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Abstract. A (d, `)-list disjunct matrix is a non-adaptive group testing
primitive which, given a set of items with at most d “defectives,” outputs
a superset of the defectives containing less than ` non-defective items.
The primitive has found many applications as stand alone objects and
as building blocks in the construction of other combinatorial objects.
This paper studies error-tolerant list disjunct matrices which can correct
up to e0 false positive and e1 false negative tests in sub-linear time. We
then use list-disjunct matrices to prove new results in three different
applications.
Our major contributions are as follows. (1) We prove several (almost)-
matching lower and upper bounds for the optimal number of tests, in-
cluding the fact that Θ(d log(n/d) + e0 + de1) tests is necessary and
sufficient when ` = Θ(d). Similar results are also derived for the dis-
junct matrix case (i.e. ` = 1). (2) We present two methods that convert
error-tolerant list disjunct matrices in a black-box manner into error-
tolerant list disjunct matrices that are also efficiently decodable. The
methods help us derive a family of (strongly) explicit constructions of
list-disjunct matrices which are either optimal or near optimal, and which
are also efficiently decodable. (3) We show how to use error-correcting
efficiently decodable list-disjunct matrices in three different applications:
(i) explicit constructions of d-disjunct matrices with t = O(d2 logn+ rd)
tests which are decodable in poly(t) time, where r is the maximum num-
ber of test errors. This result is optimal for r = Ω(d logn), and even
for r = 0 this result improves upon known results; (ii) (explicit) con-
structions of (near)-optimal, error-correcting, and efficiently decodable
monotone encodings; and (iii) (explicit) constructions of (near)-optimal,
error-correcting, and efficiently decodable multiple user tracing families.

1 Introduction

The basic objective of group testing is to figure out a subset of “defective items”
in a large item population by performing tests on subsets of items. The mani-
festation of “defective” and “tests” depends on the application. For most of this
paper we will consider the basic interpretation where we have a universe [n] of
? Supported by NSF CAREER grant CCF-0844796.



items and some subset S ⊂ [n] of at most d defectives (also interchangeably
called positives). Every (group) test is a subset T ⊆ [n], which results in a posi-
tive outcome if some defective is in T and a negative outcome when T contains no
defectives. In many applications, non-adaptive group testing is required, where
one cannot use one test’s outcome to design another test. Non-adaptive group
testing (NAGT) has found applications in drug and DNA library screening [18],
live baiting of DoS attackers [16], data forensics [12] and data streams [4], among
others. See the standard monograph on group testing for more details [6].

The first objective in the design of such NAGT primitives is to minimize the
number of tests necessary to identify (or decode) all the defectives. A NAGT
strategy with t tests on n items can be represented by a t × n binary matrix
M where each row is the incidence vector of the corresponding test. For unique
decoding of up to d defectives, it is necessary that all the unions of up to d
columns of M have to be distinct. Such a matrix is said to be d-separable. It has
been known for a long time that the optimal number of rows of a d-separable
matrix is between Ω(d2 log n/ log d) [8] and O(d2 log(n/d)) [6].

The second objective is to explicitly construct disjunct matrices with as few
tests as possible. Recently, a O(nt)-time explicit construction attaining the t =
O(d2 log(n))-bound has also been found [20]. No strongly explicit construction
matching the bound is known.3

The third objective is to decode efficiently. The brute-force algorithm is too
slow as it goes through all possible

(
n
≤d
)

= O(nd) choices for the defective set.
Some NAGT strategies, however, allow a very simple O(nt)-time decoding algo-
rithm to work: the decoder simply eliminates items belonging to negative tests
and returns the remaining items. We shall refer to this decoder as the naive
decoder. A NAGT matrix is said to be d-disjunct iff the naive decoder works on
all possible inputs of up to d defectives. While disjunct matrices are a stronger
notion than separable matrices, they have asymptotically the same number of
tests [6]. Thus, we went from O(nd) down to O(nt)-decoding time “for free.”

The time complexity of O(nt) is reasonable for most of the “traditional” al-
gorithmic applications. However with the proliferation of massive data sets and
their numerous applications, the decoding time of O(nt) is no longer good enough
because the number of items n is prohibitively large. For example, in typical data
stream applications a running time of poly(t) (with t = O(d2 log n) tests in the
best case) for moderate values of d would imply an exponential improvement
in the running time. The question of constructing efficiently decodable disjunct
matrices was first explicitly raised by Cormode and Muthukrishnan [4]. Recently,
Indyk, Ngo and Rudra [14] presented a randomized construction of d-disjunct
matrices with t = O(d2 log(n)) tests that could be decoded in time poly(t). They
also derandomized their construction for d ≤ O(log n/ log log n). Our construc-
tion in this paper removes the above constraint on d. We thus can get further

3 Throughout this paper we will call a t× n matrix strongly explicit if any column of
the matrix can be constructed in time poly(t). A matrix will be called explicit if it
can be constructed in time poly(t, n).



down to poly(t) decoding time “for free.” Henceforth, “efficient decoding” means
decoding in poly(t)-time.

The fourth objective is to correct errors in test outcomes. In many applica-
tions such as drug discovery and DNA library screening, faulty test outcomes
are unavoidable [15]. Or, when heavy-hitters in a data-stream are identified us-
ing group testing, non-heavy hitter elements might generate false positive tests
if the small-tail property is not satisfied [4]. This paper essentially obtains the
above “for free” result even with the additional error-correcting requirement.

Our NAGT results crucially use as a building block a weaker notion of dis-
junct matrices called list disjunct matrices, which turns out to have many other
useful applications as well.

1.1 List disjunct matrices and our main results

Similar to list-decoding, if we relax the exact decoding requirement and only
require the NAGT primitive to output a bounded super-set of all the defec-
tives, then separable/disjunct matrices become list-separable/disjunct matrices.
Roughly, a (d, `)-list disjunct matrix is one where the naive decoder always out-
puts a super-set of the defectives containing less than ` other non-defective items.
The name “list disjunct” was coined in [14], though it was previously studied
under the different names: (d, n, `)-super-imposed codes in [5, 7], list-decoding
super-imposed codes of strength d and list-size ` in [21].4 We stick with the term
“list disjunct matrices” in this paper. Shortly prior to [14], Cheraghchi [3] stud-
ied the notion of error-correcting measurement matrices for d-sparse vectors,
which are slightly more general than the notion of list-separable matrices. It
can be shown that list-separable matrices are equivalent to list-disjunct matri-
ces with a slight loss in parameters. Hence, the results in [3], though shown for
list-separable matrices, apply for list-disjunct matrices as well. Conversely, our
bounds also apply to error-correcting measurement matrices. Our lower bounds
slightly improve lower bounds in [3].

List-disjunct matrices were used in [14] to construct efficiently decodable
disjunct matrices. They also presented a “stand alone” application of list disjunct
matrices in constructing sparsity separators, which were used by Ganguly [11] to
design data stream algorithms for the sparsity problem. Rudra and Uurtamo [22]
used these objects to design data stream algorithms for tolerant testing Reed-
Solomon codes. As observed in De Bonis et. al. [5], these objects can also be
used to construct optimal two stage group testing algorithms.

List disjunct matrices are also similar to other combinatorial objects such as
selectors [13] and multi-user tracing families [2]. Selectors have found numerous
applications such as broadcasting in unknown directed networks and designing
tests for coin-weighting problems [13] as well as designing optimal two stage
group testing schemes [5]. Multi-user tracing families were used to construct
monotone encodings in [2]. Monotone encodings can be used for designing secure
vote storage systems [17].

4 The authors of [14] were not aware of these previous works.



Given the various applications of list disjunct matrices, it is very natural
to ask if one could (explicitly) construct list disjunct matrices that are also
efficiently decodable. Indyk, Ngo and Rudra [14] constructed efficiently decod-
able (d,O(d1+ε))-list-disjunct matrices with O(d1+ε log1+1/ε n) tests (∀ε > 0).
Cheraghchi [3] constructed efficiently decodable (d,O(d))-list-separable matri-
ces (and thus, due to their almost-equivalence, (d,O(d))-list-disjunct matrices)
with O(d3+α+1/α log1+1/α n) tests (∀α > 0).

This paper improves upon both [14] and [3] by presenting efficiently decod-
able (d,O(d))-list-disjunct matrices with O(d1+o(1) log n log logd n) tests as well
as (d,O(d1+ε))-list disjunct matrices with O(d1+ε log n) tests (for any ε > 0).
In addition, our matrices are also error-correcting. To state the results more
precisely we briefly discuss the error-correcting matrices next.

Error-correcting versions of disjunct matrices have been studied a fair bit [6]
but to the best of our knowledge the only existing work that considers error
tolerant list-separable matrices is [3]. This paper studies the general notion of
(d, `, e0, e1)-list disjunct/separable matrices which are (d, `)-disjunct/separable
matrices capable of correcting up to e0 false positives and e1 false negatives.

We prove upper and lower bounds on the optimal number of rows of a
(d, `, e0, e1)-list disjunct matrix. The bounds are tight for sufficiently large e0 +
de1. (Our lower bounds are slightly better than those in [3].)

We then show how to construct error-tolerant and efficiently decodable list-
disjunct matrices by presenting two general procedures which – in a black-box
fashion – convert any (d, `, e0, e1)-list disjunct matrices into (d, `, e′0, e

′
1)-list dis-

junct matrices that are also efficiently decodable with a mild blow-up in the
number of tests. Note that we essentially show how to convert a combinatorial
guarantee into an algorithmic guarantee, which for combinatorial objects (e.g.
codes) is generally not obvious.

One of our conversion procedures provides a tradeoff between the blow-up in
the number of tests vs. the gain in decoding time (from the simple linear time
algorithm). Unfortunately, this procedure can only give e′0 = e0 and e′1 = e1

(even though the number of tests has gone up). Our other conversion procedure
does not provide such a nice tradeoff but it does lead to efficient decoding with
a mild blow-up in the number of tests. More importantly, the quantities e′0/e0

and e′1/e1 scale up linearly with the blow-up in the number of tests. This allows
us to design error-tolerant (d, d1+ε, e0, e1)-list disjunct matrices that for large
values of e0 + de1 have essentially all the nice properties one can wish for: (i)
Optimal number of tests; (ii) Strongly explicit construction and (iii) Efficiently
decodable.

1.2 Applications and Other Results

(Near) Optimal, explicit, and error-correcting disjunct matrices. Constructions
of efficiently decodable list disjunct matrices lead to constructions of efficiently
decodable d-disjunct matrices with the best known O(d2 log n) number of tests.
This result settles an open question from [14]. The black-box conversion proce-
dures also work for disjunct matrices. We prove a similar optimal result as in the



list-disjunct case where a disjunct matrix is explicit, error-correcting, efficiently
decodable, and has the best known number of tests. In fact, when the number
of errors is sufficiently large, our error-tolerant disjunct matrices also have the
optimal number of tests. This result points out the following somewhat surpris-
ing fact: our understanding of error-tolerant (list) disjunct matrices is essentially
limited by our understanding of the traditional no error case. In other words,
adding more errors only makes the problem “easier,” which is not the case for
related combinatorial objects such as codes.

Near Optimal, Efficiently Computable, and Efficiently Decodable Monotone En-
codings. With a construction similar to that in Alon-Hod [2], we show that
(d, d/2)-list disjunct t× n matrices imply a (n, d)-monotone encoding of length
t, i.e. a monotone injective functions from subsets of size up to d of [n] to t bits.
By contrast, the Alon-Hod’s construction used multi-user tracing families which
are, in a sense, duals of list-disjunct matrices. Alon and Hod showed that optimal
(n, d)-monotone encodings have length t = Θ(d log (n/d)), and presented a prob-
abilistic construction with encoding and decoding time of O(nd log n). From our
list-disjunct matrix constructions, we construct (n, d)-monotone encodings with
length t = O((d log n)1+o(1)) that are both explicitly computable and decodable
in poly(t)-time. Our result also hold for the error-tolerant monotone encodings.
We also prove an almost matching lower-bound for the length of error-correcting
monotone-encoding.

Near-Optimal Efficiently Decodable Multiple User Tracing Families. Given posi-
tive integers u ≤ d, a (d, u)-multiuser tracing (MUT) family is a NAGT strategy
(or matrix) which, given the test outcomes imposed by an arbitrary set of v ≤ d
defectives, there is a decoding algorithm that outputs at least min(u, v) out of
the v defectives. Thus, in a sense MUT is the dual of list-disjunct matrices. Alon-
Asodi [1] proved that, given n, the smallest t for which a t×n (d, u)-MUT matrix
exists must satisfy Ω

((
d+ u2

log u

)
· log n

)
≤ t ≤ O

(
(d+ u2) log n

)
. From our re-

sults on list-disjunct matrices, we show how to construct (d, u)-MUT matrix of
size t × n with t = O((d1+o(1) + u2) log n + (e0 + e1)d) which are explicit, effi-
ciently decodable and error tolerant. By removing the explicitness requirement,
we can retain the other two properties and reduce t to essentially the optimal
O((d+ u2) log n+ (e0 + e1)d log log n).

2 Error-correcting list-disjunct/separable matrices

Let M = (mij) be any binary matrix with t rows and n columns. Let Mj denote
the jth column of M. We can also think of the columns Mj as characteristic
vectors of subsets of [t], i.e. Mj = {i | mij = 1}. Thus, overloading notation we
will apply set operations on the columns of M.

The key combinatorial structure we study in this paper is the error-tolerant
version of the notion of list-disjunct matrix. Using a (d, `)-list-disjunct t × n
matrix M we can design a NAGT procedure for n items with at most d defectives.



The decoding algorithm simply eliminates any item which is present in any
negative test. When M is (d, `)-list-disjunct, this “naive decoder” returns a set R
of (remaining) items containing all defectives and less than ` extra (non-negative)
items. In many applications, the test outcomes might have errors. The following
combinatorial structure is a generalization of list-disjunct matrices which can
correct up to e0 false positives and e1 false negatives in test outcomes.

Definition 1 Let d ≥ 1, ` ≥ 1, e0 ≥ 0, e1 ≥ 0, and n ≥ d+` be given integers. A
t×n binary matrix M is called a (d, `, e0, e1)-list-disjunct matrix if M satisfies the
following conditions. For any disjoint subsets S, T ⊂ [n] such that |S| = d,|T | =
`, and an arbitrary subset X ⊆

(⋃
j∈T Mj

)
\
(⋃

j∈S Mj
)

of size |X| ≤ e0, there

exists a column j̄ ∈ T \ S such that
∣∣∣Mj̄ \

(
X ∪

⋃
j∈S Mj

)∣∣∣ ≥ e1 + 1.

Proposition 2 Define the “naive decoder” be the algorithm which eliminates
all items belonging to at least e1 + 1 negative tests and returns the remaining
items. If M is (d, `, e0, e1)-list-disjunct, then the naive decoder returns a set R of
items containing all the (at most d) defectives and at most `− 1 negative items,
even if the test outcomes have up to e0 false positives and e1 false negatives.

3 Intuition behind the blackbox conversion procedures

The first conversion uses ideas similar to those used in [14]: given an error tolerant
list disjunct matrix, we concatenate Parvaresh-Vardy codes [19] with it. PV codes
have excellent list recoverability properties, which can be exploited to design
efficient decoding procedure for the resulting matrix.

Our second conversion procedure is perhaps technically more interesting. The
main idea behind the construction is as follows. Say we are trying to construct a
(d, `, e0, e1)-list-disjunct matrix M∗ with n columns that is efficiently decodable
from a family of matrices, where for any i ≥ d, there is a (d, `, e0, e1)-list-disjunct
t(i)× i matrix (not necessarily efficiently decodable). Towards efficient decoding,
say we somehow knew that all the positive items are contained in a subset
S ⊆ [n]. Then the naive decoder would run in time O(t(n) · |S|), which would
be sublinear if |S| and t(n) are sufficiently small. The idea is to construct this
small set S recursively.

Fix n ≥ d ≥ 1. Assume there exists a (d, `, e0, e1)-list disjunct t1×
√
n matrix

M(1) that is efficiently decodable and let M(2) be a (d, `, e0, e1)-list disjunct t2×n
matrix (that is not necessarily efficiently decodable). Let ML be the t1×n matrix
where the ith column (for i ∈ [n]) is identical to the jth column of M(1) such
that the first 1

2 log n bits of i is j (where we think of i and j as their respective
binary representations). Similarly, let MR be the t1 × n matrix where the last
1
2 log n bits of i is j.

Let S ⊆ [n], |S| ≤ d, be an arbitrary set of positives. Let the vector rL (rR,
resp.) be the vector that results from applying ML (MR, resp.) on S. Note
that rL and rR might be different from the unions ∪j∈S(ML)j and ∪j∈S(MR)j ,



respectively, due to the (e0, e1-bounded) errors in test outcomes. Apply the de-
coding algorithm for M(1) to rL (rR, resp.) and obtain the set SL (SR, resp.) of
1
2 log n-bit vectors such that, for every i ∈ S, the first (last, resp.) 1

2 log n bits of
i belongs to SL (SR, resp.). In other words, S = SL×SR contains all the indices
i ∈ S. Further, note that both |SL| and |SR| have less than d+ ` elements.

Now, our final matrix M∗ is simple: just vertically stack ML, MR and M(2)

together. Note that M∗ is (d, `, e0, e1)-list disjunct because M(2) is (d, `, e0, e1)-
list disjunct. Finally, decoding M∗ can be done efficiently: first decode the part of
the result matrix corresponding to ML and MR to obtain SL and SR respectively
– this is efficient as M(1) is efficiently decodable. Finally computing the output
item set (containing S) can be done with an additional O(t2 · (d + `)2)-time as
we only need to run the naive decoder for M(2) over S = SL × SR. To achieve
a tradeoff between the number of tests and the decoding time, we choose the
parameters of the recursion more carefully.

Our conversion of a disjunct matrix into an efficiently decodable one is very
simple: stack an efficiently decodable (d,poly(d))-list disjunct matrix on a d-
disjunct matrix. Decoding the result vector from the list disjunct matrix gives a
subset of size poly(d) that contains all the defective items. We then run the naive
decoder for the disjunct matrix on this set of possibilities leading to an overall
efficient decoding algorithm. Since there is an Ω(d/ log d) gap in the number
of tests needed in a list disjunct matrix and a disjunct matrix, as long as we
have an efficiently decodable list disjunct matrix with o(d2 log n/ log d) tests, we
are fine. Indeed, we get such matrices from our construction mentioned earlier.
To obtain the efficiently decodable matrix with O(d2 log n) tests we use the d-
disjunct matrix construction of Porat and Rothschild [20]. The same idea works
for the error-correcting versions.

4 Bounds

Given d, `, e0, e1, and n, let t(d, `, e0, e1, n) denote the minimum number of rows t
of a (d, `, e0, e1)-list-disjunct matrix with t rows and n columns. It is not hard to
see that every (d, 1, e0, e1)-list-disjunct matrix is the same as a (d, 1, e0 + e1, 0)-
list-disjunct matrix, which is the same as a (d, 1, 0, e0 + e1)-list-disjunct matrix.
Let r = e0 + e1 + 1. It is customary in the literature to call a (d, 1, r− 1, 0)-list-
disjunct matrix a dr-disjunct matrix [6]. To shorten the notations, let t(d, r, n)
denote t(d, 1, e0, e1, n) for the disjunct case, where r = e0 + e1 + 1.

The following lower bound for (d, `)-list-disjunct matrices is better than the
similar bound proved in [5] in two ways: (1) the actual bounds are slightly better,
and (2) the bound in [5] requires a precondition that n > d2/(4`) while ours does
not. We make use of the argument from Erdős-Frankl-Füredi [9, 10], while [5]
uses the argument from Ruszinkó [23]. The bound helps prove Theorem 4, which
is tight when ` = Θ(d).

Lemma 3 For any n, d, ` with n ≥ d+`, we have t(d, `, 0, 0, n) > d log
(

n
d+`−1

)
.

When d ≥ 2`, we have t(d, `, 0, 0, n) > bd/`c(d+2−`)
2 log(ebd/`c(d+2−`)/2) log

(
n−d−2`+2

`

)
.



Theorem 4 For any non-negative integers d, `, e0, e1, n where n ≥ d+`, we have
t(d, `, e0, e1, n) = Ω

(
d log n

d+`−1 + e0 + de1

)
. In particular, t(d,Θ(d), e0, e1, n) =

Ω (d log(n/d) + e0 + de1). Furthermore, when d ≥ 2` we have t(d, `, e0, e1, n) =
Ω
(

d2/`
log(d2/`) log n−d

` + e0 + de1

)
.

Theorem 5 Let n, d, `, e0, e1 be given non-negative integers. If ` = Ω(d), then
t(d, `, e0, e1, n) = O (d log(n/d) + e0 + de1). In particular, when l = Θ(d) we
have a precise characterization t(d, `, e0, e1, n) = Θ (d log(n/d) + e0 + de1).

Theorem 6 For the dr-disjunct matrices, we have t(d, r, n) = O
(
d2 log n

d + rd
)
.

5 Constructions

We will need the following existing results from the literature.

Theorem 7 ( [3]) Let 1 ≤ d ≤ n be integers. Then there exists a strongly-
explicit t × n matrix that is (d,O(d), αt,Ω(t/d))-list disjunct (for any constant
α ∈ (0, 1)) with t = O(d1+o(1) log n) rows.

Theorem 8 ( [14]) Let 1 ≤ d ≤ n be integers. Then there exists a strongly-
explicit t × n matrix that is (d, δd,Ω(t), Ω(t/d))-list disjunct (for any constant
δ > 0) with t = O((d log n)1+o(1)) rows.

5.1 Black-box conversion using list recoverability

Our first black-box procedure converting any error tolerant list disjunct matrix
into one that is also efficiently decodable (with a mild sacrifice in some parame-
ters) is based on concatenating PV codes [19] with the given list disjunct matrix.

Theorem 9 Let `, d ≥ 1, e0, e1 ≥ 0 be integers. Assume that for every Q ≥ d,
there exists a (d, `, e0, e1)-list-disjunct t̄(d, `, e0, e1, Q)×Q matrix. For every s ≥ 1
and every n ≥ d, define A(d, l, s) = 3(d+ l)1/s(s+1)2. Let k be minimum integer
such that 2k log(kA(d, l, s)) ≥ log n, and q be the minimum power of 2 such that
q ≥ kA(d, l, s). Then, there exists a (d − 1, L, e′0, e

′
1)-list disjunct t′ × n matrix

with the following properties:

(i) t′ = O
(
s2 · (d+ `)1/s ·

(
logn
log q

)
· t̄(s)

)
, where t̄(s) is shorthand for t̄(d, `, e0, e1, q

s)
(ii) e′0 = γe0 and e′1 = γe1 where γ = Θ(t′/t̄(s)).

(iii) L = sO(s) · (d+ `)1+1/s.
(iv) It is decodable in time (t′)O(s).

Combining Theorem 9 and Theorem 7, we get the following result.

Corollary 10 Let ε > 0 be a real number and let 1 ≤ d ≤ n be integers. Then
there exists a strongly-explicit t×n matrix that is (d, (1/ε)O(1/ε)·d1+ε, Ω(t), Ω(t/d))-
list disjunct with t = (1/ε)O(1/ε) · d1+ε · log n rows that can be decoded in time
tO(1/ε).



5.2 Black-box conversion using recursion

Unlike the previous construction, the second procedure gives a more general
tradeoff between the blow-up in the number of tests and the resulting decoding
time. On the other hand, this conversion uses multiple matrices from a given
family of error-tolerant matrices unlike the previous procedure, which only used
one error-tolerant list disjunct matrix.

Theorem 11 Let n ≥ d ≥ 1 be integers. Assume for every i ≥ d, there is
a (d, `, e0, e1)-list disjunct t(i) × i matrix Mi for integers 1 ≤ ` ≤ n − d and
e0, e1 ≥ 0. Let 1 ≤ a ≤ log n and 1 ≤ b ≤ log n/a be integers. Then there exists a
ta,b × n matrix Ma,b that is (d, `, e0, e1)-list disjunct that can be decoded in time
Da,b where

ta,b =
dlogb( log n

a )e−1∑
j=0

bj · t
(

bj√
n
)

(1)

and

Da,b = O

(
ta,b ·

(
log n · 2a

a
+ (d+ `)b

))
. (2)

Finally, if the family of matrices {Mi}i≥d is (strongly) explicit then so is Ma,b.

The bound in (1) is somewhat unwieldy. We note in Corollary 12 that when
t(i) = dx logy i for some reals x, y ≥ 1, we can achieve efficient decoding with
only a log-log factor increase in number of tests. Theorem 11 with b = 2 and
a = log d implies the following:

Corollary 12 Let n ≥ d ≥ 1 be integers and x, y ≥ 1 be reals. Assume for every
i ≥ d, there is a (d, `, e0, e1)-list disjunct O(dx logy i) × i matrix for integers
1 ≤ ` ≤ n−d and e0, e1 ≥ 0. Then there exists a t×n matrix that is (d, `, e0, e1)-
list disjunct that can be decoded in poly(t, `) time, where

t ≤ O (dx · logy n · log logd n) .

Finally, if the original matrices are (strongly) explicit then so is the new one.

Corollary 12 along with Theorems 8 and 7 imply the followings:

Corollary 13 Let 1 ≤ d ≤ n be integers. For any constant δ > 0 there exists
a strongly-explicit t × n matrix that is (d, δd,Ω(t/ log log n), Ω(t/(d log log n)))-
list-disjunct with t = O((d log n)1+o(1)) rows and can be decoded in poly(t) time.

Corollary 14 Let 1 ≤ d ≤ n be integers. For any constant α ∈ (0, 1) there exists
a strongly-explicit t× n matrix that is (d,O(d), αt/ log log n,Ω(t/(d log log n)))-
list disjunct with t = O(d1+o(1) log n log log n) rows and can be decoded in poly(t)
time.



6 Applications

Efficiently decodable disjunct matrices. The following proposition along
with Corollary 10 (with say ε = 1/2) lead to the next theorem, a significant
improvement over the similar result obtained in [14] that only worked for d ≤
O(log n/ log log n).

Proposition 15 Let n ≥ d ≥ 1 be integers. Let M1 be a (d, `)-list disjunct t1×n
matrix that can be decoded in time D. Let M2 be a d-disjunct t2×n matrix. Then
there exists a (t1 + t2)× n matrix that is d-disjunct and can be decoded in time
D+O((d+ `) · t2). If both M1 and M2 are polynomial time constructible then so
is the final matrix.

Theorem 16 Let 1 ≤ d ≤ n. Then there exists a t × n d-disjunct matrix with
t = O(d2 log n) that can be decoded in poly(t) time. Further, the matrix can be
computed in time Õ(nt).

(Near) Optimal Error-Tolerant, Efficiently Constructible, and Effi-
ciently Decodable (List) Disjunct Matrices. We begin with simple obser-
vation that stacking i copies of a list disjunct matrix increases the error-tolerance
parameters by a factor of i.

Proposition 17 If there exists a (d, `, e0, e1)-list disjunct matrix with t rows
then there exists another (d, `, α · e0, α · e1)-list disjunct matrix with αt rows for
any integer α ≥ 1.

The surprising thing is that the result above leads to optimal construction of
(list) disjunct matrices. In particular, applying Proposition 17 with Corollary 10
implies the following:

Corollary 18 For every ε > 0, there exists a strongly explicit (d, (1/ε)O(1/ε) ·
d1+ε, r, r/d)-list disjunct matrix with O(t + r) rows, where t = O((1/ε)O(1/ε) ·
d1+ε · log n) that can be decoded in time r · tO(1/ε).

Note that Theorem 4 shows that the number of tests in the result above
is optimal for r ≥ Ω(t). We also get the following result with the construction
in [20], Corollary 18, and Proposition 17. The result is optimal for r = Ω(d log n),
by Theorem 4.

Corollary 19 Let 1 ≤ d ≤ n and r ≥ 1 be integers. Then there exists a t × n
dr-disjunct matrix with t = O(d2 log n+rd) decodable in r ·poly(t) time. Further,
the matrix can be computed in time Õ(nt).

Error tolerant monotone encodings. A (one-sided) r-error-correcting (n, d)-
monotone encoding is a monotone injective mapping from subsets of size up to
d of [n] to t bits, such that we can recover the correct subset even when up to r
bits are flipped from 0 to 1. The number t is called the length of the encoding.
This type of one-sided error holds true for the read-once memory environment
where monotone encoding is applicable [2, 17].



Theorem 20 Let n ≥ d be given positive integers. For each integer i, 0 ≤
i ≤ log2 d − 1, let Ai be a (d/2i, d/2i+1, r, 0)-list-disjunct ti × n matrix. From
the matrices Ai, we can construct a r-error-correcting (n, d)-monotone encoding
with length t =

∑log2 d−1
i=0 ti which can be encoded and decoded in time O(nt).

Furthermore, if the matrices Ai are strongly explicit then the monotone encoding
is strongly explicit. If the list-disjunct matrices Ai can be decoded in time Ti(n, d),
then the monotone encoding can be computed in time

∑
i Ti(n, d).

Corollary 21 There exist r-error-correcting (n, d)-monotone-encodings of length
t = O (d log(n/d) + r log d) . Note that, this bound is best possible when r = 0
because the information theoretic bound is Ω(d log(n/d)).

Finally, apply the list-disjunct matrices in Corollary 13 to Theorem 20, we
obtain the following.

Corollary 22 Given integers n ≥ d ≥ 1 and r, there exists a poly(t)-time
algorithm computing an r-error-correcting (n, d)-monotone-encoding with length
t = O

(
(d log n)1+o(1) + r log d · log logn

)
, which can be decoded in poly(t)-time

also.

The following lower bound is off from the upper bound by a factor of about
Õ(log d).

Proposition 23 Suppose there exists a r-error-correcting (n, d)-monotone en-
coding, then the code length t has to satisfy t = Ω

(
d log(n/d) + r log

(
d log(n/d)

r

))
.

Efficiently Decodable Multiple User Tracing Family. The following results
answer two open questions left in [1], concerning the explicit constructions of
MUT families and the fast-decodability of such families. Furthermore, our results
are error-correcting.

Theorem 24 Given non-negative integers e0, e1, u ≤ d < n, there is a random-
ized construction of t×n (d, u)-MUT matrix, which can correct e0 false positives
and e1 false negatives, where t = O((d+ u2) log n+ (e0 + e1)d). If we also want
explicit construction along with efficient decoding, then t is slightly increased to
t = O((d1+o(1) + u2) log n+ (e0 + e1)d log log n).
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