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Abstract

For every 0 < R < 1 and ε > 0, we present an explicit construction of error-correcting
codes of rate R that can be list decoded in polynomial time up to a fraction (1 − R − ε) of
errors. These codes achieve the “capacity” for decoding from adversarial errors, i.e., achieve the
optimal trade-off between rate and error-correction radius. At least theoretically, this meets one
of the central challenges in coding theory.

Prior to this work, explicit codes achieving capacity were not known for any rate R. In fact,
our codes are the first to beat the error-correction radius of 1−

√
R, that was achieved for Reed-

Solomon codes in [11], for all rates R. (For rates R < 1/16, a recent breakthrough by Parvaresh
and Vardy [14] improved upon the 1 −

√
R bound; for R → 0, their algorithm can decode a

fraction 1 −O(R log(1/R)) of errors.)
Our codes are simple to describe — they are certain folded Reed-Solomon codes, which are in

fact exactly Reed-Solomon (RS) codes, but viewed as a code over a larger alphabet by careful
bundling of codeword symbols. Given the ubiquity of RS codes, this is an appealing feature of
our result, since the codes we propose are not too far from the ones in actual use.

The main insight in our work is that some carefully chosen folded RS codes are “com-
pressed” versions of a related family of Parvaresh-Vardy codes. Further, the decoding of the
folded RS codes can be reduced to list decoding the related Parvaresh-Vardy codes. The al-
phabet size of these folded RS codes is polynomial in the block length. This can be reduced
to a (large) constant using ideas concerning “list recovering” and expander-based codes from
[9, 10]. Concatenating the folded RS codes with suitable inner codes also gives us polytime
constructible binary codes that can be efficiently list decoded up to the Zyablov bound.

∗Research supported in part by NSF grant CCF-0343672 and a Sloan Research Fellowship.
†Research supported by NSF grant CCF-0343672.



1 Introduction

1.1 Background and Context

Error-correcting codes enable reliable communication of messages over a noisy channel by clev-
erly introducing redundancy into the message to encode it into a codeword, which is then trans-
mitted on the channel. This is accompanied by a decoding procedure that recovers the correct
message even when several symbols in the transmitted codeword are corrupted. In this work,
we focus on the adversarial or worst-case model of errors — we do not assume anything about
how the errors and error locations are distributed beyond an upper bound on the total number of
errors that may be caused. The central trade-off in this theory is the one between the amount of
redundancy needed and the fraction of errors that can be corrected. The redundancy is measured
by the rate of the code, which is the ratio of the the number of information symbols in the message
to that in the codeword — thus, for a code with encoding function E : Σk → Σn, the rate equals
k/n. The block length of the code equals n, and Σ is its alphabet.

The goal in decoding is to find, given a noisy received word, the actual codeword that it could
have possibly resulted from. If we target correcting a fraction ρ of errors (ρ will be called the
error-correction radius), then this amounts to finding codewords within (normalized Hamming)
distance ρ from the received word. We are guaranteed that there will be a unique such codeword
provided the distance between every two distinct codewords is at least 2ρ, or in other words the
relative distance of the code is at least 2ρ. However, since the relative distance δ of a code must
satisfy δ 6 1 − R where R is the rate of the code (by the Singleton bound), the best trade-off
between ρ and R that unique decoding permits is ρ = ρU (R) = (1 − R)/2. But this is an overly
pessimistic estimate of the error-correction radius, since the way Hamming spheres pack in space,
for most choices of the received word there will be at most one codeword within distance ρ from
it even for ρ much greater than δ/2. Therefore, always insisting on a unique answer will preclude
decoding most such received words owing to a few pathological received words that have more
than one codeword within distance roughly δ/2 from them.

A notion called list decoding, that dates back to the late 1950’s [3, 19], provides a clean way to
get around this predicament, and yet deal with worst-case error patterns. Under list decoding, the
decoder is required to output a list of all codewords within distance ρ from the received word. Let
us call a code C (ρ, L)-list decodable if the number of codewords within distance ρ of any received
word is at most L. To obtain better trade-offs via list decoding, we need (ρ, L)-list decodable
codes where L is bounded by a polynomial function of the block length, since this an a priori
requirement for polynomial time list decoding. How large can ρ be as a function of R for which
such (ρ, L)-list decodable codes exist? A standard random coding argument shows that we can
have ρ > 1 − R − o(1) over large enough alphabets, cf. [20, 4], and a simple counting argument
shows that ρ must be at most 1 − R. Therefore the list decoding capacity, i.e., the information-
theoretic limit of list decodability, is given by the trade-off ρcap(R) = 1 − R = 2ρU (R). Thus list
decoding holds the promise of correcting twice as many errors as unique decoding, for every rate.

The above-mentioned list decodable codes are non-constructive. In order to realize the poten-
tial of list decoding, one needs explicit constructions of such codes, and on top of that, polynomial
time algorithms to perform list decoding. After essentially no progress in this direction in over 30
years, the work of Sudan [17] and improvements to it in [11], achieved efficient list decoding up
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to ρGS(R) = 1−
√
R errors for an important family of codes called Reed-Solomon codes. Note that

1 −
√
R > ρU (R) = (1 −R)/2 for every rate R, 0 < R < 1, so this result showed that list decoding

can be effectively used to go beyond the unique decoding radius for every rate (see Figure 1). The
ratio ρGS(R)/ρU (R) approaches 2 for rates R → 0, enabling error-correction when the fraction of
errors approaches 100%, a feature that has found numerous applications outside coding theory,
see for example [18], [6, Chap. 12].
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Figure 1: Error-correction radius ρ plotted against the rate R of the code for known algorithms.
The best possible trade-off, i.e., capacity, is ρ = 1 −R, and our work achieves this.

Unfortunately, the improvement provided by [11] over unique decoding diminishes for larger
rates, which is actually the regime of greater practical interest. For rates R → 1, the ratio ρGS(R)

ρU (R)

approaches 1, and already for rate R = 1/2 the ratio is at most 1.18. Thus, while the results of
[17, 11] demonstrated that list decoding always, for every rate, enables correcting more errors
than unique decoding, they fell short of realizing the full quantitative potential of list decoding.

The bound ρGS(R) stood as the best known error-correction radius for efficient list decoding
for several years. In fact constructing (ρ, L)-list decodable codes of rate R for ρ > ρGS(R) and
polynomially bounded L, regardless of the complexity of actually performing list decoding to
radius ρ, itself was elusive. Some of this difficulty was due to the fact that 1 −

√
R is the largest

radius for which small list size can be shown generically, via the so-called Johnson bound to argue
about the number of codewords in Hamming balls using only information on the relative distance
of the code, cf. [5].

In a recent breakthrough paper [14], Parvaresh and Vardy presented codes which are list-
decodable beyond the 1 −

√
R radius for low rates R. The codes they suggest are variants of

Reed-Solomon (RS) codes obtained by evaluating m > 1 correlated polynomials at elements of the
underlying field (with m = 1 giving RS codes). For any m > 1, they achieve the error-correction
radius ρ(m)

PV (R) = 1 − m+1
√
mmRm. For rates R→ 0, choosing m large enough, they can list decode
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up to radius 1 − O(R log(1/R)), which approaches the capacity 1 − R. However, for R > 1/16,
the best choice of m (the one that maximizes ρ(m)

PV (R)) is in fact m = 1, which reverts back to RS
codes and the error-correction radius 1−

√
R. (See Figure 1 where the bound 1− 3

√
4R2 for the case

m = 2 is plotted — except for very low rates, it gives a small improvement over ρGS(R).) Thus,
getting arbitrarily close to capacity for some rate, as well as beating the 1 −

√
R bound for every

rate, both remained open1.

1.2 Our Result

In this work, we get arbitrarily close to the list decoding capacity ρcap(R) for every rate. In other
words, we give explicit codes of rateR together with polynomial time list decoding up to a fraction
1 −R− ε of errors for every rate R and arbitrary ε > 0. This realizes the full quantitative promise
of list decoding by correcting twice as many errors as unique decoding for every rate (Figure 1).

Description of our codes: Our capacity-achieving codes are very closely related to Reed-Solomon
codes. Recall that a Reed-Solomon code of block length n over a field F is obtained encoding a
message f , viewed as a low-degree polynomial, by its evaluations f(x0), f(x1), . . . , f(xn−1) at n
distinct points in F. We begin with such a RS code, with some moderate, easily met conditions
on the size of the field F, and an appropriate choice and ordering x0, . . . , xn−1 of the evaluation
points. We make use of the structure of the evaluation points {x0, . . . , xn−1} chosen from F, unlike
the previous works [17, 11, 14] that worked for an arbitrary set of evaluation points.

The encoding function of our code first encodes according to the RS code, partitions the result-
ing codeword symbols into n/m intervals of size m, and treats the tuple of m field elements in
each of these n/m intervals as a symbol over the larger alphabet F

m. This gives a code over F
m of

the same rate as the original RS code.
Thus, our code is really just a Reed-Solomon code, but viewed as a code over a larger alphabet

by a simple bundling of codeword symbols. We call these codes folded Reed-Solomon codes, follow-
ing the nomenclature used by Krachkovsky [12] who studied correcting phased error bursts for
RS codes.2

Our result can also be stated as giving decoding algorithms for certain Reed-Solomon codes
that corrects a much larger fraction of errors than the one in [11] if the errors happen in large,
phased bursts (the actual errors can be adversarial). We believe this is an appealing feature of our
result, since Reed-Solomon codes are ubiquitous, and developing improved decoding algorithms
for codes already in use has greater likelihood of potential practical use than proposing radically
new coding schemes.

1Independent of our work, Alex Vardy constructed a variant of the code defined in [14] which could be list decoded
with fraction of errors more than 1 −

√

R for all rates R. However, his construction does not achieve the list decoding
capacity.

2The paper by Krachkovsky [12] presents an algorithm to correct a fraction m
m+1

(1 − R) of errors with probability
1 − o(1) in such folded RS codes, for the noise model where whenever an error occurs, the original symbol is replaced
by a uniformly random element from the alphabet. This was also the noise model considered in the works [1, 2], where
algorithms correcting close to a fraction 1−R of such errors are presented for some special RS codes. This noise model,
however, is unrealistic. In fact, under such a model, we can reduce the error-correction problem to decoding from
erasures by a simple trick (this was pointed out to us by Piotr Indyk), and decoding from a fraction 1 − R of erasures
with rate R is easy.
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Our codes are also closely related to the codes constructed by Parvaresh and Vardy [14], and
in fact their decoding proceeds by a black-box reduction to decoding certain codes in the latter
family. See section 2 for more details.

1.3 Other consequences

Our result extends easily to the problem of list recovering (see Definition 3). The biggest advantage
here is that we are able to achieve a rate that is independent of the size of the input lists. This is
an extremely useful feature in concatenated code constructions. We are able to use this to reduce
the alphabet size needed to achieve capacity, and also obtain results for binary codes. We briefly
describe these results below.

To get within ε of capacity, the folded RS codes we construct have alphabet size nΩ(1/ε2) where
n is the block length. By concatenating list-recoverable FRS codes of rate close to 1 with suitable
inner codes followed by redistribution of symbols using an expander graph (similar to a construc-
tion for linear-time unique decodable codes in [10]), we can get within ε of capacity with codes
over an alphabet of size 2O(ε−3 log(1/ε)). While this is much larger than the poly(1/ε) alphabet size
achieved by the non-constructive random coding arguments, it is still a constant independent of
the block length.

For binary codes, the list decoding capacity is known to be ρbin(R) = H−1(1 − R) where
H(·) denotes the binary entropy function [8]. We do not know explicit constructions of binary
codes that approach this capacity. However, using our folded RS codes in a natural concatenation
scheme, we give polynomial time constructible binary codes of rate R that can be list decoded up
to a fraction ρZyab(R) of errors, where ρZyab(R) is the “Zyablov bound”. See Figure 2 for a plot of
these bounds.
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Figure 2: Error-correction radius ρ of our algorithm for binary codes plotted against the rate R.
The best possible trade-off, i.e., capacity, is ρ = H−1(1 −R), and is also plotted.
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1.4 Organization of the paper

We start with an overview of our proof in Section 2. We then fix some notation and recall some
well known facts in Section 3. We prove a crucial lemma (which allows us to choose evaluation
points with special properties) in Section 4. We formally define the code we are working with and
the polynomial time list decoding algorithm in Section 5. Section 6 deals with the extensions of
our main result to get list recovery which in turn helps us get codes over smaller alphabets. We
conclude with some open questions in Section 7.

2 Overview of Proof Technique

We now briefly describe the main ideas that enable improved decoding of certain folded RS
(henceforth, FRS) codes. Our work uses the structure of the evaluation points {x0, . . . , xn−1} cho-
sen from F, unlike the previous works [17, 11, 14] that worked for an arbitrary set of evaluation
points. Consider a FRS code as Section 1.2 where for each location i of the FRS code, m field el-
ements xmi, xmi+1, . . . , xmi+m−1 of the RS encoding are bundled together, for 0 6 i < n/m (for
some m that divides n). See Figure 3 for an example when m = 4.

f(x0) f(x1) f(x2) f(x3) f(x4) f(x5) f(x6) f(x7) f(xn−4) f(xn−3) f(xn−2) f(xn−1)

f(x0)

f(x1)

f(x2)

f(x3)

f(x4)

f(x5)

f(x6)

f(x7)

f(xn−4)

f(xn−3)

f(xn−2)

f(xn−1)

Figure 3: Folding of the Reed Solomon code evaluated on points {x0, x1, · · · , xn−1} with parameter
m = 4.

We will ensure that the elements bundled together satisfy xmi+j = αxmi+j−1 for some α ∈ F,
for 0 6 i < n/m and 1 6 j < m. The choice of α is crucial, and here comes our first main
idea — α will be chosen so that for some irreducible polynomial E(X) of degree k, where k is
the dimension of the original RS code, and some integer d, every polynomial f ∈ F[X] of degree
at most (k − 1) satisfies the identity f(αX) = f(X)d mod E(X) in F[X]. Further, assume that
αm = 1 (this will neither be needed nor true in our case but it simplifies the description) — this
implies xmi = αxmi+m−1 for 0 6 i < n/m.

The reason to pick α as above is to relate FRS codes to the Parvaresh-Vardy (PV) codes [14]. The
basic idea in the latter codes is to encode a polynomial f by the evaluations of s > 2 polynomials
f0 = f, f1, . . . , fs−1 where fi(X) = fi−1(X)d mod E(X) for an appropriate power d — let us call
s the order of such a code. An FRS code with bundling using an α as above is in fact exactly the
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PV code of order s = m for the set of evaluation points {x0, xm, x2m, . . . , x(n/m−1)m}. This is nice
as it shows that PV codes can meet the Singleton bound (since FRS codes do), but as such does not
lead to any better codes for list decoding.

Here comes our second main idea. Let us compare the FRS code to a PV code of order 2 (instead
of orderm) for the set of evaluation points {x0, x1, . . . , xn−1}. We find that in the PV encoding of f ,
each f(xi) appears exactly twice (once as f(xi) and another time as f1(α

−1xi)), whereas it appears
only once in the FRS encoding. (See Figure 4 for an example when m = 4 and s = 2.) In other

f(x4)

f(αx4)

FRS codeword

f(x0)

f(αx0)

f(α2x0)

f(x0)

f(αx0)

f(α2x0)

f(α3x0)

f(x4)

f(αx4)

f(α2x4)

f(α3x4)

f(x0)

f(αx0)

f(αx0)

f(α2x0)

f(α2x0)

f(α3x0)

f(α3x0)

f(x0)

f(α3x4)

f(x4)

f(αx4)

f(α2x4)

f(α2x4)

f(α3x4)

f(α3x0)

PV codeword

Figure 4: The correspondence between a folded Reed-Solomon code (with m = 4) evalu-
ated over {x0, x4, x8, · · · , xn−4} and the Parvaresh Vardy code (of order s = 2) evaluated over
{x0, x1, x2, · · · , xn−1}. Recall that by the choice of α, x4i+j = αjx4i for 0 6 i < n/4 and 0 < j 6 3;
α4 = 1 and f1(X) = f(αX). The correspondence for the first block in the FRS codeword and the
first four blocks in the PV codeword is shown explicitly in the left corner of the figure.

words, the PV and FRS codes have the same information, but the rate of the FRS codes is bigger
by a factor of 2. Decoding the FRS codes from a fraction ρ of errors reduces to correcting the same
fraction ρ of errors for the PV code. But the rate vs. error-correction radius trade-off is better for
the FRS code since it has twice the rate of the PV code.

In other words, our folded RS codes are chosen such that they are “compressed” forms of
suitable PV codes, and thus have better rate than the corresponding PV code for a similar error-
correction performance. This is where our gain is, and using this idea we are able to construct
folded RS codes of rate R that are list decodable up to radius roughly 1 − s+1

√
Rs for any s > 1.

Picking s large enough lets us get within any desired ε from capacity.

3 Preliminaries and Notation

In this section, we fix the notations used in this paper and recall some well known results. We will
use p to denote a prime number and for any prime power q, we will use Fq to denote the finite
field on q elements. The ring of polynomials over Fq will be denoted by Fq[X]. The multiplicative
group of Fq will be denoted by F

∗
q . For any element α ∈ F

∗
q , its order in Fq is the smallest positive
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integer l such that αl = 1. We will be denote the order of α by ordFq(α). Note that ordFq(α) always
divides q − 1 and when ordFq (α) = q − 1, we say that α is a generator of F

∗
q .

For integersm,n > 1, a vector v ∈ ((Fq)
m)n will be denoted as

〈

(vi
0, v

i
1, · · · , vi

m−1)
〉n

i=1
. Further,

for two vectors u, v ∈ ((Fq)
m)n, we will define their agreement as follows:

agr(u, v) = | {i | (ui
0, u

i
1, · · · , ui

m−1) = (vi
0, v

i
1, · · · , vi

m−1)} | .

Let T be a subset of Fq. For any integer ` > 0 and α ∈ Fq, we will define a related set

φα,`(T ) =
⋃

β∈T

{β, αβ, · · · , α`β} . (1)

For positive integers m, s with s 6 m, we define a map ψm,s : ((Fq)
m)n

′ → ((Fq)
s)(m−s+1)n′ for

arbitrary n′ > 1 as follows:

ψm,s

(

〈

(bi0, b
i
1, · · · , bim−1)

〉n′

i=1

)

=
〈

〈(

bij, b
i
j+1, · · · , bij+s−1

)〉m−s

j=0

〉n′

i=1
(2)

Definition 1 (Orbit-avoiding sets). For an integer m > 1 and α ∈ Fq, the (m,α)-orbit of any β ∈ Fq

is defined to be the set {β, αβ, · · · , αm−1β}. A set T ⊆ Fq is called (m,α)-orbit-avoiding if for every
β, γ ∈ T with β 6= γ, the (m,α)-orbits of β and γ are disjoint.

We will need the following well-known and useful fact.

Fact 1. Let q be a prime power. For any polynomial f(X) ∈ Fq[X] and integer i > 1, (f(X))qi
= f(Xqi

).

We will be working with irreducible polynomials. In particular, we will be interested in irre-
ducible binomials. An exact characterization of these objects is known.

Theorem 1. ([13, Chapter 3]) Let k > 2 be an integer and α ∈ F
∗
q . Then the binomial Xk−α is irreducible

in Fq[X] if and only if the following conditions hold:

1. each prime factor of k divides ordFq(α) and gcd
(

k, q−1
ordFq (α)

)

= 1;

2. q ≡ 1 (mod 4) if k ≡ 0 (mod 4).

Finally, for positive integers r, s, we will use the following shorthand:

Fr(s) =
s
∏

i=0

(1 +
i

r
).

4 A Result on Polynomials over Finite Fields

In this section we will prove the following result.

8



Theorem 2. Let p be an arbitrary prime, b > a > 1 be integers coprime to p, and m > 1 be an arbitrary
integer. Let t > m2 −m be an integer that is not divisible by p, and furthermore is even if p > 2. Let q be
any power of p such that q ≡ 1 mod (t · a · b). Let γ be any generator of F

∗
q . Finally, define

k =
a(q − 1)

b
and e =

(qa − 1)b

a(q − 1)
. (3)

Then the following hold:

1. The polynomial E(X) = Xk − γ is irreducible over Fq.

2. For any polynomial f(X) ∈ Fq[X] of degree at most k − 1 and ` > 1,

(f(X))qa`

mod (E(X)) = f(γe`X).

Further, if 1 6 ` < m2 − m then the above map is non-trivial, that is, γe` 6= 1. In other words,
ordFq(γ

e) > m2 −m.

Proof . We begin with the proof of the first claim, for which we will invoke Theorem 1. First note
that the order of γ is q− 1. Let q = C · t · a · b+ 1, for some integer C > 1. Note that then k = Cta2

which implies that all prime factors of k divide q − 1 = Ctab. Further as (q − 1)/ordFq(γ) = 1,
gcd(k, (q−1)/ordFq(γ)) = 1. Thus, the first condition of Theorem 1 is satisfied. Now, if p = 2, then
all of C , t, a, b are odd and thus, k is odd which implies that the second condition of Theorem 1 is
satisfied. If p 6= 2, then t is even. Now if 4 divides k, then either 4 divides t or at least one of a or C
is even — in both cases 4 divides q− 1. Thus, in all cases, the conditions of Theorem 1 are satisfied
which proves the first claim.

Let f(X) be any polynomial in Fq[X] of degree at most k − 1. Fix ` > 1. We need to show the
following:

(f(X))qa` − f(γe`X) ≡ 0 (mod E(X)) (4)

We will show the above by induction on `. For the base case of ` = 1, consider the following
equality which follows from Lemma 1:

(f(X))qa − f(γeX) = f(Xqa

) − f(γeX).

Now note that Xqa − γeX = X(Xqa−1 − γe) divides the right hand side of the above equality.
Further, E(X) = Xk − γ divides Xqa−1 − γe = Xke − γe, which proves (4) for the case when
` = 1. Now assume that (4) holds for all ` 6 j. Define g(X) = f(γejX). The following sequence of
equalities shows that (4) is true for j + 1 and thus, completes the induction.

f(γe(j+1)X) = g(γeX)

= (g(X))qa

mod (E(X))

=
(

f(γejX)
)qa

mod (E(X))

=
(

(f(X))qaj
)qa

mod (E(X))

= (f(X))qa(j+1)
mod (E(X)).
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The first and the third equalities follow from the definition of g(X) while the second and the fourth
equalities follow from the induction hypothesis.

Now let ` satisfy 1 6 ` < m2 −m. Then

e`

q − 1
=

(qa − 1)b`

a(q − 1)2

=
b`(1 + q + q2 + · · · qa−1)

a(q − 1)

=
b`(D(q − 1) + a)

a(q − 1)
( for some D > 0)

=
`(CDtb+ 1)

Cta
.

The second equality follows from the identity 1 + q + q2 + · · · + qa−1 = (qa − 1)/(q − 1) while the
third follows from the fact that 1 + q + q2 + · · · + qa−1 = a mod (q − 1). Now, the last fraction
is not integral as the denominator is 0 mod (t) while the numerator is ` mod (t) 6≡ 0 mod (t) as
0 < ` < m2 −m 6 t. Thus, q − 1 does not divide e`. Since o(γ) = q − 1, for any l such that γ l = 1,
q − 1 has to divide l. It follows that γe` 6= 1.

Remark 1. Let K be the extension field Fq[X]/(E(X)) — its elements are in one-one correspon-
dence with polynomials of degree less than k over Fq. Let Γ : K → K be such that for ev-
ery f(X) ∈ K , Γ(f(X)) = f(G(X)) for some polynomial G over Fq. (In the above, we had
Γ(f(X)) = f(X)qa

mod (E(X)) and G(X) = γeX ; as a polynomial over K , Γ(Z) = Zqa , and
hence had degree qa.) Any such map Γ is an Fq-linear function on K , and is therefore a linearized
polynomial, cf. [13, Chap. 3, Sec. 4], which has only terms with exponents that are powers of q
(including q0 = 1). It turns out that for our purposes Γ cannot have degree 1, and so it must have
degree at least q. The large degree of the map Γ is in turn the cause for the large list size that we
need for list decoding.

5 Folded Reed-Solomon codes and their decoding

5.1 The construction

For any T ⊆ Fq, let RST [n, k, n−k+1]Fq denote the Reed-Solomon code of dimension k and length
n = |T | over Fq. Recall that the codewords in this code are 〈f(β)〉β∈T for every polynomial f(X)
of degree at most k − 1.

Definition 2 (Folded Reed-Solomon Codes). For an integer parameter m > 1, an α ∈ F
∗
q \ {1}

and an (m,α)-orbit-avoiding set T ⊆ Fq, we define an (m,α)-folded Reed-Solomon code, denoted by
FRSk,m,α,T,Fq

, as follows. The codeword corresponding to every polynomial f(X) of degree at most k − 1
is given by

EFRS =
〈 (

f(β), f(αβ), · · · , f(αm−1β)
) 〉

β∈T

The parameters of the code are as follows.

10



Proposition 3. The above defines a code over Fqm of block length n′ = |T |, rate k′/n′ where k′ = k/m,
and minimum distance d′ = n′ − dk′e + 1.

Proof . The claims about the block length and rate are obvious. If two distinct codewords agree
in at least dk′e places, then the corresponding two polynomials of degree at most k − 1 agree in at
least mdk′e > k points in Fq which is not possible.

5.2 The Parvaresh-Vardy code

We now recall the the recent code of Parvaresh-Vardy [14]. Their construction starts with a RS code
RST [n, k, n − k + 1]Fq for some T ⊆ Fq. For integer parameters s > 1, d1 < d2 < · · · < ds−1 and
an irreducible polynomial E(X) over Fq of degree k , we will denote the Parvaresh-Vardy code
by CRSk,T,s,d,E(X), where d = 〈d1, d2, · · · , ds−1〉.3 The codeword corresponding to a polynomial
f(X) of degree at most k − 1 is given by

ECRS(f) = 〈(f(β), g1(β), g2(β), · · · , gs−1(β))〉β∈T

where gi(X) = (f(X))di mod (E(X)) for every 1 6 i < s. For low rates, their code can tolerate
errors beyond the radius achieved by Guruswami and Sudan for Reed-Solomon codes [11].

Theorem 4. [14] The Parvaresh-Vardy code, CRSk,T,s,d,E(X), where d = 〈d1, d2, · · · , ds−1〉, can be list
decoded up to a radius of

|T | −
⌈

s+1
√

(k − 1)s|T |Fr(s) +
1

r

⌉

(5)

in time polynomial in |T |, where r > s is an arbitrary integer, provided

di

di−1
>

⌈

r
s+1

√

|T |
k − 1

Fr(s)

⌉

= ∆s, for every 1 6 i < s (with the convention d0 = 1); (6)

and

ds−1 is at most a polynomial in |T |. (7)

In particular the list decoding algorithm requires qO(1)mO(1)rO(s)+(ds−1)
O(1)kO(1)(log q)O(1) operations4

in Fq. Further, the algorithm always returns a list of size at most ds−1∆s.

5.3 Connection between FRS and CRS codes

In this subsection, we show that for certain setting of parameters, there is a bijection between the
FRS and CRS codes. The following is a crucial realization.

3The acronym CRS stands for Correlated Reed-Solomon code, since the Parvaresh-Vardy code encodes several de-
pendent polynomials, which are correlated in a carefully chosen way, by their joint evaluations at field elements.

4The total run time is never explicitly stated in [14] but the (loose) upper bound on the the number of operations
stated above follows immediately from looking at the paper.
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Lemma 5. Let m, s > 1 be integers such that m > s. Let a, b, q, k, e and E(X) = X k − γ be as
defined in Theorem 2 with γ being a generator of F

∗
q . Further, define α = γe and Q = qa. Finally, let

T ⊆ F
∗
q be an (m,α)-orbit-avoiding set. If EFRS and ECRS are the encoding functions of FRSk,m,α,T,Fq

and CRSk,φα,m−s(T ),s,dQ,E(X) (where d
Q = 〈Q,Q2, · · · , Qs−1〉) respectively, then

ψm,s ◦EFRS = ECRS .

Proof . If f(X) is a polynomial of degree at most k − 1, then its encoding in FRSk,m,α,T,Fq
is given

by
EFRS(f) =

〈(

f(β), f(αβ), f(α2β), · · · , f(αm−1β)
)〉

β∈T
.

Now consider the image of EFRS(f) under ψm,s:

ψm,s(EFRS(f)) =
〈

〈 (

f(αjβ), f(αj+1β), · · · , f(αj+s−1β)
) 〉m−s

j=0

〉

β∈T
(8)

=
〈(

f(β′), f(αβ′), · · · , f(αs−1β′)
)〉

β′∈φα,m−s(T )
(9)

=
〈(

f(β′), g1(β
′), · · · , gs−1(β

′)
)〉

β′∈φα,m−s(T )
(10)

= ECRS(f) (11)

(8) and (9) follow from the definitions of ψ(·,·) and φ(·,·) in (2) and (1) respectively. (10) follows from
Theorem 2 and the fact that gi(X) = (f(X))Qi

mod (E(X)). (11) follows from the definition of
CRSk,φα,m−s(T ),s,dQ,E(X). The proof is complete.

The following is an easy consequence of the definition of ψ(·,·) and Lemma 5.

Proposition 6. Let m, s, T,EFRS, ECRS be as defined in Lemma 5. If r ∈ ((Fq)
m)|T | then for any polyno-

mial f(X) of degree at most k − 1,

agr (ψm,s(r), ECRS(f)) = (m− s+ 1)agr (r, EFRS(f)) .

5.4 List decoding FRS codes

In this section we show that for certain setting of parameters, list decoding of the folded RS code
can be reduced to list decoding of Parvaresh-Vardy codes (with different parameters). The big gain
will be that we can work with a much lower agreement for the FRS code, thanks to Proposition 6.

Theorem 7. Let p be an arbitrary prime, b > a > 1 be integers coprime to p, and m > 1 be an arbitrary
integer. For this choice of p,m, a, b, let q, k, e and E(X) = X k − γ be defined as in Theorem 2 where γ is
a generator of F

∗
q . Let T ⊆ F

∗
q be an (m,α)-orbit-avoiding set of maximum size, where α = γe. Then the

folded RS code FRSk,m,α,T,Fq
has alphabet size qm, block length n′ and rate k′/n′ where

k = mk′ and q − 1

m
> n′ = |T | >

(q − 1)

m

(

1 − 1

m

)

. (12)

Furthermore, for every integer s, 1 6 s < m, and every r such that q > 4r2 and r > s, there is a polynomial
time list decoding algorithm for FRSk,m,α,T,Fq

that successfully list decodes up to a radius of

n′ −
⌈

s+1

√

(

m

m− s+ 1

)s

n′(k′)sFr(s) +
1

r(m− s+ 1)

⌉

. (13)
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The algorithm runs in time qO(1)mO(1)rO(s) + qO(as) and always outputs a list of size at most qas.

Proof . The claims about the rate and alphabet size of the FRS code are clear. To bound its block
length n′ = |T |, we will estimate the size of any maximum (m,α)-orbit-avoiding subset of F

∗
q . This

will also indicate why such a set can be found efficiently. We can define a relation Rα on F
∗
q where

(x, y) ∈ Rα iff xy−1 is a power of α. This is an equivalence relation whose equivalence classes all
have size ordFq(α), and are the orbits (under action of multiplication by α) of v = (q− 1)/ordFq(α)
distinct elements ζ1, . . . , ζv ∈ F

∗
q . Any (m,α)-orbit-avoiding set T of maximum size leaves out at

most (m− 1) elements in each of these equivalence classes. Therefore,

n′ = |T | >
(q − 1) − v(m− 1)

m
=
q − 1

m

(

1 − m− 1

ordFq(α)

)

>
q − 1

m

(

1 − 1

m

)

where the last step follows since ordFq(α) > m2 − m (by Theorem 2). The upper bound n′ 6

(q − 1)/m is obvious. Regarding constructibility of such a maximum (m,α)-orbit-avoiding set,
T = {ζiαmj | 1 6 i 6 v, 0 6 j < b ordFq (α)

m c} is an explicit description of such a set.
We now specify the decoding algorithm which proceeds by a reduction to decoding a related

CRS code. Define Q = qa and d
Q = 〈Q,Q2, · · · , Qs−1〉. Let r ∈ ((Fq)

m)n
′ be the received word.

Use the list decoder for CRSk,φα,m−s(T ),s,dQ,E(X) on the vector ψm,s(r) and return the list of poly-
nomials which is returned by the algorithm.

To see why this works, let EFRS(f) be the codeword in FRSk,m,α,T,Fq
corresponding to the

polynomial f(X) is degree at most k − 1. If

agr(r, EFRS(f)) >

⌈

s+1

√

(

m

m− s+ 1

)s

(k′)sn′Fr(s) +
1

r(m− s+ 1)

⌉

, (14)

then the list decoding algorithm for CRSk,φα,m−s(T ),s,dQ,E(X) should output f . Indeed,

agr(ψm,s(r), ECRS(f)) = (m− s+ 1)agr(r, EFRS(f))

>

⌈

s+1
√

ms(k′)sn′(m− s+ 1)Fr(s) +
m− s+ 1

r(m− s+ 1)

⌉

(15)

=

⌈

s+1

√

(mk′)s|φα,m−s(T )|Fr(s) +
1

r

⌉

(16)

>

⌈

s+1

√

(k − 1)s|φα,m−s(T )|Fr(s) +
1

r

⌉

. (17)

The first steps follows from Proposition 6. (15) follows from using (14). (16) follows from the fact
that |φα,m−s(T )| = (m− s+ 1)n′. (17) follows from the fact that mk′ = k > k − 1.

Comparing the bound on the agreement in (17) with the the bound (5) that the Parvaresh-
Vardy list decoder can correct, we conclude that f would indeed be a part of the list returned by
the Parvaresh-Vardy list decoder, provided we verify conditions (6) and (7), which we do next.
For the code CRSk,φα,m−s(T ),s,dQ,E(X) with d

Q = 〈d1 = Q, d2 = Q2, . . . , ds−1 = Qs−1〉, note that

di/di−1 = Qi/Qi−1 = Q = qa >

⌈

r s+1

√

|φα,m−s(T )|
k−1 Fr(s)

⌉

. This is because qa > q > 4r2 >

(2r)(s+1)/s, |φα,m−s(T )| 6 q − 1, and s+1
√

Fr(s) 6 2. Moreover, ds−1 = qa(s−1) is polynomial in
|φα,m−s(T )| = Θ(q).
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We now look at the running time of the above scheme. Applying ψm,s(·) to the received word
certainly does not requires more than qO(1) steps. As ds−1 = qa(s−1) and k 6 q, the number of Fq

operations required by the list decoding algorithm of Theorem 4 is no more than qO(1)mO(1)rO(s)+
qO(as).

Finally, we consider the size of the list returned by the algorithm, which by Theorem 4 is at

most Qs−1

⌈

r s+1

√

|φα,m−s(T )|
k−1 Fr(s)

⌉

< Qs−1Q = qas as claimed.

Remark 2. The above decoding bound can be improved to n′ − s+1
√

n′(k′)sFr(s) in the case when
the field element α used in the folding satisfies ordFq(α) = m.5 In this case, the (m,α)-orbit of the
elements of T partition F

∗
q , and the encoding comprises of evaluation of the message polynomial

f at these orbits. For such a folded RS code, we can reduce the decoding problem to a CRS code of
block lengthmn′ with the agreement increasingm fold. This is done by using allm cyclic s-element
windows of each orbit (instead of the (m−s+1) linear s-element windows we used above), as we
outlined in Section 2 using an example for the case m = 4 and s = 2. However, implementing this
adds a strong further constraint on the order of α which we must cater to in Theorem 2. To avoid
this complication, we just work with any α with large ordFq(α) and lose a factor m

m−s+1 in the rate.

Corollary 8. Let p be a prime, and s,m, r be positive integers such that m > s. Let b > a > 1 be integers
not divisible by p. Then for some a

b 6 r0 6
am

b(m−1) , there is an explicit family of folded Reed-Solomon codes
over fields of characteristic p with rate r0 and which can be list decoded up to a fraction

1 −
(

s+1

√

(

mr0
m− s+ 1

)s

Fr(s) + o(1)

)

(18)

of errors. A code of block length N in the family has alphabet size O((mN)m), and the list decoding
algorithm outputs a list of size at most (mN)O(as) and runs in time (mN)O(as).

Proof . Let q be any power of p that satisfies the conditions of Theorem 2, and let k, e be as de-
fined in (3). Let α = γe where γ is a generator of F

∗
q and let T ⊆ F

∗
q be an (m,α)-orbit avoiding

set of maximum size n′ that satisfies (12). We will now apply Theorem 7 to the folded RS code
FRSk,m,α,T,Fq

. We note that there are infinitely many possible choices for q and thus we get a
family of codes.

Let k′ = k/m be the “dimension” of the FRS code. The rate of this code equals

r0 =
k′

n′
=

k

n′m
=
a

b
· (q − 1)

mn′
.

By the bound on n′ in (12), we have (q − 1)(1 − 1/m) 6 mn′ 6 (q − 1). Thus, the rate r0 satisfies
a

b
6 r0 6

am

b(m− 1)
. (19)

(18) follows from plugging the upper bound on r0 = k′/n′ from (19) in (13) (after normalizing the
error bound). The claim about the alphabet size, list size and decoding complexity follow from
Theorem 7 since the underlying field size q satisfies q = O(mn′) where n′ is the block length and
the fact that the qO(as) term dominates the running time.

5Farzad Parvaresh and Alex Vardy (personal communication) also made this observation about our construction.
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Remark 3. Note that setting m = s above gives the same error-correction radius as the one
achieved by Parvaresh-Vardy codes. In fact for m = s, as was observed in Section 2, the folded
Reed-Solomon codes are in fact Parvaresh Vardy codes (defined on the same set of evaluation
points). As a special case, for m = s = 1, the folded Reed-Solomon (as well as Parvaresh Vardy)
codes are just Reed-Solomon codes.

5.5 Achieving the list decoding capacity

For fixed s, asm and r grow, the fraction of errors that can be corrected for the codes of Corollary 8
approaches 1− (r0)

s/(s+1). Parvaresh and Vardy [14] obtained a decoding radius of 1− (sr0)
s/(s+1)

— the extra factor of smultiplying the rate r0 had a detrimental effect on their performance unless
r0 was very small. In contrast, by picking s larger and larger, the fraction of errors we can correct
approaches the optimal bound of 1 − r0. We formalize this next by instantiating suitable parame-
ters in Corollary 8 and conclude our main result. We did not attempt to optimize the exact choice
of parameters in the calculations below.

Theorem 9 (Main). For every R, 0 < R < 1, every ε > 0, and every prime p, there is an explicit family
of folded Reed-Solomon codes over fields of characteristic p that have rate at least R and which can be list
decoded up to a fraction (1−R− ε) of errors in polynomial time. The alphabet size of a code of block length
N in the family is NO(ε−2 log2(1/R)) and the list decoding algorithm runs within time (and outputs a list of
size at most) NO(ε−2R log(1/R)).

Proof . We begin by specifying some choice of parameters. Let δ = ε/8. We will use:

s =

⌈

ln(1/R)

ln(1 + δ)

⌉

(20)

m = s2 − 1 (21)

r = s3 (22)

Let a and b be the integers coprime to p such that

R 6
a

b
6 R+ δ . (23)

Clearly such a, b exist with b = O(1/δ) = O(1/ε).
Applying Corollary 8 with the above choice of a, b and using the bounds on the rate r0 in

Corollary 8, we have a family of folded RS code with rate r0 satisfying

R 6 r0 6
(R+ δ)

(1 − 1/m)
. (24)

Codes in this family can be list decoding up to a fraction

1 −
(

s+1

√

(

mr0
m− s+ 1

)s

Fr(s) + o(1)

)
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of errors in polynomial time. To get the fraction (1 − R − ε) of errors claimed in the theorem, we
will be done if we can show that

(

s+1

√

(

m

m− s+ 1

)s

(r0)
s Fr(s) + o(1)

)

6 R+ ε. (25)

To show this, we have

s+1

√

(

m

m− s+ 1

)s

(r0)
s Fr(s) =

(

(1 +
1

s
)Fr(s)r0

)
s

s+1

(26)

6

(

(1 +
1

s
)

(

1 +
s2 + s

2s3
+O(

1

s6
)

)

R+ δ

(1 − 1/m)

)

s
s+1

(27)

=

((

1 +
3

2s
+O(

1

s2
)

)

(R+ δ)

)
s

s+1

(28)

<

(

1 +
3

2s
+O(

1

s2
)

)

(R+ δ)

(

1

R+ δ

)
1

s+1

(29)

=

(

1 +
3

2s
+O(

1

s2
)

)

(R+ δ)(1 + δ) (30)

6 R+ 6δ. (31)

(26) follows by substituting the value of m from (21). (27) follows by using the estimate

Fr(s) = 1 +
s2 + s

2r
+O(

1

r2
)

(using r from (22)) and (24). (28) follows by multiplying the different factors and collecting all
the O( 1

s2 ) terms together. (29) follows from the fact that s/(s + 1) < 1 and the first term in (28) is
greater than 1. (30) is by substituting the value of s from (20). The last step follows by using the
fact that 1/s 6 ln(1 + δ) 6 δ and that δ is very small.

Further, as δ is a constant, o(1) 6 δ. Recalling the value of δ = ε/8 proves the inequality (25).
Also, from Corollary 8 the alphabet size of the codes is O((mn′)m). Recalling the value of m

from (21), this is at most (n′)O(ε−2 log2(1/R)) . Similarly, from Corollary 8 the running time of the
list decoding algorithm as well as the size of the output list are both (mn′)O(as). Recalling that
a = O(R/ε) and s = O

(

log(1/R)
log(1+δ)

)

= O(ε−1 log(1/R)), this quantity is at most (n′)O(ε−2R log(1/R)).
The proof is complete.

6 Extensions and Codes over Smaller Alphabets

6.1 Extension to list recovering

We now present a very useful generalization of the list decoding result of Theorem 7 to the setting
of list recovering. Under the list recovering problem, one is given as input for each codeword
position, not just one but a set of several, say l, alphabet symbols. The goal is to find and output
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all codewords which agree with some element of the input sets for several positions. Codes for
which this more general problem can be solved turn out to be extremely valuable as outer codes
in concatenated code constructions. In short, this is because one can pass a set of possibilities from
decodings of the inner codes and then list recover the outer code with those sets as the input. If
we only had a list-decodable code at the outer level, we will be forced to make a unique choice in
decoding the inner codes thus losing valuable information.

Definition 3 (List Recovering). A code C ⊆ Σn is said to be (ζ, l, L)-list recoverable if for every sequence
of sets S1, . . . , Sn where each Si ⊆ Σ has at most l elements, the number of codewords c ∈ C for which
ci ∈ Si for at least ζn positions i ∈ {1, 2, . . . , n} is at most L.

A code C ⊆ Σn is said to (ζ, l)-list recoverable in polynomial time if it is (ζ, l, L(n))-list recoverable for
some polynomially bounded function L(·), and moreover there is a polynomial time algorithm to find the at
most L(n) codewords that are solutions to any (ζ, l, L(n))-list recovering instance.

We remark that when l = 1, (ζ, 1, ·)-list recovering is the same as list decoding up to a (1 − ζ)
fraction of errors. List recovering has been implicitly studied in several works; the name itself was
coined in [9].

Theorem 7 can be generalized to list recover the folded RS codes. Specifically, for a FRS code
with parameters as in Theorem 7, for an arbitrary constant l > 1, we can (ζ, l)-list recover in
polynomial time provided

ζn′ >

⌈

s+1

√

(

m

m− s+ 1

)s

n′l(k′)sFr(s) +
1

r(m− s+ 1)

⌉

. (32)

We briefly justify this claim. The (ζ, l)-list recovering problem for the FRS code can be reduced
to the (ζ, l)-list recovering problem for the related CRS code of block length n = n ′(m − s + 1)
exactly as in Theorem 7. For the latter CRS code, the Parvaresh-Vardy algorithm can be general-
ized in a straightforward way to (ζ, l)-list recover provided ζn > d s+1

√

(k)snlFr(s)+1/re, and one
can check that (32) implies this condition. The generalization of the PV algorithm is straightfor-
ward: instead of one interpolation condition for each symbol of the received word, we just impose
|Si| 6 l many interpolation conditions for each position i ∈ {1, 2, . . . , n} (where Si is the i’th input
set in the list recovering instance). The number of interpolation conditions is at most nl, and so re-
placing n = |T | by nl in the bound (5) guarantees successful decoding. This simple generalization
to list recovering is a positive feature of all interpolation based decoding algorithms [17, 11, 14]
beginning with the one due to Sudan [17].

Picking r � s and m � s in (32), we get (ζ, l)-list recover with rate R for ζ >
(

lRs
)1/(s+1).

Now comes the remarkable fact: we can pick a suitable s � l and perform (ζ, l)-list recovering
with agreement parameter ζ > R + ε which is independent of l! We state the formal result below
(Theorem 9 is a special case when l = 1). We skip the details which are very similar to the proof of
Theorem 9.

Theorem 10. For every integer l > 1, for all R, 0 < R < 1 and ε > 0, and for every prime p, there is
an explicit family of folded Reed-Solomon codes over fields of characteristic p that have rate at least R and
which can be (R + ε, l)-list recovered in polynomial time. The alphabet size of a code of block length N in
the family is NO(ε−2(l+log(1/R))2).
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Remark 4 (Soft Decoding). The decoding algorithm for folded RS codes from Theorem 7 can be
further generalized to handle soft information, where for each codeword position i the decoder is
given as input a non-negative weight wi,z for each possible alphabet symbol z. The weights wi,z

can be used to encode the confidence information concerning the likelihood of the the i’th symbol
of the codeword being z. For any ε > 0, for suitable choice of parameters, our codes of rate R
over alphabet Σ have a soft decoding algorithm that outputs all codewords c = 〈c1, c2, . . . , cN 〉
that satisfy

N
∑

i=1

wi,ci
>

(

(1 + ε)(RN)s
(

N
∑

i=1

∑

z∈Σ

ws+1
i,z

)

)1/(s+1)

.

For s = 1, this soft decoding condition is identical to the one for Reed-Solomon codes in [11].

6.2 Binary codes decodable up to Zyablov bound

The optimal list recoverability of the folded RS codes plays a crucial role in establishing the fol-
lowing result concerning list decoding binary codes.

Theorem 11. For all 0 < R, r < 1 and all ε > 0, there is a polynomial time constructible family of
binary linear codes of rate at least R · r which can be list decoded in polynomial time up to a fraction
(1 −R)H−1(1 − r) − ε of errors.

Proof . We will construct binary codes with the claimed property by concatenating two codes C1

and C2. For C1, we will use a folded RS code over a field of characteristic 2 with block length n1,
rate at least R, and which can be (R + ε, l)-list recovered in polynomial time for l = d10/εe. Let
the alphabet size of C1 be 2M where M = O(ε−4 log n). For C2, we will use a binary linear code of
dimensionM and rate at least r which is (ρ, l)-list decodable for ρ = H−1(1−r−ε). Such a code is
known to exist via a random coding argument that employs the semi-random method [8]. Also, a
greedy construction of such a code by constructing its M basis elements in turn is presented in [8]
and this process takes 2O(M) time. We conclude that the necessary inner code can be constructed
in nO(1/ε4) time. The code C1, being a folded RS code over a field of characteristic 2, is F2-linear,
and therefore when concatenated with a binary linear inner code such as C2, results in a binary
linear code. The rate of the concatenated code is at least R · r.

The decoding algorithm proceeds in a natural way. Given a received word, we break it up into
blocks corresponding to the various inner encodings by C1. Each of these blocks is list decoded
up to a radius ρ, returning a set of at most l possible candidates for each outer codeword symbol.
The outer code is then (R+ ε, l)-list recovered using these sets, each of which has size at most l, as
input. To argue about the fraction of errors this algorithm corrects, we note that the algorithm fails
to recover a codeword only if on more than a fraction (1−R− ε) of the inner blocks the codeword
differs from the received word on more than a fraction ρ of symbols. It follows that the algorithm
correctly list decodes up to a radius (1 − R− ε)ρ = (1 − R − ε)(H−1(1 − r) − ε). Since ε > 0 was
arbitrary, we get the claimed result.

Optimizing over the choice of inner and outer codes rates r,R in the above results, we can
decode up to the Zyablov bound, see Figure 2.

Remark 5. In particular, decoding up to the Zyablov bound implies that we can correct a fraction
(1/2−ε) of errors with rate Ω(ε3), improving the rate of Ω(ε3/ log2(1/ε)) achieved in [7]. However,
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our construction and decoding complexity are nO(1/ε4) whereas these are at most f(ε)nc for an
absolute constant c in [7]. Also, we bound the list size needed in the worst-case by nÕ(1/ε3), while
the list size needed in the construction in [7] is 2Õ(log(1/ε)).

6.3 Capacity-Achieving codes over smaller alphabets

Our result of Theorem 9 has two undesirable aspects: both the alphabet size and worst-case list
size output by the list decoding algorithm are a polynomial of large degree in the block length.
We now show that the alphabet size can be reduced to a constant, albeit a large one, that depends
only on the distance ε to capacity.

Theorem 12. For every R, 0 < R < 1, every ε > 0, there is a polynomial time constructible family of
codes over an alphabet of size 2O(ε−3 log(1/ε)) that have rate at least R and which can be list decoded up to a
fraction (1 −R− ε) of errors in polynomial time.

Proof (Sketch). The theorem can be proved using the code construction scheme used in [10] for
linear time unique decodable codes with optimal rate (with different components appropriate
for list decoding plugged in). We only sketch the basic ideas here. The idea is to concatenate
two codes Cout and Cin, and then redistribute the symbols of the resulting codeword using an
expander graph. Let δ = ε/5. The outer code Cout will be a code of rate (1 − 2δ) over an alphabet
Σ of size n(1/δ)O(1) that can be (1 − δ,O(1/δ))-list recovered in polynomial time, as guaranteed by
Theorem 10. That is, the rate of Cout will be close to 1, and it can be (ζ, l)-list recovered for large l
and ζ → 1.

The inner code Cin will be a ((1 −R− 4δ), O(1/δ))-list decodable code with near-optimal rate,
say rate at least (R+3δ). Such a code is guaranteed to exist over an alphabet of size O(1/δ2) using
random coding arguments. A naive brute-force for such a code, however, is too expensive, since
we need a code with |Σ| = nΩ(1) codewords. Guruswami and Indyk [9], see also [6, Sec. 9.3],
prove that there is a small (quasi-polynomial sized) sample space of pseudolinear codes in which
most codes have the needed property. Furthermore, they also present a deterministic polynomial
time construction of such a code (using derandomization techniques), see [6, Sec. 9.3.3].

The concatenation of Cout and Cin gives a code of rate ≈ R over an alphabet of size O(1/δ2).
Moreover, given a received word of the concatenated code, one can find all codewords which
agree with the received word on a fraction R+4δ of locations in at least (1− δ) of the inner blocks.
Indeed, we can do this by list decoding each of the inner blocks to a radius of (1−R−4δ) returning
up to l = O(1/δ) possibilities for each block, and then (1 − δ, l)-list recovering Cout.

The last component in this construction is a D = O(1/δ3)-regular Ramanujan graph which
is designed to convert an overall agreement on R + 5δ fraction of the symbols to an agreement
of at least R + 4δ on most (specifically a fraction (1 − δ)) of the inner blocks of the concate-
nated code. In other words, the expander redistributes symbols in a manner that “smoothens”
the distributions of errors evenly among the various inner blocks (except for possibly a δ frac-
tion of the blocks). The expander graph incurs no loss in rate, but increases the alphabet size to
(1/δ2)O(1/δ3) = 2O(ε−3 log(1/ε)).
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7 Concluding Remarks

We close with some remarks and open questions. The description of folded RS codes in Defini-
tion (2) bears some resemblance to certain extractors constructed in [16]. In the Shaltiel-Umans
extractor, the output of the weak-random source is treated as a low-degree d-variate polynomial
f over Fq, and f is thought of as a map f : Fqd → Fq (by identifying the vector space F

d
q with the

extension field Fqd). The random seed is treated as a point β ∈ Fqd and the output of the extractor
is (f(β), f(αβ), . . . , f(αm−1β)) where α is a generator of F

∗
qd . Can some of the techniques in this

work and [14] be used to construct simple extractors based on univariate polynomials?
We have solved the qualitative problem of achieving list decoding capacity. Our work could

be improved with some respect to some parameters. The size of the list needed to perform list
decoding to a radius that is within ε of capacity grows as nO(1/ε2) where n is the block length of the
code. It remains an open question to bring this list size down to a constant independent of n (the
existential random coding arguments work with a list size of O(1/ε)). We managed to reduce the
alphabet size needed to approach capacity to a constant independent of n. However, this involved
a brute-force search for a rather large code, and the alphabet size of 2Õ(1/ε3) we obtained is far from
the poly(1/ε) bound that the non-constructive arguments achieve. Obtaining a “direct” algebraic
construction over a constant-sized alphabet, such as the generalization of the Parvaresh-Vardy
framework to algebraic-geometric codes in [7, 15], might help in addressing these two issues.

Finally, constructing binary codes that approach list decoding capacity remains open.
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