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Abstract. We give a polynomial time construction of binary codes with
the best currently known trade-off between rate and error-correction ra-
dius. Specifically, we obtain linear codes over fixed alphabets that can
be list decoded in polynomial time up to the so called Blokh-Zyablov
bound. Our work builds upon [7] where codes list decodable up to the
Zyablov bound (the standard product bound on distance of concatenated
codes) were constructed. Our codes are constructed via a (known) gener-
alization of code concatenation called multilevel code concatenation. A
probabilistic argument, which is also derandomized via conditional ex-
pectations, is used to show the existence of inner codes with a certain
nested list decodability property that is appropriate for use in multi-
level concatenated codes. A “level-by-level” decoding algorithm, which
crucially uses the list recovery algorithm for folded Reed-Solomon codes
from [7], enables list decoding up to the designed distance bound, aka
the Blokh-Zyablov bound, for multilevel concatenated codes.

1 Introduction

1.1 Background and Context

A fundamental trade-off in the theory of error-correcting codes is the one between
the proportion of redundancy built into codewords and the fraction of errors that
can be corrected. Let us say we are interested in binary codes that can be used
to recover the correct codeword even when up to a fraction p of its symbols
could be corrupted by the channel. Such a channel can distort a codeword c
(that is n bits long) into about 2% (»)" possible received words, where H(p) =
—plogy p — (1 — p)logy(1 — p) stands for the binary entropy function. Now for
each of these words, the error-recovery procedure must identify c as a possibility
for the true codeword. (In fact, even if the errors are random, the algorithm
must identify ¢ as a candidate codeword for most of these 27 (P)" received words,
if we seek a low decoding error probability.) To put it differently, if we require
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the error-recovery procedure to pin down a relatively small number of candidate
codewords for all (or even most) received words, then there must be “nearly-
disjoint” Hamming balls of size 2H(P)" centered at each of the codewords. This
implies that there can be at most about 2(!=H(P)" codewords. Therefore the
best rate of communication we can hope for when a fraction p of the bits can be
corrupted is 1 — H(p).

If we could pack about 200 =H(P)" pairwise disjoint Hamming balls of radius
pn in {0,1}", then one can achieve a rate approaching 1 — H(p) while guarantee-
ing correct and unambiguous recovery of the codeword from an arbitrary fraction
p of errors. Unfortunately, it is well known that such a “perfect” packing of Ham-
ming balls in {0,1}"™ does not exist. Perhaps surprisingly (and fortunately), it
turns out that it is possible to pack more than 2(1=H(P)=&)n gych Hamming balls
such that no O(1/¢) of them intersect at a point. In fact a random packing has
such a property with high probability.

In turn, this implies that for 0 < p < 1/2 and any £ > 0, and all large
enough n, there exist binary codes of rate 1 — H(p) — ¢ that enable correcting
a fraction p of errors, outputting a list of at most O(1/¢) answers in the worst-
case (this error-recovery model is called “list decoding”).! Therefore, one can
approach the information-theoretically optimal rate of 1 —H(p). A similar result
holds for codes over alphabet with ¢ symbols — for correction of a fraction p,
0 < p < 1-1/g, of errors, we can approach the optimal rate of 1 — H,(p), where
H,(p) = plog,(¢g—1) —plog, p— (1 —p)log,(1—p) is the g-ary entropy function.

While the above pinpoints R = 1 — H(p) as the optimal trade-off between
the rate R of the code and the fraction p of errors that can corrected, it is a
non-constructive result. The codes achieving this trade-off are shown to exist
via a random coding argument and are not explicitly specified. Further, for a
code to be useful, the decoding algorithm must be efficient, and for a random,
unstructured code only brute-force decoders running in exponential time are
known.

The big challenge then is to approach the above trade-off with explicit codes
and polynomial time list decoding algorithms. Recently, in [7], we were able to
achieve such a result for large alphabets. For large ¢, the optimal rate 1 — H,(p)
approaches 1 — p, and in [7], we give explicit codes of rate 1 — p — ¢ over an
alphabet of size 2(1/ 9" with a polynomial time list decoding algorithm for a
fraction p of errors (for any 0 < p < 1). However, approaching the list decoding
capacity of 1 — Hy(p) for any fixed small alphabet size ¢, such as ¢ = 2, remains
an important open question.

The best known tradeoff between R and p (from [7]) that can be achieved
by an explicit binary code along with efficient list decoding algorithm is the so
called Zyablov bound [12]. Figure 1 gives a pictorial comparison between the
Zyablov bound and the list decoding capacity. As one can see, there is a still
a huge gap between the nonconstructive results and what is known explicitly,

! The proof of Shannon’s theorem for the binary symmetric channel also says that for
most received words at most one codeword would be output.



closing which is a challenging open problem

. Narrowing this gap serves as the
primary motivation for this work.
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Fig. 1. Rate R of our binary codes plotted against the error-correction radius p
of our algorithm. The best possible trade-off, i.e., capacity, is p = H (1 — R),
and the Zyablov bound are also plotted.

1.2 Our Results and Techniques

In this paper, we present linear codes over any fixed alphabet that can be con-
structed in polynomial time and can be efficiently list decoded up to the so
called Blokh-Zyablov bound. This achieves a sizable improvement over the pre-
vious best known result (see Figure 1 and Table 1 for the binary case).

Our codes are constructed via multilevel concatenated codes. We will pro-
vide a formal definition later on — we just sketch the basic idea here. For an

integer s > 1, a multilevel concatenated code C over F, is obtained by com-

bining s “outer” codes C9,,,CL.,,...,C5-1 of the same block length , say N,

over large alphabets of size say ¢®°,q%,...,q% 1, respectively, with a suitable
“inner” code over F,. The inner code, say Cin, is of dimension ag+a; ‘- +as_1.
Given messages mg, m1,- .., Mmg—1 for the s outer codes, the encoding as per the
multilevel generalized concatenation codes proceeds by first encoding each m;
as per C?..- Then for every 1 < i < N, the collection of the ith symbols of
C?,.(m;) for 0 < j < s— 1, which can be viewed as a string over F, of length



p 0.01{0.02|0.03|{0.05|0.10|0.15|0.20 | 0.25 | 0.30 | 0.35
Capacity rate [0.919]0.858(0.805|0.713|0.531|0.390|0.278|0.188|0.118|0.065
Zyablov rate  |0.572|0.452(0.375(0.273|0.141|0.076|0.041{0.020{0.009|0.002

Blokh Zyablov rate|0.739(0.624(0.539(0.415(0.233|0.132|0.073|0.037|0.017|0.006

Table 1. Values of rate at different error correction radius for List decoding
capacity, Zyablov bound and Blokh Zyablov bound in the binary case. For rates
above 0.4, the Blokh Zyablov bound is 0 up to 3 decimal places, hence we have
not shown this.

ag+ a3 +---+as—1, is encoded by the inner code. For s = 1 this reduces to the
usual definition of code concatenation. In other words, this is like normal code
concatenation with inner code C;,, and outer code obtained by juxtaposing the
symbols of codewords of C3,,,...,C5. L.

We present a list decoding algorithm for C, given list recovering algorithms
for the outer codes (list recovering is a generalization of list decoding that will
be defined later) and list decoding algorithms for the inner code and some of its
subcodes. What makes this part more interesting than the usual code concatena-
tion, is that the inner code in addition to having list decodable properties, also
needs to have good list decodable properties for certain subcodes. Specifically,
the subcodes of dimension a;+a;41+---+as—1 of the inner code obtained by ar-
bitrarily fixing the first ag +- - - +a;_1 symbols of the message, must have better
list-decodability properties for increasing j (which is intuitively possible since
they have lower rate). In turn, this allows the outer codes C?,, to have rates
increasing with j, leading to an overall improvement in the rate for a certain
list-decoding radius.

To make effective use of the above approach, we also prove, via an application
of the probabilistic method, that a random linear code over [, has the required
stronger condition on list decodability. By applying the method of conditional
expectation ([1]), we can construct such a code deterministically in time singly
exponential in the block length of the code (which is polynomial if the inner
code encodes messages of length O(logn)). Note that constructing such an inner
code, given the existence of such codes, is easy in quasi-polynomial time by
trying all possible generator matrices. The lower time complexity is essential for
constructing the final code C in polynomial time.

1.3 Related Work

Our work can be seen as a generalization of the result of list decoding concate-
nated codes from [7]. The outer codes used in our work are the same as the
ones used in [7]. However, the inner codes used in [7] are not sufficient for our
purposes. Our proof of existence of the requisite inner codes (and in particular
the derandomization of the construction of such codes using conditional expecta-
tion) is similar to the one used to establish list decodability properties of random
“pseudolinear” codes in [6] (see also [5, Sec. 9.3]).



Concatenated codes were defined in the seminal thesis of Forney [4]. Its gen-
eralizations to linear multilevel concatenated codes were introduced by Blokh
and Zyablov [2] and general multilevel concatenated codes were introduced by
Zinoviev [10]. Our list decoding algorithm is inspired by the argument for “un-
equal error protection” property of multilevel concatenated codes [11].

1.4 Organization of the Paper

In Section 2, we start with some definitions and preliminaries. Section 3 presents
a construction of a linear code that has good “nested” list decodable properties.
In section 4, we present our algorithm for list decoding multilevel concatenated
codes. Finally, in Section 5, we present the main result of the paper.

2 Preliminaries

2.1 Basic Coding Definitions

A code of dimension k and block length n over an alphabet Y’ is a subset of X"
of size |X|*. The rate of such a code equals k/n. Each vector in C is called a
codeword. In this paper, we will focus on the case when X' is a finite field. We
will denote by [F, the field with g elements. A code C over F, is called a linear
code if C' is a subspace of Fy. In this case the dimension of the code coincides
with the dimension of C' as a vector space over F,;. By abuse of notation we
will also think of a code C' as a map from elements in IF’,; to their corresponding
codeword in Fy. If C is linear, this map is a linear transformation, mapping a
row vector z € F¥ to a vector zG € F for a k x n matrix G over F, called the
generator matrix.

The Hamming distance between two vectors in X" is the number of places
they differ in. The (minimum) distance of a code C is the minimum hamming dis-
tance between any two pairs of distinct codewords from C'. The relative distance
is the ratio of the distance to the block length.

2.2 Multilevel Concatenated Codes

We will be working with multilevel concatenation coding schemes [3]. We start
this section with the definition of multilevel concatenated codes. As the name
suggests, these are generalizations of the well-studied concatenated codes. Recall
that for a concatenated code, we start with a code C,,; over a large alphabet
(called the outer code). Then we need a code Cj, that maps all symbols of the
larger alphabet to strings over a smaller alphabet (called the inner code). The
encoding for the concatenated code (denoted by Cyy10Ciy ) is done as follows. We
think of the message as being a string over the large alphabet and then encode
it using Cyy:. Now we use C;, to encode each of the symbols in the codeword
of Coyt to get our codeword (in Cpyt © Cip) over the smaller alphabet. Most of
the constructions of good binary codes are achieved via code concatenation. In



particular, binary codes with the best known tradeoff (called the Zyablov bound)
between rate and list decoding radius are constructed via code concatenation [7].
These codes have folded Reed-Solomon codes as outer codes and suitably chosen
binary codes as inner codes, and can be list decoded up to the designed minimum
distance, which is equal to the product of the outer and inner code distances.

Multilevel concatenation codes generalize the usual code concatenations in
the following manner. Instead of there being one outer code, there are multiple
outer codes. In particular, we “stack” codewords from these multiple outer codes
and construct a matrix. The inner codes then act on the columns of these inter-
mediate matrix. We now formally define multilevel concatenated codes (this will
also contain the formal definition of the concatenated codes as a special case).

There are s > 1 outer codes, denoted by C9%,,CL.,,...,Cs-t. For every
0<i<s—1,C¢, is a code of block length N and rate R and defined over
a field Fg,. The inner code Cj, is code of block length n and rate r that maps
tuples from Fg, x Fg, x --- xFg,_, to symbols in F;. In other words,

Céut : (IFQi )RiN - (]FQi)N’

Cin :IFQ X ]FQI X e X IFQ571 — (Fq)n

0
The multilevel concatenated code, denoted by (C9,, x CL,, x ...C5-1) o Cyy, is
a map of the following form:

(C(o)ut X Cgut X. OS

out

)OC'in : (FQO)RON (FQ )RIN (FQS 1) a-1N —>F(';N.

We now describe the encoding scheme. Given a message (mg, m1,...,ms_1) €
(Fgo ) BN x (Fg, )FrN x -+ x (Fgs_, )R-, we first construct an s x N matrix
M, whose i** row is the codeword C¢,,(m;). Note that every column of M is an
element from the set Fg, x Fg, x--+-xFg,_, . Let the 5 column (for 1 < j < N)
be denoted by M;. The codeword corresponding to the multilevel concatenated

code (C = (CO,, x CLy X ...C51) 0 Cip) is defined as follows
C(mo, mi,... ,ms_l) = (Czn(Ml), Cin(Mg), T ,Cin(MN)) .

(The codeword can be naturally be thought of as an n x N matrix, whose 7’th
column corresponds to the inner codeword encoding the 7’th symbols of the s
outer codewords.)

For the rest of the paper, we will only consider outer codes over the same
alphabet, that is, Qo = Q1 = --- = Qs 1 = Q. Further, Q@ = ¢* for some
integer a > 1. Note that if C’out, .,Cs2! and Cjy, are all F, hnear then so is
(Cgut X Cgut X Cout ) © Cln

The gain from using multilevel concatenated codes comes from looking at
the inner code C, along with its subcodes. For the rest of the section, we will
consider the case when Cj, is linear (though the ideas can easily be generalized
for general codes). Let G' € Fg**™ be the generator matrix for Ciy,. Let o = as/n
denote the rate of C;y,. For 0 Jj < s—1, define r; = ro(1 —j/s), and let G,
denote 7jn x n submatrix of G' containing the last r;n rows of G. Denote the



code generated by G; by C7 ; the rate of C}, is ;. For our purposes we will
actually look at the subcode of Cj, where one fixes the first 0 < j < s — 1
message symbols. Note that for every j these are just cosets of C7,. We will be
looking at Cj,, which in addition to having good list decoding properties as a
“whole,” also has good list decoding properties for each of its subcode CY,.
The multilevel concatenated code C' (= (C9,, x --- x C,') 0 Ciy,) has rate

R(C) that satisfies
s—1
r
C)= ?" > R;. (1)
i=0

The Blokh-Zyablov bound is the trade-off between rate and relative distance
obtained when the outer codes meet the Singleton bound (i.e. Cout has relative
distance 1 — R;), and the various subcodes C}, of the inner code, including the
whole inner code Cj, = C?n, lie on the Gilbert-Varshamov bound (i.e., have
relative distance §; > H; (1 —7;)). The multilevel concatenated code then has
relative distance at least minggj<s—1(1 — R;)H; ' (1 — 7;). Expressing the rate
in terms of distance, the Blokh-Zyablov bound says that there exist multilevel

concatenated C' with relative distance at least § with the following rate:

s—1
r 0
%7 (C a - = . 2
52(C) = 0<rel );I(J) ngQ_l(l—r-l-m’/s) @)
As s increases, the trade-off approaches the integral

1—H,(5) d

Ruz(C) =1— H,(8) 6 / . (3)
- .7:)

The convergence of R%,(C) to Rpz(C) happens quite quickly even for small s
such as s = 10.

2.3 List Decoding and List Recovering

Definition 1 (List decodable code). For 0 < p <1 and an integer L > 1, a
code C CFy is said to be (p, L)-list decodable if for every y € Fy, the number of
codewords in C that are within Hamming distance pn from y is at most L.

We will need to work with two different generalizations of list decoding. The
first one is motivated by multilevel concatenation schemes. The definition looks
more complicated than it really is.

Definition 2 (Nested linear list decodable code). Given a linear code C
in terms of some generator matriz G € F’;X”, an integer s that divides k, a
vector L = (Lo, Ly,...,Ls_1) of integers L; (0 < j < s —1), a vector p =
(P0sy p1 -+ Ps—1) with 0 < p;j < 1, and a vector r = (rg,...,Ts_1) of reals where
ro =k/nand 0 < r5_1 < -+ < 1; < 719, C is called an (r,p,L)-nested list
decodable if the following holds:

For every 0 < j < s—1, C? is a rate r; code that is (pj, L;)-list decodable,
where CJ is the subcode of C generated by the the last rjn rows of the generator
matriz G.



The second generalization of list decoding called list recovering, a term first
coined in [6] even though the notion existed before, has been extremely useful in
list decoding concatenated codes. The input for list recovering is not a sequence
of symbols but rather a sequence of lists (or more accurately sets, since the
ordering of elements in the input lists does not matter).

Definition 3 (List recoverable code). A code C C Fy, is called (p, ¢, L)-
list recoverable if for every sequence of sets Si,So,...,Sn, where S; C Fy and
|Si| < £ for every 1 < i < n, there are at most L codewords in ¢ € C such that
c; € S; for at least (1 — p)n positions i.

The following simple folklore lemma shows how, for suitable parameters, a list
recoverable outer code can be concatenated with a list decodable inner code to
give a new list decodable code. The approach is simply to run the list decoding
algorithm for each of the inner blocks, returning a list of possible symbols for
each possible outer codeword symbol, which are then used as input to the list
recovering algorithm for the outer code.

Lemma 1. If Coy; is a (&,£, L)-list recoverable over an alphabet of size @, and
Cin 1s a (p, £)-list decodable code with Q codewords, then the concatenated code
Cout © Cipy, is (€ - p, L)-list decodable.

2.4 Known Result on List Recoverable Codes

We will use the following powerful result concerning good list recoverable codes
from [7]; these codes will serve as the outer codes in our multilevel concatenation
scheme.

Theorem 1. For every integer £ > 1, for all constants ¢ > 0, for all R, R';
0 < R < R <1, and for every prime p, there is an explicit family of folded
Reed-Solomon codes, over fields of characteristic p that have rate at least R and
which can be (1 — R — ¢,¢, L(N))-list recovered in polynomial time, where for
codes of block length N, L(N) = (N/e2)o(5711°g(e/R)) and the code is defined
over alphabet of size (N/e2)O(c ™" logt/(1=R))

We remark that the above theorem was stated with R’ = R in [7], though the
above follows immediately from the proof for R = R and properties of the
folded Reed-Solomon codes [9]. The proof for R’ > R uses folded Reed-Solomon
codes with a larger “folding” parameter. A larger folding parameter increases
the fraction of errors that can be tolerated at the expense of a larger alphabet
size.

3 Linear Codes with Good Nested List Decodability

In this section, we will prove the following result concerning the existence (and
constructibility) of linear codes over any fixed alphabet with good nested list
decodability properties.



Theorem 2. For any integer s > 1 andreals 0 < rs_1 <715 9 <--- <11 <719 <
1,e>0,letp; = Hq_l(l—’l“j—26) forevery0 < j<s—1. Letr = (ro,...,rs_1),
p = {po,p1s---,ps—1) and L = (Lo, Ly,...,Ls_1), where L; = ¢'/¢. For large
enough n, there exists a linear code (over fized alphabet Fy ) that is (r, p, L)-nested
list decodable. Further, such a code can be constructed in time ¢©(™/%).

Proof. We will show the existence of the required codes via a simple use of
the probabilistic method (in fact, we will show that a random linear code has
the required properties with high probability). We will then use the method of
conditional expectation ([1]) to derandomize the construction with the claimed
time complexity.

Define k; = |r;n| for every 0 < j < s—1. We will pick a random kg x n matrix
G with entries picked independently from F,. We will show that the linear code C
generated by G has good nested list decodable properties with high probability.
Let Cj, for 0 < j < s — 1 be the code generated by the “bottom” k; rows of
G. Recall that we have to show that with high probability C; is (pj,ql/ €) list
decodable for every 0 < j < s —1 (C; obviously has rate 7;). Finally for integers
J,k > 1, and a prime power g, let Ind(g, k,J) denote the collection of subsets
{z1,22,...,25} C IE"; such that all vectors z1,...,z  are linearly independent
over I, .

We recollect the following two straightforward facts: (i) Given any L dis-
tinct vectors from F%, for some k > 1, at least [log, L] of them are linearly
independent; (ii) Any set of linearly independent vectors in IE‘"; are mapped to
independent random vectors in Fy by a random k x n matrix over .

We now move on to the proof of existence of linear codes with good nested
list decodability. We will actually do the proof in a manner that will facilitate
the derandomization of the proof. Define J = [log,(q'/¢ + 1)]. For any vector
r € Fy, integer 0 < j < s — 1, subset T' = {z1,...,2;} € Ind(g, kj,J) and any
collection S of subsets S1,S2,...,5; C {1,...,n} of size at most p;n, define
an indicator variable I(j,r,T,S) in the following manner. I(j,r,7,S) = 1 if
and only if for every 1 < i < J, C(z;) differs from r in exactly the set S;.
Note that if for some 0 < j < s — 1, there are ¢'/¢ + 1 codewords in C; all
of which differ from some received word r in at most p;n places, then this set
of codewords is a “counter-example” that shows that C is not (r, p,L)-nested
list decodable. Since the ¢'/¢ + 1 codewords will have some set T of J linearly
independent codewords, the counter example will imply that I(j,r,T,S) = 1
for some collection of subsets S. In other words, the indicator variable captures
the set of bad events we would like to avoid. Finally define the sum of all the
indicator variables as follows:

Sczsi Z Z Z I(j,I‘,T,S)-

Jj=0r€F? Telnd(q,k;,J) 8§={51,...,8s},
Sig{li"'yn}7|5i|<pjn

Note that if So = 0, then C is (r, p, L)-nested list decodable as required. Thus,
we can prove the existence of such a C if we can show that Ec[Sc] < 1. By



linearity of expectation, we have

s—1
=> > X > E[I(j,r,T,8)].  (4)
Jj=0r€Fg T€Ind(q,k;,J) 8§={851,.--,5s},
Sig{lr'-yn}’lsilgpjn

Fix some arbitrary j,r,T = {z1,2s,...,25},8 = {S1,52,--.,5s} (in their cor-
responding domains). Then we have

E[I(j,r,T,S)] = Pr[I(j,r,T,5) = 1]
= H Pr[C(z;) differ from r in exactly the positions in 5]

MO CC

where the second and the third equality follow from the definition of the indicator
variable, the fact that vectors in 7" are linearly independent and the fact that
a random matrix maps linearly independent vectors to independent uniformly
random vectors in Fy . Using (5) in (4), we get

SOEED 35 DD DENED DR |

j=0r€F} T€Ind(q,k;,J)  S={S1,..,S5}, i=1
SiC{1,...,n}|S:|<pin

-YY % > I

j=0 I‘G]Fq" TeInd(q,kj,J) (21,22,...,[‘])E{O,l,...,pj’n}‘] i=1

Sy s (B0

Jj=0reFg T€lnd(qg,k;,J)

< ZIZ T e ¢ Szlqn.qu,-.an(Hq(pn—n
j=0reFp T€lnd(q,k;,J) j=0
s—1

< anJ(l/J+rj+17rj72671) < Sqfs'n.]. (6)
=0

The first inequality follows the following known inequality for p < 1 —1/g ([8]):
p " ( )(q 1)t < g () The second inequality follows by upper bounding the
number of J linearly independent vectors in IFZJ' by ¢’*i. The third inequality
follows from the fact that k; = |r;n] and p; = H;'(1 — r; — 2¢), The final
inequality follows from the fact that J = [log,(q'/¢ + 1)].
Thus, (6) shows that there exists a code C (in fact with high probability)
that is (r, p, L)-nested list decodable. In fact, this could have been proved using
a simpler argument. However, the advantage of the argument above is that we



can now apply the method of conditional expectations to derandomize the above
proof.

The algorithm to deterministically generate a linear code C' that is (r, p, L)-
nested list decodable is as follows. The algorithm consists of n steps. At any step
1 < i < n, we choose the " column of the generator matrix to be the value
v; € IF’;O that minimizes the conditional expectation E[S¢|G1 = vy,...,G; 1 =

vi_1,G; = v;], where G; denotes the ‘" column of G and vy,...,v; ; are the
column vectors chosen in the previous 1 —1 steps. This algorithm would work only
if for any 1 < ¢ < n and vectors vy,...,Vv;, we can exactly compute E[S¢|G; =

vi,...,G; = v;]. Indeed from (4), we have E[S¢|G1 = v1,...,G; =v] is

iz Z Z E[I(j’raTaS)|G1:Vl,--.,Gi:Vi].

J=0reF? Telnd(g,k;,J)  S={51,..,5s},
SiC{1,...,n}[Si|<pin

Thus, we would be done if we can compute the following for every value of
i, T =A{z1,...,25},8 = {S1,...,Ss}: E[I(4,r,T,S) = 1|G1 = vy,...,G; =
v;]. Note that fixing the first ¢ columns of G implies fixing the value of the
codewords in the first ¢ positions. Thus, the indicator variable is 0 (or in other
words, the conditional expectation we need to compute is 0) if for some message,
the corresponding codeword does not disagree with r exactly as dictated by S
in the first ¢ positions. More formally, I(j,r,T,S) = 0 if the following is true for
somel <f<iand 0 < < J:2- Gy £ 1y, if £ € Sy and z; - Gy = ry otherwise.
However, if none of these conditions hold, then using argument similar to the
ones used to obtain (5), one can show that

T g —1\!5 1\ it
Bl T 8)IG v G =vil = TT (1) (0)
=1 q q

where Sy =S¢\ {1,2,...,4} for every 1 < £ < J.

To complete the proof, we need to estimate the time complexity of the above
algorithm. There are n steps and at every step ¢, the algorithm has to consider
gko < ¢ different choices of v;. For every choice of v;, the algorithm has to
compute the conditional expectation of the indicator variables for all possible
values of j,r, T, S. It is easy to check that there are > ;_, g"-q7%.2" L sq"(1+27)
possibilities. Finally, the computation of the conditional expected value of a
fixed indicator variable takes time O(snJ). Thus, in all the total time taken is
O(n-q" - 5q"0+20) . sn.J) = ¢O("/¢) | as required. [ |

4 List Decoding Multilevel Concatenated Codes

In this section, we will see how one can list decode multilevel concatenated codes,
provided the outer codes have good list recoverability and the inner code has
good nested list decodability. We have the following result, which generalizes
Lemma 1 for regular concatenated codes (the case s = 1).



Theorem 3. Let s > 1 and £ > 1 be integers. Let 0 < Ry < Ry < -+ <
R, 1<1,0<r90<1,0<&, -+ ,&-1<1,0<po, - ,ps—1 <1 ande >0 be
reals. Let q be a prime power and let Q = q* for some integer a > 1. Further,
let C7,, (0 < j < s—1) be an Fy-linear code over Fg of rate R; and block
length N that is (§;,¢, L)-list recoverable. Finally, let C;, be a linear (r,p,L)-
nested list decodable code over F, of rate ro and block length n = as/ro, where
r=(rg, - ,Ts—1) wWithr; = (1—1i/s)ro, p = {po,- -+ , ps—1) and L = (£,¢,--- ,{).
Then C = (C9,, x ++- x C5:1) 0 Cip is a linear (min; &; - pj, L®)-list decodable
code. Further, if the outer code C’gut can be list recovered in time T;(N) and the
inner code Ci, can be list decoded in time t;(n) (for the j'* level), then C can

be list decoded in time O (Zj;é Li(T;(N)+ N - t](n)))

Proof. Given list recovering algorithms for C? ., and list decoding algorithms for
Cin (and its subcodes CY,), we will design a list decoding algorithm for C'. Recall
that the received word is an n X N matrix over F,. Each consecutive “chunk” of
n/s rows should be decoded to a codeword in C? ;. The details follow.

Before we describe the algorithm, we will need to fix some notation. Define
6 = min; £p;. Let R € F7V be the received word, which we will think of as an
n X N matrix over I, (note that s divides n). For any n x N matrix M and for

any 1 <1< N, let M; € Fg denote the it column of the matrix M. Finally, for

every 0 < j<s—1,let an denote the subcode of C;, generated by all but the
first ja rows of the generator matrix of C;,. We are now ready to describe our
algorithm.

Recall that the algorithm needs to output all codewords in C' that differ from
R in at most ¢ fraction of positions. For the ease of exposition, we will consider
an algorithm that outputs matrices from C9,, x --- x C:..'. The algorithm has
s phases. At the end of phase j (0 < j < s — 1), the algorithm will have a list of
matrices (called £;) from C9,, x ---x C? ,, where each matrix in £; is a possible
submatrix of some matrix that will be in the final list output by the algorithm.
The following steps are performed in phase j (where we are assuming that the
list decoding algorithm for C}, returns a list of messages while the list recovering

algorithm for C7 , returns a list of codewords).

1. Set L; to be the empty set.
2. For every ¢ = (co,- - ,c¢j—1) € L;_1 repeat the following steps (if this is the
first phase, that is j = 0, then repeat the following steps once):
(a) Let G; be the first aj rows of the generator matrix of Cj,. Let X =
(G;)T-c, where we think of ¢ as an ja x N matrix over F,. Let Y = R—X
(for j = 0 we use the convention that X is the all Os matrix). For every
1 <14 < N, use the list decoding algorithm for C7, on column Y; for up
to p; fraction of errors to obtain list S7 C (Fg)* 7. Let T/ C Fg be the
projection of every vector in Szj on to its first component.
(b) Run the list recovery algorithm for C?,, on set of lists {77}; obtained
from the previous step for up to {; fraction of errors. Store the set of
codewords returned in I;.



(c) Add {(c,v)|v € I;} to L;.

At the end, remove all the matrices M € L,_1, for which the codeword (C;y, (M1),
Cin(Ma), -+ ,Cin(My)) is at a distance more than § from R. Output the re-
maining matrices as the final answer.

We will first talk about the running time complexity of the algorithm. It is
easy to check that each repetition of steps 2(a)-(c) takes time O(T;(N) + N -
tj(n)). To compute the final running time, we need to get a bound on number
of times step 2 is repeated in phase j. It is easy to check that the number
of repetitions is exactly |£;_1|. Thus, we need to bound |£;_;|. By the list
recoverability property of C?,,, we can bound |I;| by L. This implies that |£;| <
L|L;_]|, and therefore by induction we have

L) < LY fori=0,1,...,s —1. (7)

Thus, the overall running time and the size of the list output by the algorithm
are as claimed in the statement of the theorem.

We now argue the correctness of the algorithm. That is, we have to show that
for every M € Cgut X -+ X C‘;Jtl, such that (C,n(Ml),C,m(MQ) s 1Cin(MN))
is at a distance at most d from R (call such an M a good matrix), M € L, ;.
In fact, we will prove a stronger claim: for every good matrix M and every
0<j<s—1, M ¢ L;, where M7 denotes the submatrix of M that lies in
C9,,x---xCJ,, (that is the first j “rows” of M). For the rest of the argument fix
an arbitrary good matrix M. Now assume that the stronger claim above holds
for j' —1 (< s —1). In other words, Mi'—1e Lj—1. Now, we need to show that
M7’ S ﬁjl.

For concreteness, let M = (mq,-+-,ms 1)7. As M is a good matrix and
0 < &rpjry Cin(M;) can disagree with R; on at least a fraction pj; of positions
for at most ;s fraction of column indices ¢. The next crucial observation is that
for any column index ’L', Ci (Mz) = (Gjl)T . (’I’I’L(),,', s ,mj/_l,i) + (G \ GjI)T .
(mjr i, ,ms—1,), where G/ is as defined in step 2(a), G\ G, is the submatrix
of G obtained by “removing” G and mj ; is the it? component of the vector
m;:. The following might help the reader to visualize the different variables.

mo,1 mo,; mo,N
G M= ()T @\ar || M- M maoay
(@) (@\Gy)T | | M e,
ms—1,1 *** Mg—1,4 *** Ms—_1,N
) ) )
= | Cin(Mq) -+ Cin(M;) - -+ Cin(Mn)
4 4 {

Note that G \ G is the generator matrix of CerIL Thus, for at most &;/ fraction
of column indices i, (mjr i, -+ ,ms—1;) - (G \ Gj) disagrees with R; — X; on at



least p;s fraction of places, where X is as defined in Step 2(a), and X; denotes
the 7’th column of X. As C’f; is (pjr,¢)-list decodable, for at least 1 —¢;/ fraction
of column index 4, M/ " will be in Sf, (where M7 "is M; projected on it’s last
s — 7' co-ordinates and Sf " is as defined in Step 2(a)). In other words, mj ; is
in Tijl for at least 1 — &, fraction of i’s. Further, as |.S’f’| < 4, |sz’| < 4. This
implies with the list recoverability property of Cg;t that mj € I/, where I is
as defined in step 2(b). Finally, step 2(c) implies that M7’ e Lj: as required.
The proof of correctness of the algorithm along with (7) shows that C is
(6, L?)-list decodable, which completes the proof. ]

5 List Decoding up to the Blokh-Zyablov Bound

We combine the results we have proved in the last couple of sections to get our
main result.

Theorem 4 (Main). For every fized field Fy, reals 0 < § < 1,0 < r < 1 —
H,(0),e > 0 and integer s > 1, there exists linear codes C over Fy of block
length N that are (6 — e, L(N))-list decodable with rate R such that

r

s—1 5
RZT_EZH_1(1—7'+M'/S)’ ®)

i=0 9

and L(N) = (N/EQ)O(SE_s‘;/(Hq_I(lfr)f‘s)). Finally, C can be constructed in time
(N/sz)o(s/(€er‘5)) and list decoded in time polynomial in N.

Proof. Let v > 0 (we will define its value later). For every 0 < j < s —1

define r; = r(1 — j/s) and R; = 1 — ﬁ. The code C is going to be
q Ti

a multilevel concatenated code (C9,, x --- x C5-1) o Cip, where C?,, is the
code from Theorem 1 of rate R; and block length N’ (over Fgo) and Cjy, is
an ((ro,...,7s—1), p, L)-nested list decodable code as guaranteed by Theorem 2,
where for 0 < j < s—1, p; = Hq_l(l —rj—27*) and L; = ql/“’z. Finally, we
will use the property of CZ,, that it is (1 — R —~, q*/?", (N’ /2)00~* los(1/R;))).
list recoverable. Theorem 1 implies that such codes exist with (where we apply
Theorem 1 with R' = max; R; =1 —4§/H;'(1 - r/s))

qa _ (NI/,Y2)O(7_4HQ_1(1—7‘/3)/5). (9)

Further, as codes from Theorem 1 are Fy-linear [7], C is a linear code.

The claims on the list decodability of C' follows from the choices of R; and r;
and Theorems 1, 2 and 3. In particular, note that we invoke Theorem 3 with the
following parameters: £; = 1—R; —+ and p; = Hq’l(l —r;—272) (which implies?
that £jp; > 0—caslongasy = O(e)), L = ¢/ and L = (N’/fy2)o(7_1 log(£/R;))

% As for any 0 < z < 1 and small enough a > 0, Hy '(z — &®) > H; '(z) — O(a) [9].



The choices of £ and ~ imply that L = (N/e2)0( *108(1/R:)), Now log(1/R;) <
10g(1/Rmin), where Rpyin = min; R; = 1—6/H; ' (1—7). Finally, we use the fact
that for any 0 <y <1, In(1/y) < 1/y — 1 to get that log(1/R;) < O(1/Rmin —
1) = O(6/(H;*(1 — r) — 6)). The claimed upper bound of L(N) follows as
L(N) < L* (by Theorem 3).

By the choices of R; and r; and (1), the rate of C is as claimed. The con-
struction time for C is the time required to construct Cj,, which by Theorem 2
is 20(n/7*) where n is the block length of Cj,. Note that n = as/r, which by (9)
implies that the construction time is (N/EQ)O(E_%H;I(1’T/S)/(’"‘s)). The claimed
running time follows by using the bound H, '(1 —r/s) < 1.

We finally consider the running time of the list decoding algorithm. We list
decode the inner code(s) by brute force, which takes 2°(") time, that is, ¢;(n) =
20(n)  Thus, Theorems 1, 3 and the bound on L(N) implies the claimed running
time complexity. |

Choosing the parameter r in the above theorem so as to maximize (8) gives
us linear codes over any fixed field whose rate vs. list decoding radius tradeoff
meets the Blokh-Zyablov bound (2). As s grows, the trade-off approaches the
integral form (3) of the Blokh-Zyablov bound.
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