
Testing Low-Degree Polynomials over Prime Fields

Charanjit S. Jutla
IBM Thomas J. Watson Research Center,

Yorktown Heights, NY 10598
csjutla@watson.ibm.com

Anindya C. Patthak∗

University of Texas at Austin
Austin, TX 78712

anindya@cs.utexas.edu

Atri Rudra†

Dept. of Computer Science & Engineering
University of Washington

Seattle, WA 98915
atri@cs.washington.edu

David Zuckerman‡

University of Texas at Austin
Austin, TX 78712
diz@cs.utexas.edu

Abstract

We present an efficient randomized algorithm to test if
a given function f : F

n
p → Fp (where p is a prime) is a

low-degree polynomial. This gives a local test for General-
ized Reed-Muller codes over prime fields. For a given in-
teger t and a given real ε > 0, the algorithm queries f at
1
ε + t · p

2t
p−1+O(1) points to determine whether f can be de-

scribed by a polynomial of degree at most t. If f is indeed
a polynomial of degree at most t, our algorithm always ac-
cepts, and if f has a relative distance at least ε from ev-
ery degree t polynomial, then our algorithm rejects f with
probability at least 1

2 . Our result is almost optimal since

any such algorithm must query f on at least Ω(1
ε + p

t+1
p−1)

points.

1. Introduction

We present a low degree test for multivariate polynomi-
als over any prime field Fp. This generalizes the result ob-
tained recently by Alon et al [AKK+03], which gives a low
degree test for the field F2. A test for the case when the de-
gree to be tested is less than the size of the field has been
known for some time [BLR93, BFL91, GLR+91, RS96,
FS95, AS97]. It was an open problem to give an efficient

∗ Supported in part by NSF Grant CCR-0310960.
† This work was done while the author was at the University of Texas at

Austin.
‡ Supported in part by NSF Grants CCR-9912428 and CCR-0310960

and a David and Lucile Packard Fellowship for Science and Engineer-
ing.

low degree tester over fields of size between two and the
degree being tested.

The study of low degree testing along with self-
correction dates back to [BLR93], where an algorithm was
given to test whether a given function is linear. The ap-
proach in [BLR93] later naturally extended to testers for
low degree polynomials over large fields. Roughly, the idea
is to project the given function on a random line and then to
test the projected univariate function for low degree. Specif-
ically, for a purported degree k function f : F

n
p → Fp, the

test works as follows. Pick vectors y and b from F
n
p ran-

domly (uniformly), and distinct t1, · · · , tk+1 from Fp ar-
bitrarily. Query the oracle representing f at the k + 1
points b + tiy and extrapolate to a degree k polyno-
mial Pb,y in one variable t. Now test for a random t ∈ Fp

whether
Pb,y(t) = f(b + ty)

(for details see [RS96, FS95]). Similar ideas are also em-
ployed to test whether a given function is a low degree
polynomial in each of its variable (see [FGL+91, BFLS91,
AS92]).

Low degree testing forms the core in the proof of
MIP = NEXPTIME in [BFL91]. The efficiency of
the tester also has direct implications in the construc-
tions of efficient PCP’s and various inapproximability
results ([FGL+91, ALM+92]). Therefore a lot of atten-
tion has been paid to this problem ([BFL91, BFLS91,
FGL+91, AS92, RS96, FS95, AKK+03]).

However with the sole exception of [AKK+03], all the
above mentioned tests (and their variants) require the de-
gree to be less than the field size. This is because the de-
gree to be tested has to be smaller than the number of points
on a line. Hence this approach cannot be used when the de-
gree is larger than the field size.

Alon et al. in [AKK+03] give a tester for the field F2

without any restriction on the degree. Their results have a
natural interpretation in terms of coding theory. Recall that
the collection of polynomials in n variables of degree at
most k over F2 is the Reed-Muller codeR(k, n) with
parameters k and n. Therefore, a given function has low
degree iff (the vector of evaluations of) the function is a
valid codeword in the corresponding Reed-Muller code. In
other words, low degree testing can be considered as (lo-
cally) testing Reed-Muller codes. Their strategy is then to
pick a random minimum-weight codeword from the dual
code and to check if it is orthogonal to the tested vector. It
is important to note that these minimum-weight code words
generate the Reed-Muller code.

Specifically their test works as follows: given a function
f : {0, 1}n → {0, 1}, to test if the given function f has de-
gree at most k, pick (k+1)-vectors y1, · · · , yk+1 ∈ {0, 1}n

and test if ∑

∅6=S⊆[k+1]

f(
∑

i∈S

yi) = 0.

Our result can also be interpreted in terms of local testa-
bility of Generalized Reed-Muller codes,
henceforth abbreviated as GRM. Recall that GRMq(n, k)
is the collection of vectors of (evaluations of) all poly-
nomials in n variables of total degree at most k over Fq

(see [DGM70, DK00, PH98] for more details). In this pa-
per, we consider a new basis (over prime fields) of Gen-
eralized Reed-Muller codes that in general differs from
the minimum weight basis. This allows us to present a
novel exact characterization of the multivariate polyno-
mial of degree k in n variables over prime fields. Our ba-
sis has a clean geometric structure in terms of flats [PH98],
and unions of parallel flats (but with different weights as-
signed to different parallel flats)1. Equivalent polynomial
and geometric representations allow us to provide an al-
most optimal test.

It is easier to define our tester over F3. To test if f has
degree at most t, set k = d t+1

2 e, and let i = (t+1) (mod 2),
pick k-vectors y1, · · · , yk and b from F

n
3 , and test if2

∑

c∈F
k
3 ;c=(c1,··· ,ck)

ci
1f(b +

k∑

j=1

cjyj) = 0.

We remark here that a polynomial of degree at most t al-
ways passes the test, whereas a polynomial of degree greater
than t gets caught with small probability. To obtain a con-
stant rejection probability we repeat the test.

The analysis of our test follows a similar general struc-
ture developed in [RS96] and borrows techniques from

1 The natural basis given in [DGM70, DK00] assigns the same weight
to each parallel flat

2 For notational convenience we use 0
0

= 1.

[RS96, AKK+03]. The presence of a doubly transitive
group suffices for the analysis given in [RS96]. Essentially
we show that the presence of doubly transitive group act-
ing on the coordinates of the dual code does indeed allow
us to randomize the test. However, this gives a weaker re-
sult. We used techniques developed in [AKK+03] for bet-
ter results. However, the adoption is not immediate. Particu-
larly the interplay between the geometric objects described
earlier and its polynomial representation plays a pivotal role
in getting results which are only quadratic factor away from
optimal query complexity.

Our results may be stated quantitatively as follows: For
a given integer t ≥ (p − 1) and a given real ε > 0, our test-
ing algorithm queries f at 1

ε + t · p
2t

p−1+O(1) points to de-
termine whether f can be described by a polynomial of de-
gree at most t. If f is indeed a polynomial of degree at most
t, our algorithm always accepts, and if f has a relative dis-
tance at least ε from every degree t polynomial, then our al-
gorithm rejects f with probability at least 1

2 . (In the case
t < (p − 1), our tester still works but more efficient testers
are known). Our result is almost optimal since any such test-

ing algorithm must query f in at least Ω(1
ε + p

t+1
p−1) many

points.
Our analysis also enables us to obtain a self-corrector

(as defined in [BLR93]) for f , in case the function f
is reasonably close to a degree t polynomial. Specifi-
cally, we show that the value of the function f at any
given point x ∈ F

n
p may be obtained with good proba-

bility by querying f on Θ(pt/p) random points. Using
pairwise-independence we can even achieve even higher
probability by querying f on pO(t/p) random points and us-
ing majority logic decoding.

Related Work: Independently, Kaufman and Ron have
given a tester to test low degree polynomials over general
fields (see [KR04] in this volume). Briefly, they have shown
that a given polynomial is of degree at most d if and only
if the restriction of the polynomial to every affine subspace
of suitable dimension is of degree at most d. Following this
idea, their tester chooses a random affine subspace of a suit-
able dimension and computes the polynomial restricted to
this subspace and verifies that the coefficients of the higher
degree terms are identically zero. To obtain constant sound-
ness, the test is repeated many times. An advantage of our
approach is that in one round of the test we test only one lin-
ear constraint, whereas their approach needs to test multiple
linear constraints.

A basis consisting of minimum-weight codewords
was considered in [DGM70, DK00]. We extend their re-
sult to obtain a different exact characterization for
low-degree polynomials. Furthermore, an analysis simi-
lar to ours seems to go through, though we have not worked
out the details. However, our basis is cleaner and yields a

simpler analysis. We emphasize that we have not explic-
itly used dual-theoretic argument in our proof, and therefore
our work also gives a direct elementary proof of the dual-
ity of the Generalized Reed-Muller code (over prime fields).
We point out that for degree smaller than the field size, the
exact characterization obtained from [DGM70, DK00] co-
incides with [BLR93, RS96, FS95]. (This provides an al-
ternate proof to the exact characterization of [FS95]. For
more details, see Remark 3.14 later and [FS95]).

Organization of the paper: The rest of the paper is orga-
nized as follows. In Section 2 we introduce few notations
and mention few preliminary facts. Section 3 contains the
exact characterization of the low degree polynomials over
prime fields. In Section 4 we formally describe the tester
and prove its correctness. In Section 5 we sketch a lower
bound that implies that the query complexity of our tester
is almost optimal, and suggest how to self-correct a func-
tion which is correct on most of its input. Section 6 con-
tains some concluding remarks.

2. Preliminaries

For any integer l, we denote the set {1, · · · , l} by [l].
Throughout we will use p to denote a prime and Fp to de-
note a prime field of size p. For any t ∈ [n(p − 1)], let Pt

denote the family of all functions over F
n
p which are polyno-

mials of degree at most t in n variables. In particular f ∈ Pt

if and only if there exists coefficients a(e1,··· ,en), for every
(e1, · · · , en) ∈ F

n
p ,

∑n
i=1 ei ≤ t, such that

f =
∑

(e1,··· ,en)∈Fn
p ,0≤

� n
i=1 ei≤t

a(e1,··· ,en)

n∏

i=1

xei
i , (1)

where the addition is over Fp.
The relative distance between two given function f, g :

F
n
p → F

n
p is defined as δ(f, g)

def
=

|{y∈F
n
p |f(y)6=g(y)}|

pn . For
a function g and a family of functions F (defined over the
same domain and range), we say g is ε-close to F , for
some 0 < ε < 1, if, there exists an f ∈ F , δ(f, g) ≤ ε. Oth-
erwise it is ε-far from F .

A one-sided testing algorithm (one-sided tester)
for Pt is a probabilistic algorithm, that is given query ac-
cess to a function f , and a distance parameter ε, 0 < ε < 1.
If f ∈ Pt, then the tester should always accept f (perfect
completeness), and if f is ε-far from Pt, then with prob-
ability at least 1

2 the tester should reject f . (A two-sided
tester may be defined analogously.)

To motivate the next notation which we will use fre-
quently, we give a definition.

Definition 2.1 A k-flat (k ≥ 0)3 in F
n
p is a k-dimensional

affine subspace. Let y1, · · · , yk ∈ F
n
p be linearly inde-

pendent vectors and b ∈ F
n
p be a point. Then the subset

L = {
∑k

i=1 ciyi + b|∀i ∈ [k] ci ∈ Fp} is a k-dimensional
flat. We will say that L is generated by y1, · · · , yk at b. The
incidence vector of the points in a given k-flat will be re-
ferred to as the codeword corresponding to the given k-flat.

Given a function f : F
n
p → Fp, for y1, · · · , yl, b ∈ F

n
p we

define

Tf (y1, · · · , yl, b)
def
=

∑

c=(c1,··· ,cl)∈Fl
p

f(b +
∑

i∈[l]

ciyi), (2)

which is the sum of the evaluations of function f over an
l-flat generated by y1, · · · , yl, at b. We also let for all i ∈
[p − 2],

T i
f (y1, · · · , yl, b)

def
=

∑

c=(c1,··· ,cl)∈Fl
p

ci
1 · f(b +

∑

j∈[l]

cjyj).

(3)
The above can also be interpreted similarly by a suitably
weighted sum over a similar geometric object which we will
define a little later. With a slight abuse of notation4 we will
use T 0

f (y1, · · · , yl, b) to denote Tf (y1, · · · , yl, b).

2.1. Some Fp facts

In this subsection we spell out some facts which hold
over prime fields and will be used later. We denote the
multiplicative group of Fp by F

∗
p. The following lemma is

straightforward.

Lemma 2.2 For any t ∈ [p− 1],
∑

a∈Fp
at 6= 0 if and only

if t = p − 1.

This immediately implies the following lemma:

Lemma 2.3 Let q1, · · · , ql ∈ [p − 1]. Then
∑

(c1,··· ,cl)∈(Fp)l

cq1

1 cq2

2 · · · cql

l 6= 0 (4)

if and only if q1 = q2 = · · · = ql = p − 1.

Proof : Note that the left hand side can be rewritten as
∏

i∈[l]

(
∑

ci∈Fp
cqi

i

)

.

We will need to transform products of variables to pow-
ers of linear functions in these variables. With this motiva-
tion, we present the following identity :

Fact 2.4 For each k, s.t. 0 < k ≤ (p − 1) there exists ck ∈
F
∗
p such that

ck

k∏

i=1

xi =

k∑

i=1

(−1)k−iSi (5)

3 A zero-dimensional flat is just a point.
4 We set 0

0
= 1, for notational convenience.

where Si =
∑

∅6=I⊆[k];|I|=i(
∑

j∈I xj)
k.

Proof : Consider the right hand side of the Equation 5. Note
that all the monomials are of degree exactly k. Also note
that

∏k
i=1 xi appears only in the Sk and nowhere else. Now

consider any other monomial of degree k that has a support
of size j, where 0 < j < k. Further note that the coeffi-
cient of any such monomial in the expansion of (

∑

j∈I xj)
k

is the same and non-zero. Therefore, summing up the num-
ber of times it appears (along with the (−1)k−i factor) in
each Si is enough which is just

1 −

(
k − j

k − j − 1

)

+

(
k − j

k − j − 2

)

+ · · ·+

(−1)k−j

(
k − j

k − j − (k − j)

)

= (1 − 1)k−j = 0.

Moreover, it is clear that ck = k! (mod p) and ck 6= 0 for
the choice of k.

3. Characterization of Low Degree Polynomi-
als over Fp

In this section we will show how to characterize low
degree polynomials. We first recall the definition of the
Generalized (Primitive) Reed-Muller code as described in
[PH98, DK00].

Definition 3.1 Let V = F
n
q be the vector space of n-

tuples, for n ≥ 1, over the field Fq . For any k such that
0 ≤ k ≤ n(q − 1), the kth order Generalized Reed-Muller

code GRMq(k, n) is the subspace of F
|V |
q (with the basis as

the characteristic functions of vectors in V) of all reduced
n-variable polynomial functions (over Fq , reduced modulo
xq

i − xi) of degree at most k.

The following fact can be found in [PH98].

Lemma 3.2 GRMp(k, n) is a linear code with block length
pn and minimum distance (R+1)pQ where R is the remain-
der and Q the quotient resulting from dividing (p−1)·n−k
by (p − 1). Denote the dual of a code C by C⊥. Then
GRMp(k, n)⊥ = GRMp((p − 1) · n − k − 1, n).

We begin with a few simple observations about flats.
Note that an l-flat L is the intersection5 of (n − l) hyper-
planes. Equivalently it consists of all points v which sat-
isfy (n − l) linear equations over Fp (i.e. one equation
for each hyperplane): ∀i ∈ [n − l]

∑n
j=1 cijxj = bi

where cij , bi defines the ith hyperplane (i.e., v satisfies
∑n

j=1 cijvj = bi). We mention here that we assume that

5 We here disregard degenerate cases.

the matrix cij has rank (n− l). Note that then the incidence
vector of L can be written as

n−l∏

i=1

(1 − (

n∑

j=1

cijxj − bi)
p−1) =

{

1 if (v1, · · · , vl) ∈ L

0 otherwise

(6)
We record a lemma here that will be used later in this

section. We leave the proof as a straightforward exercise.

Lemma 3.3 For l ≥ k, the incidence vector of any l flat is
a linear sum of the incidence vectors of k-flats.

We give an explicit basis for GRMp(r, n). For the spe-
cial case of p = 3, our basis coincides6 with the min-weight
basis given in [DK00]. However, in general, our basis dif-
fers from the min-weight basis provided in [DK00].

The following lemma shows that the incidence vectors of
flats are equivalent to that of Generalized Reed-Muller code
of order multiples of (p − 1).

Proposition 3.4 GRMp((p − 1)(n − l), n) is generated by
the incidence vectors of the l-flats.

Proof : We first show that the incidence vectors of the l-flats
are in GRMp((p − 1)(n − l), n). Recall that L is the inter-
section of (n− l) independent hyperplanes. Therefore using
Equation 6, L can be represented by a polynomial of degree
at most (n − l)(p − 1) in x1, · · · , xn. Therefore the inci-
dence vectors of l-flats are in GRMp((p − 1)(n − l), n).

We prove that GRMp((p − 1)(n − l), n) is generated by
l-flats by induction on n− l. When n− l = 0, the code con-
sists of constants, which is clearly generated by n-flats i.e.,
the whole space.

To prove for an arbitrary (n − l) > 0, we show that
any monomial of total degree d ≤ (p − 1)(n − l) can be
written as a linear sum of the incidence vectors of l-flats.
Let the monomial be xe1

1 · · ·xet
t . Rewrite the monomials as

x1 · · ·x1
︸ ︷︷ ︸

e1 times

· · · xt · · ·xt
︸ ︷︷ ︸

et times

. Group into products of (p − 1) (not

necessarily distinct) variable as much as possible. Rewrite
each group using Equation 5 setting k = (p−1). For any in-
complete group of size d′, use the same equation by setting
the last (p−1−d′) variables to the constant 1. After expan-
sion, the monomial can be seen to be a sum of product of at
most (n-l) degree (p − 1)th powered linear terms. We can
add to it a polynomial of degree at most (p − 1)(n − l − 1)
so as to represent the resulting polynomial as a sum of poly-
nomials, each polynomial as in Equation 6. Each such non-
zero polynomial is generated by a t flat, t ≥ l. By induc-
tion, the polynomial we added is generated by (l + 1) flats.
Thus, by Lemma 3.3 our given monomial is generated by
l-flats.

6 The equations of the hyperplanes are slightly different in our case;
nonetheless, both of them define the same basis generated by the min-
weight codewords.

This leads to the following observation.

Observation 3.5 Consider an l-flat generated by
y1, · · · , yl at b. Denote the incidence vector of this
flat by I . Then the right hand side of Equation 2 may be
identified as I · f , where I and f denote the vector cor-
responding to respective codewords and · is the scalar
product.

To generate Generalized Reed-Muller code of any arbi-
trary order, we need another important geometric object,
namely pseudoflat, which we define next. A k-pseudoflat is
a union of (p−1) parallel (k−1)-flats. Also, a k-pseudoflat
can have different exponents ranging from 1 to7 (p − 2).
We stress that the point set of a k-pseudoflat remains the
same irrespective of its exponent. It is the value assigned to
a point that changes with the exponents.

Definition 3.6 Let L1, L2, · · · , Lp−1 be parallel (k − 1)
flats (k ≥ 1), such that for some y ∈ F

n
p and all t ∈ [p− 2],

Lt+1 = y + Lt. We define the points of k-pseudoflat L
with any exponent r (1 ≤ r ≤ p − 2) to be the union of the
set of points L1 to Lp−1. Also, let Ij be the incidence vec-
tor of Lj for j ∈ [p−1]. Then the evaluation vector
of this k-pseudoflat with exponent r is defined to
be

∑p−1
j=1 jrIj .

Let L be a k-pseudoflat. Also, for j ∈ [p − 1], let Lj be
the (k − 1)-flat generated by y1, · · · , yk−1 at b + j · y,
where y, y1, · · · , yk−1 are linearly independent. Then we
say that L, a k-pseudoflat with exponent r, is generated
by y, y1, · · · , yk−1 at b exponentiated along y. The points
in a k-pseudoflat may alternatively be viewed as the space
given by the union of intersections of (n − k − 1) hyper-
planes, where the union is parameterized by another hyper-
plane and which does not take one particular value. Con-
cretely, it is the set of points v which satisfy the following
constraints over Fp:

∀i ∈ [n − k − 1]
n∑

j=1

cijxj = bi; and

n∑

j=1

cn−k,jxj 6= bn−k.

Thus the values taken by the points of a k-pseudoflat with
exponent r is given by the polynomial

n−k−1∏

i=1

(1− (

n∑

j=1

cijxj − bi)
(p−1)) · (

n∑

j=1

cn−k,jxj − bn−k)r

(7)

7 With slight abuse, a k-pseudoflat with exponent zero corresponds to a
flat.

Remark 3.7 Note the difference between Equation 7 and
the basis polynomial in [DK00] which (along with the ac-
tion of the affine general linear group) yields the min-weight
codewords:

h(x1, · · · , xm) =

k−1∏

i=1

(1 − (xi − wi)
(p−1))

r∏

j=1

(xk − uj).

The next lemma shows that the code generated by the
evaluation vectors of l-pseudoflats with exponent r is a sub-
code of that of l-pseudoflats with exponent (r + 1). Intu-
itively, a decrease in exponent refines the code.

Claim 3.8 The evaluation vectors of l-pseudoflats with ex-
ponent (r + 1) (1 ≤ r ≤ p − 3, p > 3) generate a code
containing the evaluation vectors of l-pseudoflats with ex-
ponent r. Moreover, the evaluation vectors of l-pseudoflats
with exponent one generate a code containing the incidence
vectors of l-flats.

Proof : For the first part, let W be the evaluation vector of
the l-pseudoflat with exponent r generated by y1, · · · , yl,
exponentiated along y1 at b. Clearly W = 〈0, 1r, · · · , (p −
1)r〉 are the values taken by subflats generated by y1, · · · , yl

at b, b + y1, · · · , b − y1. Let this denote the standard basis.
Let Lt be the be the pseudoflat with exponent (r+1) gener-
ated by y1, · · · , yl exponentiated at y1 at b + t · y1, for each
t ∈ [p − 1] ∪ {0}, and let Vt be the corresponding evalua-
tion vector. Rewriting them in the standard basis yields that
Vt = 〈((p−1)− t+1)r+1, ((p−1)− t+2)r+1, · · · , ((p−
1)−t+(p−1)+1)r+1〉 ∈ F

p
p. Let λt denote p variables for

t = 0, 1, · · · , (p − 1), each taking values in Fp. Then a so-
lution to the following system of equations

∀j ∈ [p − 1] ∪ {0} jr =

(p−1)
∑

i=0

λi(j − i)r+1 (8)

implies that W =
∑(p−1)

i=0 λiVi, which suffices to establish
the claim. Consider the identity (0 ≤ r < p − 1)

jr =
−1

r + 1

p−1
∑

i=0

(j + i)r+1ip−2

which may be verified by expanding and applying Lemma
2.2. This establishes the first part of the claim.

For the second part, observe that 〈1, · · · , 1〉 =
〈0, 1, 2, · · · ,−1〉 − 〈−1, 0, 1, · · · ,−2〉. This completes the
proof.

The next Proposition complements Proposition 3.4. To-
gether they say that by choosing dimension and exponent
appropriately, Generalized Reed-Muller code of any given
order can be generated. This gives an equivalent representa-
tion of Generalized Reed-Muller code. An exact characteri-
zation then comes out from this alternate representation.

Proposition 3.9 For every r ∈ [p− 2], the linear code gen-
erated by the evaluation vectors of l-pseudoflats with expo-
nent r is equivalent to GRMp((p − 1)(n − l) + r, n).

Proof : For the forward direction, consider an l-pseudoflat
L with exponent r. Its evaluation vector is given by an equa-
tion similar to Equation 7. Thus the codeword correspond-
ing to the evaluation vector of this flat can be represented by
a polynomial of degree at most (p−1)(n−l)+r. This com-
pletes the forward direction.

To prove the other direction, we induct on r. In the
base case, r = 1, following Proposition 3.4 and Claim
3.8 we restrict our attention to monomials of degree ex-
actly ((p − 1)(n − l) + 1). We show that these monomials
are generated by l-pseudoflats with exponent one. Now con-
sider any such monomial. Rewrite it as in Proposition 3.4.
Group (p − 1) terms and rewrite each group using Equa-
tion 5 setting k = (p − 1). Since the degree of the mono-
mial is (p − 1)(n − l) + 1, we will be left with a linear
term. We can add to this a polynomial of degree at most
(p − 1)(n − l − 1) + 1 ≤ (p − 1)(n − l) to express it as in
Equation 7 with r = 1. By Proposition 3.4 and Claim 3.8,
this additional polynomial is generated by l-pseudoflats of
exponent 1 as well, and we are done.

For the inductive step, we again restrict our attention to
monomials of degree exactly ((p − 1)(n − l) + r) by in-
duction hypothesis. We show that these monomials are gen-
erated by l-pseudoflats with exponent r. Consider any such
monomial. Rewrite it as in Proposition 3.4. Since the de-
gree of the monomial is (p − 1)(n − l) + r, we will be left
with an incomplete group of degree r. We can add to this
a polynomial of degree at most (p − 1)(n − l − 1) + r ≤
(p − 1)(n − l) + (r − 1) to express it as in Equation 7. By
the inductive hypothesis and Claim 3.8, this additional poly-
nomial is generated by l-pseudoflats of exponent r as well.
This completes the proof.

The following is analogous to Observation 3.5.

Observation 3.10 Consider an l-pseudoflat with expo-
nent r, generated by y1, · · · , yl at b exponentiated along y1.
Let E be the evaluation vector of this pseudoflat with ex-
ponent r. Then the right hand side of Equation 3 may be
interpreted as E · f .

We are now ready to present the exact characterization.

Theorem 3.11 Let t = (p − 1) · k + R. (Note 0 ≤ R ≤
p− 2.) Let r = p− 2−R. Then a function f belongs to Pt,
if and only if for every y1, · · · , yk+1, b ∈ F

n
p , we have

Tf (y1, · · · , yk+1, b) = 0 if R = p − 2; (9)

T r
f (y1, · · · , yk+1, b) = 0 otherwise. (10)

Proof : Denote Tf (y1, · · · , yk+1, b) = T 0
f (y1, · · · , yk+1, b).

We first show that if f ∈ Pt then T r
f (y1, · · · , yk+1, b) = 0

for every y1, · · · , yk+1, b ∈ F
n
p . Fix y1, · · · , yk+1, b.

We show that

T r
f (y1, · · · , yk+1, b) =

∑

c=(c1,··· ,ck+1)∈F
k+1
p

cr
1f(b+

k+1∑

i=1

ciyi)

= 0.

Consider the polynomial h(c1, · · · , ck+1) =
cr
1f(b +

∑

i∈[k+1] ciyi). Every monomial m of h is

of the form m = amcr+q1

1 cq2

2 · · · c
qk+1

k+1 for some am ∈ F
∗
p,

where
∑k+1

i=1 qi + r ≤ t + r < (p − 1)(k + 1). Note for
any i > 1, qi = 0 implies that the sum is zero (by sum-
ming over ci). Similarly if q1 + r = 0, the sum evaluates
to zero. Therefore consider the case when each expo-
nent is non-zero. But then there exists one j such that
qj < (p−1). Thus by Lemma 2.3,

∑

(c1,··· ,ck+1)∈F
k+1
p

m =

0. This implies that T r
f (y1, · · · , yk+1, b) =

∑

(c1,··· ,ck+1)∈F
k+1
p

h(c1, · · · , ck+1) = 0.
We next show that if f 6∈ Pt then there ex-

ist a group of vectors y′
1, · · · , y′

k+1 and b′ such
that T r

f (y′
1, · · · , y′

k+1, b
′) 6= 0. Let f be a polyno-

mial in x1, · · · , xn and m be an arbitrary monomial
in f of the maximum total degree (which is at least
t + 1). Then define the polynomial `(x1, · · · , xn) by
`(x1, · · · , xn) =

∏n
i=1 x

(p−1)
i /m. Clearly, `(x1, · · · , xn)

has degree at most (p− 1)(n− k − 1) + r. Therefore, ` be-
longs to GRMp((p − 1)(n − k − 1) + r, n).

Consider the case r = 0. By Proposition 3.4, ` is gen-
erated by (k + 1)-flats. Moreover, by Lemma 2.3,
∑

x1,··· ,xn
`(x1, · · · , xn)m(x1, · · · , xn) 6= 0. Also, the

sum with m replaced by any other monomial m′ in f , yields
zero8. Therefore, by linearity, we obtain f · ` 6= 0, where
the function has been identified with corresponding code-
word. Since ` is a linear sum of (k + 1)-flats, there ex-
ists a (k + 1)-flat (generated by y′

1, · · · , y′
k+1 at b′) such

that when f is summed up over the flat, it yields a non-zero
value.

The case r 6= 0 is similar with pseudoflats replacing flats.

Remark 3.12 The above claim may directly be obtained
from Lemma 3.2, Proposition 3.4, Proposition 3.9, Obser-
vation 3.5 and Observation 3.10. The above proof of The-
orem 3.11 has been given as an alternate self contained
proof.

Remark 3.13 One can describe an alternate characteriza-
tion from Remark 3.7 which we state here without proof.

8 By Lemma 2.3 a non-zero sum implies m · ` = x
(p−1)
1 · · ·x

(p−1)
n =

m′ · `, which implies m = m′ or m′
= m � i∈I;∅6=I⊆[n] x

(p−1)
i

, a
contradiction on the choice of m.

Let t = (p − 1) · k + R. (Note 0 < R ≤ (p − 2).) Let
r = (p − 1) − R − 1. Let W ⊆ Fp with |W | = r. Define

the polynomial g(x)
def
=

∏

α∈W (x−α) if W is non-empty;
and g(x) = 1 otherwise. Then a function belong to Pt if
and only if for every y1, · · · , yk+1, b ∈ F

n
p , we have

∑

c1∈Fp\W

g(c1)
∑

(c2,··· ,ck+1)∈Fk
p

f(b+c1 ·y1 +

k+1∑

i=2

ci ·yi) = 0.

Moreover, this characterization can also be extended to
certain degrees for more general fields, i.e., Fpt (see the next
remark).

Remark 3.14 The exact characterization of low de-
gree polynomials as claimed in [FS95] may be proved us-
ing duality. Note that their proof works as long as the
dual code has a min-weight basis (see [DK00]). Sup-
pose that the polynomial has degree d ≤ q − q/p − 1, then
the dual of GRMq(d, n) is GRMq((q − 1)n − d − 1, n)
and therefore has a min-weight basis. Note that then
the dual code has min-weight (d + 1). Therefore, assum-
ing the minimum weight codewords constitute a basis, any
d + 1 evaluations of the original polynomial are depen-
dent and vice-versa. We leave the details as an exercise for
interested readers.

4. A Tester for Low Degree Polynomials over
F

n
p

In this section we present and analyze a one-sided tester
for Pt. The analysis of the algorithm roughly follows the
proof structure given in [RS96, AKK+03] and most de-
tails are omitted due to lack of space. We emphasize
that the generalization from [AKK+03] to our case is not
straightforward. As in [RS96, AKK+03] we define a self-
corrector version of the (possibly corrupted) function be-
ing tested. The straightforward adoption of the analysis
given in [RS96] gives a reasonable bound. However, a bet-
ter bound is achieved by following the techniques developed
in [AKK+03]. In there, they show that the self-corrector
function can be interpolated with overwhelming probabil-
ity. However their approach appears to use special proper-
ties of F2 and hence is not clear how to generalize. We give
a clean formulation which relies on the flats being repre-
sented through polynomials as described earlier. In partic-
ular, Claims 4.7, 4.8 and their generalization appear to re-
quire our new polynomial based view.

4.1. Tester in Fp

In this subsection we describe the algorithm when the
underlying field is Fp.

Algorithm Test-Pt in Fp

0. Let t = (p − 1) · k + R, 0 ≤ R < (p − 1).
Denote r = p − R − 2.

1. Uniformly and independently select y1, · · · , yk+1,
b ∈ F

n
p .

2. If T r
f (y1, · · · , yk+1, b) 6= 0, then reject,

else accept.

Theorem 4.1 The algorithm Test-Pt in Fp is a one-
sided tester for Pt with a success probability at least
min(Ω(pk+1ε), 1

(t
p +6)pk+3).

Corollary 4.2 Repeating the algorithm Test-Pt in Fp

Θ(1
pk+1ε

+ kpk) times, the probability of error can be re-
duced to less than 1/2.

We will provide a general proof framework. However,
we content ourselves by proving main technical lemmas for
the case of F3. The proof idea in the general case is simi-
lar and the details are omitted. Therefore we will essen-
tially prove the following.

Theorem 4.3 The algorithm Test-Pt in F3 is a one-
sided tester for Pt with success probability at least
min(Ω(3k+1ε), 1

(t+7)3t/2+2).

4.2. Analysis of Algorithm Test-Pt

In this subsection we analyze the algorithm described in
Section 4.1. From Theorem 3.11 it is clear that if f ∈ Pt,
then the tester accepts. Thus, the bulk of the proof is to
show that if f is ε-far from Pt, then the tester (repeated
sufficient number of times as in Corollary 4.2) rejects with
probability at least 1

2 . Our proof structure follows that of
the analysis of the test in [AKK+03]. In what follows, we
will denote Tf (y1, · · · , yl, b) by T 0

f (y1, · · · , yl, b) for ease
of exposition. In particular, let f be a function to be tested
for membership in Pt. Assume we calculate T i

f for an ap-
propriate i as required by the algorithm described in Sec-
tion 4.1. For such an i, we define gi : F

n
p → Fp as follows:

For y ∈ F n
p , α ∈ Fp, denote py,α = Pry1,··· ,yk+1

[f(y) −

T i
f (y − y1, y2, · · · , yk+1, y1) = α]. Define gi(y) = α such

that ∀β 6= α ∈ Fp, py,α ≥ py,β with ties broken arbitrar-
ily. With this meaning of plurality, for all i ∈ [p− 2]∪ {0},
gi can be written as:

gi(y) = pluralityY

[
f(y) − T i

f (y − y1, y2, · · · , yk+1, y1)
]

(11)
where Y = 〈y1, · · · , yk+1〉.

Further we define

ηi
def
= Pry1,··· ,yk+1,b[T

i
f (y1, · · · , yk+1, b) 6= 0] (12)

The next lemma follows from a Markov-type argument.

Lemma 4.4 [RS96] For a fixed f : F
n
p → Fp, let gi, ηi be

defined as above. Then, δ(f, gi) ≤ 2ηi.

Proof : Consider the set of elements y such that
Pry1,··· ,yk+1

[f(y) = f(y)−T i
f (y−y1, y2, · · · , yk+1, y1)] <

1/2. If the fraction of such elements is more than 2ηi then
that contradicts the condition that

ηi = Pry1,··· ,yk+1,b[T
i
f (y1, · · · , yk+1, b) 6= 0]

= Pry1,y2,··· ,yk+1,b[T
i
f (y1 − b, y2, · · · , yk+1, b) 6= 0]

= Pry,y1,··· ,yk+1
[f(y) 6= f(y) −

T i
f (y − y1, y2, · · · , yk+1, y1)].

Therefore, we obtain δ(f, gi) ≤ 2ηi.

Note that Pry1,··· ,yk+1
[gi(y) = f(y) − T i

f (y −

y1, y2, · · · , yk+1, y1)] ≥ 1
p . We now show that this prob-

ability is actually much higher. The next lemma gives
a weak bound in that direction following the analy-
sis in [RS96].

Lemma 4.5 ∀y ∈ F
n
p , Pry1,··· ,yk+1∈Fn

p
[gi(y) = f(y) −

T i
f (y − y1, · · · , yk+1, y1)] ≥ 1 − 2pk+1ηi.

However, when the degree being tested is larger than
the field size, we can improve the above lemma consider-
ably. The following lemma strengthens Lemma 4.5 when
t ≥ (p − 1) or equivalently k ≥ 1.

Lemma 4.6 ∀y ∈ F
n
3 , Pry1,··· ,yk+1∈F

n
3
[gi(y) = f(y) −

T i
f (y − y1, · · · , yk+1, y1)] ≥ 1 − 3

2 (4k + 14)ηi.

In order to prove Lemma 4.6, we will need the following
claims. They can easily be verified by expanding the terms
on both sides like the proof of Claim 4 in [AKK+03]. How-
ever, this does not give much insight into the general case
i.e. for Fp. We provide an alternate proof which can be gen-
eralized to get similar claims and has a much cleaner struc-
ture based on the underlying geometric structure, i.e. flats
or pseudoflats.

Claim 4.7 For every i ∈ {2, · · · , k + 1}, for ev-
ery y(= y1), z, w, b, y2, · · · , yi−1, yi+1, · · · , yk+1 ∈
F

n
3 , Tf (y, y2, · · · , yi−1, w, yi+1, · · · , yk+1, b) −

Tf (y, y2, · · · , yi−1, z, yi+1, · · · , yk+1, b) =
Tf (y + w, y2, · · · , yi−1, z, yi+1, · · · , yk+1, b) +
Tf (y − w, y2, · · · , yi−1, z, yi+1, · · · , yk+1, b)−
Tf (y + z, y2, · · · , yi−1, w, yi+1, · · · , yk+1, b) −
Tf (y − z, y2, · · · , yi−1, w, yi+1, · · · , yk+1, b).

Proof : Assume y, z, w are independent. Observe that it is
enough to prove the result for k = 1 and b = 0. Con-
sider the space H generated by y, z and w at 0. Note that
Tf (y, w,0) is just f ·1L, where 1L is the incidence vector of
the flat given by the equation z = 0. Therefore 1L is equiva-
lent to the polynomial (1−z2). Similarly Tf (y, z) = f ·1L′

where L′ is given by the equation (1−w2). We use the fol-
lowing polynomial identity (in F3) w2 − z2 = [1 − (y −
w)2 + 1 − (y + w)2] − [1 − (y + z)2 + 1 − (y − z)2].
Now observe that the equation (1 − (y − w)2) is the inci-
dence vector of the flat generated by y + w and z. Simi-
lar observations hold for other terms. Therefore, interpret-
ing the above equation in terms of incidence vectors of flats,
we complete the proof with Observation 3.5.
Proof sketch of Lemma 4.6: We prove the lemma for

g0(y). We fix y ∈ F
n
3 and let γ

def
= Pry1,··· ,yk+1∈F

n
3
[g0(y) =

T y
f (y1, · · · , yk+1)]. As in [AKK+03, RS96] we bound the

following collision probability.

µ
def
= PrY,Z∈F

n
3
[Tf (y − y1, · · · , yk+1, y1)

−Tf (y − z1, · · · , zk+1, z1) = 0] (13)

where W = 〈w1, · · · , wk+1〉. It can be shown that µ ≤
γ2 + (1 − γ)2.

We rewrite Tf (y − y1, · · · , yk+1, y1) − Tf (y −
z1, · · · , zk+1, z1) as a telescopic sum as in [AKK+03].

Any pair that appears in the telescopic sum can fur-
ther be rewritten using Claim 4.7 so that all the input pa-
rameters of Tf (·) on the right hand side are independent
and uniformly distributed. By union bound it follows then
that (1 − µ) ≤ (4k + 10)η0 ≤ (4k + 14)η0. Further-
more following the definition of µ, it can be shown that
µ ≤ γ2+(1−γ)2. Rearranging gives us 2γ(1−γ) ≤ 1−µ.
Since γ ≥ 1

3 , we get (1 − µ) ≥ 2γ(1 − γ) ≥ 2
3 (1 − γ).

Therefore γ ≥ 1 − 3
2 (1 − µ) ≥ 1 − 3

2 (4k + 14)η0.
A similar argument along with Claim 4.8 proves the

lemma for i = 1. We remark that the the above proof uses
the fact that Tf (·) is symmetric in all but the last input which
is not true for T 1

f . We solve this problem with another iden-
tity similar to Claim 4.8. We leave the details.

Claim 4.8 For every i ∈ {2, · · · , k + 1}, for ev-
ery y(= y1), z, w, b, y2, · · · , yi−1, yi+1, · · · , yk+1 ∈
F

n
3 , T 1

f (y, y2, · · · , yi−1, w, yi+1, · · · , yk+1, b) −

T 1
f (y, y2, · · · , yi−1, z, yi+1, · · · , yk+1, b) =

T 1
f (y + z, y2, · · · , yi−1, w, yl+1, · · · , yk+1, b) +

T 1
f (y − z, y2, · · · , yi−1, w, yi+1, · · · , yk+1, b)−

T 1
f (y + w, y2, · · · , yi−1, z, yi+1, · · · , yk+1, b) −

T 1
f (y − w, y2, · · · , yi−1, z, yi+1, · · · , yk+1, b).

Proof : Note here that the defining equation of T 1
f (y, z) is

y(1 − w2). Now consider the following identity in F3:

y(z2−w2) = (y+w)[1−(y−w)2]+(y−w)[1−(y+w)2]

−(y + z)[1 − (y − z)2] − (y − z)[1 − (y + z)2]

for variables y, z, w ∈ F3. Rest of the proof is similar to the
proof of Claim 4.7 (the proof replaces flats by pseudoflats)
and is omitted.

The next lemma shows that sufficiently small ηi implies
that gi self-corrects the function f .

Lemma 4.9 Over F3, if ηi < 1
(2k+7)3k+2 , then the function

gi belongs to Pt (assuming k ≥ 1).

The proof idea follows from [RS96, AKK+03]. We omit the
details.

Remark 4.10 Over Fp we have: if ηi < p−(k+2)

((p−1)k+6(p−1)+1) ,
then gi belongs to Pt (if k ≥ 1).

By combining Lemma 4.4 and Lemma 4.9 we obtain that
if f is Ω(1/(k3k))-far from Pt then ηi = Ω(1/(k3k)). We
next consider the case in which ηi is small. By Lemma
4.4, in this case, the distance δ = δ(f, g) is small. The
next lemma shows that in this case the test rejects f with
probability that is close to 3k+1δ. This follows from the
fact that in this case, the probability over the selection of
y1, · · · , yk+1, b, that among the 3k+1 points

∑

i ciyi + b,
the functions f and g differ in precisely one point, is close
to 3k+1 · δ.

Lemma 4.11 Suppose 0 ≤ ηi ≤ 1
(2k+7)3k+2 . Let δ de-

note the relative distance between f and g, ` = 3k+1, and

Q
def
= (1−`δ

1+`δ) · `δ. Then, when y1, · · · , yk+1, b are chosen
randomly, the probability that for exactly one point v among
the ` points {

∑k+1
i=1 ciyi+b}c∈F

k+1
p

, f(v) 6= g(v) is at least
Q.

Note that the points {
∑k+1

i=1 ciyi +b}c∈F
k+1
p

are pairwise

independent. We use an inequality from [AKK+03] to com-
plete the proof. We omit the details.

Observe that ηi = Ω(Q) = Ω(3k+1δ).

Proof of Theorem 4.3: Clearly if f belongs to Pt, then by
Theorem 3.11 the tester accepts f with probability 1.

Therefore let δ(f,Pt) ≥ ε. Let d = δ(f, g). If
η < 1

(2k+7)3k+2 then by Lemma 4.9 g ∈ Pt and, by

Lemma 4.11, ηi = Ω(3k+1 · d) = Ω(3k+1ε). Hence

ηi ≥ min
(

Ω(3k+1ε), 1
(2k+7)3k+2

)

.

5. Self-Correcting and a Lower Bound

From Lemmas 4.4, 4.6 and 4.9 the following corollary is
immediate:

Corollary 5.1 Consider a function f : F
n
3 → F3 that is

ε-close to a degree-t polynomial g : F
n
3 → F3 where

ε < 1
(2k+7)3k+2 (assume k ≥ 1). Then the function f can

be self-corrected. That is, for any x ∈ F
n
3 , the value of g(x)

can be obtained with probability at least 1−3k+1ε by query-
ing f on 3k+1 points on F

n
3 .

An analogous result may be obtained for the general
case. We, however, improve the above corollary slightly.
The above corrector does not allow any errors in the 3k+1

points it queries. We obtain a stronger result by querying on

a slight larger flat H , but allowing some errors. Errors are
handled by decoding the induced Generalized Reed-Muller
code code on H .

Proposition 5.2 Consider a function f : F
n
p → Fp that is ε-

close to a degree-t polynomial g : F
n
p → Fp. Then the func-

tion f can be self-corrected. That is, assume K > (k + 1),
then for any given x ∈ F

n
p , the value of g(x) can be ob-

tained with probability at least 1− ε
(1−ε·pk+1)2

·p−(K−2k−3)

from queries to f .

Proof : Our goal is to correct the GRMp(t, n) at the
point x. Assume t = (p − 1) · k + R, where 0 ≤
R ≤ (p − 2). Then the relative distance of the code δ
is (1 − R/p)p−k. Note that 2p−k−1 ≤ δ ≤ p−k. Recall
that the local testability test requires a (k + 1)-flat, i.e., it
tests

∑

c1,··· ,ck+1∈Fp
cp−2−R
1 f(y0+

∑k+1
i=1 ciyi) = 0, where

yi ∈ F
n
p .

We choose a slightly larger flat, i.e., a K-flat with K >
(k + 1) to be chosen later. We consider the code restricted
to this K-flat with point x being the origin. We query f on
this K-flat. It is known that a majority logic decoding algo-
rithm exists that can decode Generalized Reed-Muller code
up to half the minimum distance for any choice of parame-
ters (see [Sud01]). Thus if the number of error is small we
can recover g(x).

Let the relative distance of f from the code be ε and let
S be the set of points where they disagree. Let the random
K-flat be H = {x +

∑K
i=1 tiui|ti ∈ F, ui ∈R F

n
p}.

Let the random variable Y〈t1,··· ,tK〉 take the value 1 if x +
∑K

i=1 uiti ∈ S and 0 otherwise. Let D = F
K \ {0} and

U = 〈u1, · · · , uK〉. Define Y =
∑

〈t1,··· ,tK〉∈D Y〈t1,··· ,tK〉

and ` = (pK − 1). We would like to bound the probability

PrU [|Y − ε`| ≥ (δ/2 − ε)`].

Since PrU [Yt1,··· ,tK
= 1] = ε, by linearity we get

EU [Y] = ε`. Let T = 〈t1, · · · , tK〉. Now

V ar[Y] =
∑

T∈FK−{0}

V ar[YT] +
∑

T 6=T ′

Cov[YT , YT ′]

= `(ε − ε2) +
∑

T 6=λT ′

Cov[YT , YT ′]

+
∑

T=λT ′;16=λ∈F∗

Cov[YT , YT ′]

≤ `(ε − ε2) + ` · (p − 2)(ε − ε2)

= `(ε − ε2)(p − 1)

The above follows from the fact that when T 6= λT ′ then
they are independent and therefore Cov[YT , YT ′] = 0.
Also, when YT and YT ′ are dependent then Cov[YT , YT ′] =
EU [YT YT ′] − EU [YT]EU [YT ′] ≤ ε − ε2.
Therefore, by Chebyshev’s inequality we have (assuming

ε < p−(k+1))

PrU [|Y − ε`| ≥ (δ/2 − ε)`] ≤
`ε(1 − ε)(p − 1)

(δ/2 − ε)2`2

Now note (δ/2− ε) ≥ (p−k−1 − ε) = (1− ε · pk+1)p−k−1.
We thus have

PrU [|Y − ε`| ≥ (δ/2 − ε)`] ≤
ε(1 − ε)(p − 1)

(1 − ε · pk+1)2p−2k−2`

≤
εp

(1 − ε · pk+1)2p−2k−2(` + 1)

=
ε

(1 − ε · pk+1)2
· p−(K−2k−3).

The next theorem is a simple modification of a theorem
in [AKK+03] and essentially implies that our result is al-
most optimal.

Proposition 5.3 Let F be any family of functions f : F
n
p →

Fp that corresponds to a linear code C. Let d denote the
minimum distance of the code C and let d̄ denote the mini-
mum distance of the dual code of C.
Every one-sided testing algorithm for the family F must
perform Ω(d̄) queries, and if the distance parameter ε is
at most d/pn+1, then Ω(1/ε) is also a lower bound for the
necessary number of queries.

Lemma 3.2 and Proposition 5.3 gives us the following
corollary.

Corollary 5.4 Every one-sided tester for testing Pt with
distance parameter ε must perform Ω(max(1

ε , (1 + ((t +

1) mod (p − 1)))p
t+1
p−1)) queries.

6. Conclusions

The lower bound in Corollary 5.4 implies that our up-
per bound is almost tight. We resolved the question posed in
[AKK+03] for all prime fields. Although our method fails
for general fields, [KR04] have resolved the problem.

References

[AKK+03] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and
D. Ron. Testing low-degree ploynomials over GF(2).
In Proc. of RANDOM 03, 2003.

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the intractability
of approximation problems. In Proc. of IEEE Sympo-
sium of the Foundation of Computer Science, pages
14–23, 1992.

[AS92] S. Arora and S. Safra. Probabilistic chekcing of
proofs: A new characterization of NP. In Proc. of
IEEE Symposium of the Foundation of Computer Sci-
ence, pages 2–13, 1992.

[AS97] S. Arora and M. Sudan. Improved low-degree test-
ing and its application. In Proc. of Symposium on the
Theory of Computing, 1997.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic
exponential time has two prover interactive protocols.
In Computational Complexity, pages 3–40, 1991.

[BFLS91] L. Babai, L. Fortnow, L. Levin, and M. Szegedy.
Checking computations in polylogarithmic time. In
Proc. of Symposium on the Theory of Computing,
pages 21–31, 1991.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-
testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences,
47:549–595, 1993.

[DGM70] P. Delsarte, J. M. Goethals, and F. J. MacWillams. On
generalized reed-muller codes and their relatives. In-
formation and Control, 16:403–442, 1970.

[DK00] P. Ding and J. D. Key. Minimum-weight codewords
as generators of generalized reed-muller codes. IEEE
Trans. on Information Theory., 46:2152–2158, 2000.

[FGL+91] U. Fiege, S. Goldwasser, L. Lovasz, S. Safra, and
M. Szegedy. Approximating clique is almost np-
complete. In Proc. of IEEE Symposium of the Foun-
dation of Computer Science, pages 2–12, 1991.

[FS95] K. Friedl and M. Sudan. Some improvements to total
degree tests. In Proceedings of the 3rd Annual Israel
symposium on Theory of Computing and Systems,
pages 190–198, 1995. Corrected version available at
http://theory.lcs.mit.edu/∼madhu/papers/friedl.ps.

[GLR+91] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and
A. Wigderson. Self-testing/correcting for polynomi-
als and for approxiamte functions. In Proc. of Sym-
posium on the Theory of Computing, 1991.

[KR04] T. Kaufman and D. Ron. Testing polynomials over
general fields. In Proc. of IEEE Symposium of the
Foundation of Computer Science, 2004.

[PH98] V. S. Pless, Jr. and W. C. Huffman, editors. Handbook
of Coding Theory, Vol II, chapter 16. Elsevier, 1998.

[RS96] R. Rubinfeld and M. Sudan. Robust characterizations
of polynomials with applications to program testing.
SIAM Journal on Computing, 25(2):252–271, 1996.

[Sud01] M. Sudan. Lecture notes on algorithmic introduction
to coding theory, Fall 2001. Lecture 15.

