., ¢* such that the tuple i&d’, F,)-independent for
d' = (dy,...,ds), where forevernyl < j <s,d; >(1—-—R—¢)N. Foreveryl <i< N,
defineS; to be theF,-span of the vector$c,-, ....c;} in F%. Note that|S;| < ¢°. Call
c¢=(cy,...,cy) € Ctobe abadcodeword, if there does not existagy,; > (1—R—¢)N
suchthatc!,... ¢ ¢)is(d,F,)-independent fod = (dy,...,d.1). In other words¢is a
bad codeword if and only if somE C [N] with || = (R +¢) N satisfies; € S; for every

1 € T. Put differently,c satisfies the condition of being in the output list for listogering
C' with input Sy, ..., Sy and agreement fractioR + . Thus, by Theorei 3.6, the number
of such bad codewords i§ = (N/=2)0(= 'slos@/B)  (n/:2)0(c " T1osla/B) \where ] is
the number of steps for which this greedy procedure can bkeabpTlhus, as long as at
each step there are strictly more thHarcodewords from the origindl-tuple of codewords
left, we can continue this greedy procedure. Note that wecceminue this procedurg

times, as long ag < L/U. The proof is complete. ]

Finally, we will need a bound on the number of independenletifor folded Reed-

Solomon codes.

Lemma 5.6. LetC' be a folded Reed-Solomon code of block lengthnd rate0 < R < 1
that is defined oveF, whereQ = ¢*. LetJ > 1 and0 < dy,...,d; < N be integers and
defined = (di, ..., d;). Then the number @fl, F,)-independent tuples ifi' is at most

<

NJ(J+1 H max(d;j—N(1-R)+1,0)

Proof. Given a tuple(c!, ..., ¢’) thatis(d, F,)-independent, defin€; C [N] with |T}| =
d;, for 1 < j < J to be the set of positiong Wherec? is linearly independent of the
values{c}, .. ,cj }. We will estimate the number d¢fl, F,)-independent tuples by first

7

estimating a bound; on the number of choices for th&" codeword in the tuple (given a
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fixed choice of the firsj — 1 codewords). To complete the proof, we will show that

Uj < qN(J-l-l) . Qmax(dj—N(l_R)+170).

A codeword: € C can be thg'" codeword in the tuple in the following way. Now for every
position in[N] \ 7}, c can take at mosf ! < ¢’ values (as in these position the value has
to lie in thelF, span of the values of the firgt— 1 codewords in that position). Sinceis
folded Reed-Solomon, once we fix the values at positiondin, 7;, the codeword will be
completely determined once amyax(RN — (N —d;)+1,0) = max(d; — N(1—-R)+1,0)
positions in7}; are chosen (w.l.0.g. assume that they are the “first” so maasitipns). The

number of choices fof; is (1) < 2V < ¢V. Thus, we have

Uj

/A

qN . (qJ)N_dj . Qmax(dj—N(l—R)—i-l,O) < qN(J—l-l) . Qmax(dj—N(l—R)—i-l),O)

)

as desired. 0

5.5.2 The Main Result
We will now prove the following result.

Theorem 5.2. Letq be a prime power and lét < » < 1 be an arbitrary rational. Let) <

e < a,(r) an arbitrary real, wherey,(r) is as defined ir(3l1), antl< R < (a,(r) —¢)/r
be a rational. Then the following holds for large enough g&esn, /N such that there exist
integersk and K that satisfyk = rn and K = RN. LetC,,; be a folded Reed-Solomon
code ovefF . of block lengthV and rateR. LetC}

ml

.., CY be random linear codes over
IF,, whereC!, is generated by a randofxn matrix G; overF, and the random choices for
Gy,...,Gy are all independent. Then the concatenated c6de C, ;o (C},,...,CY)
isa <Hq—1(1 — Rr) —e¢, (g)o(ﬁ(l_Rr2 log(l/R))> -list decodable code with probability at
least1 — ¢~**) over the choices ofi4, ..., Gy. Further, with high probabilityC has

raterR.

In the rest of this section, we will prove the above theorem.
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Define@ = ¢*. Let L be the worst-case list size that we are shooting for (we wll fi
its value at the end). By Lemnia®.5, ahy+ 1-tuple of C,,; codewords(u’, ..., ut) €
(Chur) ! contains at leasf = L(L + 1)/(N/72)O(”71“°g(q/R))J codewords that form an
(d,F,)-independent tuple, for some= (d,,...,d;), withd; > (1 — R — v)N (we will
specifyv, 0 < v < 1 — R, later). Thus, to prove the theorem it suffices to show that
with high probability, no Hamming ball ifi;"" of radius(H, (1 — rR) — ¢)nN contains
a J-tuple of codeword$u'G, ..., u’G), where(u', ..., u’) is a.J-tuple of folded Reed-
Solomon codewords that {sl, F,)-independent. For the rest of the proof, we will call a
J-tuple of C,,; codewordqu', ..., u’) agoodtuple if it is (d, F,)-independent for some
d=(dy,...,d;), whered; > (1 — R—~)N foreveryl < j < J.

Definep = H,'(1 — Rr) — e. For every good/-tuple of C,,; codewordgu’, ..., u’)
and received worgy € F!, define an indicator variabl&(y,u',..., u’) as follows.
I(y,u',...,u’) = 1if and only if for everyl < j < J, wt(W/G — y) < pnN. That

is, it captures the bad event that we want to avoid. Define

Xc = Z Z I(y,u',...,u’).
y€FN good(ul,...,u’)e(Cout)”’
We want to show that with high probability - = 0. By Markov’s inequality, the theorem

would follow if we can show that:

EXc]= ) > E[I(y,u',...,u’)] < ¢ V), (5.15)

y€FzN good(ul,...,u’)e(Cout)”

Before we proceed, we need a final bit of notation. For a gopiet(a!, ..., u’)
and everyl < j < J, defineTj(u',...,u’) C [N] to be the set of positionssuch
thatu’ is F,-independent of the sdtu!,...,u/~"}. Note that since the tuple is good,
| T;(u',...,u’)| > (1—R—~)N.

Let h = pn/N. Consider the following sequence of inequalities (whereweave have

suppressed the dependenc&’pbn (u!, ..., u’) for clarity):
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rJ
E[Xc]= > Pres@icw |\ wtWG -y) < h] (5.16)
y€F2N good(ul,...,u”)e(Cout)”’ =1
rJ
< Z Z Prg—(a,,..ay) /\ witr, (WG —y) < h] (5.17)
y€F2N good(ul,...,u’)e(Cout)”’ Li=1
J
= > >, [TPre [win, (WG —y) <1 (5.18)
y€FN good(ul,...,u’)e(Cout)’ 7=1
J
Y > Hq_”'TJO‘H‘Z(n'ﬁ)) (5.19)

y€F2N good(ul,...,u’)e(Cout)’ 7=1

= > > > : qwdj(l_Hq("%’f)) (5.20)

yEFgN (d1,...,d ) good(ul,...,u’)e(Cour)”, J=1
e{(1=R—7)N,...,N}  (|T1|=d1,...|Ts|=d)

J J
nN  NJ(J+1) max(d;—(1—R)N+1,0) <1 Hq(ﬁ,))
q []e Hq ;

(d1,...,dy) Jj=1

N
(]
S

(5.21)

/AN
E
I E <
O
&&
:u
Q
::1
=¥
_
X
N

(5.22)

_ Z ﬁq—ndj (I—HQ(%>—T(1—W>_%_%J;U>. 5.23)

In the above[[5.16) follows from the definition of the indimatvariable. [5.117) follows
from the simple fact that for every vectar of length NV and everyl" C [N], wtr(u) <
wt(u). (&IB) follows by an argument similar to the one used to argud) from [5.B)
in the proof of TheoreriBl1. Basically, we need to write owt finobability as a product
of conditional probabilities (withy = J “taken out” first) and then using the facts that

the tuple(u?,...,u’) is good and the choices f&,,..., Gy are independeIHt.(ISIQ)

8In Theoren &1, the tuple of codewords were not ordered whég are ordered here. However, it is easy
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follows from Lemmd&ll. [[5.20) follows from rearranging tekemmand and using the
fact that the tuple is good (and hende > (1 — R — v)N). &Z1) follows from the
fact that there arg@™" choice<g for y and Lemmd%16. [(5.22) follows from the fact that
di—(1-RIN+1<d;—(1—R—~)N (for N > 1/v)and thatd; > (1 - R — ~v)N.
(&.23) follows by rearranging the terms.

Now, as long as > J(J + 1), we have% < L. @23) will imply (&I5) (along
with the fact thath‘1 is increasing) if we can show that for evelly— R —v)N < d < N,

h _ (1-R—~)N 2N
< 1 _ N r Ry )
"<, (1 r(l p ) Jd) 5

for § = ¢/3. Thus, by Lemm#&3%5l4 (and using the arguments used in the pfoblie-
orem[&1 to show that the conditions of Leminal 5.4 are satjsfied can select/ in
0 (ﬁ) (andvy in ©(¢2(1 — R)/r)), and pick

h/(nN) = Hq_l(l —rR) —e =p,
as desired. This along with Lemrals.5, implies that we can set

I = (N/gz)o(e*‘lu—zz)%1og(q/R))

Y

as required.
Using arguments similar to those in the proof of Theofenh 6rie can show that the
codeC,,; o (C}

mr

.., CNy with high probability has rateR.

Remark 5.2. The idea of using list recoverability to argue independecee also be used
to prove Theoreri8.1. That is, first show that with good prdbigba random linear outer

code will have good list recoverability. Then the argumenthis section can be used to

to check that the argument in TheorEml 5.1 also works for ediarples as long as the induction is applied
in the right order.

9 As the final codeC' will be linear, it is sufficient to only look at received wortisat have Hamming
weight at mospnN. However, this gives a negligible improvement to the finaluteand hence, we just
bound the number of choices fgrby ¢".
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prove Theorer Bl 1. However, this gives worse parametersttieproof presented in Sec-
tion[54. In particular, by a straightforward applicatiorf the probabilistic method, one can
show that a random linear code of rateoverFy, is (R + v, ¢, Q“/7)-list recoverable[[4B,
Sec 9.3.2]. In proof of Theoreln b 2is roughlyq’, where.J is roughly1/s2. Thus, if we
used the arguments in the proof of Theofem 5.2, we would keetalgrove Theorefin 3.1

(c2a-m71) “2(1-R)"1)

@]
but with lists of size of)? , Which is worse than the list size QP(‘E

guaranteed by Theoreln 5.1.

5.6 Bibliographic Notes and Open Questions

The material presented in this chapter appearsih [61].

Theoren Bl in some sense generalizes the following resBlbéth and Zyablov[[1D].
Blokh and Zyablov show that the concatenated code wherethetbuter and inner codes
are chosen to be random linear codes with high probabikty ¢in the Gilbert-Varshamov
bound of relative minimum distance is (at least) ' (1 — R) for rate R.

The arguments used in this chapter also generalize Thonmsga®of that concate-
nated codes obtained by setting Reed-Solomon codes ascodis and independent ran-
dom inner code lie on the Gilbert-Varshamov bound [102]. antigular by usingy to be
the all zero vector and = L = 1 in proof of Theorenl.5]2, one can recover Thommesen’s
proof. Note that wher = 1, a codewordt is ((w), F,)-independent ifvt(w) = w. Thus,
the proof of Thommesen only required a knowledge of the wadgdtribution of the Reed-
Solomon code. However, for our purposes, we need a strongerdf independence in the
proof of Theoreni 512 for which we used the strong list-recakidity property of folded
Reed-Solomon codes.

Theoreni 5P leads to the following intriguing possibility.

Open Question 5.1.Can one list decode the concatenated codes from Thdarénp3@® u
the fraction of errors for which Theoren’».2 guarantees ibéolist decodable (with high
probability)?
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Current list-decoding algorithms for concatenated codeskvin two stages. In the
first stage, the inner code(s) are list decoded and in thensestage the outer code is list
recovered (for example see Chagdikr 4). In particular, thetfeat in these algorithms the
first phase is oblivious to the outer codes seems to be a betlte Somehow “merging”

the two stages might lead to a positive resolution of the tijpresibove.
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Chapter 6
LIMITS TO LIST DECODING REED-SOLOMON CODES

6.1 Introduction

In Chapter§l3 arld 4 we were interested in the following qoastCan one construct explicit
codes along with efficient list-decoding algorithms that carrect errors up to the list-
decoding capacity ? Note that in the question above, we Ihavidedom to pick the code.
In this chapter, we will turn around the question by focusing fixed code and then asking
what is the best possible tradeoff between rate and fracfi@nrors (that can be corrected
via efficient list decoding) for the given code.

In this chapter, we will primarily focus on Reed-Solomon esdReed-Solomon codes
are an important and extensively studied family of erromecting codes. The codewords
of a Reed-Solomon code (henceforth, RS code) over afiate obtained by evaluating low
degree polynomials at distinct elementskof The rate versus distance tradeoff for Reed-
Solomon codes meets the Singleton bound, which along wéhctiue’s nice algebraic
properties, give RS codes a prominent place in coding thesya result the problem of
decoding RS codes has received much attention.

As we already saw in Sectidn_B.1, in terms of fraction of esroorrected, the best
known polynomial time list algorithm today can, for Reed«®oon codes of rat&, correct
up to al — /R ([91,[63]) fraction of errors. The performance of the algaritin [63]
matches the so-called Johnson bound (cfl [64]) which givgsreeral lower bound on the
number of errors one can correct using small listamycode, as a function of the distance
of the code. As we saw in Chaptér 3, there are explicit codesvknthat have better
list decodable properties than Reed-Solomon codes. HowReed-Solomon codes have

been instrumental in all the algorithmic progress in listalting (see Sectidn 3.1 for more
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details on these developments). In addition, Reed-Solandas have important practical
applications. Thus, given the significance (both thecaétiad practical) of Reed-Solomon
codes, itis an important question to pin down the optimaldcdf between the rate and list
decodability of Reed-Solomon codes.

This chapter is motivated by the question of whether the uami-Sudan result is
the best possible (i.e., whether the Johnson bound is "tightReed-Solomon codes).
By this we mean whether attempting to decode with a larger grarameter might lead
to super-polynomially large lists as output, which of cauxgill preclude a polynomial
time algorithm. While we don’t quite show this to be the case,give evidence in this
direction by demonstrating that in the more general settiinigst recovery (to which also
the algorithm of Guruswami and Sudenl[63] applies) its penfnce is indeed the best
possible.

We also present constructions of explicit “bad list-deogdtonfigurations” for Reed-

Solomon codes. The details follow.
6.2 Overview of the Results

6.2.1 Limitations to List Recovery

The algorithm in[[68] in fact solves the following more gealgrolynomial reconstruction
problem in polynomial time: Given'’ distinct pairs(3;, ;) € F? output a list of all polyno-
mialsp of degreek that satisfyp(/3;) = +; for more thany/kn/ values ofi € {1,2,...,n'}
(we stress that thg;’s neednot be distinct). In particular, the algorithm can solve the
list recovery problem (see Definitidn2.4). As a special ¢asean solve the following

“error-free” or “noiseless” version of the list recoverygimem.

Definition 6.1 (Noiseless List Recovery)or a g-ary codeC of block lengthn, the noise-
less list recovery problem is the following. We are giventaSse_ F, of possible symbols
for thei'th symbol for each position 1 < 7 < n, and the goal is to output all codewords

¢ = (c1,...,c,) SUCh thate; € S; for every:. When eaclb; has at most elements, we
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refer to the problem as noiseless list recovery with inmtslof sizée.

Note that if a cod€” is (0, ¢, L)-list recoverable thei is the worst case output list size
when one solves the noiseless list recovery probler@ evith input lists of size/.

Guruswami and Sudan algorithin [63] can solve the noiseistsetovery problem for
Reed-Solomon codes with input lists of size< [7] in polynomial time. That is, Reed-
Solomon codes ar@, [ 7| —1, L(n))-list recoverable for some polynomially bounded func-
tion L(n). In Sectior &3, we demonstrate that this latter perforraasthe best possible
with surprising accuracy — specifically, we show that wiiea [ ], there are settings of
parameters for which the list of output polynomials needbdasuper-polynomially large
in n (Theoren&RB). In fact, our result also applies to the modebk@ered by Ar et al[]3],
where the input lists are “mixtures of codewords.” In parta, in their model the lists at
every position take values from a collection/dixed codewords.

As a corollary, this rules out an efficient solution to theypamial reconstruction al-
gorithm that works even under the slightly weaker conditionthe agreement parameter:
t > VEkn — k/QH In this respect, the “square root” bound achieved[by [63]psmoal,
and any improvement to their list-decoding algorithm whiebrks with agreement frac-
tiont/n < vRwhereR = (k 4 1)/n is the rate of the code, or in other words that works
beyond the Johnson bound, must exploit the fact that theiatrah points3; are distinct
(or “almost distinct”).

While this part on tightness of Johnson bound remains spéeelat this stage, for the
problem of list recovery itself, our work proves that RS cedee indeed sub-optimal, as
we describe below. By our work Reed-Solomon codes for lisbvery with input lists of
size/ must have rate at mosf¢. On the other hand, Guruswami and Indykl[52] prove that
there exists a fixed > 0 (in fact R can be close td) such that for every integérthere
are codes of raté& which are list recoverable given input lists of sizéhe alphabet size

and output list size will necessarily grow wiftbut the rate itself is independentf Note

1This in turn rules out, for every > 0, a solution to the polynomial reconstruction algorithmttwarks
aslongas > /(1 —e)kn/'.
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that in Chaptel]3, we showed that folded Reed-Solomon cagesxalicit list recoverable

codes with optimal rate.

6.2.2 Explicit “Bad” List Decoding Configurations

The result mentioned above presents an explicit bad lisivery configuration, i.e., an
input instance to the list recovery problem with a supespomial number of solutions.
To prove results on limitations of list decoding, such astitjetness of the Johnson bound,
we need to demonstrate a received werdiith super-polynomially many codewords that
agree withy at ¢ or more places. A simple counting argument establishegtistence
of such received words that have agreemenith (’Z) /¢*~* many codewords 70, 25].
In particular, this implies the following fon. = ¢. Fork = n° (in which case we say
that the Reed-Solomon code has low rate), one car getf—g for anyo > 0 and fork

in Q(n) (in which case we say that the Reed-Solomon code has high cate can get
t=k+0 <$> In Section 6412, we demonstrate explicit construction of such a
received word with super-polynomial number of codeword$nagreementup to(2—«)k
(for anye > 0), wherek = n° for anyd > 0. Note that such a construction is trivial for
t = k since we can interpolate degréepolynomials through any set df points. In
Sectior6.413, we demonstrate explicit construction of such a received word with super-

polynomial number of codewords with agreemenp tok + whenk is in Q(n).

log® ™M’

In general, the quest faxplicitconstructions of this sort (rg1amely small Hamming balls
with several codewords) is well motivated. If achieved watbpropriate parameters they
will lead to a derandomization of the inapproximability wéfor computing the minimum
distance of a linear cod& [32]. However, for this applicatibis important to geg™*"’
codewords in a ball of radius times the distance of the code for some constart 1.
Unfortunately, neither of our explicit constructions amrep smaller thanl — o(1).

As another motivation, we point out that the curréetsttrade-off between rate and
relative distance (for a code over constant sized alphabathieved by a non-linear code

comprising of precisely a bad list-decoding configuratiorcertain algebraic-geometric
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codes|[107]. Unfortunately the associated received woothig shown to exist by a count-
ing argument and its explicit specification will be requitedyet explicit codes with these

parameters.

6.2.3 Proof Approach

We show our result on list recovering Reed-Solomon codesdyipg a super-polynomial
(in n = ¢™) bound on the number of polynomials ov&f- of degreek that take values
in F, at every point inF,~, for any prime poweg; wherek is roughly¢™~!. Note that
this implies that there can be a super-polynomial numbeohit®ns to list recovery when
input list sizes arg 7|. We establish this bound on the number of such polynomials by
exploiting a folklore connection of such polynomials to asdic family of cyclic codes
called BCH codes, followed by an (exact) estimation of tize sif BCH codes with certain
parameters. We also write down an explicit collection ofypoimials, obtained by taking
[F,-linear combinations of translated norm functions, all dfieh take values only iff,.
By the BCH bound, we conclude that this in fact is a preciserieson of the collection
of all such polynomials.

Our explicit construction of a received woydwith several RS codewords (for low rate
RS codes) with non-trivial agreement wighis obtained using ideas frorn[25] relating to
representations of elements in an extension finite field byyets of distinct linear factors.
Our explicit construction for high rate RS codes is obtaibgdiooking at cosets of certain

prime fields.
6.3 BCH Codes and List Recovering Reed-Solomon Codes

6.3.1 Main Result

We will work with polynomials ovetf,~ of characteristipp whereq is a power ofp, and
m > 1. Our goal in this section is to prove the following resultdan Sectiol6.312 we

will use it to state corollaries on limits to list decodatyilof Reed-Solomon codes. (We
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will only need a lower bound on the number of polynomials vilike stated property but
the result below in fact gives an exact estimation, whictum is used in Sectidn 6.3.4 to

give a precise characterization of the concerned polynismia

Theorem 6.1. Let ¢ be a prime power, andr > 1 be an integer. Then, the number of
univariate polynomials irf,~[z] of degree at mosi% which take values i, when

evaluated at every point ifi,~ is exactlyg®”. That s,

mo_ ]_ m
a = andVa € Fn, P() €F,}| = ¢°

{P(2) € Fyml2] | ded P) <

In the rest of this section, we prove Theorend 6.1. The prob&sed on a connection of
polynomials with the stated property to a family of cyclides called BCH codes, followed
by an estimation of the size (or dimension) of the associB&H code. Now, the latter
estimation itself uses basic algebra. In particular oneprane Theoreni 6l1 using finite
field theory and Fourier transform without resorting to eaylierminology. However, the
connection to BCH codes is well known and we use this bodyiof prork to modularize
our presentation.

We begin with the definition of BCH coc&sWe point the reader t6[80], Ch. 7, Sec. 6,
and Ch. 9, Secs. 1-3, for detailed background informatioBGHI codes.

Definition 6.2. Let o be a primitive element & -, and letn = ¢™ — 1. The BCH code

BCH,.» 4, Of designed distanagis a linear code of block length overF, defined as:
BCHgm.d.0 = {{co,c1,. .., cn1) € FV lc(a’) =0fori=1,2,...,d — 1, where
c(z) =co+ar+- 412"t € Flz]}

We will omit one or more the subscripts BCH, ,, 4. for notational convenience when

they are clear from the context.

In our proof, we will use the following well-known result. Fthe sake of completeness,

we present its proof here.

2What we define are actually referred to more specificallpasow-sense primitiv8CH codes, but we
will just use the term BCH codes for them.
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Lemma 6.1(BCH codes are subfield subcodes of RS cadkes) ¢ be a prime power and
m > 1 aninteger. Letn = ¢™ — 1, d be an integer in the rangé < d < n, anda be a

primitive element of ;. Then the set of codewordsi®8€H, ,, ;. maybe written as
{(P(a”),P(a'),...,P(a" ") € F} | P € Fyn[z],deg(P) < n —d,
andP(y) € F,Vy € Fym}.
Proof. Our goal is to prove that the two sets
Sy = {{co,c1y. . cn 1) |c(a’) =0fori=1,2,....,d— 1,where

cx)=co+ax+- 42" €F,z] },
Sy = {(P(a”),P(a’),...,P(a" ")) | P € Fymlz], deg(P) < n—d, and P(y) € F,
V’}/ c qu} y

are identical. We will do so by showing both the inclusigfisC S; andS; C Ss.
We begin with showings, C Si. Let P(z) = 37" a;2/ € Fyn 2] be a polynomial of

degree at most: — d) that takes values ii,. Then, forr =1,2,...,d — 1, we have
n—1 ‘ ‘ n—1 n—d B ‘ n—d n—1 o
ZP(O/)(O/)Z:Z(ZajaU)am:Zaj (O/‘—H)ZZO’
=0 =0 j5=0 7=0 =0

where in the last step we use t@fgol v = 0 for everyy € F,» \ {1} anda"* + 1 since
1 <r+j <n—1andais primitive. Therefore{P(a?), P(a'),..., P(a™!)) € 5.
We next proceed to show the inclusidip C S,. Suppos€cy, ¢y, ..., c,—1) € Si. For

0 < 7 <n—1,define (this is the “inverse Fourier transform”)

where by%, we mean the multiplicative inverse of- 1 in the fieldF,~. Note thata; =
Le(a77) = Le(am7) wherec(z) = Y17 ;2. So, by the definition of, it follows that
a; = 0for j > n — d. Therefore the polynomiaP(z) € F,~ defined by

n—1 n—d
0

P(z) = ajzj = Zajzj

=)
<

.



126

has degree at moét — d).

We now claim that forP(a®) = ¢, for 0 < s < n — 1. Indeed,

n—1 ' n—1 1 n—1 - .
P(a®) = aja¥ = Z(ﬁ Zcm_”) o’
j=0 j=0 =0
n—1 ' n—1
- % (as_i)j = GCs,
=0 j=0

where in the last step we used the fact t@ﬁt (oﬁ "} = 0 whenever # s, and equals
n wheni = s. Therefore,(cy, c1,...,co1) = (P(a),..., P(a™')). We are pretty much
done, except that we have to check also tH&l) € F, (smce we wanted’(vy) € F, for
all v € Fym, includingy = 0). Note thatP(0) = ag = + - 31" 01 ¢;. Sincen = ¢™ — 1, we
haven + 1 = 0in F,» and sol = —1 € F,. This together with the fact that € F, for

every: implies thatP(0) € F, as well, completing the proof. O

In light of the above lemma, in order to prove Theorem 6.1, \@eehto prove that
IBCHym,a| = ¢*" whend = (¢™ — 1)(1 — 7). We turn to this task next. We begin with
the following bound on the size of BCH codés][15, Ch. 12]. lrer$ake of completeness,

we also give a proof sketch.

Lemma 6.2 (Dimension of BCH Codes)For integeri, n, let ||, be a shorthand foi

mod n. Then|BCH, . 4| = ¢/@™9! where
I(gm,d)={i|0<i<n—1,li¢|, <n—dforall j,0<j<m—1} (6.1)

for n = ¢™ — 1. (Note that for this value of, if i = iy + i1q + - -i,,_1¢™ !, then
liq | = tm_1 + i0q + 11¢> + - -+ + im_2q¢™ ', and so|iq],, is obtained by a simple cyclic
shift of theg-ary representation of.)

Proof. It follows from Definition[6.2 that the BCH codewords are signpolynomialsc(z)
overF, of degree at mosin — 1) that vanish at’ for 1 < i < d. Note that ife(z), ¢/(z) are

two such polynomials, then sodéz)+c (x). Moreover, since™ = 1, z¢(z) mod (z"—1)
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also vanishes at each designatédit follows that if ¢(x) is a codeword, then soigz)c(x)
mod (z™ — 1) for every polynomial(z) € F|[x].

In other wordsBCH, ,,, 4 is anidealin the quotient ringk = F,[z]/(z™ — 1). Itis well
known thatR is a principal ideal ring, i.e., a ring in which every idealgenerated by one
element([[7F, Chap. 1, Sec. 3]. Therefore there is a uniqueapatynomialg(x) € F,|x]

such that
BCHgm,d,0 = {9(x)h(z) | h(z) € Fylz];deg(h) <n —1—deg(g)}

It follows that |BCH, 00| = ¢"~9¢, and so it remains to prove thdtg(g) = n —
|I(q,m,d)| wherel(q,m,d) is defined as in{&l1).

It is easily argued that the polynomig{z) is the monic polynomial of lowest degree
overF, that hasy' for everyi, 1 < i < d, as roots. Itis well known[[[80, Chap. 7, Sec. 5])
thatg(x) is then given by

g(z) = 11 (x—5),
BEM (a)UM (02)-+UM (ad=1)
whereM (a') is thecyclotomic cosgbf o', Further for the ease of notation, defihg, , =

M(a) U M(a?)---U M(at1). To complete the proof we will show that
| Md,a |: n— | I(Qamvd) | . (62)

To prove [6P), we claim that for evety < i < n — 1, o' € My, if and only if
(n—1i) & I(m,q,d). To see that this is true note that — i) ¢ (¢, m,d) if and only
if there is a0 < j; < m such that|(n — i)¢’i|, = n —i* > n — d. In other words,
lig’ |, = i*, where0 < ¢* < d. This implies thatin — i) € I(¢q,m,d) if and only if

o' € M(a") C Mg,, which proves the claim. O

Let’s now use the above to compute the siz86H, ,, ., Whered = (¢ — 1) — q;n_‘ll.

We need to compute the quantity(q, m, d)|, i.e., the number of, 0 < i < ¢™ — 1 such

3In other wordsM (a?) = {a’,alidn ... ali"""In} wherem; is the smallest integer such that
lig™i |, = i.
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that [ig’ | ;m 1 < ‘1;”_‘11 =14+q+---+q¢mforeachj =0,1,...,m — 1. This condition

is equivalent to saying that if = iy + i1 + - - - + i,,_1¢™ ! is theg-ary expansion of,

then all them integers whose-ary representations are cyclic shifts @, i1, ..., 4m_1)
are< 1+ g+ ---+ ¢™ L. Clearly, this condition is satisfied if and only if for each
j=0,1,...,m—1,4; € {0,1}. There ar&™ choices for with this property, and hence
we concludg!(g,m, d)| = 2™ whend = (¢" — 1) — L.

Together with Lemm&®&l1, we conclude that the number of potyials of degree at

mos,tq;"‘l1 overF,~» which take on values only iR, at every point irif,~ is preciselyg®”.
This is exactly the claim of Theorein®.1.
Before moving on to state implications of the above resuitReed-Solomon list de-

coding, we state the following variant of TheorEml6.1.

Theorem 6.2.Letg be a prime power, angh > 1 be an integer. Then, for eacgh1 < s <
m, the number of univariate polynomialslity~ =] of degree at moéZj:1 g™’ which take
values inF, when evaluated at every point i)~ is at leastg>/= (7). And the number
of such polynomials of degree strictly less thair! is exactlyg (namely just the constant
polynomials, so there are no polynomials with this propddry degrees between and
gmt —1).

Since the proof of the theorem above is similar to the proofleéoren{&ll, we will
just sketch it here. By Lemmas®$.1 dndl6.2, to count the numi@nivariate polynomials
in F = [2] of degree at mosf™ ! + - - - + ¢™* which take values ii¥,, we need to count
the number of integers= iy +i,q + - - - + 4,,_1¢™ ' such that all integers corresponding
to cyclic shifts of(i, . . ., i,,_1) are at mosg™ ! + - - - + ¢™ 5. It is easy to see all integers
i such that; € {0,1} for all j andi; = 1 for at mosts values ofj, satisfy the required
condition. The number of such integersﬂf,j:0 (’;’L) which implies the bound claimed in
the theorem. The argument when degree ig" ! is similar. In this case we have to count
the number of integerg + i;q + - - - + i,,_1¢™ ! such that all integers corresponding to

all cyclic shifts of (i, . .., im—1) is < ¢™'. Note that ifi; # 0 for some0 < j < m — 1,
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then the(m — 1 — j)th shift with be at leas§”™ . Thus, onlyi = 0 satisfies the required

condition, which implies claimed bound in the theorem.

6.3.2 Implications for Reed-Solomon List Decoding

In the result of Theorei 8.1, if we imagine keeping 3 fixed and lettingn grow, then for
the choicen = ¢™ andk = (¢™ — 1) /(¢ — 1) (so that[#] = ¢), Theorenf&ll immediately
gives us the following “negative” result on polynomial restruction algorithms and Reed-

Solomon list decodinfy.

Theorem 6.3. For every prime powey > 3, there exist infinitely many pairs of integers
k,n such that[ 2] = ¢ for which there are Reed-Solomon codes of dimengion 1) and
block lengthn, such that noiselessly list recovering them with inpuslistsize 7 | requires

1/1gq

super-polynomial (in fac§” * =) output list size.

The above result is exactly tight in the following senses kasy to argue combinatori-
ally (via the “Johnson type” bounds, cf.|64]) that wher [7 ], the number of codewords
is polynomially bounded. Moreover[63] presents a polynalrtime algorithm to recover
all the solution codewords in this case. As was mentionetienrtroduction, our results
also show the tightness of noiselessly list recovering Reégldmon codes in the special
setting of Ar, Lipton, Rubinfeld and Sudanl [3]. One of theldeoms considered if[3] is
that of noiselessly list recovering Reed-Solomon codeh st size/, when the seb; at
every position is the set of values dixed/ codewords at positioh Note that our lower
bound also works in this restricted model if one takes ¢Hixed codewords to be the
constant codewords.

The algorithm in [[68] solves the more general problem of figdall polynomials of
degree at most which agree with at leagtout of »n” distinct pairs(5;, v;) whenever >

Vkn'. The following corollary states that, in light of Theorén86this is essentially the

4We remark that we used the notation= ¢” — 1 in the previous subsection, but for this Subsection we
will take n = ¢™.
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best possible trade-off one can hope for from such a genkgatithm. We view this as
providing the message that a list-decoding algorithm foedR8olomon codes that works
with fractional agreemernt/n that is less than/R whereR is the rate, must exploit the fact
that the evaluation points; are distinct or almost distinct (by which we mean thato
is repeated too many times). Note that for small value® ¢tlose to0), our result covers
even an improvement of the necessary fractional agreenyatif B) which is substantially
smaller than/R.

Corollary 6.4. Supposed is an algorithm that takes as input distinct pairs(3;, ;) € F?
for an arbitrary fieldF and outputs a list of all polynomiajsof degree at most for which
p(B;) = ~; for more thanvkn' — g pairs. Then, there exist inputs under whigdhmust

output a list of super-polynomial size.

Proof. Note that in the list recovery setting of Theordml6.3, thaltotumber of pairs

n' =nl =n[7] <n(} + 1), and the agreement parametet n. Then

k / n k / ko k
;7 o _ o
Vkn 2< kn<k+1> 5 n 1+n 5

<n(1+ i ) b=t
ST T T
Therefore there can be super-polynomially many candidatgnpmials to output even

when the agreement parametesatisfies > vkn' — k/2. ]

6.3.3 Implications for List Recovering Folded Reed-Soloi@odes

In this subsection, we will digress a bit and see what thesideaSectior_6.3]1 imply
about list recoverability of folded Reed-Solomon codescdi¢hat a folded Reed-Solomon
code with folding parametem is just a Reed-Solomon code with consecutive evalua-
tion pointsbundled together (see Chajbler 3). In particifiave start with ann, k] Reed-
Solomon code, then we get &V = n/m, K = k/m) folded Reed-Solomon code.

It is not too hard to check that the one can generalize Thelar@o show the following.

Leta > 1 be an integer and be a prime power. Then there aj€¢ codewords from an
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(%, %) folded Reed-Solomon code such that every symbol of such ewoard takes
a value in(F,)™. The set ofs*" folded Reed-Solomon codewords are just e BCH
codewords from Theorem®.1, with consecutive positions in the BCH codeword “folded”
into one symbol. Thus, this shows that(@, K') folded Reed-Solomon code (with folding
parametern) cannot be noiselessly list recovered with input lists zéii%)m.

Let us now recall the algorithmic results for (noiselesdisf) recovering folded Reed-
Solomon codes. Froni(3.6) it follows that &V, K') folded Reed-Solomon code (with
folding parametern) can be noiselessly list recovered with input lists of giiie

v (142) () AR

m—s+1

wherel < s < m, andr > s are parameters that we can choose. Thus foreany0 if

r = £, then we can satisfy the above condition if

s s+1
0< (1 —g)*H <%) (m_TSH> o (6.3)

The bound above unfortunately is much smaller than the bofi(d/ K)™, unlike the
case of Reed-Solomon codes where the two bounds were @uogy) tight. For the case
when K = o(N), however one can show that for afiy> 0, the bound in[(€]3) is at least
(N/K)™1=9)_ Indeed, one can choose= m(1 — §/2), in which case the bound ii{6.3)
is (N/K)™(=9) . (N/K)m/2(§/2)m(1=0/2+1 (1 — £)ym(1=-6/2)+1 " The claimed expression
follows by noting thatV/K = w(1) while §, e andm are allO(1).

6.3.4 A Precise Description of Polynomials with Values is@&&ield

We proved in Sectiof 6.3.1, fap = £+, there are exactly>" polynomials overF
of degree() or less that evaluate to a valuelij at every point inf,~. The proof of this
obtains the coefficients of such polynomials using a “Fauransform” of codewords of an
associated BCH code, and as such gives little insight irtstitucture of these polynomials.

One of the natural questions to ask is: Can we say something oamcrete about the
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structure of thesg*" polynomials? In this section, we answer this question bjngian
exact description of the set of all thege€ polynomials.
We begin with the following well-known fact which simply $&s that the “Norm”

function of F,» overlF, takes only values iif,,.
Lemma 6.3. Forall z € Fyu, z'c1 €T,

Theorem 6.5. Letq be a prime power, and let, > 1. Leta be a primitive element df ;.

q’UL_l
q—1

that take values if, when evaluated at every point i), and these are precisely the

Then, there are exactly?” univariate polynomials iff,~ [2] of degree at mosp =

polynomials in the set

om_1

N={>_ Bilz+0a")2 | Bo,Br,...,0Bm_1 €F.}.

1=0
Proof. By Lemmal&.B, clearly every polynomidt in the setN satisfiesP(y) € F, for
all v € F,». The claim that there are exactly” polynomials oveiF,. of degreeQ or
less that take values only iy, was already established in Theorml 6.1. So the claimed
result thatNV precisely describes the set of all these polynomials fadldwve show that
IN|=¢*".
Note that by definition|N| < ¢*". To show thatN| > ¢*", it clearly suffices to show

(by linearity) that if

2m—1
> Bilz+a)? =0 (6.4)
=0

as polynomials if¥ ;= [z], thenfy = f;, = - - - = [am_1 = 0. We will prove this by setting

up a full rank homogeneous linear system of equations tlegt;th must satisfy. For this

we need Lucas’ theorem, stated below.

Lemma 6.4(Lucas’ Theorem, cf.[[47])Letp be a prime. Let: andb be positive integers
with p-ary expansionsg + a;p + - - - + a,p"” andby + bip + - - - + b,p” respectively. Then
(2) = )G -~ (Gr) mod p, which gives ug}) # 0 mod p if and only ifa; > b; for

all j €{0,1,--- ,r}.
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Define the set

T={> ¢ |SC{0,-- . m-1}}.

JES
Applying Lemmal&} withp being the characteristic of the fielf,, we note that when
operating in the field,, the binomial coefficient of’ in the expansion of: + a/)¥ is 1
if j € T and0 otherwise. It follows thaf{Bl4) holds if and only¥>" " (/)@= 3, = 0 for
all j € T, which by the definition ofl” and the factthaf) = 1 + ¢+ ¢*> +--- +¢™ lis

equivalent to

2m—1
> (a?)B; =0 forallj € T. (6.5)
i=0

Let us label the™ elementa’ | j € T} asag, oy, . . ., aem_1 (NOte that these awdistinct

elements off';» sincea is primitive inF,»). The coefficient matrix of the homogeneous

system of equation§(8.5) with unknowafis . . . , 3»=_; is then the Vandermonde matrix

oam_1
1 g g
mo_
1 o a2 .ot
Y
oam _1
1 aQ’”—l O[%'m_l cte aan_l

which has full rank. Therefore, the only solution to the syst{&5) isGy = 3, = --- =

Bom_1 = 0, as desired. O

6.3.5 Some Further Facts on BCH Codes

The results in the previous subsections show that a largéau@r™) of polynomials over
F,~ take on values irF, at every evaluation point, and this proved the tightnessef t
“square-root” bound for agreement= n = ¢ and total number of points’ = nq (recall
Corollaryl6.4). Itis a natural question whether similadyde list size can be shown at other
points(¢, n'), specifically for slightly smaller” and¢. For example, what if’ = n(q — 1)
and we consider list recovery from lists of size- 1. In particular, how many polynomials

of degree at mosf) = (¢™ — 1)/(¢ — 1) take on values if, \ {0} at¢ points inF . It
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is easily seen that when= n = ¢, there are preciselyy — 1) such polynomials, namely
the constant polynomials that equal an elemeritiofindeed, by the Johnson bound, since
t > /Qn’ for the choicet = n andn’ = n(q — 1), we should not expect a large list size.
However, even for the slightly smaller amount of agreenteatn — 1 = |/Qn’|, there

are only about a linear in number of codewords, as Lemrhal6.5 below shows. Hence
obtaining super-polynomial number of codewords at othémnfgsamn the square-root bound
when the agreemenntis less than the block length remains an interesting quesivbich

perhaps the BCH code connection just by itself cannot resolv

Lemma 6.5. Letq be a prime power and let. > 1. For any polynomialP(z) overF = [z],
let its Hamming weight be defined &s3 € F,~|P(3) # 0}|. Then, there are exactly
(¢ — 1)g™ univariate polynomials iff",~ 2] of degree at mosp = (qq_—‘ll) that take values
in F, when evaluated at every point Ify» and that have Hamming weiglg™ — 1).
Furthermore, these are precisely the polynomials in thelBet= {\(z + 3)? | 3 €

Fym, A € Fy}.

Proof. It is obvious that all the polynomials i/ satisfy the required property and are
distinct polynomials. We next show that any polynomial ofid at most) that satisfies

the required properties belongsliidé completing the proof.

Let P(z) be a polynomial of degree at moSt that satisfies the required properties.
We must show thaf’(z) € WW. Lety € F,. be such that’(y) = 0. Clearly, for each
B e (Fgm\{7}), P(8)/(B—~) € F;. By a pigeonhole argument, there must exist some
A € F; such thatP(3) = A( — 7)< for at leastL—+ = Q values of3 in Fym \ {7}.
SinceP(y) = 0, we have that the degrég polynomialsP(z) and\(z — )% agree on at

least® + 1 field elements, which means that they must be equal to eaeh. othus the

polynomial P(z) belongs td?” and the proof is complete. O
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6.4 Explicit Hamming Balls with Several Reed-Solomon Codeards

Throughout this section, we will be concerned with [ank + 1] Reed-Solomon code
RS|q, k + 1] overF,. We will be interested in a received wogde [ such that a super-
polynomial number of codewords &fS|[q, k& + 1] agree withy ont¢ or more positions, and
the aim would be to prove such a result fanon-trivially larger thank. We start with the

existential result.

6.4.1 Existence of Bad List Decoding Configurations

It is easy to prove thexistencef a received worg: with at Ieast(‘g) /q'~* codewords with
agreement at leaswith y. One way to see this is that this quantity is the expected @umb
of such codewords for a received word that is the evaluatfoearandompolynomial of

degreet [IZG]H
We have the following lower bound off) /¢'~*:

@ qt _ ﬁ — 2k10gq—tlogt.

qt—k: = ttqt—kz #

Now whenk = ¢° for somed > 0 andt = g—g thenklogq — tlogt is Q(¢° log q),

which implies that the number of RS codewords with agreemerith the received word
ris ¢®@),

On the other hand, it = Q(q) lett = k + A, whereA = 52— (we also assume

t < q/2). Now,klogq —tlogt > klogqg— (k+ A)(logg—1) =k + A — Alogq > k/2.
Thus, we ge2®@ RS codewords with agreement= k& + O <$> with the received word
r.

In the remainder of the chapter, we will try to match theseapaaters withexplicit
received words. We will refer to Reed-Solomon codes withstant rate akighrate Reed-
Solomon codes and to Reed-Solomon codes with inverse poiwhcate asow rate Reed-

Solomon codes.

>The bound can be improved slightly {) /¢*~'~* by using a randormonicpolynomial.
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6.4.2 Low Rate Reed-Solomon Codes

Another argument for the existence of a bad list-decodingigaration (from the previous
subsection), as suggested inl[25], is based on an eleteéntt . = F,(«), for some
positive integet, that can be written as a produdt, ., (« + a) for at least(?) /¢" subsets
T c F, with |T| = t — the existenceof such ag again follows by a trivial counting
argument. Here we use the result due to Cheng and Wan [25]aheaértain settings of
parameters and fields suchsacan be explicitly specified with only a slight loss in the
number of subsetg’, and thereby get aexplicit received wordy with several close-by

codewords fronRS|[q, k& + 1].

Theorem 6.6([25]). Lete > 0 be arbitrary. Letg be a prime powel; be a positive integer
anda be such thaF,(a) = Fy». Forany € F;,, let N¢(5) denote the number oftuples
(a1, as,...,a,) of distincta; € F, such that? = [[._ (a + a;). If t > (2 +2)(h + 1),
e <t—2andq > max(t?, (h — 1)t <2+s>) then for all g € %, Ny(8) > (t — 1)g" "1

Proof. From the proof of Theorem 3 in_[25], we obtay(5) > E; — E,, whereE; =
qt_q(hi)l andE, = (1+ (1))(h—1)'q=. Observe that from the choice @f(!) = £ — L <
q—t t
2
We first give a lower bound of;. Indeed, usind’) < %* and¢” — 1 < ¢", we have
t—h

2¢ —(g—t)g"' _ ¢ t gt—h—1
E >T——+2q

Note that from our choice of we havel > (2 + 2)h, thatis,t — h > (2 )t. Further,

-1

from our choice ofg, (h — 1)" < g7~'. We now boundE, from above. From our

bounds on() and (h — 1)’, we haveE, < (1 + %t)q Gzl < (1 + hyghel =

t—h

4~ — (3 —1)¢""*, where the second inequality comes from our bound er.

Combining the bounds oA, and E, proves the theorem. O
We now state the main result of this section concerning R&@dmon codes:

Theorem 6.7.Lete > 0 be arbitrary real,q a prime power, anch any positive integer.

f¢t > (2+2)(h+1)andg > max(t?, (h — 1)t <2+s)) then for everyk in the range
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t—h <k <t—1,there exists an explicit received woyde F? such that there are at least

% codewords oRS[q, k£ + 1] that agree withy in at leastt positions.

We will prove the above theorem at the end of this sections As 0, andg, k, h — oo
in the above, we can get super-polynomially many codewoittsagreement1 + §)k for
somes = §(¢) > 0 for a Reed-Solomon code of dimension tending'td. Ases — oo, we
can get super-polynomially many codewords with agreeneting to2k with dimension
still being¢®M). We record these as two corollaries below (for the sake ofitetaness, we
sketch the proofs). We note that the non-explicit bo@dqt"f gives a super-polynomial
number of codewords for agreement: k /6 for dimension about: = ¢°—°(Y), where as

our explicit construction can give agreement at ngsfor dimension at mosy/q).

Corollary 6.8. For all 0 < v < 1, and primesp, there exist$ > 0 such that for any
power ofp (call it ¢) that is large enough, there exists an expligitc ] such that the
Reed-Solomon codgS|q, k + 1 = ¢° + 1] contains a super-polynomial (ig) number of

codewords with agreement at led8t— )k with y.

Proof. For any integeh, chooser, t andk such that = (2 +2)(h+1),k =t —h+1and
t = (2 — v)k. These relations imply that

E =

?pp

+})_2.

(=2

>

Note that in the limit as goes to infinity,e = ““-2). Further, choose to be a prime

power such thapqgy > ¢ > qo, Whereqy = (h — 1)1422155)#. Finally note that ag goes

2(2—v)

to infinity, o = (h — 1) » . For the rest of the proof we will assume thais large

2(2—7) 2(2—

and(h — 1)

2(2—7) iy
log,(h—1)—log,(1—7) > == —log, p—log,(1—7) > 0. As all conditions of Theorem

are satisfied, we have that the relevant number of codsimat least = (tjfr—kl), Now

ast ~ (i’:—w (h+ 1) andh is large enough, we can assume that (%) (2h). Thus,

enough so that ~ 2= g0~ (b — 1) > 2. Note that nows =

~ )

t < (2h) T (f:—z)(%)(zh). To finish the proof we will show tha > %7 wherec
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andd are constants which depend onindeed ast + 1)! < t*, andk > h, we have

k h
q S q

(t+ DI (op)d=nen | (2znG=en’

=2

Sinceh is large enoughg > (h/2) , which along with the above inequality implies
that s »
5 ph(*52) 1 N ph () (1-15)
= h(%)@h) : 2@2(%)(21)(?—_7) %)(2h) = 9dh )
-

, (2=t
whered is chosen such that > 2™+ 2(i-)" (2= 1)(1 )21 Note that suchl exists

and it only depends of. Finally, if v < 1/2, then there exists a valughat depends only
2(2—v)

on~ such that"( )(1-15) > ¢°". Thus, we have proved the theoremfiot v < 1/2.
Since having an agreement »f- ~ implies an agreement & — +' for any+’ > ~, the

proof of the theorem fof < v < 1 follows. O

Corollary 6.9. Forall 0 < v < % and primes, there exists > 0, such that for any power
of p (call it ¢) that is large enough, there is an expligite I} such that the Reed-Solomon
codeRS[q, k + 1 = ¢'/>77 4 1] contains a super-polynomial (i) number of codewords

with agreement at leastl + 6)k with y.

Proof. The proof is similar to the proof of Corollary 8.8 and hencepsindetails are
skipped. Choose and% such thatt = (2 + 3)(h — 1) andk = t — o + 1. Note that
forh > 2 +5,¢t> (2+2)(h+1). Also letq be a prime power such thag < ¢ < pgo,
whereqy = (h — 1)%. As in Corollary[6.8, we consider to be very large and we
haveqq ~ (h — 1)ﬁ, t~ 1JFT”(h — 1) andk ~ % Recalling that = (1 + 0)k, we have
0 ~ ~. Again using arguments as in the proof of Corollary 6.8, weeha lower bound of

Q(z‘{i};) whered is a constant which depends on O

(Proof of Theorem[&)). In what follows, we fixE(x) to be a polynomial of degrefethat
is irreducible oveif,. For the rest of this proof we will denotg, [x]/(E(x)) by F .. Also
note that for any root of E, F(a) = F .
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Pick any/ where0 < ¢ < h — 1 and note thaty andt satisfy the conditions of Theo-
rem&%. ForanyB = (b, by, - - - , b)), whereb; € [F, with at least one non zerg; define
Lp(x) o Ef:o b;z'. Fix r(x) to be an arbitrary non-zero polynomial of degree at most
h — 1. By their definitionsy (a) andL 5 () are elements df?, .

We will set the received worgt to be(%%el&r Note that since”(z) is an irreducible
polynomial,E(a) # 0 for all a € IF,, andy is a well-defined element @

We now proceed to bound from below the number of polynomittiegreek ©y

¢ — h that agree witly ont positions. For each non-zero tuplee F.™, defineQp(z) =

—Lré‘a). Clearly, @p(a) € F;,. For notational convenience we will usé; to denote
Ni(@Qp(a)). Then,forj = 1,--- , Npthere existd ;) whereAz ;) C Foand| A j| =t
such thatPy (o) < ] a + a) = Qp(a). By Theoren[Bl6, we havd/s > (¢ —

1)¢'~"=1 for every B — let us denote byV this latter quantity. Recalling the definition of

aE.A(B,j)<

Q 5, we have that for anyB, j), L"é‘(“;) = —Pg)(a), orequivalently(a)+Pg)(a)LB(a) -
0. Since £ is the irreducible polynomial oé: over F,, this implies thatE(z) divides
PP (z)Ly(z) + r(z) in F,[z].

Finally we definéfg)(x) to be a polynomial of degrée= ¢ + ¢ — h such that
TS (2)E(x) = P () Lp(x) + r(x). (6.6)

CIearIyTg)(—a) equalsr(—a)/E(—a) for eacha € A ;) and thus the polynomidfg)
agrees withy on at least positions. To complete the proof we will give a lower bound
on the number oflistinct polynomials in the colIectior{T(j)}. For a fixedB, out of the
Np choices forPfBj), t! choices ofj would lead to the sarHBeponnomial of degree. Since
Np > N, there are at Ieaw choices of pair B, j). Clearly forj; # j, the
polynomiaIngl)(x) andPgQ)(x) are distinct, however we could havéff)(x)LBl(x) =
PY? (x) Ly, (x) (both are equal to sa§(x)) leading toT'y" () = T (x). However the

degree ofS is at most + ¢ = k+ h, and hencé& can have at most+ 4 roots, and therefore

8If (ay,---,a;) is a solution of the equatiofi = H’;:l(a + a;) then so is{as (1), - -, an()) for any

permutatioro on{1,--- ,¢}.
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at most(**") factors of the forn{[,_(x +a) with |T'| = . It follows that no single degree
k polynomial is counted more thafi™") times in the collectiofT%’}, and hence there

must be at least
(qZ—i-l _ 1)N S qk
k+h = k+h
a0 ne)
distinct polynomials among them, where we uséd- (t—1)¢'~"~Land(¢* —1)(t—1) >

¢t =g sincek =t + ¢ — h. O

6.4.3 High Rate Reed-Solomon Codes

We now consider the case of constant rate Reed-Solomon .cdestart with the main

result of this subsection.

Theorem 6.10.Let L > 2 be an integer. Lep = aL + 1 be a prime and define= bL
foranyl < b < a — 1. Let the received word be the evaluation of?(X) = X* over[F;.
Then there ard?) many codewords ii®S[n = p, k = (b — 1)L + 1]y, that agree withr in

at leastt places.

To get some interesting numbers, let’s instantiate therpaters in the above theorem.

First we need the following result (we will prove this latarthe subsection):

Lemma 6.6. For every0 < ¢ < 1/(c, — 1), wherel < ¢, < 6, there exists infinitely many
L with primep = aL + 1 such thaz is ©(L?).

Corollary 6.11. Letp be a prime that satisfies Lemral6.6 for samerhen there exists
at least2?”'"**) codewords inRS[n = p,k = Q(n),d = n — k + 1]z, with agreement
t =k +O(nt/0+e),

Proof. Setb = [(1 — d)a] + 1 for somed > 0. Thus,k = (b— 1)L > [(1 — d)aL| =
O(aL) = O(n). Further,t = bL = k + L = k + O(n'/(1+9)), The last part follows from

the fact thats — ©(L+¢). Finally, the number of codewords is at leést- )"~ = 2%(@) —
2Q(ns/(l+s)) l:‘



141

If one is satisfied with super polynomially many codewords, 2™ for somew(n) =
w(logn), then choosing = “Ogi“’(")) (for some suitable constan}, gives an agree-

log n—clogw(n

mentt = k + © <W>

Proof of Theorem[6.10. The basic idea is to find a “lot” af-tuples(y1, ys, . .., y:) € F},
(where for everyi # j, y; # y;) such that the polynomiat,, .. (X) = HZZI(X —y;)lis

actually of the form

t—L
X' X
j=1
wherec;_; can beOH The above is equivalent to showing that, ..., y,) satisfy the
following equations
yi+uys+-y; =0 s=1,2,...L—1 (6.7)

We give an “explicit” description of at Ieaﬁg) distinct(y,, . .., y;) such tuples.

Let ¥, be generated by and seta = ~“. Note that the order ofv is exactly L.
Now consider the “orbits” inF; under the action ofv. It is not too hard to see that for
0 < i < a, thei'™ orbit is the sety’ A, where A = {1,a,a?, ..., a1}, We will call +
the “representative” of thé" orbit. Consider all subsets, ...,i,_1} € {0,1,...,a—1}
of sizeb. Each such subset corresponds to a tuple. .., y,) in the following manner
(recall thatt = bL). For subsefiy, ..., i, 1}, defineyq,,. = y*¢a”, whered < d < b and
0 < r < L. Note that each such subdgf, . . ., 4,1} implies a distinct tupléy,, . .., y;).
Thus, there ar¢?) such distinct tuples.

To complete the proof, we will now verify thdi{®.7) holds &wrery such tupléy, . . ., y;).

Indeed by construction, for=1,..., L — 1:
t b—1 L-1 b—1 oks 1
> =S (o) - X (5) -0
7j=1 d=0 r=0 d=0

where the last inequality follows from the the fact that tihéew of v is L. [

'"ThenR(X) — P, . ,,(X)is of degree — L = k — 1 as needed.
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We now turn to the proof of Lemnia®.6. First we need the follmyiesult, which is a

special case of Linnik’s theorem:

Theorem 6.12([[/8]). There exists a constant, 1 < ¢, < 6, such that for all sufficiently
large d, there exists a primg such thaip < d°* andp =1 mod d.
Proof of Lemma[&8. Fix any0 < ¢ < Tl_l The basic idea of the proof is to “re-
distribute” the produckd asa L, wherea = O(L?).

Letd = 2" be sulfficiently large so that it satisfies the condition of diteen[&.IP. Thus,
by Theoren &2y = bd + 1 is prime for somel < b < 27(2=1, Let2! < b < 2°*! for
somei € [0, 7(c,—1)—1]. Now we consider two cases depending on whetker, = |r¢|

or not.

First consider the case wher< i,. Here definer; = Lﬁjj. Finally, leta = 2% and

L = 2% First note thabt < z; < r and thusg and L are well defined. Also note that
a b2 1
E o 2e(r—m;)

re—1i

— b2(1+€)mi—7"€ 2 2i2(1+€)( Tre )—re—1 __

57
where the inequality follows from the fact that for all pdgitreals|y| > y — 1 andb > 2°.

Similarly, one can show that/ L < 4 and thusg = ©(L°) as required.

r—e(i+1)
1+e

a =2""" andL = b2%. Note thatr; < r. Also note thatas+ 1 < r(c, — 1), z; > 0 and

Now we consider the case wheén- 7. In this case define; = | |. Finally, let

thus,a and L are well defined. As before, we first lower bound

a QT —Ti Qr—T; 4
P — or—(+e)wi—e(i+1)
Le o beQexi > 2¢e(it+1)+ex; - : c > 1,

where the first inequality follows fronh < 2i*! and the second follows from the fact
that for all positivey, |y] < y. Similarly one can show that.: < 4, which implies that
a = O(LF) as requiredd

Smooth Variation of the Agreement

In this section, we will see how to get rid of the “restrictidhat ¢ has to be a multiple of
L in Theoren&.100.
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Theorem 6.13.LetL > 2and0 < e < L beintegers. Let = aL+1 be a prime and define
t =bL+eforanyl < b < a— 1. Let the received word be the evaluation of(X) = X*
overF:. Then there ard”,") many codewords iRS[n = p,k = (b — 1)L + 1 + €], that

agree withr in at leastt places.

Since the proof is very similar to that of Theorém 6.10, we yust sketch the main
ideas here. The basic argument used earlier was that evepye (y1, v, . . ., y;) was cho-

sen such that the polynomials,, . .. (X) andR(X) agreed on the first— £ co-efficients

-----

and the RS codewords were simply the polynomi&') — P, . (X). Now the simple

.....

observation is that for any fixed polynomi@ X') of degree= we can get RS codewords of
new agreement is with the new received wor@®’(X) = R(X)D(X). Nowt — t is the
number of roots of)(X) that are not in the s€ty,, ..., y:}.

Thus, we can now vary the values bfby picking the polynomialD(X) of differ-
ent degrees. However, the differeniée- £’ might go down (as an arbitrary polynomial
D(X) of degreee might not have: roots and even then, some of them might be in the set
{y1,...,v:}). To get around this, while choosing the tuples, . . ., v:), we will not pick
any elements from one of thecosets (recall that the tuplég,, . . . , y;) are just a collection
of b out of thea cosets formed by the orbits of= ¢, wherey generate§’;). This reduces
the number of tuples fronf}) to (“,"). Now we pick an arbitrary subset of that coset of
size0 < e < L—say the subset s, . . ., z.}. Finally, pick D(X) = [[;_, (X — z;). Note
that this implies that' = ¢ 4 e as desired.

6.5 Bibliographic Notes and Open Questions

Results in Section 8.3 and Section 614.2 appeared_ in [59pwidse in Section 6.4.3 are
from [62].
Our work, specifically the part that deals with precisely a#sng the collection of

polynomials that take values only ), bears some similarity td_[51] which also exhibited
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limits to list recoverability of codes. One of the simple y&werful ideas used i [51],
and also in the work on extractor codeés[[101], is that polyiaenwhich arer’'th powers
of a lower degree polynomial take only values in a multigiva subgroup consisting of
the r’'th powers in the field. Specifically, the construction in11%1] yields roughlyn =
codewords for list recovery whelkis the size of the5;’s in Definition[6.1. Note that this
gives super-polynomially many codewords only when the idis are asymptotically
bigger tharm / k.

In our work, we also use’th powers, but the value of is such that the’th powers
form a subfield of the field. Therefore, one can also freely palgnomials which are’th
powers and the sum still takes on values in the subfield. HBissus demonstrate a much
larger collection of polynomials which take on only a smaikpible number of values at
every point in the field. Proving bounds on the size of thidemion of polynomials used
techniques that were new to this line of study.

The technique behind our results in Secfion 8.4.2 is clasdfed to that of the result of
Cheng and Wari[25] on connections between Reed-Solomatelisiding and the discrete
logarithm problem over finite fields. However, our aim is blig different compared to
theirs in that we want to get a large collection of codewoltdse by to a received word. In
particular in Theorerfh €6, we get an estimate’a3) while Cheng and Wan only require
N;(B) > 0. Also Cheng and Wan consider equatibn¥6.6) only with theéaghbs(x) = 1.

Ben-Sasson, Kopparty and Radhakrishnain_ih [12], explpttie sparsity ofinearized
polynomials have shown the following. For every € (0, 1) there exits Reed-Solomon
code of block length. and dimensiom? + 1, which contains super-polynomial many code-
words that agree with a received word in at lea$t positions. Also they show for constant
rate Reed-Solomon codes (where the rat& is 0), there exists a received word that has
agreemen®’ N (where R’ > R) with roughly N®(°e(1/%) codewords. The received word
in the above constructions, however, is not explicit. Baiss®n et al. also construct an ex-
plicit received word that agrees with super-polynomiallgmg Reed-Solomon codewords

in w(k) many places, wherke = n° + 1 is the dimension of the code. However, their results
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do not give an explicit bad list decoding configurations fonstant rate Reed-Solomon
codes. The results in[12] do not work for prime fields while tesults on explicit received
words in this chapter do work for prime fields.

We conclude with some open questions.

Open Question 6.1.We have shown that RS codes of rgtécannot be list recovered with
input lists of size¢’ in polynomial time wherd is a prime power. Can one show a similar

result for other values of?

Using the density of primes and our work, we can bound thebyat@(1/¢), but if it is
true it will be nice to show it is at most/¢ for every/.

We have shown that th¢kn’ bound for polynomial reconstruction is the best possible
given n’ general pairg3;,v;) € F? as input. It remains a big challenge to determine

whether this is the case also when this are all distinct, or equivalently
Open Question 6.2.Is the Johnson bound is the true list decoding radius of R&£®d

We conjecture this to be the case in the following sense:etbgists a fieldF and a
subset of evaluations poingssuch that for the Reed-Solomon code defined @vand.S,
the answer to the question above is yes. One approach thiat givg at least partial results
would be to use some of our ideas (in particular those usiaghtirm function, possibly
extended to other symmetric functions of the automorphishi. overlF,) together with
ideas in the work of Justesen and Hohaldi [70] who used theeTianction to demonstrate
that a linear number of codewords could occur at the Johneand Further, the work of
Ben-Sasson et al.]l12] gives evidence for thisRércodes of rates < for constant close
to 0.

Open Question 6.3.Can one show an analog of TheoreEm 6.6 on products of lineéoifac
for the case whenis linear in the field size (the currently known results work only for

up togq'/?)?
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This is an interesting field theory question in itself, andHarmore might help to-
wards showing the existence of super-polynomial number eédrSolomon codewords
with agreement > (1 +¢)k for somes > 0 for constant rate (i.e. whehis linear inn)? It
is important for the latter, however, that we show thats) is very large for somepecial
field elements in an extension field, since by a trivial counting argumeribikows that
there exists € 7, for which Ny () < (¢)/(¢" — 1).
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Chapter 7
LOCAL TESTING OF REED-MULLER CODES

From this chapter onwards, we will switch gears and talk alpvaperty testing of

codes.

7.1 Introduction

A low degree testeis a probabilistic algorithm which, given a degree parametand
oracle access to a functighonn arguments (which take values from some finite fié)d
has the following behavior. If is the evaluation of a polynomial onvariables with total
degree at mogt then the low degree tester must accept with probability @rethe other
hand, if f is “far” from being the evaluation of some polynomial avariables with degree
at mostt, then the tester must reject with constant probability. Tdeter can query the
function f to obtain the evaluation of at any point. However, the tester must accomplish
its task by using as few probes as possible.

Low degree testers play an important part in the constrodfd’robabilistically Check-
able Proofs (or PCPs). In fact, different parameters of legrde testers (for example, the
number of probes and the amount of randomness used) diedfeht the parameters of the
corresponding PCPs as well as various inapproximabilgulte obtained from such PCPs
([86,[5]). Low degree testers also form the core of the prddfil® = NEXPTIME in [9].

Blum, Luby, and Rubinfeld designed the first low degree testdich handled the
linear case, i.et, = 1 ([21]), although with a different motivation. This was folled by
a series of works that gave low degree testers that worketafger values of the degree
parameter [[93,42] 7]). However, these subsequent ressiltgell as others which use low

degree testers[{[8,43]) only work when the degree is smtibar size of the field. Alon
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et al. proposed a low degree tester for any nontrivial degegameter over the binary field
IFy [A].

A natural open problem was to give a low degree tester forejrees for finite fields of
size between two and the degree parameter. In this chapigrastelly) solve this problem

by presenting a low degree test for multivariate polynomaler any prime field,.

7.1.1 Connection to Coding Theory

The evaluations of polynomials im variables of degree at mostare well knownReed-
Muller codes(note that whem = 1, we have the Reed-Solomon codes, which we con-
sidered in Chaptd 6). In particular, the evaluation of polyials inn variables of degree

at mostt overF, is the Reed-Muller code or RN, n) with parameters andn. These
codes have length” and dimension(""") (see [2ZB[29,-69] for more details). Therefore,
a function has degrekif and only if (the vector of evaluations of) the function ivalid
codeword in RM(n, t). In other words, low degree testing is equivalent to loctisting

Reed-Muller codes.

7.1.2 Overview of Our Results

It is easier to define our tester ovy. To test if f has degree at mostsetk = [£], and

let: = (t 4+ 1) (mod 2). Pickk-vectorsy, - - - , y, andb from F%, and test if

k
> Afb+> ey =0,

c€FEie=(c1,+,cr) J=1

where for notational convenience we u¥e = 1 (and we will stick to this convention
throughout this chapter). We remark here that a polynomialegree at most always
passes the test, whereas a polynomial of degree greaterglescaught with non-negligible
probability «. To obtain a constant rejection probability we repeat tisedé1/a) times.
The analysis of our test follows a similar general structieeeloped by Rubinfeld and
Sudan in[[98] and borrows techniques froml[9B, 1]. The presesf a doubly-transitive



149

group suffices for the analysis given In][93]. Essentially si®w that the presence of a
doubly-transitive group acting on the coordinates of thaldwde does indeed allow us
to localize the test. However, this gives a weaker result. udéetechniques developed in
[] for better results, although the adoption is not imméalidn particular the interplay
between certain geometric objects described below and plodrnomial representations
plays a pivotal role in getting results that are only aboutuadyatic factor away from
optimal query complexity.

In coding theory terminology, we show that Reed-Muller codeer prime fields are
locally testable. We further consider a new basis of Reedlévlaode over prime fields that
in general differs from the minimum weight basis. This alous to present a novel exact
characterization of the multivariate polynomials of degran »n variables over prime fields.
Our basis has a clean geometric structure in ternfiatg[69], and unions of parallel flats
but with different weights assigned to different parallatg. The equivalent polynomial

and geometric representations allow us to provide an aloptgnhal test.

Main Result

Our results may be stated quantitatively as follows. Fonemintegert > (p — 1) and a
given reale > 0, our testing algorithm querietat O <§ +t ~p%+1> points to determine
whetherf can be described by a polynomial of degree at mat/ is indeed a polynomial
of degree at mosgt our algorithm always accepts, andfihas a relative Hamming distance
at leasts from every degreeé polynomial, then our algorithm rejects with probability
at least;. (In the case < (p — 1), our tester still works but more efficient testers are
known). Our result is almost optimal since any such testiggrdhm must queryf in at
IeastQ(g + p%) many points (see Corollafy1.5).

We extend our analysis also to obtaisedf-correctorfor f (as defined in[[21]), in case

the functionf is reasonably close to a degrepolynomial. Specifically, we show that the

1The natural basis given i [28.129] assigns the same weigath parallel flat.
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value of the functiory’ at any given point: € IF;; may be obtained with good probability
by queryingf on ©(p'/?) random points. Using pairwise independence we can achieve
even higher probability by querying on p®*?) random points and using majority logic

decoding.

7.1.3 Overview of the Analysis

The design of our tester and its analysis follows the folligvgeneral paradigm first for-
malized by Rubinfeld and Sudan]93]. The analysis also uddsianal ideas used in]1].
In this section, we review the main steps involved.

The first step is coming up with agxact characterizatiofor functions that have low
degree. The characterization identifies a collection ofsstdbof points and a predicate
such that an input function is of low degree if and only if feeey subset in the collection,
the predicate is satisfied by the evaluation of the functioime points in the subset. The
second step entails showing that the characterizatiorrobast characterizationthat is,
the following natural tester is indeed a local tester (seti@@[Z.3 for a formal definition):
Pick one of the subsets in the collection uniformly at randord check if the predicate is
satisfied by the evaluation of the function on the points e¢hosen subset. Note that the
number of queries made by the tester is bounded above byzb@kihe largest subset in
the collection.

There is a natural characterization for polynomials of lagike using their alternative
interpretation as a RM code. As RM code is a linear code, atimmdes of low degree if
and only if it is orthogonal to every codeword in the dual of torresponding RM code.
The problem with the above characterization is that theltiegulocal tester will have to
make as many queries as the maximum number of non-zerogrositany dual codeword,
which can be large. To get around this problem, instead a$idening all codewords in the
dual of the RM code, we consider a collection of dual codewahdt have few non-zero
positions. To obtain an exact characterization, note tiatdollection has to generate the

dual code.
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We use the well known fact that the dual of a RM code is a RM cedth (different
parameters). Thus, to obtain a collection of dual codewwiitis low weight that generate
the dual of a RM code it is enough to find low weight codewords tfenerate every RM
code. To this end we show that the characteristic vectorp&#fime subspace (also called a
flatin RM terminology [69]) generates certain RM codes. To catinthe characterization,
we show that any RM code can be generated by flats and certagnted characteristic
vectors of affine subspaces (which we gaéudoflats To prove these we look at the affine
subspaces as the intersection of (a fixed number of) hyperpland alternatively represent

the characteristic vectors as polynomials.

To prove that the above exact characterization is robustseetheself-correctingap-
proach ([Z1[-98]). Given an inpyt we define a related functiomas follows. The value
of g(x) is defined to be the most frequently occurring valueplarality, of f at correlated
random points. The major part of the analysis is to show th#tdisagrees from all low

degree polynomials in a lot of places then the tester rejeitkshigh probability.

The analysis proceeds by first showing tli@ndg agree on most points. Then we show
that if the tester rejects with low enough probability theis a low degree polynomial. In
other words, iff is far enough from all low degree polynomials, then the tagects with
high probability. To complete the proof, we take care of thsecwhery is close to some

low degree polynomial separately.

7.2 Preliminaries

Throughout this chapter, we ugeto denote a prime angl to denote a prime powep{
for some positive integet) to be a prime power. In this chapter, we will mostly deal with
prime fields. We therefore restrict most definitions to thienerfield setting.

For anyt € [n(q — 1)}, let P, denote the family of all functions ovét; that are poly-
nomials of total degree at mos{and w.l.0.g. individual degree at magt- 1) in n vari-

ables. In particulaf € P, if there exists coefficients, ... .,y € F,, for everyi € [n],



152

ei €{0,--- ,q—1}, 3" e <t suchthat

n

f = Z Q(er,en) fol (71)

(€1, ,en) €40, ,q— 110 €<t i=1

The codeword corresponding to a function will be the evaduatector of f. We recall the

definition of the (Primitive) Reed-Muller code as descrile{b9,[29].

Definition 7.1. LetV = [F; be the vector space aftuples, forn > 1, over the fieldF,.
For any k such that) < k < n(q — 1), thek™ order Reed-Muller cod&M,(k, n) is the
subspace dF‘qV' of all n-variable polynomial functions (reduced modufb— z;) of degree

at mostk.

This implies that the code corresponding to the family ofctions P; is RM,(t, n).
Therefore, a characterization for one will simply translaito a characterization for the
other.

We will be using terminology defined in Sectibnl2.3. We noweflyi review the defi-
nitions that are relevant to this chapter. For any two fundif, g : I — F,, the relative
distancei(f,g) € [0, 1] betweenf andg is defined ag(f, g) = Procea [f(7) # g(z)].
For a functiony and a family of functiong” (defined over the same domain and range), we
sayy is e- closeto F', for some0 < ¢ < 1, if, there exists arf € F, whered(f,g) < e.
Otherwise it is:- far from F'.

A one sided testing algorithnofie-sided testéifor P, is a probabilistic algorithm that
is given query access to a functigrand a distance parametei) < ¢ < 1. If f € P, then
the tester should always accepiperfect completeness), andfifis e-far from P;, then
with probability at Ieas% the tester should rejegt

For vectorsr, y € Iy, the dot (scalar) product of andy, denoted: - y, is defined to be
S | xy;, wherew,; denotes theé”” co-ordinate ofw.

To motivate the next notation which we will use frequently give a definition.
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Definition 7.2. For any k& > 0, a k-flat in I} is a k-dimensional affine subspace. Let

Y1, -, yx € F) be linearly independent vectors ahe: I be a point. Then the subset

k
L= {Z CY; + b|\V/'l c [k‘] c; € Fp}

i=1
is a k-dimensional flat. We will say thdt is generated by, - - -,y atb. The incidence
vector of the points in a giveh-flat will be referred to as the codeword corresponding to
the givenk-flat.

Given a functionf : ) — T, fory,,--- 4,0 € I, we define
def
Ty, b)) = > fo+ ) e, (7.2)
c=(c1, ,cl)EIF‘i7 1€l
which is the sum of the evaluations of functigrover ani-flat generated by, - - - ,y;, at

b. Alternatively, as we will see later in Observationl7.4 stban also be interpreted as the
dot product of the codeword corresponding to Milat generated by, - - - , 3, atb and that
corresponding to the functiofi

While k-flats are well-known, we define a new geometric object, dal@seudoflat. A

k-pseudoflat is a union dp — 1) parallel(k — 1)-flats.

Definition 7.3. Let Ly, Lo, - - - , L,—, be parallel(k — 1)-flats (¢ > 1), such that for some
y € Fpandallt € [p— 2], Liy1 = y+ L, where for any set C F} andy € F,
y+ S = {x+ylz € S}. We define a&-pseudoflato be the union of the set of points
L, to L,_,. Further, given an (wherel < r < p — 2) and ak-pseudoflat, we define
a (k,r)pseudoflat vectoas follows. Let/; be the incidence vector df; for j € [p — 1].
Then thelk, r)-pseudoflat vector is defined to Ef;i J"1;. We will also refer to thék, r)-
pseudoflat vector as a codeword.

Let L be ak-pseudoflat. Also, fof € [p — 1], let L; be the(k — 1)-flat generated by
Y1, ,Yk_1 atb+j-y, wherey, - - -y, are linearly independent. Then we say that the
(k,r)-pseudoflat vector corresponding foas well as the pseudofldt, are generated by

Y, Y1, -, Yp—1 at b exponentiated along.
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(2, 1)-pseudoflat vector corresponding o

Figure 7.1: lllustration of &-pseudoflat. defined ovei; with £ = 2,p = 5 andn = 5.
Picture on the left shows the pointsin(recall that each of.q, .. ., L, arel-flats or lines).
EachL; (for 1 < i < 4) hasp*~! = 5 points in it. The points in. are shown by filled
circles and the points iR \ L are shown by unfilled circles. The picture on the right is the
(2, 1)-pseudoflat corresponding fa

See Figuré&711 for an illustration of the Definitionl7.3.

Given a functionf : F} — F,, fory,,--- ,y,b € Fy, foralli € [p — 2], we define
i def i
Tiy, - ub) = > A fo+ ) cy). (7.3)
c=(c1, 1) EFY, jell

As we will see later in ObservatidnT.5, the above can alsoteepreted as the dot product
of the codeword corresponding to tler)-pseudoflat vector generated by, - - - ,y; atb
exponentiated along, and the codeword corresponding to the functfon

7.2.1 Facts from Finite Fields

In this section we spell out some facts from finite fields whiglbe used later. We begin

with a simple lemma.
Lemma 7.1.Foranyt € [¢ — 1], > . a' # 0ifand only ift = ¢ — 1.

Proof. First note thaty ", a' = - ,cp. a'. Observing that for any € Fy, a*' = 1, it
follows that)_, p. a”™' = 3" e, 1 = —1 #0.
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Next we show that forall £ ¢—1, > a' = 0. Leta be a generator df;. The sum

acky
can be re-written a§_ "2 o = % The denominator is non-zero for ¢ — 1 and
thus, the fraction is well defined. The proof is complete byinwthatat—H = 1. O

This immediately implies the following lemma.

Lemma 7.2. Letty, - ,t, € [¢— 1]. Then

Z ctllctj---cfl#Oifandonlyiftl:tgz---:tl:q—l. (7.4)
(017"'7Cl)€(]FCI)l
Proof. Note that the left hand side can be rewritter{ s, (Zcﬂq cf) . O

We will need to transform products of variables to powersiméar functions in those

variables. With this motivation, we present the followidgntity.

Lemma 7.3. For eachk, s.t.0 < k < (p — 1) there existg;, € I, such that

k
ckaZ Z )*iS;  where S; = Z <Zx3> : (7.5)
1=

i=1 PAIC[k]; jeI

Proof. Consider the right hand side of tHe{[7.5). Note that all theomoials are of degree
exactlyk. Also note that]"[f:1 x; appears only in thé, and nowhere else. Now consider
any other monomial of degréethat has a support of size where0 < j < k: w.l.o.g.
assume that this monomialid = z%' 2% - - xi.j such that; + - - - +; = k. Now note that
forany! D [j], M appears with a coefficient c(f ) in the expansion of)_, ; z)".

Further for everyi > j, the number of choices df O [j] with |I| = i is exactly( 7.

.....

Therefore, summing up the coefficientsaf in the various summands; (along with the

(—1)k~ factor), we get that the coefficient af in the right hand side of{7.5) is

<zlzgk%) (g“”k"'(i:f)) B (Zl,z2,..., ) (g(_l)m_(kﬁ;ié))
(i i,) 01

=0.

Moreover, it is clear that, = (,,* ) = k! (modp) andc, # 0 for the choice ofc. [
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7.3 Characterization of Low Degree Polynomials oveF,

In this section we present an exact characterization forfah@ly 7, over prime fields.

Specifically we prove the following:

Theorem 7.1.Lett = (p—1)-k+r. (NoteO < r <p—2.) Leti=p—2—r. Thena

function f belongs tdP;, if and only if for everyy,, - - - , yx11,b € F;, we have

T}(?Jl? s Ykt b) =0 (76)

As mentioned previously, a characterization for the farfilyis equivalent to a char-
acterization for RM(¢,n). It turns out that it is easier to characteri®ewhen viewed as
RM,(t,n). Therefore our goal is to determine whether a given word rigdato the RM
code. Since we deal with a linear code, a simple strategytgih be to check whether
the given word is orthogonal to all the codewords in the dawalec Though this yields a
characterization, this is computationally inefficient. tBlthowever that the dot product is
linear in its input. Therefore checking orthogonality wélbasis of the dual code suffices.
To make it computationally efficient, we look for a basis wstimall weights. The above
theorem essentially is a clever restatement of this idea.

We recall the following useful lemma which can be foundin][69

Lemma 7.4. RM,(k, n) is a linear code with block lengti* and minimum distancer +
1)q¥? whereR is the remainder and) the quotient resulting from dividing — 1) - n — k
by (¢ —1). ThenRM,(k,n)* = RM,((¢ — 1) -n —k —1,n).

Since the dual of a RM code is again a RM code (of appropriaterprwe therefore
need the generators of RM code (of arbitrary order). We fstalaish that flats and pseud-
oflats (of suitable dimension and exponent) indeed gentdrateeed-Muller code. We then
end the section with a proof of Theordml7.1 and a few remarks.

We begin with few simple observations about flats. Note tinat-at L is the inter-

section of(n — [) hyperplanes in general position. Equivalently, it corssitall points
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v that satisfy(n — [) linear equations ovefF, (i.e., one equation for each hyperplane):
Vi € [n— 1] E;?:l cijz; = b; wherec;;, b; defines the' hyperplane (i.e.p satisfies
> i1 ¢ijvj = b;). General position means that the matfix; } has rank(n — ). Note that

then the characteristic function (and by abuse of notatienricidence vector) af can be

written as
n—l n 1 if (vg,-+,u) €L
[T = O cijwy —ba)r™) = (7.7)
i=1 j=1 0 otherwise

We now record a lemma here that will be used later in this spcti

Lemma 7.5. For & > [, the incidence vector of arlyflat is a linear sum of the incidence

vectors ofl-flats.

Proof. Let £ = [ + r and letlV be ank-flat. We want to show that it is generated by a
linear combination of flats.
Let W be generated by, --- ,y,_1,wy, - - - ,w,41 atbh. For each non-zero vectoy =

(Cit, ... Cire)) INF T define:
r+1

v = E Cij'LUj.
=1

Clearly there argp™™! — 1) suchv;. Now for eachi € [p"™' — 1], define anl-flat ;

generated by, --- , 4,1, v; atb. Denote the incidence vector of a fldtby 1., then we
claim that
pr+1_1
Ly =@p—1) Y lu. (7.8)
i=1
Since the vectorg,, ..., y,_1, w1, ..., w,; are all linearly independent, we can divide the

proof in three sub cases:

e v € W is of the formb + Zﬁ;i e;y;, for someey,...,e,_1 € F,: Then each flat
L; contributesl to the right hand side of (4.8), and therefore, the right hside is
(p—1(p " —1)=1inF,.
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e v € W is of the formb + 37! d;w; for somed,, ..., d,,, € F,: Then the flatd.,;
that contribute havé; = a - 27:11 dyw;, fora = 1,... p — 1. Therefore, the right

2

hand side of[(718) isp — 1)> = 1in F,,.

o v € W is of the formb + 3" e;yi + S04 dyw;: Then the flatd.; that contribute
haveV; = a- Ef:ll d;w;, fora =1,...,p— 1. Therefore, the right hand side ¢f{lV.8)
is(p—1)*=1inF,.

O

As mentioned previously, we give an explicit basis for RMn). For the special case
of p = 3, our basis coincides with the min-weight basis givein 28lowever, in general,
our basis differs from the min-weight basis providedinl [29]

The following Proposition shows that the incidence vectdrats form a basis for the

Reed-Muller code of orders that are multipleg pf- 1).
Proposition 7.6.RM,((p—1)(n—1), n) is generated by the incidence vectors ofitiats.

Proof. We first show that the incidence vectors of thitats are in RM((p — 1)(n — 1), n).
Recall thatL is the intersection ofn — [) independent hyperplanes. Therefore using (7.7),
L can be represented by a polynomial of degree at mwst [)(p — 1) in xy, -+, x,.
Therefore the incidence vectorsieflats are in RM((p — 1)(n — 1), n).

We prove that RNM((p — 1)(n — ), n) is generated by-flats by induction om — I.
Whenn — [ = 0, the code consists of constants, which is clearly genetaedflats i.e.,
the whole space.

To prove for an arbitraryn — 1) > 0, we show that any monomial of total degree
d < (p—1)(n —[) can be written as a linear sum of the incidence vectorsflats. Let

the monomial be:{" - - - z¢. Rewrite the monomials as, - - -1 - -+ x5 - - - ;. Group into
—— ——

e; times e, times

2The equations of the hyperplanes are slightly differentiinaase; nonetheless, both of them define the
same basis generated by the min-weight codewords.
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products of(p — 1) (not necessarily distinct) variables as much as possibésvrie each
group using[(7) withk = (p — 1). For any incomplete group of sizé#, use the same
equation by setting the lagb — 1 — d') variables to the constant 1. After expansion, the
monomial can be seen to be a sum of products of at iost [) linear terms raised to
the power ofp — 1. We can add to it a polynomial of degree at mgst- 1)(n — [ — 1)

SO as to represent the resulting polynomial as a sum of palyals, each polynomial as
in (Z4). Each such non-zero polynomial is generated byla, ¢ > [. By induction, the
polynomial we added is generated by 1) flats. Thus, by Lemmia™.5 our given monomial

is generated by-flats. O

This leads to the following observation:

Observation 7.4. Consider ani-flat generated by, --- ,y, at b. Denote the incidence
vector of this flat byl. Then the right hand side di{T.2) may be identified ag’, where
I and f denote the vector corresponding to respective codewords &the dot (scalar)

product.

To generate a Reed-Muller code of any arbitrary order, wel pseudoflats. Note that
the points in ak-pseudoflat may alternatively be viewed as the space givehdoynion
of intersections ofn — k — 1) hyperplanes, where the union is parameterized by another
hyperplane that does not take one particular value. Coglgrétis the set of points which

satisfy the following constraints ovér,:

n

Vi € [n —k— 1] Zcijxj = bl, and ch—k,jxj % bk

j=1 j=1

Thus the values taken by the points of-pseudoflat in its correspondirig, r)-pseudoflat

vector is given by the polynomial

n—k—1 n

IT = O cijm =07 - O enmrjy — buoi)" (7.9)
, —

=1 7j=1
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Remark 7.1. Note the difference betwedn{]7.9) and the basis polynomijia8j that (along
with the action of the affine general linear group) yields thie-weight codewords:

k—1 r

(g, am) = [ = (@i = w)P™) [ (2 — ),

i=1 j=1

wherews, - -+, wr_1,u1,- -+ ,u, € F.

The next lemma shows that the code generated by the incidemters ofi-flats is a

subcode of the code generated by the )-pseudoflats vectors.

Claim 7.7. The(l, r)-pseudoflats vectors, whete> 1 andr € [p — 2|, generate a code

containing the incidence vectors loflats.

Proof. Let W be the incidence vector of dfflat generated by, - - - , y; atb. Since pseud-
oflat vector corresponding to dfpseudoflat (as well as a flat) assigns the same value to all
points in the samg — 1)-flat, we can describd’ (as well as anyl, -)-pseudoflat vector) by
giving its values on each of ifsl—1-flats. In particular/y = (1,...,1). Let L, be a pseud-
oflat generated by, - - - , 3, exponentiated along, atb+ j - y,, for eachj € F,, and letV/;

be the corresponding, r)- pseudoflat vector. By Definitidn4.8; assigns a valué to the

(I —1)-flat generated bys, - - - ,y; atb+ (7 +14)y. Rewriting them in terms of the values on
its [ —1-flats ylelds thai/; = <(p_j)r7 (p_j—i_l)r? T (p_j—i_l)r? T (p_j_l)r> S Fz
Let \; denotep variables forj = 0,1, --- ,p — 1, each taking values i,,. Then a solution

to the following system of equations
1= X(i—j) forevery0<I<p-—1
JEFp
implies thati’ = Ef;é A,;V;, which suffices to establish the claim. Consider the idgntit
L= () G
JEFp
which may be verified by expanding and applying Lenlmé 7.1tir®ek; to (—1)(—j)?~'~"

establishes the claim. OJ
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The next Proposition complements Proposifion 7.6. Togettey say that by choosing
pseudoflats appropriately, Reed-Muller codes of any givelerocan be generated. This
gives an equivalent representation of Reed-Muller codas.eXact characterization then

follows from this alternate representation.

Proposition 7.8. For everyr € [p — 2|, the linear code generated Ly, r)-pseudoflat

vectors is equivalent tBM,((p — 1)(n — [) + r, n).

Proof. For the forward direction, consider dmpseudoflatL. Its correspondindi,r)-
pseudoflat vector is given by an equation similaffol(7.9udthe codeword corresponding
to the evaluation vector of this flat can be represented bylynpmial of degree at most
(p —1)(n — 1) + r. This completes the forward direction.

Since monomials of degree at m@st-1)(n —1) are generated by the incidence vectors
of [-flats, ClaimZ.VY will establish the proposition for such roomals. Thus, to prove the
other direction of the proposition, we restrict our attentto monomials of degree at least
(p—1)(n—1)+1and show that these monomials are generatgd, by-pseudoflats vectors.
Now consider any such monomial. Let the degree of the moridraig—1)(n—1)+r' (1 <
r" < r). Rewrite it as in Proposition14.6. Since the degree of theonaial is(p — 1)(n —

l) + ', we will be left with an incomplete group of degree We make any incomplete
group complete by adding 1's (as necessary) to the produettiéh use Lemma—1.3 to
rewrite each (complete) group as a linear sum'6fpowered terms. After expansion, the
monomial can be seen to be a sum of product of at most /) degreeg(p — 1) powered
linear terms and a* powered linear terms. Each such polynomial is generatéeeity

an(l, r)-pseudoflat vector or ahflat. Claim[Z.¥ completes the proof. O
The following is analogous to Observationl7.4.

Observation 7.5. Consider an/-pseudoflat, generated hy,--- ,y, at b exponentiated
alongy;. Let E be its correspondingl, r)-pseudoflat vector. Then the right hand side of
([Z3) may be interpreted a5 - f.
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Now we prove the exact characterization.
Proof of Theorem[ZX The proof directly follows from Lemm&=.4, Propositibnl7.6
Propositio.ZB and Observatibnl7.4 and Observdiidn 7dedd by Observatido 1.4, Ob-
servation Zb and(7.6) are essentially tests to determimetiver the dot product of the

function with every vector in the dual space of R¥l n) evaluates to zerd.]

Remark 7.2. One can obtain an alternate characterization from Reniafkwhich we state
here without proof.

Lett = (p—1)-k+ R (note0 < R < (p—2)). Letr =p — R — 2. LetWW C F, with
|W| = r. Define the polynomiaj(z) = [Lcw(z — ) if W is non-empty; ang(z) = 1

otherwise. Then a function belong® if and only if for everyy,, - -, yx11,b € Fy, we
have
k+1
Z g(c1) Z f(lH—ZCi'yz‘):O.
c1€Fp\W (527"'7Ck+1)€wz§ i=1

Moreover, this characterization can also be extended ttagerdegrees for more general

fields, i.e.F,: (see the next remark).

Remark 7.3. The exact characterization of low degree polynomials asradd in [42] may
be proved using duality. Note that their proof works as losglee dual code has a min-
weight basis (se€[29]). Suppose that the polynomial hasegety< ¢ — ¢/p — 1, then
the dual ofRM,(d, n) is RM,((¢ — 1)n — d — 1, n) and therefore has a min-weight basis.
Note that then the dual code has min-wei¢ht- 1). Therefore, assuming the minimum
weight codewords constitute a basis (that is, the span afalewords with the minimum
Hamming weight is the same as the code), @nyl evaluations of the original polynomial

on a line are dependent and vice-versa.

7.4 A Tester for Low Degree Polynomials ovelf;

In this section we present and analyze a one-sided testé forhe analysis of the algo-
rithm roughly follows the proof structure given in €3, 1]. e/#mphasize that the general-

ization from [1] to our case is not straightforward. As In][43 we define a self-corrected



163

version of the (possibly corrupted) function being testéde straightforward adoption of
the analysis given i [93] gives reasonable bounds. Howevbetter bound is achieved
by following the techniques developed [d [1]. In there, tlsépw that the self-corrector
function can be interpolated with overwhelming probabkiliHowever their approach ap-
pears to use special propertiesffand it is not clear how to generalize their technique for
arbitrary prime fields. We give a clean formulation whichigslon the flats being repre-
sented through polynomials as described earlier. In pdaicClaimdZIU 715 and their

generalizations appear to require our new polynomial basad

7.4.1 TesterirF,

In this subsection we describe the algorithm when undeglfigid isTF,.
Algorithm Test-P, in I,

0.Lett=(p—1)-k+R,0<R<p—1.Denoter =p—2—R.
1. Uniformly and independently at random selgct: - - , yx41,b € F}.

2. 8 TF(y1, -+, yrs1,b) # 0, thenreject, elseaccept

Theorem 7.2. The algorithmTest-P, in F, is a one-sided tester foP, with a success

1

probability at least mitc(p**'e), 5

) for some constant > 0.

Corollary 7.3. Repeating the algorithnfiest-P; in I, for @(]Dk%16 + kp*) times, the prob-

ability of error can be reduced to less thapn2.

We will provide a general proof framework. However, for these of exposition we
prove the main technical lemmas for the cas& of The proof idea in the general case is

similar and the details are omitted. Therefore we will etiséiy prove the following.

Theorem 7.4.The algorithmTest-P; in [F5 is a one-sided tester fd?; with success prob-

1

ability at least mirc(3**1e), ST

) for some constant > 0.
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7.4.2 Analysis of AlgorithriestP,

In this subsection we analyze the algorithm described ini@eZ.4.1. From Claini 711 it
is clear that iff € P, then the tester accepts. Thus, the bulk of the proof is tavghat if

f is e-far from P,, then the tester rejects with significant probability. Ouwgf structure
follows that of the analysis of the test i [1]. In particylet / be the function to be tested
for membership inP;. Assume we perform Teﬂtj; for an appropriaté as required by the
algorithm described in Sectidn Z#.1. For suchiawe defineg; : F; — T, as follows:
Fory € F,a € F,, denotep, o = Pry, ., [f(y) = T}y — y1,y2, s Yk, 1) = al.
Defineg;(y) = a such that/g # a € F,, p, . > p, g With ties broken arbitrarily. With this

meaning of plurality, for alf € [p — 2] U {0}, g; can be written as:

9i(y) = plurality, . [f(y) =Ty =y, 92, Yk 90)] . (7.10)

Further we define

de i
0 S Pry o[ Ti, -+ gsn, b) £ 0] (7.12)

The next lemma follows from a Markov-type argument.

Lemma 7.9. For a fixedf : F} — I, letg;, n; be defined as above. Theiif, g;) < 27;.

Proof. If for somey € Ty, P, . [f(y) = f(y) = TH(y —y1, 92, -+ Yksr, 1)) > 1/2,
theng(y) = f(y). Thus, we only need to worry about the set of elemenssich that
Pl (W) = f(y) = TH(y — y1,92,- -+, uks1,91)] < 1/2. If the fraction of such

elements is more thaly, then that contradicts the condition that

ni = Pry1,~--,yk+1,b[T}(y1, Yk, b) 7& 0]
= Pryl7y27“'7yk+17b[T;(y1 - b7 Y2, 5 Yk+1, b) # 0]

= Pry,yl,---,ykﬂ[f(y) # [(y) — T;(y — Y1, Y2, Ykt Y1)

Therefore, we obtain( f, g;) < 2n;. O
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Note that Py, ..., [0:(y) = f(y) = T}y — y1, 92, -, ykr1,91)] = 5. We now show
that this probability is actually much higher. The next leengives a weak bound in that

direction following the analysis i [93]. For the sake of qaeteness, we present the proof.

Lemma 7.10.Vy € T}, Pry, .y eml0i(y) = f(y) = THy — yi, 92, s Uks1, 41)] =
1— 2pk+17h’-

Proof. We willuse!, J, I’, J' to denotg k + 1) dimensional vectors ovét,. Now note that

k41
—gi(y) = Plurality, ,yk+1€1F;}[ Z Lf(L(y— )+ Z Ly, + 1))
TEFETYI£(1,0,+,0) t=2

= Pluralityy_yl’y%_,,7yk+1€Fg[ Z (L + 1) f(Li(y — )
I€FyTI(0,+,0)

k+1
+ Z Ly +y)]
=2
k+1
= Pluralityyl’,,,’ykﬂem[ Z (I, + 1)Zf(z Ly +y)] (7.12)
t=1

TeFET1: 1540, ,0)

LetY = (y1, -, ypq1) @AY’ = (yi,--- ,y5,,). Also we will denote(0, - - -, 0) by
0. Now note that

1- M < Pry1,~~~,yk+1,b[T;(yla Ykt b) = 0]
= Pryl,"',ykﬂ,b[ Z Hf(b_'_ I- Y) = 0]

IeFhT!

= Pry oy plfO+9)+ > Lfb+1-Y)=0]

TeFE+1.14(1,0,--,0)

= Prypnnlf(0) + > Lfty—y+1-Y)=0]

TeFE+1.1£(1,0,--,0)

= Prygnalf @+ D). (LD fly+1-Y)=0]

TeFETL: 140, ,0)
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Therefore for any giverd # 0 we have the following:
Pryy(fly+1-Y)= Y —(h+D)fly+I1-Y+J Y)>1-1
JeFEt j+£0
and for any giver/ # 0,
Pryy[fly+J-Y)= > —(L+D)'fly+I1-Y+J-Y)=1-n.
TeFk+. 140

Combining the above two and using the union bound we get,

Pryy | Y (L+1)if(y+1-Y)

TeFET1 140

= Y Y AV )Y+ Y)

TeFET1 1540 JeFE T g0

= > (h+Dify+ YY)

JeFrtL =0

>1-20"" =)= 1-2p" "y, (7.13)

The lemma now follows from the observation that the probhthat the same object
is drawn from a set in two independent trials lower boundspifubability of drawing the
most likely object in one trial: Suppose the objects are @deso thap, is the probability

of drawing object,, andp; > p, > ---. Then the probability of drawing the same object

twice sy, p? < > . pipi < p1. -

However, when the degree being tested is larger than thesiiedd we can improve the
above lemma considerably. The following lemma strengtthemnsmaZID when > p — 1

or equivalentlyk > 1. We now focus on th&; case. The proof appears in Section4.4.3.
Lemma 7.11.Vy € Fj, Pry, ..y empl0i(y) = f(y) — T}(y — YL, Y2, Uk, )] 2

LemmalZIll will be instrumental in proving the next lemmajchihshows that suffi-
ciently smalln; impliesg; is the self-corrected version of the functigr(the proof appears
in Sectio Z.Z414).
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Lemma 7.12.OverFs, if n; <
k> 1).

m, then the functiony; belongs toP, (assuming

By combining Lemm&719 and Lemria71.12 we obtain thgtig Q(1/(k3%))-far from
P, theny), is at least2(1/(k3%)). We next consider the case in whighis small. By Lemma
[73, in this case, the distanée= §(f, g) is small. The next lemma shows that in this case
the test rejectg’ with probability that is close t8*+'§. This follows from the fact that in
this case, the probability over the selectionyef- - - , y.1, b, that among th&**+! points
> ¢y + b (wherecy, ..., cpqq € F3), the functionsf andg differ in precisely one point,

is close to3**+! - . Observe that if they do, then the test rejects.

Lemma 7.13. Supposé) < 7; < m Let§ denote the relative distance between
fandg and/ = 3**!. Then, wheny,,-- - ,y.+1, b are chosen randomly, the probability
that for exactly one point among the’ points>_, c;y; + b (Where(cy, . .., ci1) € FATH),

f(v) # g(v) is at least(1753) (6.

Observe that; is at least2(3**15). The proof of Lemmd& 713 is deferred to Sec-
tion[Z.45.
Proof of Theorem[Z3: Clearly if f belongs toP;, then by Clainl_ZIl the tester accepts
with probability 1.

Therefore let(f,P;) > . Letd = 4(f,g,), wherer is as in algorithmTest-P,. If
n < m then by Lemm&Z132. € P; and, by Lemm&Z13;; is at least) (3" - d),
which by the definition of is at least)(3**1¢). Hencen; > min (c(3’f+15), W)

for some fixed constanmt> 0. (I

Remark 7.4. TheoreniZ.2 follows from a similar argument.

7.4.3 Proof of Lemma 71

Observe that the goal of Lemra™.11 is to show that at any firet p, if g; is interpolated

from a random hyperplane, then w.h.p. the interpolatedevedihe most popular vote. To
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ensure this we show that if is interpolated on two independently random hyperplanes,
then the probability that these interpolated values areséime, that is the collision prob-
ability, is large. To estimate this collision probabilitye show that the difference of the
interpolation values can be rewritten as a sunTpfon small number of random hyper-
planes. Thus if the test passes often (thaf}'sevaluates to zero w.h.p.), then this sum (by
a simple union bound) evaluates to zero often, which prdvesigh collision probability.
The improvement will arise because we will express diffeBH}involvingT}(~ --)asa
telescoping series to essentially reduce the number otewethe union bound. To do this
we will need the following claims. We note that a similar ofaior p = 2 was proven by
expanding the terms on both sideslih [1]. However, the latters not give much insight
into the general case i.e., fé,. We provide proofs that have a much cleaner structure

based on the underlying geometric structure, i.e., flatseugoflats.

Claim7.14.Foreveryl € {2,--- , k+1},foreveryy(=y1),z,w, b, Yo, -+ ,Yi—1, Y1, " *

yrr1 € F), letlet

def

S}(?J?Z) = T?<y7y27 s Yi—15 2 Y41, 0 7yk+17b)'

The the following holds:

S;(y,w) — S}(y, z) = Z [S;(y +ew, z) — S;(y + 62,21])] )

ecFy

Proof. Assumey, z, w are independent. If not then both sides are equéaldnd hence the
equality is trivially satisfied. To see why this claim is trioe the left hand side, recall the
definition ofTJ9(~) and note that the sets of points in the flat generated by, - - - , y;,_1, w,
Y1, -, Ypr1 atb and the flat generated by yo, - -, v1-1, 2, Y11, - -+, Yrv1 atb are the
same. A similar argument works for the expression on thet igind side of the equality.
We claim that it is enough to prove the result foe= 1 andb = 0. A linear transform
(or renaming the co-ordinate system appropriately) resliice case ok = 1 andb # 0

to the case ok = 1 andb = 0. We now show how to reduce the casekof> 1 to
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thek = 1 case. Fix some values, - ,¢_1,¢.1, -+, cxr1 @and note that one can write
a1y + Ccoys + - Gali—1 + QW + g + CoYrgr + b asciy + qw + V', whereb' =

D je{2 i1 141, k1) CiYj + 0. Thus,

k—1
Si(y, w) = > > flay+aw+b).
(c2,se1-15C1q 15 Chp 1) EFp (c1,00) EFZ
One can rewrite the othé}j[(-) terms similarly. Note that for a fixed vectéts, - - -, ¢;_1,
ce1, 0+, cer1), the value ob' is the same. Finally note that the equality in the genera cas

is satisfied ifp"*~! similar equalities hold in thé = 1 case.

Now consider the spac# generated by, z andw at 0. Note thatS}(y,w) (with
b= 0)isjustf-1,, wherel is the incidence vector of the flat given by the equation 0.
Thereforel ; is equivalent to the polynomiél —2#~!) overF,,. Similarly S}(y, z) = f-1p
whereL' is given by the polynomigl — w?~!) overF,. We use the following polynomial
identity (inF,)

wt =2 =N [ = (ew +y)P ] = 1= (e 4 y)P ] (7.14)
e€F;
Now observe that the polynomiél — (ew + y)P~') is the incidence vector of the flat
generated by — e~ 'w andz. Similarly, the polynomia(1l — (ez + y)P~!) is the incidence
vector of the flat generated by— ¢!~ andw. Therefore, interpreting the above equation
in terms of incidence vectors of flats, Observafion 7.4 catgs the proof assuminig(7114)
IS true.

We complete the proof by proving{7]14). Consider the S'El@;(ew +y)P~ L Ex-
panding the terms and rearranging the sums weﬁgé (pgl)w?"l‘jyj D eer eP~17,
By LemmalZ1 the sum evaluates (tew?~' — y?~'). Similarly, Dcers(ez + y)rt =
(—zP~1 — yP~1) which proves[[Z14). O

We will also need the following claim.
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Claim 7.15. For everyi € {1,--- ,p — 2}, foreveryl € {2,--- ,k + 1} and for every

y(: yl)7 Z, W, b7 Y2, 5 Y1—1,Yi+15 0 5 Yk+1 € ]Fn, denote

il def
Sf (y> ) Tf(y Yo, 5 Yi-1, Wy Y1, - - 7yk+1ab)'

Then there exists such that

000 59109 = 5 7004 om )~ 4 ]

ecky

Proof. As in the proof of Clainl_Z14, we only need to prove the claim fo= 1 and

b = 0. Observe thaﬂ}’l(y,z) = f - EL,, whereE, denotes th€2, i)-pseudoflat vector
of the pseudoflat. generated by, = atb exponentiated along. Note that the polynomial
definingE;,, is justy’ (w?~'—1). Similarly we can identify the other terms with polynomials
overF,. To complete the proof, we need to prove the following idgm(tivhich is similar
to the one in[(Z14)):

v =) = Z [(y+ ew)' [l — (y — ew)’ "] — (y + e2)'[1 — (y — ex)P']] .

e€F}
(7.15)
wherec; = 2. Before we prove the identity, note that1)/(";') = 1in F,. This is
because foii < m < j, m = (—1)(p — m). Thereforej! = (—1)/ (p(” L ; holds in[F,,.
Substitution yields the desired result. Also note t@eteyz (y + ew)’ = —y* (expand and

apply Lemmd7ZI1). Now consider the sum

dytew)y—ew)y™ = > > (-n" (j) ( ) p—kimjm, jm g tm

eclFy eclFy 0<j<<z .
0<m<p
p— 1+i—j—m,, j+m +m
_ yP —j=my,i el
] m
0<]<z eclFy
o<m<p—1

() Jore

]:

= (D[ +y'w" "2 (7.16)
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Similarly one hasy_, .. (y + ez)'(y — ez)P~! = (=1)[y" + y'2P~'2"]. Substituting and
simplifying one getd{7.15). O

Finally, we will also need the following claim.

Claim 7.16. Foreveryi € {1,--- ,p — 2}, foreveryl € {2,--- |1 + 1} and for every

Yy(=u), 2w, 0,92, Y1, Y1, -+, Yks1 € Iy, there exists; € F; such that

Sj(w.9) = S7'(z) = D |87y + ew.y — ew) = 7w + ey w —ey)+

e€F}
S}’l(z +ey,z—ey) — S}’l(y +ez,y —ez)
+¢ [S}’l(y + ew, z) — S}’l(y + ez, w)”
Proof. As in the proof of Claini.Z5, the proof boils down to proving@ynomial identity
overF,. In particular, we need to prove the following identity ot
w(l=2"") =2 (1-wP) = (w' =y ) (1=2""1) = (' =y ) (L =) +y' (WP =277,
We also use thaf, . (w + ey)" = —w" and Clain{ZIb to expand the last term. Note that

c; = 2' as before. O

We need one more simple fact before we can prove Lefnma 7.1t.a fpoobabil-
‘UHOO - Maxie["}{vi} > Maxie["]{vi} ' (Z?:1 v;) = Z?:l v;
MaXep {vi} = >0, v? =
Proof of Lemma[ZI1: We first prove the lemma fagy(y). We fixy € F7 and lety </

ity vectorv € [0,1]",

(%

Pry, . yerergl9o(y) = f(y) = TP (Y — y1, 92, -+, yr+1.91)]. Recall that we want to lower
bound~ by 1 — (4k + 14)n,. In that direction, we bound a slightly different but reldte
probability. Define

= Pry1,~-~,yk+1,217~~~72k+16ﬂ*‘§ [T})(y — Y, Y2, 5 Yk+1, yl) = T})(y T R15, 22,y Rkt Zl)]
DenoteY = (yi, - ,yrr1) and similarlyZ. Then by the definitions of and~y we have,

v = p. Note that we have

H ::I)ryh~nyk+hzhn-¢k+1eF§ET?(y'_yl>y2a"' >yk+1>y1)‘4rﬁ(y"21722,"' s 2kt1, 21) = 0]
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We will now use a hybrid argument. Now, for any choiceyf- - - , y,.; andzy, - - -,

Zp+1 We have:

T})(y—yl,y%'“ s Ykt 15 Y1) —T})(y—zl,zz,"' s 2kt 15 21)
= T})(y Y, Y2, 7yk+17y1) - T})(y — Y1, Y2, 7ykazk+17yl)
+ TPy =y, Y2, Uk 2k 01) — TR (Y = Y1, 92,7+ 5 Yko1s 25 Zt1, Y1)

+T19(y — YL, Yk—1, Pk 2kt 1, Y1) — TJQ(?J — YL, Yk—2, Zk—1, Zhs 2kt Y1)

+T,9(?/ — Y1, 22,23, 2kt 1, Y1) — T]?(y — 21,22, 215 Y1)
+T})(y TR, R2, %3, 7Zk+17y1) - T})(y — Y1, 22, 7Zk+17zl)

—|—T19(y — Y1, 22, 23,7 5 Zk1s A1) — T})(y — 21,22, 5 241, 21)

Consider any palT})(y — Y1, Y2, 5 YUl Rl 0y Rk+1 yl) - T](”](y — Y1, Y2, s Yi-1, A
-, zk+1,y1) that appears in the first “rows” in the sum above. Note thdfj?(y —

Y, Y2, Y 2 2k Y1) @ndTR(y = yi, Yo, Y, 2105 2k, i) differ only
in a single parameter. We apply Claim_4.14 and obtain:

T})(y—yl,yz, S YL AL 2kl Y1) —T}](y—yl,yg, S YISl B 2kl Y1) =
Tjg(y—y1+yl7y27 Y15 R B yl)"‘T})(y—Zh—yl, Yo, Y1y 21 s 2kt Y1)
—T]Q(y—y1+zz,y2, BRI/ PRI RS PR ,Zk+1,y1)—T]9(y—yl—Zz,y2, S YL 2141, 2k Y1)

Recall thaty is fixed andys, - - - , Ykt1, 22, -+, zx41 € F§ are chosen uniformly at
random, so all the parameters on the right hand side of thatequare independent and
uniformly distributed. Similarly one can expand the pﬂfj@séy — Y1, 22,23, 5 Zka1s Y1) —
TP(y—21, 22, 2kr1, Y1) @NATP(y—yy, 2, 23, - -+ 5 21, 21) =T (Y—21, 22, -+ Zhy1, 21)
into four 7' with all parameters being independent and uniformly cbsulneH Finally no-
tice that the parameters in btk (y—21, 22, 23, - - - , 211, 1) @NATP(y—21, 22, -+, Zkg1, Y1)

are independent and uniformly distributed. Further retadit by the definition ofy,

3SinceTJ?(~) is symmetric in all but its last argument.
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Pr,, . T}B(rl, -, rpy1) # 0] < mo for independent and uniformly distributeds.

5Tk+1 [

Thus, by the union bound, we have:

Pry, o yeenzrmnemn L7 s s yern) = T7 (21, -+, zig1) 7 0] < (4k +10)n. (7.17)

Thereforey > u > 1 — (4k 4+ 10)no. A similar argument proves the lemma for(y). The
only catch is thaf’, (.) is not symmetric— in particular in its first argument. Thug use
another identity as given in Claim 7116 to resolve the issukget four extra terms than in

the case ofyy, which results in the claimed bound @f + 14)n;. O

Remark 7.5. Analogously, in the cadg, we have: forevery € Fy, Pry, , ..y, ern[9:(y)
=fW) =Ty =y, 92, Y yn) + f(9)] =2 1= 2((p — Dk +6(p — 1) + L)

The proof is similar to that of LemniaZl11 where it can be shawe 1 — 2((p — 1)k +
6(p — 1) + 1)n;, for eachy, defined forg; (y).

7.4.4 Proof of Lemma_ 7112

From Theoreni 711, it suffices to prove that)jf< m thenT} (y1,- -, Ykt

b) = 0 for everyyy,--- ,yr+1,b € F4. Fix the choice ofy, - - -, yx41,b. DefineY =
(y1,-- , yk1). We will expressT; (Y, b) as the sum of ;(-) with random arguments. We
uniformly select4+1)? random variables; ; overF% for 1 < i < k+1,andl < j < k+1.
DefineZ; = (zi1, -+, zix+1). We also select uniformlyk + 1) random variables; over

Fz for1 < < k+ 1. We usez; ; andr;’s to set up the random arguments. Now by Lemma
[Z13, for everyl € Fi*! (i.e. think of I as an orderedk + 1)-tuple over{0, 1,2}), with
probability at least — (4k + 14)n; over the choice of; ; andr;,

Gi(1-Y+b) = f(I.Y+b)=TH(I-Y +b—1-Zy—r1,1-Za+ry, -+ I-Zyyr+risr, 1-Z1+r1),
(7.18)
where for vectorsY, Y € FA*, v - X = "M v, X, holds.
Let F, be the event thaE{Z1L8) holds for dlkc F£™. By the union bound:

PHE] > 1 — 3" (4k + 14)n;. (7.19)
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Assume that; holds. We now need the following claims. Lét= (J;,---, Jii1) be a

(k 4+ 1) dimensional vector ovérs, and denote/’ = (Js, - -, Jri1).

Claim 7.17. If (ZZI8) holds for alll € F4*, then

k+1 k+1 k+1
T;)O (Ya b) = Z _T})(yl + Z Jtzt,b Ykt Z Jtzt,(k-i-l)a b+ Z Jtrt)]
OyéJ’EIF'g L t=2 =92 1—9
r k+1 k-+1
+ Z —T})(le — 211+ Z Jezen, s 2kt — 21,11) + Z 12t (k41)5
J’EF?; L t=2 t=2
k+1
2b — T ‘l— Z Jt’r’t)
=2
k+1 k+1 k+1
+ T]? (211 + Z Jizet, s 2k T Z Ji2t (k41),T1 + Z Jﬂ’t)]
t=2 t=2 =2
(7.20)
Proof.
To (Vb)) = > gll-Y +D)
IeFs+?
= > [-TUI Y +b—T-Zy—ri, 1 Zo+ra,- T+ Zppr + g,
I€Fs+?

k+1 k+1
= - > S fIY 0+ T Zi+ Y Jir)
IE]F.§+1 @#Jle]F’g t=2 t=2
k+1 k+1
+1) <f(2]-Y+2b—I~21—r1+ZJtI-Zt+ZJtrt)
J'eFF t=2 t=2
k+1 k+1
A Zotri+ > I Z+ Zm))”
t=2 t=2
k+1 k+1
= — Z Z f([~Y+b+ZJt7’t+ZJtI-Zt)
O;éJ’ElF’?f IE]F§+1 t=2 t=2
k+1 k+1

= DD f@I-Y 420 —T-Zy =i+ Y ST Zi+ Y i)

J’E]Flg 16F§+1 t=2 t=2
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k+1 k+1
| D ST Zi i+ Y ST Zi+ Y i)
IeFsH! t=2 t=2
k+1 k+1 k+1
- Z _Tj?(yl + Z ez, Yesr + Z Jizt, (k+1), 0+ Z Jﬂ’t)]
07$J/€F§ t=2 t=2 t=2
k+1 k1
+ > STy = 2+ D Dz 2k — ey + D Tz
J/E]F§ t=2 t=2
k41
2b—T1+ZJt’/’t)
t=2
k+1 k+1 k+1
+ TP(z1+ Z Jizea, 2k + Z JiZi k1), T1 + Z Jﬂ’t)]
t=2 t=2 t=2
]
Claim 7.18. If (ZZI8) holds for alll € F4™, then
B k+1 k+1 k+1
Tgll(Ya b) = Z _T} (?/1 + Z Jize1, 0 Yl + Z Jtzt,(k+1)a b+ Z Jﬂ’t)]
0#£J'eFk L =2 t=2 —2
B k+1 k+1
+ Z T}(2yy — 21,1 + Z Jizen, s 2kt — 2141 + Z 12t (k41)5
Jerk L t=2 1=9
k+1
2b—ri+ > Jiry)| (7.21)
t=2
Proof.
T, (Y,b) = X:MMLY+Q
TeFkt!
= E:Iﬂfﬁu7y+b—fiﬁ—ﬁJ7%+Wm“w[i%H+mH>
IeFA+!
I-Zyv+nr)+ f(I-Y +b)
k+1 k+1
= = > L[| Y fUY+b+ > LI Z+ > i)
IeFAt! 0£J' €FY =2 t=2
k+1 k+1

+ Y fQI Y42 —T-Zi =i+ LI Zi+ Y dir)

J'eFk =2 t=2
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k+1 k+1
= = > | D LI Y +b+D> I+ Y S 7))
0£J'€F% | TeFET! t=2 t=2
[ k+1 k+1
> U LI Y +20—T1-Zy—m+ Y LI Zi+ Y i)
J'eFk IEIF?;“ t=2 t=2
i k+1 k1 k+1
= D |THo+ D A gk + > Dz, b+ Y i)
ozsers L t=2 =2 =2
k+1 k+1
+ Z T}(le — 211+ Z Jeze1, 0 2Ykg1 — 21, (k1) T Z 124 (k1)
J'cFk t=2 t=2
k+1
2()—7’1 +thrt)]
t=2

O

Let F, be the event that for every/ € F%, T}(yﬁZt Jezeny o Ykt Jez (1), b
Yook + 1) =0, T}(2y1—2171+2f:21 Jezpa, e >2yk+1—zl,k+1+2f:21 Ji2e (k1) 20—
k+1 _ 0 k+1 k+1 k+1 -
14> g Jire) =0, ande (211> s Jezins s 201D g JeZkr1, 1Y g JiTe) =

0. By the definition ofy; and the union bound, we have:
PEy) > 1 — 3%, (7.22)

Suppose tha; < (4k+14 g holds. Then by[{Z19) an@{7122), the probability that

and E, hold is strictly positive. In other words, there exists aickoof thez; ;'s andr;’s
for which all summands in either ClailiZ]117 or in Cldim1.18\iehever is appropriate, is

0. This implies that’; (y1,- - - , yr+1,0) = 0. In other words, ify; < theng;

(4k+14 )3k+10

belongs tap;. (I

Remark 7.6. Over F, we have: if;, < —, theng; belongs toP; (if

k> 1).

In case offf,,, we can generaliz&€{Z118) in a straightforward manner. Eédenote the

1
2((p—1)k+6(p—1)+1)p

event that all such events holds. We can similarly obtain

PE] > 1—p"" - 2((p— 1)k +6(p— 1) + ). (7.23)
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Claim 7.19. Assume equivalent di{7118) holds for Al F} ', then

k+1 k+1 k+1
To,(Y,b) = Z Ty + Z Jezes o Y + Z Jiz, (e+1), 0+ Z Jﬂ”t)]
0#.J'€Fk t=2 t=2 t=2
k+1
+ Z Z Jf _T;(lel - (Jl - 1)21,1 + Z Jtzt,la s Sk —
J'EFk | J1€Fp; 171 t=2

k+1 k+1
(J1 = 1)z, kg1) + Z Jizt k1), J1b— (J1 — 1)1+ Z Jﬂ’t)”

t=2 t=2
(7.24)
Proof.
T, (V,b) = > ILig(I-Y+b)
Ierptt
= Y L[-THI-Y+b—1-Zi—ri]-Zo+ra- 1 Zpa + Ths,
Ierptt

I-Zi+m)+ f(I-Y +b)]

k+1 k+1
= = D> LY. fUY b+ R Zi+ Y i)
IeFpt! 0. €Fk t=2 t=2

+ S TS AR Y + b= (J = DI Zy— (Jy = D)y
J1€Fp, J1#1 J'E€Fk
k+1 k+1

+ Z Jt[ . Zt + Z Jt’r’t)
t=2 t=2
k+1 k+1

= — Z Z Iff(]-Y—Fb—FZJtTt‘FZJtI‘Zt)

O#J/E]FI; IE]FI;+1 t=2 t=2

= > 0 Y A LARI-Y+Tb— (=0 Zy— (Jy = )y

J'eFk | Ji€Fp; i#l IEF’;+1
k+1 k+1 ]

AT Zi+ Y T
t=2 =2
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ktl k1 k1
= Z —Ti(y1 + Z Jezeas Y1 T Z Jizt,(k+1), 0+ Z Jﬂ"t)]
0#J'€Fk t=2 t=2 t=2
k41
+ Z Z Ji | =Ti(Jiyr — (S — D)za + Z Jizen, s Sk
JeFk | eFyi#1 =2

k+1 k+1
—(J1 = D2y gy + Z Jizi (ey1y, J1b— (J1 — 1)ry + Z Jﬂ’t)”

t=2 t=2

O

Let £, be the event analogous to the evéitin Claim[ZI8. Then by the definition of

n; and the union bound, we have

PiE;)] > 1 —2p* 'y, (7.25)

Then if we are given that);, < 5 Taat then the probability that’; and £,

1
(p—1)k+6(p—1)+1
hold is strictly positive. Therefore, this implig$ (yi, - - -, yx11,0) = 0.

7.4.5 Proof of LemmBa 713

For eachC' € F5*!, let X be the indicator random variable whose value is 1 if and dnly i
f(C-Y +0b) #g(C-Y +b), whereY = (y1,...,yxs1). Clearly, PfXo = 1] = § for every

C. It follows that the random variabl& = )" X which counts the number of points

of the required form in whiclyf (v) # g(v) has expectatioft| X] = 3¥¥15 = ¢ . §. It is not
difficult to check that the random variablég. are pairwise independent, since for any two
distinct ¢y = (Cy1,...,Cipsr) @andCy = (Coy, ..., Copir), the sumsy 5t Gy + b
and > """ Cyy; + b attain each pair of distinct values i with equal probability when
the vectors are chosen randomly and independently. Siip¢e are pairwise independent,

Var[X| = ), Var[X¢]. SinceX¢’s are boolean random variables, we note

Var[Xc] = E[X¢] — (E[Xc])* = E[Xc] — (E[Xc])* < E[Xc].
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Thus we obtain VaX] < E[X], soE[X?] < E[X]* + E[X]. Next we use the following
well known inequality which holds for a random variab¥e taking nonnegative, integer
values,

(E[X])?

PriX > 0] > B

Indeed if X attains value with probability p;, then we have

(E[X])* = (Zm) = (Zz’m@) < (Zm) (Zm) — E[X]-PX > 0],

1>0 1>0 1>0 >0

where the inequality follows by the Cauchy-Schwartz inéigygidn our case, this implies

(E[X])* (B[X])? E[X]
PRX> 0> BReT 2 B+ @02 T EX]
Therefore,
E[X] >PriX =1]4+2PrX >2] = PriX =1]+2 <% — PriX = 1])

_ _2E[X] _

= TTEX] PiX =1].
After simplification we obtain,

PHX — 1] > % CE[X].

The proof is complete by recalling th&fX| = ¢- 4. O
7.5 A Lower Bound and Improved Self-correction

7.5.1 A Lower Bound

The next theorem is a simple modification of a theoreniLin [1] assentially implies that

our result is almost optimal.

Proposition 7.20. Let 7 be any family of functiong : F; — T, that corresponds to
a linear codeC. Letd denote the minimum distance of the caand letd denote the

minimum distance of the dual code®f
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Every one-sided testing algorithm for the famfiymust perfornt)(d) queries, and if the
distance parameteris at mostl/p"*!, thenQ(1/¢) is also a lower bound for the necessary

number of queries.
LemmdZ¥ and Propositi@n 7120 gives us the following cargll

Corollary 7.5. Every one-sided tester for testifigy with distance parameter must per-

formQ(max(2, (1 + ((¢t + 1) mod(p — 1)))pz%)) queries.

7.5.2 Improved Self-correction

From Lemma§ 719,711 ad 7112 the following corollary is ieliate:

Corollary 7.6. Consider a functiory : I} — 5 that isc-close to a degree¢{polynomial

g : F? — T3, wheree < (Assumet > 1.) Then the functiory can be

(4k+14 YR+
self-corrected. That is, for any givene F%, it is possible to obtain the valugx) with

probability at leastl — 3¥*1¢ by queryingf on3**! points onF%.

An analogous result may be obtained for the general case htVegver, improve the
above corollary slightly. The above corrector does notvakimy error in the3*+! points it
gueries. We obtain a stronger result by querying on a skdatger flat /4, but allowing

some errors. Errors are handled by decoding the induced-Redldr code onH.

Proposition 7.21.Consider a functiorf : ) — [, thatise-close to a degre¢polynomial
g : F; — TF,. Then the functiorf can be self-corrected. That is, assufie> (k + 1),
then for any givenr € F}, the value ofg(x) can be obtained with probability at least

1— - p~(K=2k=3) with p queries tof.

&
TP 1)

Proof. Our goal is to correct the RMt, n) at the pointz. Assumet = (p — 1) - k + R,
where0 < R < (p — 2). Then the relative distance of the codlés (1 — R/p)p~*. Note
that2p=*=! < § < p~*. Recall that the local testability test requiregka+ 1)-flat, i.e., it

tests) . . B (yo + ZZ 1 cy;) = 0, wherey; € F.

»Chk+1 E]Fp 1
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We choose a slightly larger flat, i.e.,/@-flat with X' > (k + 1) to be chosen later.
We consider the code restricted to tHisflat with pointx being the origin. We query
on this K'-flat. It is known that a majority logic decoding algorithmigts that can decode
Reed-Muller codes up to half the minimum distance for anyehof parameters (see [99]).

Thus if the number of errors is small we can recoyer).

Let the relative distance gf from the code be and letS be the set of points where it
disagrees with the closest codeword. Let the randoiftat be H = {x + Zfil tiu|t; €
F,u; € F7'}. Letthe random variable,, .. .., take the valué if z+>7  u;t; € Sand 0
otherwise. LetD = FX \ {0} andU = (uy,--- ,ug). DefineY = Dt trveD Yitnootx)
and/ = (p® — 1). We would like to bound the probability

PllY —ef] > (5/2 - €)).

Since Py [Y;, ... 1, = 1] = ¢, by linearity we geffy [Y] = el. LetT = (t1,--- ,tx). Now

VarlY] = Z VarlYr] + Z CovlYr, Yr]
TerK —{0} TAT
= 6(5 — 62) + Z COU[YT, YT/] + Z COU[YT, YT/]
TANT T=AT';1£\€F*

< lle—e)+l-(p—2)(e—&?)

=le—e)(p—1)

The above follows from the fact that wh&h=£ \T” then the corresponding evenits and
Y7+ are independent and therefarev[Yr, Y7+] = 0. Also, whenY; andY7 are dependent
thenCOU[YT, YT’] =Ey [YTYT’] — EU[YT]EU[YT’] Le— g2,

Therefore, by Chebyshev’s inequality we have (assumirgp~(*+1))

le(l—¢)(p—1)
(6/2 — 2)20

Pro[[Y —ef] > (6/2 — £)(] <
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Now note(§/2 —e) > (p~* 1 —¢) = (1 — e - pF*t1)p~*~1. We thus have

el-9)p-1)
Pro[|Y —ef| > (6/2 — )] < (ErT=
< cp
= (1 —e _pk+1)2p—2k—2(g + 1)
€ —(K—2k—3)

:(1_5.pk+1)2'p :

7.6 Bibliographics Notes

The results presented in this chapter appedrih [72].

As was mentioned earlier, the study of low degree testingn@hith self-correction)
dates back to the work of Blum, Luby and Rubinfeld{[21]), wénan algorithm was re-
quired to test whether a given function is linear. The apgnoa [21] later naturally ex-
tended to yield testers for low degree polynomials over $idddiger than the total degree.
Roughly, the idea is to project the given function on to a mandine and then test if the
projected univariate polynomial has low degree. Speclfictdr a purported degreefunc-
tion f : F, — TF,, the test works as follows. Pick vectaysandb from Iy (uniformly at
random), and distincty, - - - , 5,41 from [, arbitrarily. Query the oracle representirfgat
thet + 1 pointsb + s,y and extrapolate to a degrepolynomial 5, ,, in one variables. Now

test for a randoms € I, if
Pb,y(s) = f(b + Sy)

(for details se€[[93],]142]). Similar ideas are also emptbtetest whether a given function
is a low degree polynomial in each of its variable (seé [3®]B,

Alon et al. give a tester over fiel, for any degree up to the number of inputs to the
function (i.e., for any non-trivial degre€)l[1]. In other was, their work shows that Reed-
Muller codes are locally testable. Under the coding theptgrpretation, their tester picks

a random minimum-weight codeword from the dual code andlchédat is orthogonal to
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the input vector. It is important to note that these minimweight code words generate
the Reed-Muller code.

Specifically their test works as follows: given a functign {0, 1} — {0, 1}, to test if
the given functionf has degree at mostpick (¢ + 1)-vectorsyy, - - -,y € {0,1}" and

test if

> O w=o.

0£SClt+1] €S
Independent of [42], Kaufman and Ron, generalizing a charnaation result of([42],

gave a tester for low degree polynomials over general findeldi (seel[74]). They show
that a given polynomial is of degree at mest and only ifthe restriction of the polyno-
mial to every affine subspace of suitable dimension is of elegt most. Following this
idea, their tester chooses a random affine subspace of &lsuiianension, computes the
polynomial restricted to this subspace, and verifies thattrefficients of the higher degree
terms are zeHJ To obtain constant soundness, the test is repeated maey.tém advan-
tage of the approach presented in this chapter is that inamelrof the test (over the prime
field) we test only one linear constraint, whereas their appn needs to test multiple linear
constraints.

A basis of RM consisting of minimum-weight codewords wassidered in[[28["29].
We extend their result to obtain a different exact charaaéon for low-degree polyno-
mials. Furthermore, it seems likely that their exact chimazation can be turned into a
robust characterization following analysis similar to ooibust characterization. However,
our basis is cleaner and yields a simpler analysis. We paointhat for degree smaller than
the field size, the exact characterization obtained filoriZ28 coincides with[[211], 93, 42].
This provides an alternate proof to the exact charactéoizatf [42] (for more details, see
RemarZB and[22]).

In an attempt to generalize our result to more general fielgspbtain an exact char-

acterization of low degree polynomials over general finigddf [71] (seell86] for more

4Since the coefficients can be written as linear sums of thieatians of the polynomial, this is equivalent
to check several linear constraints
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details). This provides an alternate proof to the result afitthan and Rori[74] described

earlier. Specifically the result says that a given polyndnsiaf degree at most if and

only if the restriction of the polynomial to every affine subspacdiufension(qf;}p} (and
higher) is of degree at most

Recently Kaufman and Litsyn[{[73]) show that the dual of BCbtles are locally
testable. They also give a sufficient condition for a codedddrally testable. The con-
dition roughly says that if the number of fixed length codesgoin the dual of the union
of the code and its-far coset is suitably smaller than the same in the dual ofctice,
then the code is locally testable. Their argument is moreltoatorial in nature and needs
the knowledge of weight-distribution of the code and thiuteds from the self-correction

approach used in this work.
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Chapter 8
TOLERANT LOCALLY TESTABLE CODES

In this chapter, we revisit the notion of local testers (afinéel in Sectiof2]3) that was

the focus of Chaptéd 7.

8.1 Introduction

In the definition of LTCs, there is no requirement on the tegie input strings that are
very close to a codeword (it has to reject “far” away receiventds). This “asymmetry” in
the way the tester accepts and rejects an input reflects th&@wadabilistically Checkable
Proofs (or PCPs)[6,15] are defined, where we only care abagpding perfectly correct
proofs with high probability. However, the crux of errorroecting codes is to tolerate and
correcta few errors that could occur during transmission of the eadd (and not just
be able to detect errors). In this context, the fact that tetesan reject received words
with few errors is not satisfactory. A more desirable (anrsger) requirement in this
scenario would be the following— we would like the tester taken a quick decision on
whether or not the purported codeword is close to any codéwbthe tester declares that
there is probably a close-by codeword, we then use a decadgugithm to decode the
received word. If on the other hand, the tester rejects, Weeassume with high confidence
that the received word is far away from all codewords and notaur expensive decoding
algorithm.

In this chapter, we introduce the concepttolerant testers These are testers which
reject (w.h.p) received words far from every codeword (like “standard” local testers)
and accept (w.h.p) close-by received words (unlike thentiéad” ones which only need to

accept codewords). We will refer to codes that admit a toletester as tolerant LTCs. In
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particular we get tolerant testers that (i) makél) queries and work with codes of near
constant rate codes and (ii) make sub-linear number of gsi@nd work with codes of

constant rate.
8.2 Preliminaries

Recall that for any two vectors, v € [¢]", d(u, v) denotes the (relative) Hamming distance
between them. We will abuse the notation a bit and for &y [¢|", used(u, S) to denote

min,es (u, v). We now formally define &oleranttester.

Definition 8.1. For any linear codeC overF, of block lengthn and distancel, and0 <
c1 < ¢p < 1,a(c, co)-tolerant testefl” for C with query complexity(n) (or simplyp when
the argument is clear from the context) is a probabilistitypomial time oracle Turing

machine such that for every vector Fy:

1. Ifo(v,C) < % T upon oracle access toaccepts with probability at Iea%t (toler-

ance,
2. 1f6(v,C) > 24, T rejects with probability at leas} (soundness
3. T'makes(n) probes into the string (oracle).

A code is said to bécy, ¢, p)-testable if it admits dcy, co)-tolerant tester of query com-

plexityp(-).

A tester hagerfect completenestit accepts any codeword with probability, As
pointed out earlier, local testers are j8t c;)-tolerant testers with perfect completeness.
We will refer to these astandardtesters henceforth. Note that our definition of tolerant
testers is per se not a generalization of standard testere sve do not require perfect
completeness for the case when the inpig a codeword. However, all our constructions

will inherit this property from the standard testers we abtaem from.
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Recall one of the applications of tolerant testers mentagerlier: a tolerant tester is
used to decide if the expensive decoding algorithm shoulddeel. In this scenario, one
would like to set the parameters andc, such that the tester is tolerant up to the decoding
radius. For example, if we have an unique decoding algoritfimch can correct up t<§
errors, a particularly appealing setting of parametersldibe c, = % andc, as close to}
as possible. However, we would not be able to achieve sugk dar In general we will
aim for positive constants; andc, with = being as small as possible while minimizing
p(n).

One might hope that the existing standard testers couldo@$olerant testers. We give
a simple example to illustrate the fact that this is not treeda general. Consider the tester
for the Reed-Solomon (RS) codes of dimenstanl: pick £+ 2 points uniformly at random
and check if the degréleunivariate polynomial obtained by interpolating on thetfirs- 1
points agrees with the input on the last point. It is well kimavat this is a standard tester
[96]. However, this is not a tolerant tester. Assume we havmput which differs from a

degreek polynomial in only one point. Thus, qul‘l

") choices ofk + 2 points, the tester

would reject, that is, the rejection probability :i; = % which is greater tharé for
high rate RS codes.

Another pointer towards the inherent difficulty in comingwijth a tolerant tester is the
work of Fischer and Fortnow [39] which shows that there andage boolean properties
which have a standard tester with constant number of quiede®r which every tolerant
tester requires at least’™ queries.

In this chapter, we examine existing standard testers andecbsome standard testers
into tolerant ones. In Sectidn 8.3 we record a few generds fadich will be useful in
performing this conversion. The ultimate goal, if this canrkalized at all, would be to
construct tolerant LTCs of constant rate which can be tastethO(1) queries (we remark
that such a construction has not been obtained even witheuetjuirement of tolerance).

In this work, we show that we can achieve either constant rurabqueries with slightly

sub-constant rate (Secti@n1B.4) as well as constant ratesuli-linear number of queries
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(Sectior851). That is, something non-trivial is possibl both the domains: (a) constant
rate, and (b) constant number of queries. Specifically, icti&e[8.4 we discuss binary
codes which encodebits into codewords of length = k - exp(log® k) for anye > 0, and
can be tolerant tested usiny1/¢) queries. In Section 8.3.1, following[14], we will study
the simple construction of LTCs using products of codes -s-yields asymptotically good
codes which are tolerant testable using a sub-linear numibef queries for any desired
~ > 0. An interesting common feature of the codes in Sedfioh 8d@B.1 is that they
can be constructed from any code that has good distancerpissp@nd which in particular
need not admit a local tester with sub-linear query compjexin Sectiof 8.6 we discuss
the tolerant testability of Reed-Muller codes, which wevasidered in Chaptét 7.

The overall message from this chapter is that a lot of the worlocally testable code
constructions extends fairly easily to also yield tolermaially testable codes. However,
there does not seem to be a generic way to “compile” a staridater to a tolerant tester

for an arbitrary code.
8.3 General Observations

In this section we will spell out some general propertieotériant testers and subsequently
use them to design tolerant testers for some existing codléghe testers we refer to are
non-adaptive testerghich decide on the locations to query all at once based amlghe

random choices. The motivation for the definition below Wil clear in Sectioh 3.4.

Definition 8.2. Let0 < o < 1. AtesterT is ({(s1,q1), (s2, ¢2), a)-smoothif there exists a

setA C [n] where| A| = an with the following properties:

e T queries at mosy; points inA, and for everyr € A, the probability that each of

these queries equals locatiaris at mostﬁ, and

e T queries at mosi, points in[n] \ A, and for everyr € [n] \ A, the probability that

each of these queries equals locatiors at mostnj—TA'.
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As a special case @1, q), (0,0), 1)-smooth tester makes a total @fqueries each of
them distributed uniformly among thepossible probe points. The following lemma fol-

lows easily by an application of the union bound.

Lemma 8.1. For any0 < a < 1, a ({s1,q1), (S2, ¢2), @)-smooth(0, c;)-tolerant testerl’

na(l—a)
3dmax{qis1(1l—a), gas2a} "’

with perfect completeness i@, c2)-tolerant testefl”, wherec; =

Proof. The soundness follows from the assumptionZanAssumes(v,C) < <4 and let
f € C be the closest codeword to Suppose thaf differs fromv in a setA’ of yd places
among locations i, and a set3’ of (5 — y)d places among locations [n] \ A, where
we haves < ¢; and0 < y < (. The probability that any of the at mogt (resp. ¢2)
queries of7” into A (resp. [n] \ A) falls in A’ (resp. B') is at most% (resp. W).

Clearly, whenevef’ does not query a location id’ U B’, it accepts (sincé" has perfect

completeness). Thus, an easy calculation shows that thlpitity that7" rejectsv is at

most
cid S1q1 5242
— max{—, }
a '1—«
which is1/3 for the choice ot stated in the lemma. O

The above lemma is not useful for us unless the relative mistand the number of
queries are constants. Next we sketch how to design tolezatdrs from existingobust
testers with certain properties. We first recall the defamitbf robust testers froni.[14].

A standard testef” has two inputs: an oracle for the received waerdnd a random
string s. Depending ors, 7' generateg query positionsy, - - - , i, fixes a circuitCy and
then accepts i€’ (v (s)) = 1 wherevs(s) = (v;,,--- ,v;,). The robustness af on inputs
v and s, denoted by’ (v, s), is defined to be the minimum, over all stringssuch that
Cs(y) = 1, of §(vs(s),y). The expected robustness Bfon v is the expected value of
pT (v, s) over the random choices efand would be denoted hy (v).

A standard testér is said to be-robust forC if for every v € C, the tester accepts with

probability 1, and for every € F?, §(v,C) < ¢ - pt'(v).
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The tolerant versio” of the standard-robust testefl” is obtained by accepting an
oraclev on random input, if p*' (v, s) < 7 for some threshold. (Throughout the chapter
7 will denote the threshold.) We will sometimes refer to sucbsder as one with threshold
7. Recall that a standard testEraccepts ifp” (v, s) = 0. We next show that” is sound.

The following lemma follows from the fact thdt is c-robust:

Lemma 8.2.Let0 < 7 < 1, and lete, = T2 For anyv € F7, if (v,C) > <4, then

the tolerant testefl” with thresholdr rejectsv with probability at Ieast%.
Proof. Letv € F be such thaf(v, C) > <2. By the definition of robustness, the expected
robustnessp’ (v) is at least2¢, and thus at leagtr + 2)/3 by the choice of». By the
standard averaging argument, we can ha\@, s) < 7 on at most a fraction /3 of the of
the random choices offor 7' (and hencd™). Thereforep’ (v, s) > 7 with probability at
least2/3 over the choice of and thusl” rejectsv with probability at leasg/3. [

We next mention a property of the query patterriZoWhich would makel” tolerant.
Let S be the set of all possible choices for the random stsingurther for eacls, letp? (s)

be the set of positions queried By

Definition 8.3. A testerT' has apartitionedquery pattern if there exists a partition U

.-+ U .S, of the random choices @f for somem, such that for every,

o Uswes,p'(s)={1,2,---,n}, and

o Foralls,s' € S;, pT(s)NpT(s) =0if s # 5.

Lemma 8.3. Let T have a partitioned query pattern. For anye F7, if §(v,C) < %d,

wherec; = %7, then the tolerant test” with thresholdr rejects with probability at moslt.

Proof. Let 5y, - - -, S,, be the partition of9, the set of all random choices of the testér
For eachj, by the properties of}, Zsesj ol (v,s) < 6(v,C). By an averaging argument
and by the assumption d@itv, C) and the value of,, at least fraction of the choices of

in S; havep” (v, s) < 7 and thus” accepts. Recalling th&t, - - - , S,, was a partition of

S, for at Ieast% of the choices of in S, 7" accepts. This completes the proof.
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8.4 Tolerant Testers for Binary Codes

One of the natural goals in the study of tolerant codes is sigtieexplicit tolerant binary
codes with constant relative distance and as large a ratesssbfe. In the case of stan-
dard testers, Ben-Sasson et[all [11] give binary locallyatdstcodes which map bits to

k - exp(log® k) bits for anys > 0 and which are testable with(1 /<) queries. Their con-
struction uses objects called PCPs of Proximity (PCPP) wthiey also introduce in[11].
In this section, we show that a simple modification to theinstauction yields tolerant
testable binary codes which maits tok - exp(log® k) bits for anys > 0. We note that a
similar modification is used by Ben-Sasson et al to give axegldocally decodable codes

[11] but with worse parameters (specifically they gives codéh block lengthk!+<).

8.4.1 PCP of Proximity

We start with the definiti(ﬂ‘nof of a Probabilistic Checkable proof of Proximity (PCPP).
A pair language is simply a language whose elements areatigtarpair of strings, i.e.,
it is some collection of stringér, y). A notable example iI€TRCUITVAL = {(C,a) |

Boolean circuitC' evaluates td on assignment}.

Definition 8.4. Fix 0 < v < 1. A probabilistic verifierV is a PCPP for a pair languagé

with proximity parametety and query complexity(-) if the following conditions hold:

e (Completeness) Ifx,y) € L then there exists a proof such thatl” accepts by

accessing the oraclg o = with probability 1.

e (Soundness) If is y-far from L(z) = {y|(x,y) € L}, then for all proofst, V'

accepts by accessing the oragle = with probability strictly less thari.

e (Query complexity) For any input and proofr, V' makes at mosf(|x|) queries in

Yy o .

The definition here is a special case of the general PCPP defirfi1] which would be sufficient for
our purposes.
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Note that a PCPP differs from a standard PCP in that it has a netaxed soundness
condition but its queries into part of the inpytre also counted in its query complexity.

Ben-Sasson et. al. give constructions of PCPPs with theviollg guarantees:

Lemma 8.4 ([L1]). Lete > 0 be arbitrary. There exists a PCP of proximity for the pair
languageCIRCUITVAL = {(C,x)|C is a boolean circuit and’(x) = 1} whose proof

length, for inputs circuits of size, is at mosts - exp(log”?s) and for¢ = 2FELES the
verifier of proximity has query complexi@(max{%, % ) for any proximity parametety
that satisfiegy > % Furthermore, the queries of the verifier are non-adaptiad aach of

the queries which lie in the input partare uniformly distributed among the locationsiof

The fact that the queries to the input part are uniformlyribsted follows by an exam-
ination of the verifier construction il [11]. In fact, in thetended version of that paper, the
authors make this fact explicit and use it in their constarcbf relaxed locally decodable
codes (LDCs). To achieve a tolerant LTC using the PCPP, wienedd all queries of the
verifier to be somewhat uniformly or smoothly distributede Will now proceed to make
the queries of the PCPP verifier that fall into the “proof partnear-uniform. This will
follow a fairly general method suggested [n][11] to smootbanthe query distribution,
which the authors used to obtain relaxed locally decodatdies from the PCPP. We will
obtain tolerant LTCs instead, and in fact will manage to dwibout a substantial increase
in the encoding length (i.e., the encoding length will remYai 2!°¢° ). On the other hand,
the best encoding length achieved for relaxed LDC§1h [1k}iS for constant > 0. We
begin with the definition of a mapping that helps smoothentloeiuery distribution.

Definition 8.5. Given anyv € F} andp = (p;)j, with p; > 0 for all i € [n] and
>, pi = 1, we define the mappirRepeat(-, -) as follows:Repeat(v, p) € IF;L' such that
v; is repeated 4np; | times inRepeat(v, p) andn’ = > [4np;].

We now show why the mapping is useful. A similar fact appearflil], but for the

sake of completeness we present its proof here.
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Lemma 8.5. For anyv € [y let a non-adaptive verifief” (with oracle access to) make
q(n) queries and lep; be the probability that each of these queries probes loaatio [n].
Lete; = o~ + & andé = (¢;)1,. Consider the maRepeat(v, ) : F* — F2'. Then there

exists another testef’ for strings of length’ with the following properties:

1. 7" makes2q(n) queries onv’ = Repeat(v, ¢) each of which probes locatiofy for

any; € [n/], with probability at most:;, and

2. for everyv € T, the decision off” on +' is identical to that of/" on v. Further,

3n < n <4n.

Proof. We first addg dummy queries td" each of which are uniformly distributed, and
then permute th@q queries in a random order. Note that each of 2hegueries is now
identically distributed. Moreover, any position inis probed with probability at Iea%z
for each of theq queries. For the rest of the proof we will assume thahakes2g queries
for each of which any € [n] is probed with probability; = 2 + -. Letr; = |4nc;].
Note thatr; < 4nc; andr; > 4nc; — 1. Recalling that' = >~ r; and) " ¢; = 1, we
have3n < n’ < 4n.

T" just simulated” in the following manner: ifl" queriesy; for anyi € [n], 7' queries
one of ther; copies ofy; in v" uniformly at random. It is clear that the decision®f on
v’ = Repeat(v, €) is identical to that ofl’ onv. We now look at the query distribution of
T'. T' queries any € [n'], wherev) = v;, with probabilityp’; = ¢; - Ti Recalling the lower
bound onr;, we havep;. < —%_ which is at mos% since clearlyc; > % We showed

dnc;—1

earlier that’ < 4n which impliesp’; < nl as required. O

One might wonder if we can use Leminal8.5 to smoothen out theesumade by the
verifier of an arbitrary LTC to obtain a tolerant LTC. Thatvghether the above allows one
to compile the verifier for any LTC in a black-box manner toaibta tolerant verifier. We
will now argue (informally) that this technique alone witbtwork. LetC, be ann, k, d|,,

LTC with a standard testdr; that makesg identically distributed queries with distribution
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pi, 1 <7 < n, such thap; > 1/2n for eachi. Create a nevin + 1, k, d], codeC, whose
(n + 1)'th coordinate is just a copy of the’th coordinate, i.e., corresponding to each
codeword(cy, ¢z, - - ., ¢,) € Fy of C1, we will have a codewordey, ¢y, . . ., cn, ¢,) € Fg’“

of C5. Consider the following testéer, for C5: Given oracle access to € IF;‘“, with
probability1 /2 check whether,, = v,,1, and with probabilityl /2 run the testef; on the
first n coordinates of. Clearly, T is a standard tester far,.

Now, consider what happens in the conversion procedure winha[8.5 to getC’, 7”)
from (Cy, Ty). Note that by Lemmds 8.5 abd BB, is tolerant. Let] = (¢, ..., ¢.41) be
the query distribution of». SinceT;, queries(v,,, v,.1) with probability1/2, the combined
number of locations of’ = Repeat(v, ¢) corresponding ta,,, v,.; will be about1/2 of
the total lengthw’. Now letv’ be obtained from a codeword 6f by corrupting just these
locations. The testér’ will accept such a’ with probability at least /2, which contradicts
the soundness requirement sincés 1/2-far from C’. Therefore, using the behavior of the
original testerT; as just a black-box, we cannot in general argue that the warisin of
Lemmd&.b maintains good soundness.

Applying the transformation of Lemnia3.5 to the proximityifier and proof of prox-

imity of Lemma8.4%, we conclude the following.

Proposition 8.6. Lets > 0 be arbitrary. There exists a PCP of proximity for the pair{an
guageCIRCUITVAL = {(C, z)|C is a boolean circuit and’(z) = 1} with the following

properties:

1. The proof length, for inputs circuits of sizgis at mosts - exp(loge/2 s), and

2. fort = ﬁgﬁfﬁ the verifier of proximity has query complexifymax{:, 1}) for

any proximity parametey that satisfiesy > %
Furthermore, the queries of the verifier are non-adaptivéhhe following properties:

1. Each query made to one of the locations of the ingatuniformly distributed among

the locations ofr, and
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2. each query to one of the locations in the proof of proximityrobes each location
with probability at most/|x| (and thus is distributediearly uniformlyamong the

locations ofr).

8.4.2 The Code

We now outline the construction of the locally testable cfsde [11]. The idea behind the
construction is to make use of a PCPP to aid in checking iféheived word is a codeword
is far away from being one. Details follow.

Suppose we have a binary codg : {0,1}* — {0,1}™ of distanced defined by a
parity check matrixd € {0, 1}("=%)*™ that is sparse, i.e., each of whose rows has only an
absolute constant number 6. Such a code is referred to as a low-density parity check
code (LDPC). For the construction below, we will use any scmtie which is asymptoti-
cally good (i.e., has rate/m and relative distancé/m both positive asn — o). Explicit
constructions of such codes are known using expander gfeBhd.et V' be a verifier of a
PCP of proximity for membership i6'y; more precisely, the proof of proximity of an input
stringw € {0, 1} will be a proof thatC,(w) = 1 whereC is a linear-sized circuit which
performs the parity checks required B# on w (the circuit will have sizeD(m) = O(k)
since H is sparse and’y has positive rate). Denote by(z) be the proof of proximity
guaranteed by Propositign 8.6 for the claim that the ingyt:) is a member of’; (i.e.,
satisfies the circui€’;). By Propositio.816 and fact that the size(@fis O(k), the length
of w(x) can be made at mostexp(log*/? k).

The final code is defined &% (z) = (Cy(z)", m(x)) wheret = W The
repetition of the code pat(x) is required in order to ensure good distance, since the
length of the proof partr(z) typically dominates and we have no guarantee on how far
apartr(xq) andr () for z; # x4 are.

For the rest of this section Iétdenote the proof length. The tesi&rfor C; on an input
w = (wy,- - ,w, ) € {0, 1} picksi € [t] at random and runs the PCPP verifiéion

w; o . It also performs a few rounds of the following consistenbgaks: picki,, iy € [t]



196

andj, j» € [m] at random and check if;, (j1) = w;,(j2). Ben-Sasson et al il [11] show
that7} is a standard tester. Howevéi, need not be a tolerant tester. To see this, note that
the proof part of’; forms a@ fraction of the total length. Now consider a received word
Wree = (wo, - -+ ,wp, ™) Wherew, € Cy but#’ is not a correct proof forv, being a valid
codeword incy. Note thatw,... is close taC;. However,T; is not guaranteed to accept..
with high probability.

The problem with the construction above was that the prodfypas too small: a natural
fix is to make the proof part a constant fraction of the codelwd¥e will show that this is
sufficient to make the code tolerant testable. We also rethatla similar idea was used by

Ben-Sasson et. al. to give efficient constructions for retbocally decodable codds]11].

Construction 8.1. Let0 < 3 < 1 be a parameter’; : {0,1}* — {0,1}™ be a goo<H
binary code and’ be a PCP of proximity verifier for membershipdfy. Finally let 7(x)
be the proof corresponding to the claim th@i(x) is a codeword inCy. The final code is
defined a®, (x) = (Cy(x)"™, m(x)"2) withr; = U=2LEHT@l gngy, = Blog k

For the rest of the section the proof length(x)| will be denoted by/. Further the
proximity parameter and the number of queries made by thePP¢fifier V' would be
denoted byy, andg, respectively. Finally lep, denote the relative distance of the cade

The testefl; for C, is also the natural generalization 6f. For a parametey, (to be
instantiated later) and input = (wy,- -+ ,w,, T, - ,m,) € {0,1}71™*+2L T, does the

following:

1. Repeat the next two steps twice.

2. Picki € [r;] andj € [rs] randomly and ru’ onw; o ;.

2This means that. = O(k) and the encoding can be done by circuits of nearly linearsjze O(k).

3The factorlog k overhead is overkill, and a suitably large constant will Hot since the proof length
| (x)| will anyway be larger thaz| by more than a polylogarithmic factor in the constructiors use,
we can afford this additiondbg & factor and this eases the presentation somewhat.
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3. Dog, repetitions of the following: picky, i € [r1] andj;, j» € [m]| randomly and

check ifw;, (j1) = w;,(j2)-
The following lemma captures the properties of the c8gand its testets.

Lemma 8.7. The code&’; in Constructior 811 and the testéh (with parameters; and g,

respectively) above have the following properties:

1. The codé&’, has block lengt = log & - ¢ with minimum distancé lower bounded

by (1 — 3)pon.
2. T, makes a total of = 2¢, + 4¢, queries.

3. Tyis ((1,q), (2,2q,), 1 — B)-smooth.

nB(1-3)

4. Ty is a(cy, co)-tolerant tester withr; = ST @0 ta)F, 305

o+ B).

s andc, = 5(7, +

1-B)¢log k

Proof. From the definition of’,, it has block lengtlh = rym + rof = ( - -m +

Blogk - ¢ =logk - £. Further ag’ has relative distance), C, has relative distance at least
Tiogk — (1= B)po.
T, makes the same number of queries/awhich isq, in Step 2. In Step 3], makes

2¢, queries. Asl; repeats Steps 2 and 3 twice, we get the desired query cortyplexi

To show the smoothness @ we need to define the appropriate subdet [n] such
that|A| = (1 — G)n. Let A be the set of indices with the code part: i.d. = [r;m].
T, makes2q, queries inA in Step 3 each of which is uniformly distributed. Further by
Propositio 81675 in step 2 makes at mogj queries inA which are uniformly distributed
and at most, queries in[n] \ A each of which are within a factar of being queried
uniformly at random. To complete the proof of propestyote thatl; repeats step 2 and 3
twice.

The tolerance ofl;, follows from property3 and Lemmd8]1. For the soundness part

note that ifw = (wy, -+, w,,m, -+, m,) € {0,1}™Fr2l js ~-far from C, thenw' =
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(wi, -+, wy,) is at least™="2¢ = 1200 — o _ 3 far from the repetition cod€’ =

n

{Co(z)|z € {0,1}*}. Fory = cyd/n with the choice ofc, in the lemma, we have
v — 0B = v, +4/q. The rest of the proof just follows the proof inJ11] (also B8,
Chap. 12]) of the soundness of the testefor the codeC;— for the sake of completeness
we complete the poof here. We will show that one invocatiostefps 2 and 3 results in
T, acceptingw with probability strictly less thar%. The two repetitions of Steps 2 and 3
reduces this error to at most

Letu € {0,1}™ be the string such that is the “repetition sequence” that is closest to

w’, that is one that minimize& (w', ') = > | A(w;, w). We now consider two cases:

e Case 1: A(w',u') > rym/q,. In this case, a single execution of the test in Step 3

rejects with probability

1
Eil,ize[m] [A(wiuwig)/m] = W Z Z A<wi17wi2>

(R

12 11

-
= A i1
o Al u)

i1=1

= A(w',u")/(mry)

1/qy,

WV

where the first inequality follows from the choice ofand the second inequality
follows from the case hypothesis. Thus, afjerepetitions the test will accept with

probability (1 — 1/¢,)" < 1/e < 1/2.

e Case 2: A(w',u") < rm/q.. Inthis case we have the following (where for any

subsetS of vectors and a vectar, we will useA(u, S) = min,es A(u, v)):

A(u, C, Aut, C’ A, C" — A(w', ut
(u.Co) _ Al )> ( ) ( )>vp+4/qr—1/qr=7p+3/qm
71 rim rim
8.1)



199

where the first inequality follows from the triangle inegtyabnd the last inequality
follows from the case hypothesis (and the fact thais +, + 4/¢,-far from C’). Now

by the case hypothesis, for an average\(w;,u) < m/q.. Thus, by a Markov
argument, at most one thirds of the's are3/q,-far from . Sinceu is v, + 3/¢,-far
from C, (by (81)), this implies (along with triangle inequality)at for at least two
thirds of thew;’s arev,-far from C,. Thus, by the property of the PCPP, for each
suchw; the test in Step 2 should accept with probability at modt Thus the total

e - . . 2 1 _ 1 -
acceptance probability in this case is at m§)sﬂ + 71 = 3 asdesired.

Thus, in both cases the tester acceptsith probability at mosti /2, as required. O

Fixany0 <y < landletg = 3,7, = § ¢ = % With these settings we get
W+ o+ 3 =yandg, = O(Z) from Propositior 816 with the choice = 2. Finally,
q=2q,+4q = O(%). Substituting the parametersdpandc;, we getc, = 2 and

c1d v

T ma((g F a2, @—y)g) )

Also note that the minimum distande> (1 — 3)pon = (1 — 3 )pon = Z'n. Thus, we have

the following result for tolerant testable binary codes.

Theorem 8.1. There exists an absolute constat> 0 such that for every, 0 < v < 1,
there exists an explicit binary linear code: {0,1}* — {0, 1}" wheren = k - exp(log” k)
with minimum distancd > aon which admits & ¢y, c2)-tolerant tester withey, = O(vy),
c1 = Q(~?) and query complexit@(%).

The claim about explicitness follows from the fact that tHePP of Lemm48l4 and
hence Proposition 8.6 has an explicit construction. Thienckbout linearity follows from

the fact that the PCPP for CIRCUITVAL is a linear function bétinput when the circuit

computes linear functions — this aspect of the construgsiaiiscussed in detail in Chapter

9in [68].
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8.5 Product of Codes

Tensor product of code®r just product of codesis simple way to construct new codes
from existing codes such that the constructed codes haweegegith sub-linear query com-
plexity even though the original code need not admit a sabali complexity testef[14].

We start with the definition of product of codes.

Definition 8.6 (Tensor Product of CodeslivenC; andC, that are[ky, ny, d,] and[kq, na, ds]
codes, their tensor product, denoted®yr C,, consists ofi, x n; matrices such that every

row of the matrix is a codeword iy, and every column is a codewordds.

It is well known thatC; & Cs is an[nins, kiks, dids] code.

A special case in which we will be interested is witkn= C; = C. In such a case, given
an|n, k, d], codeC, the product of’ with itself, denoted by’?, is a[n?, k2, d?], code such
that a codeword (viewed asiax n matrix) restricted to any row or column is a codeword in
C. It can be shown that this is equivalent to the following [[LdBiven thek x n generator

matrix M of C, C* is precisely the set of matrices in the §8t” - X - M | X € FF**}.

8.5.1 Tolerant Testers for Tensor Products of Codes

A very natural test foC? is to randomly choose a row or a column and then check if the
restriction of the received word on that row or column is aeedrd inC (which can be
done for example by querying all thepoints in the row or column). Unfortunately, as we
will see in Sectiol 8.512, this test is not robust in general.

Ben-Sasson and Sudan [n]14] considered the more genemligirof codesC! for
t > 3 (whereC! denotes’ tensored with itself — 1 times) along with the following general
tester: Choose at randobre {1,--- .t} andi € {1,--- ,n} and check i)' coordinate of
the received word (which is an eIemenﬂKgf) when restricteH:ltoi is a codeword irC**.

It is shown in [14] that this test is robust, in that if a re@swvord is far fronC?, then many

4For thet = 2 caseb signifies either row or column anddenotes the row/column index.
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of the tested substrings will be far fro@i~!. This tester lends itself to recursion: the test
for C*=! can be reduced to a test f6f—2 and so on till we need to check whether a word in
FZQ is a codeword o€?. This last check can done by querying all tifepoints, out of the
n' points in the original received word, thus leading to a snkdr query complexity. As
shown in [14], the reduction can be donddg ¢ stages by the standard halving technique.

Thus, even thoug8i might not have a tester with a small query complexity, we e t
C" with a polylogarithmic number of queries.

We now give a tolerant version of the test for product of cagiesn by Ben-Sasson and
Sudan[[14]. In what follows$ > 4 will be a power of two. As mentioned above the tegter
for the tensor produat’ reduces the test to checking if some restriction of the gsténg
belong toC?. For the rest of this section, with a slight abuse of notaln, < IFZQ denote
the final restriction being tested. In what follows we asstina¢ by looking at all points in
anyv € F7* one can determine if(v, C?) < 7 in time polynomial inn?.

The tolerant version of the test 6f]14] is a simple modifieatas mentioned in Section
B3: reduce the test aff to C* as in [14] and then acceptif; is 7-close toC?.

First we make the following observation about the tesfir.[I#he test recursewg t
times to reduce the test &. At stepl , the test chooses an random coordiriaighis will
just be a random bit) and fixes the value of tifecoordinate of the currert?’ to an index
i; (wherei; takes values in the rande< i; < nt/zl). The key observation here is that for
each fixed choice ofy, - - - , by, distinct choices ofy, - - - | 7j,,; COrrespond to querying
disjoint sets»? points in the originab € IF;“ string, which together form a partition of all
coordinates ob. In other words;I" has gpartitionedquery pattern, which will be useful to
argue tolerance. For soundness, we use the resultslin [bdhvwehow that their tester is
C'°et-robust forC' = 232,

Applying Lemmag 812 and 8.3, therefore, we have the follgwasult:

Theorem 8.2.Lett > 4 be a power of two anfd < 7 < 1. There exish < ¢; < ¢ < 1

with £ = C'e!(1 + 2/7) such that the proposed tolerant tester &ris a (¢, ¢ )-tolerant
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tester with query complexity?/* whereN is the block length of’. Further,c, andc, are

constants (independent o) if ¢ is a constant and has constant relative distance.

Corollary 8.3. For everyy > 0, there is an explicit family of asymptotically good binary
linear codes which are tolerant testable usitigqueries, where: is the block length of the
concerned code. (The rate, relative distance and threshgld:, for the tolerant testing

depend ony.)

8.5.2 Robust Testability of Product of Codes

Recall that a standard tester for a code is robust if for ekergived word which is far from
being a codeword, the tester not only rejects the codewotial lvgh probability but also
with high probability the tester’s local view of the receiveord is far from any accepting

view (see Section 8.3 for a more formal definition).

As was mentioned before for the product cajex C,, there is a natural tester (which
we call 7¢, »¢,)— flip @ coin; if it is heads check if a random row is a codeward’y; if
it is tails, check if a random column is a codeworddn This test is indeed robust in a
couple of special cases— for example, when ligtandC, are Reed-Solomon codes (see

Sectio 8611 for more details) and when b6thandC, are themselves tensor product of a
code [14].

P. Valiant showed that there are linear codeand(C, such thatC; ® C, is not robustly
testable[[103]. Valiant constructs linear codgsC, and a matrixv such that every row
(and column) ot is “close” to some codeword i6; (andC,) while v is “far” from every

codeword inC; ® C, (Wwhere close and far are in the sense of hamming distance).

However, Valiant’s constructiodoes notwork whenC; andC, are the same code. In
this section, we show a reduction from Valiant’s constrmttio exhibit a cod€ such that

C? is not robustly testable.
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Preliminaries and Known Results

C is said to be robustly testable if it has#1)-robust tester. For a given codeof block
lengthn overF, and a vectow € F,, the (relative) Hamming distance ofto the closest
codeword inC is denoted by (v).

Asking whetherT;, »c, is a robust tester has the following nice interpretatione §h
queriesiy, - - - , i, are either rows or columns of the received word_et the row or column
corresponding to the random seedbe denoted by°. Then the robustness @t, ¢, on
inputs(v, s), pTc1ec2 (v, s) is justde, (v¥) wheni, corresponds to a row anig, (v*) wheni,
corresponds to a column. Therefore the expected robustfidss,c, onv is the average
of the following two quantities: the average relative dista of the rows ot from C; and
the average relative distance of the columns &bm C,.

In particular, if ¢, o, is €2(1)-robust then it implies that for every received warduch
that all rows (and columns) aefareo(1)-close toC; (andC,), v is o(1)-close toC; ® Cs. P.

Valiant proved the following result.

Theorem 8.4([L03]). There exist linear cod€s,, k1, d; = n,/10] and[ny = n?, ky, dy =
n/10] (call themC, and(C,) and an, x n; received wordv such that every row of is

1/n,-close toC; and every column af is a codeword’, butwv is 1/20-far fromC; x Cs.

Note that in the above constructiom; # n; and in particulaiC; andC, are not the

same code.

Reduction from the Construction of Valiant

In this section, we prove the following result.

Theorem 8.5.LetC; # Cs be[ny, ki, dy = Q(nq1)] and[nsg, ke, ds = Q(ny)] codes respec-
tively (withn, > n;) and letv be an, x n; matrix such that every row (and column):oifs

g(nq)-close toC; (g(n9)-close toC,) butwv is p-far fromC; ® C,. Then there exists a linear
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Figure 8.1: The construction of the new received warttom v for the case when; = «,
no = 2a andm = 2. The shaded boxes represerdand the unshaded regions hasisll

codeC with parametersi, k,d = (n) and a received word’ such that such that every

row (and column) of’ is g(n,)/2-close (andj(nz)/2-close) toC butv’ is p/4-far fromC2.

Proof. We will first assume that, dividesn, and letm = Z—f For anyz € ¥* and
y € X2 et

Cl(z,9)) = ((C(2))™ Caly))

Thus,k = ki + ke andn = mn, + ne. Also asd; = Q(ny) andd, = Q(ns), d = Q(n).

We now construct the x n matrixv’ fromv. The lower leftn, x mn; sub-matrix ofv’
contains the matrix™ wherev™ is the horizontal concatenation of copies ofv (which is
any X ny matrix). Every other entry in’ is 0. See figur€8l1 for an example with = 2.

Let w be the codeword ii€; ® C, closest tov and constructy’ in the same manner
asv’ was constructed from. We first claim thatw’ is the codeword sz closest tov'.
For the sake of contradiction, assume that there is some ctidewordw” in C? such that
A, w") < A(v',w'). For any2n’ x 2n’ matrix u let u;, denote the lower left’ x n’

sub-matrix ofu. Note that by definition o€, w;, = 2™ wherexz € C; ® C,. Further, as

5Note thatw’ € C? as the all zeros vector is a codeword in b6thandCs; andw € C; ® Cs.
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v" (necessarily) ha8 everywhere other thar, and A(v/, w”) < A(v',w'), it holds that
A(v,w) > A(v, z) which contradicts the definition af.

Finally, it is easy to see that
Se2(v) = A, w') /n* = A(v, w)m/(mny +ny)* = A(v,w)/(4niny) = g

and if for any row (or column), the relative distancewafestricted to that row (or column)
fromC; (C,) is at mosty then for every row (or column), the relative distanceofestricted
to that row (or column) front is at most/2.

This completes the proof for the case whendividesn,. For the case when, does
not dividen, a similar construction works if one definé€sn the following manner (for any

r € ¥* andz, € YF?)

C((x,y)) = ((Cu))™, (Caly))"")

wherel! = Icm(n,n2). The received word’ in this case would have its lower leftx ¢
matrix asv“/"1:4/72) (wherev(™12) is the matrix obtained by vertically concatenating

copies ofv™) and it ha9)s everywhere else. O

Theoren{8H4 and 8.5 imply the following result.

Corollary 8.6. There exist a linear codé with linear distance such that the testé. is
not(1)-robust forC2.

8.6 Tolerant Testing of Reed-Muller Codes

In this section, we discuss testers for codes based on rauidtie polynomials.

8.6.1 Bivariate Polynomial Codes

As we saw in Sectio 8.3.2, one cannot have a robust stanestets foiC? in general. In
this subsection, we consider a special case whea RS[n,k + 1,d = n — kl,, that is,

the Reed—Solomon code based on evaluation of dégpeéynomials oveit', atn distinct
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points in the field. We show that the tester @ considered in Sectidn 8.5.2 is tolerant
for this special case. It is well-known (see, for exampl@g®sition 2 in[[88]) that in this
caseC? is the code with codewords being the evaluations of biveupalynomials oveF,
of degreek in each variable. The problem of low-degree testing for bata polynomials
is a well-studied one: in particular we use the work of Pallalik and Spielmari.[88] who
analyze a tester using axis parallel lines. Call a bivaatgnomial to be one of degree
(k1, ko) if the maximum degrees of the two variables &feand k, respectively. In what
follows, we denote by)’ € IF,*" the received word to be tested (thought of as:an n
matrix), and let)(z, y) be the degreék, k) polynomial whose encoding is closestpa

We now specify the tolerant testét. The upper bound of — /1 — d/n onT comes
from the fact that this is largest radius for which decodind&|n, k + 1, d] code is known

to be solvable in polynomial tim&[63].

1. Fix7Twhere0 <7< 1—+/1—d/n.
2. With probability; chooseh = 0 orb = 1.

e If b = 0, choose a row randomly and reject i6(Q’'(r, ), P(-)) > 7 for every

univariate polynomiaP of degree: and accept otherwise.

e If b = 1, choose a column randomly and reject ib(Q'(-, c), P(-)) > 7 for

every univariate polynomiaP of degree: and accept otherwise.

The following theorem shows thdt is a tolerant tester.

Theorem 8.7.There exists an absolute constant- 0 such thatforr < 1—+/1 — d/n, the
tester?” with thresholdr is a(cy, c,, /N )-tolerant tester fo? (whereC = RS[n, k41, d))

wherec, = 37, c; = W and N is the block length of?.

Proof. To analyz€el” let R*(r, ) be the closest degrdeunivariate polynomial (breaking
ties arbitrarily) for each row-. Similarly constructC*(-,c). We will use the following

refinement of the Bivariate testing lemma bf][88]:
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Lemma 8.8([88,[13]). There exists an universal constagt< 128 such that the following
holds. If8k < n thend(Q’,C?) =6(Q", Q) < ¢y - (6(R*, Q) +6(C*,Q")).

The following proposition shows that the standard testesiva of 77 (that is7” with

7 = () is a robust tester—

Proposition 8.9. 7" with 7 = 0 is a2¢, robust tester, where, is the constant from Lemma
B3.

Proof. By the definition of the row polynomiak, for any row indexr, the robustness of
the tester withh = 0 andr, p(Q’, (b,7)) = 0(Q'(r,-), R*(r,-)). Similarly forb = 1, we
havep(Q', (b,c)) = 6(Q'(+,¢),C*(-,¢)). Now the expected robustness of the test is given
by

p(Q) = Prlb =013 Prlr=i-8(Q( ), B () +
Prfp=1]>_ Prle =j]-8(Q'(-,¢), C*(:,¢))

= L@ ) +6(@.C).
Using Lemmd8I18, we get ', Q) < 2¢op(Q'), as required]

From the description of”, it is clear that it has gartitionedquery pattern. There
are two partitions: one for the rows (corresponding to theiahb = 0) and one for the
columns (corresponding to the choice- 1).

Lemmad8R and 8.3 prove TheorEml 8.7 wheris the constant from Lemnia3.8[]

8.6.2 General Reed-Muller Codes

We now turn our attention to testing of general Reed-Multmtes. Recall that RMk, m)
the linear code consistinﬁ of evaluations:ofvariate polynomials over, of total degreeat

mostk at all points inF;". i To test codewords of RMk, m), we need to, given a function

5The results of the previous section were for polynomialsolhiad degree in eachdividual variable
bounded by some value; here we study the total degree case.
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[ Fy — F, as a table of values, test jfis close to ann-variate polynomial of total
degreek. We will do this using the following natural and by now wetlidiedlow-degree
test which we call thelines test pick a random line irfF";* and check if the restriction of
f on the line is a univariate polynomial of degree at miasin order to achieve tolerance,
we will modify the above test to accept if the restriction fobn the picked line is within
distancer from some degreg univariate polynomial, for a threshotd Using the analysis
of the low-degree test from [42], we can show the following.

Theorem 8.8.For 0 < 7 < 1 — /k/qgandq = Q(k), RM,(k,m) is (c1, c2, p) testable

3(t+2

withc; = 82, ¢y = =5 " andp = n'~Y/™ wheren = ¢™ andd are the block length and

ﬁl
the distance of the code.
Proof. Recall that our goal is to test if a given functign F;* — IF, is close to amn-variate
polynomial of total degreé. For anyz, h € ", a line passing through in directions
is given by the set, , = {z + th|t € F,}. Further definePJ{ih() to be the univariate
polynomial of degree at mostwhich is closest (in Hamming distance) from the restriction

of fonL, . We will use the following result.

Theorem 8.9([42]). There exists a constansuch that for allk, if ¢ is a prime power that

is at leastck, then given a functiorf : F; — FF, with

e 1
pE EnperyPrice, [PL (1) # fo+th)] < 5

there exists am-variate polynomial of total degree at most such thatdist(f, g) < 2p.

The above result clearly implies that the line test is robwiich we record in the

following corollary.

Corollary 8.10. There exists a constansuch that the line test fd&®M, (k, m) withg > ck

IS 9-robust.

The line test picks a random line by choosingnd h randomly. Consider the case
whenh is fixed. It is not hard to check that for there is a partitioriFgT =XiU---UX,

where eachX; has size;” ! such thaty,cx, L., = [Fy'. In other words:
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Proposition 8.10. The line test has a partitioned query pattern.

The proposed tolerant tester for RM, m) is as follows: pickz, i € F;* uniformly at
random and check if the input restrictedto, is T-close to some univariate polynomial of
degreek. If so accept, otherwise reject. When the threshosatisfiesr < 1 — m, the
test can be implemented in polynomial timel[63]. From Caol[8.10, Proposition 810,
Lemmad$ 8P and 8.3, the above is indeed a tolerant testeiMq(/Rm), and Theorerh 818

follows. O

8.7 Bibliographic Notes and Open Questions

The results in this chapter (other than those in Seéfio@Bvere presented in[57]. Results
in Sectior 8.5 appear il [26].

In the general context of property testing, the notion oétaht testing was introduced
by Parnaset al. [B3] along with the related notion of distance approximati¢®arnaset
al. also give tolerant testers for clustering. We feel that eanted-testing is a particularly
natural instance to study tolerant testing. (In fact, if IST®@ere defined solely from a
coding-theoretic viewpoint, without their relevance amgblécations to PCPs in mind, we
feel that it is likely that the original definition itself wédihave required tolerant testers.)

The question of whether the natural tester@grz C-, is a robust one was first explicitly
asked by Ben-Sasson and Sudan [14]. P. Valiant showed tgahieral, the answer to the
question is no. Dinur, Sudan and Wigdersbn [30] further shiwat the answer is positive
if at least one of’; or C; is asmoothcode, for a certain notion of smoothness. They also
show that any non-adaptive ahdregularbinary linear LTC is a smooth code. A bi-regular
LTC has a tester that in every query probes the same numberstfgns and every bit in
the received word is queried by the same number of querieslaftter requirement (in the
terminology of this chapter) is that the tester({3, ¢), (0, 0), 1)-smooth, where the tester
makesg queries. The result of [30] however only works with constanéry complexity.

Note that for such an LTC, LemniaB.1 implies that the codesis tilerant testable.
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Obtaining non-trivial lower bounds on the the block lengthcodes that are locally
testable with very few (eveB) queries is an extremely interesting question. This proble
has remained open and resisted even moderate progrestedaspine advancements in
constructions of LTCs. The requirement of having a toletaoél tester is a stronger re-
guirement. While we have seen that we can get tolerance imiifes parameters to the best
known LTCs, it remains an interesting question whether tlaed requirement of tolerance

makes the task of proving lower bounds more tractable. Itiqudar,

Open Question 8.1.Does there exists a code with constant rate and linear desdhat

has a tolerant tester that makes constant number of queries ?

This seems like a good first step in making progress towardemstanding whether
locally testable codes with constant rate and linear digtaexist, a question which is ar-
guably one of the grand challenges in this area. For integgstork in this direction which
proves that such codes, if they exist, cannot alsoylodic, see[10].

The standard testers for Reed-Muller codes considereddticdéB.® (and hence, the
tolerant testers derived from them) work only for the casemthe size of the field is larger
than the degree of the polynomial being tested. Results mp@nY and those in V4]
give a standard tester for Reed-Muller codes which worksafofields. These testers do
have a partitioned query pattern— however, it is not cletivaftesters are robust. Thus, our
techniques to convert it into a tolerant tester fail. It ol interesting to show the following

result.

Open Question 8.2.Design tolerant testers for RM codes over any finite field.
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Chapter 9
CONCLUDING REMARKS

9.1 Summary of Contributions

In this thesis, we looked at two different relaxation of thecdding problems for error
correcting codes: list decoding and property testing.

In list decoding we focused on the achieving the best passibdeoff between the
rate of a code and the fraction of errors that could be hanbedn efficient list decod-
ing algorithm. Our first result was an explicit constructioina family of code along with
efficient list decoding algorithm that achieves the listal#ing capacity. That is, for any
rate0 < R < 1, we presented folded Reed-Solomon codes of Faeong with poly-
nomial time list decoding algorithms that can correct ug te R — ¢ fraction of errors
(for anye > 0). This was the first result to achieve the list decoding capéar any rate
(and over any alphabet) and answered one of the central apestigns in coding theory.
We also constructed explicit codes that achieve the trdadmive with alphabets of size
90(=7"102(1/9)) '\yhich are not that much bigger than the optimal size8#/<).

For alphabets of fixed size, we presented explicit codegaiath efficient list decoding
algorithms that can correct a fraction of errors up to the ated Blokh-Zyablov bound.
In particular, these give binary codes of r&t&?) that can be list decoded up tad @2 — ¢
fraction of errors. These codes have rates that come clabe toptimal rate 0O (¢?) that
can be achieved by random codes with exponential time |stdiag algorithms.

A key ingredient in designing codes over smaller alphabetste come up with optimal
list recovery algorithms. We also showed that the list recpalgorithm for Reed-Solomon
codes due to Guruswami and Sudan is the best possible. Weralsented some explicit

bad list decoding configurations for list decoding Reed 8alo codes.
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Our contributions in property testing of error correctingdes are two-fold. First, we
presented local testers for Reed-Muller codes that useapanal number of queries to
test membership in Reed-Muller codes over fixed alphabetsor®l, we defined a natu-
ral variation of local testers called tolerant testers amowsed that they had comparable

parameters with those of the best known LTCs.

9.2 Directions for Future Work

Even though we made some algorithmic progress in list degpdnd property testing of
error correcting codes, there are many questions that diréefitunanswered. We have
highlighted the open questions throughout the thesis. ignsibction, we focus on some of

the prominent ones (and related questions that we did roatadut earlier).

9.2.1 List Decoding

The focus of this thesis in list decoding was on the optimedéoff between the rate and
list decodability of codes. We first highlight the algoritttehallenges in this vein (most

of which have been highlighted in the earlier chapters).

e The biggest unresolved question from this thesis is to comwith explicit codes
over fixed alphabets that achieve the list decoding capabityparticular is there a
polynomial time construction of a binary codes of rétg?) that be list decoded in

polynomial time up ta /2 — ¢ fraction of errors? (Open Questibn}.1)

e A less ambitious goal than the one above would be to give anpofyal time con-
struction of a binary code with rate(<) that can be list decoded up to- ¢ fraction
of erasure® Erasures are a weaker noise model that we have not corsidetds
thesis. In the erasure noise model, the only kind of erroas #ne allowed is the
“dropping” of a symbol during transmission. Further, it ssamed that the receiver
knows which symbols have been erased. For this weaker nmsgelgrone can show

that for rateR the optimal fraction of errors that can be list decodet is R.
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e Another less ambitious goal would be to resolve the follgviuestion. Is there a
polynomial time construction of a code that can be list dedoap tol /2 — ¢ fraction

of errors with rate that is asymptotically better thaf?

e Even though we achieved list decoding capacity for largaathets (that is, for rate
R code, list decodé — R — ¢ fraction of errors), the worst case list size we¥§'/?),
which is very far from theD (1/¢) worst case list size achievable by random codes.
A big open question is to come up with explicit codes that eahithe list decoding
capacity with constant worst case list size. As a less amlstgoal would be to
reduce the worst case list sizestbfor some constantthat is independent af (See
Sectior317)

We now look at some questions that relate to the combin&tsects of list decoding.

e For a rateR Reed-Solomon code, can one list decode more than/R fraction of

errors in polynomial time? (Open Questionl6.2)

e To get to withine of list decoding capacity can one prove a lower bound on thestwvo
case list size? For random codes it is known that list of 6lz&/<) suffice but no

general lower bound is kHOVHL

e For codes of rat& over fixed alphabet of size> 2, can one show existence of linear
codes that havg’(!/<) many codewords in any Hamming ball of radius H,(R) —¢?
(See discussion in Sectibn 212.1)

9.2.2 Property Testing

Here are some open questions concerning property testiogoeafs.

For high fraction of errors, tight bounds are knownl[65].
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e The biggest open question in this area is to answer the follpguestion. Are there
codes of constant rate and linear distance that can be yoesited with constant

many queries?

e A less ambitious (but perhaps still very challenging) gsabi show that the answer

to the question above is no fdrqueries.

e Can one show that the answer to the first question (or everettand) is no, if one

also puts in the extra requirement of tolerant testabil{fyRen Questioh 8l 1)
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