
Concatenated codes can achieve list-decoding capacity

Venkatesan Guruswami∗ Atri Rudra†

Abstract
We prove that binary linear concatenated codes with an
outer algebraic code (specifically, a folded Reed-Solomon
code) and independently and randomly chosen linear inner
codes achieve the list-decoding capacity with high probabil-
ity. In particular, for any 0 < ρ < 1/2 and ε > 0, there
exist concatenated codes of rate at least 1 −H(ρ) − ε that
are (combinatorially) list-decodable up to a fraction ρ of er-
rors. (The best possible rate, aka list-decoding capacity, for
such codes is 1 − H(ρ), and is achieved by random codes.)
A similar result, with better list size guarantees, holds when
the outer code is also randomly chosen. Our methods and
results extend to the case when the alphabet size is any fixed
prime power q > 2.

Our result shows that despite the structural restriction
imposed by code concatenation, the family of concatenated
codes is rich enough to include capacity achieving list-
decodable codes. This provides some encouraging news for
tackling the problem of constructing explicit binary list-
decodable codes with optimal rate, since code concatenation
has been the preeminent method for constructing good codes
over small alphabets.

1 Introduction

Concatenated Codes. Ever since its discovery
and initial use by Forney [3], code concatenation has
been a powerful tool for constructing error-correcting
codes. At its core, the idea of code concatenation is
really simple and natural. A concatenated code over
a small alphabet, say a binary code for definiteness,
is constructed in two steps. In the first step, the
message is encoded via an error-correcting code C1 over
a large alphabet, say a large finite field F2m . C1 is
referred to as the outer code. Each of the symbols
of the resulting codeword of C1 is then encoded via a
binary code C2 that has 2m codewords (corresponding
to the 2m outer codeword symbols). The code C2

is referred to as the inner code. The popularity
of code concatenation arises due to the fact that is
often difficult to give a direct construction of good

∗University of Washington, Department of Computer Science
and Engineering, Seattle, WA 98195, and (on leave at) Institute
for Advanced Study, School of Mathematics, Princeton, NJ.
Research supported by Sloan and Packard Fellowships, and NSF
Career Award CCF-0343672. Email : venkat@cs.washington.edu

†Department of Computer Science and Engineering, University
at Buffalo, State University of New York, Buffalo, NY 14260.
Email : atri@cse.buffalo.edu. This work was done while the
author was at the University of Washington and supported by
NSF CCF-0343672.

(long) binary codes. On the other hand, over large
alphabets, an array of powerful algebraic constructions
(such as Reed-Solomon and algebraic-geometric codes)
with excellent parameters are available. While the
concatenated construction still requires an inner code
that is binary, this is a small/short code with block
length O(m), which is typically logarithmic or smaller
in the length of the outer code. A good choice for the
inner code can therefore be found efficiently by a brute-
force search, leading to a polynomial time construction
of the final concatenated code.

This paradigm draws its power from the fact that
a concatenated code, roughly speaking, inherits the
good features of both the outer and inner codes. For
example, the rate of the concatenated code is the
product of the rates of the outer and inner codes, and
the minimum distance is at least the product of the
distances of the outer and inner codes. The alphabet
of the concatenated code equals that of the inner
code. Above, we assumed that all the inner codes were
identical. This is not necessary and one can use different
inner codes for encoding different symbols of the outer
codeword. One way to leverage this is to use an explicit
ensemble of inner codes most of which are “good.”
This was the idea behind Justesen’s celebrated explicit
construction of asymptotically good binary codes [10].
In this work, we will use random, i.i.d. choices for the
different inner codes, and the independence of the inner
encodings will be crucial in our analysis.

By concatenating an outer Reed-Solomon code of
high rate with short inner codes achieving Shannon ca-
pacity (known to exist by a random coding argument),
Forney [3] gave a construction of binary linear codes
that achieve the capacity of the binary symmetric chan-
nel with a polynomial time decoding complexity. By
using as outer code a linear time encodable/decodable
code, one can make the encoding/decoding complexity
linear in the block length [13]. In comparison, Shan-
non’s nonconstructive proof of his capacity theorem
used an exponential time maximum likelihood decoder.

The List Decoding Context. Our focus in this
work is on the worst-case error model, with the goal
being to recover from an arbitrary fraction ρ of errors
with the best possible rate. In this setting, notions such

as minimum distance and list decoding become central,
and concatenated codes have been the key tool in many
developments concerning these notions. (All the basic
coding theory notions are formally defined in Sections
2.2-2.4.) In fact, for the longest time, till the work
on expander codes by Sipser and Spielman [12], code
concatenation schemes gave the only known explicit
construction of a family of asymptotically good codes
(i.e., with rate and relative distance both bounded away
from zero as the block length grew). Even today, the
best trade-offs between rate and distance for explicit
codes are achieved by variants of concatenated codes;
see [2] for further details.

Let us consider the problem of constructing a family
of binary codes for correcting a fraction ρ of worst-case
errors, for some 0 < ρ < 1/2. For large n, there
are about 2H(ρ)n binary strings of weight ρn, where
H(ρ) = −ρ log2 ρ − (1 − ρ) log2(1 − ρ) is the binary
entropy function. Therefore, when up to a ρ fraction
of symbols can be corrupted, a transmitted codeword c
can get distorted into any one of about 2H(ρ)n possible
received words. Since the decoder must be able to
associate c with all such received words, it is easy
to argue that there can be at most about 2(1−H(ρ))n

codewords. In other words, the rate of the code must
be at most 1 −H(ρ).

Perhaps surprisingly, the above simplistic upper
bound on rate is in fact accurate, and at least non-
constructively, a rate arbitrarily close to 1 − H(ρ) can
be realized. In fact, with high probability a completely
random code of rate (1−H(p)−ε), obtained by picking
2(1−H(p)−ε)n codewords randomly and independently,
has the property that every Hamming ball of radius
ρn has at most O(1/ε) codewords. One can thus use
such a code to (list) decode from a fraction ρ of errors,
where in the worst-case the decoder may output a list
of O(1/ε) answers. The trade-off R = 1−H(ρ) between
the rate R and fraction of errors ρ is called the list-
decoding capacity. The choice of binary alphabet in this
discussion is only for definiteness. Over an alphabet size
q > 2, the list-decoding capacity equals 1−Hq(ρ), where
Hq(·) is the q-ary entropy function.

Unfortunately, the above is a nonconstructive ar-
gument and the codes achieving list-decoding capacity
are shown to exist by a random coding argument, and
are not even succinctly, let alone explicitly, specified.
It can also be shown that random linear codes achieve
list-decoding capacity, though the known proofs only
achieve a list size of 2O(1/ε) when the rate is within ε
of the list-decoding capacity.1 The advantage with lin-

1For the case of binary alphabet alone, it is shown in [4], that
a list size of O(1/ε) suffices. But this result is not known to hold
with high probability.

ear codes is that being subspaces they can be described
succinctly by a basis for the subspace (called generator
matrix in coding parlance). Yet, a generic linear code
offers little in terms of algorithmically useful structure,
and in general only brute-force decoders running in ex-
ponential time are known for such a code.

Turning to constructive results for list decoding, re-
cently explicit codes approaching list-decoding capacity
together with polynomial time list-decoding algorithms
were constructed over large alphabets [6]. Using these
as outer codes in a concatenation scheme led to polyno-
mial time constructions of binary codes that achieved a
rate vs. list-decoding radius trade-off called the Zyablov
bound [6]. By using a multilevel generalization of code
concatenation, the trade-off was recently improved to
the so-called Blokh-Zyablov bound [8]. Still, these ex-
plicit constructions fall well short of achieving the list-
decoding capacity for binary (and other small alphabet)
codes, which remains a challenging open problem.

Given the almost exclusive stronghold of concate-
nated codes on progress in explicit constructions of list-
decodable codes over small alphabets, the following nat-
ural question arises: Do there exist concatenated codes
that achieve list-decoding capacity, or does the stringent
structural restriction imposed on the code by concatena-
tion preclude achieving list-decoding capacity?

The natural way to analyze the list-decoding per-
formance of concatenated codes suggests that perhaps
concatenation is too strong a structural bottleneck to
yield optimal list-decodable codes. Such an analysis
proceeds by decoding the blocks of the received word
corresponding to various inner encodings, which results
in a small set Si of possible symbols for each position
i of the outer code. One then argues that there can-
not be too many outer codewords whose i’th symbol
belongs to Si for many positions i (this is called a “list
recovery” bound).2 Even assuming optimal, capacity-
achieving bounds on the individual list-decodability of
the outer and inner codes, the above “two-stage” anal-
ysis bottlenecks at the Zyablov bound.3

The weakness of the two-stage analysis is that it
treats the different inner decodings independently, and
fails to exploit the fact that the various inner blocks
encode a structured set of symbols, namely those aris-
ing in a codeword of the outer code. Exploiting this

2When the outer code is algebraic such as Reed-Solomon or
folded Reed-Solomon, the list recovery step admits an efficient al-
gorithm which leads to a polynomial time list-decoding algorithm
for the concatenated code, such as in [6, 8].

3One can squeeze out a little more out of the argument and
achieve the Blokh-Zyablov bound, by exploiting the fact that sub-
codes of the inner codes, being of lower rate, can be list decoded
to a larger radius [8].

and arguing that the structure of the outer codewords
prevents many “bad” inner blocks from occurring simul-
taneously, and using this to get improved bounds, how-
ever, seems like an intricate task. In part this is because
the current understanding of “bad list-decoding configu-
rations,” i.e., Hamming balls of small radius containing
many codewords, for codes is rather poor.

Our Results. In this work, we prove that there
exist binary (and q-ary for any fixed prime power q)
linear concatenated codes that achieve list-decoding ca-
pacity for any desired rate. In fact, we prove that a
random concatenated code drawn from a certain en-
semble achieves capacity with overwhelming probability.
This is encouraging news for the eventual goal of achiev-
ing list-decoding capacity (or at least, going beyond the
above-mentioned Blokh-Zyablov bottleneck) over small
alphabets with polynomial time decodable codes.

The outer codes in our construction are the folded
Reed-Solomon codes which were shown in [6] to have
near-optimal list-recoverability properties.4 The inner
codes for the various positions are random linear codes
(which can even have a rate of 1), with a completely
independent random choice for each outer codeword
position. To get within ε of list decoding capacity,
our result guarantees an output list size bound that
is a large polynomial (greater than N1/ε) in the block
length N . We also prove that one can achieve capacity
when a random linear code is chosen for the outer code;
we get a better list size upper bound of a constant
depending only on ε in this case. A corollary of our
result is that one can construct binary codes achieving
list-decoding capacity with a number of random bits
that grows quasi-linearly in the block length, compared
to the quadratic bound (achieved by a random linear
code) known earlier.

Our results are inspired by results of Blokh and
Zyablov [1] and Thommesen [14] showing the existence
of binary concatenated codes whose rate vs. distance
trade-off meets the Gilbert-Varshamov (GV) bound.
We recall that the GV bound is the best known trade-
off between rate and relative distance for binary (and
q-ary for q < 49) codes and is achieved w.h.p. by
random linear codes. Blokh and Zyablov show the result
for independent random choices for the outer code and
the various inner encodings. Thommesen establishes
that one can fix the outer code to be a Reed-Solomon
code and only pick the inner codes randomly (and
independently). We give a high level overview of our

4We note that the excellent list-recoverability of folded Reed-
Solomon codes is crucial for our argument, and we do not know
how to prove a similar result using just Reed-Solomon codes as
outer codes.

proof and how it compares with Thommesen’s proof in
Section 3.

2 Preliminaries

For an integer m > 1, we will use [m] to denote the set
{1, . . . ,m}.

2.1 q-ary Entropy and Related Functions Let
q > 2 be an integer. Hq(x) = x logq(q − 1) − x logq x −
(1−x) logq(1−x) will denote the q-ary entropy function.
We will make use of the following property of this
function.

Lemma 2.1. ([11]) For every 0 6 y 6 1 − 1/q and for
every small enough ε > 0, we have H−1

q (y − ε2/c′q) >
H−1

q (y) − ε, where c′q > 1 is a constant that depends
only on q.

For 0 6 z 6 1 define

(2.1) αq(z) = 1 −Hq(1 − qz−1).

We will need the following property of the function
above.

Lemma 2.2. Let q > 2 be an integer. For every 0 6
z 6 1, αq(z) 6 z.

Proof. The proof follows from the subsequent sequence
of relations:

αq(z) = 1 −Hq(1 − qz−1)

= 1− (1 − qz−1) logq(q − 1)

+ (1 − qz−1) logq(1 − qz−1) + qz−1(z − 1)

= zqz−1 + (1 − qz−1)
(

1 − logq

(
q − 1

1 − qz−1

))
6 z,

where the last inequality follows from the facts that
qz−1 6 1 and 1 − qz−1 6 1 − 1/q, which implies that
logq

(
q−1

1−qz−1

)
> 1. �

We will also consider the following function

fx,q(θ) = (1 − θ)−1 ·H−1
q (1 − θx),

where 0 6 θ, x 6 1. We will need the following property
of this function, which was proven in [14] for the q = 2
case. The following is an easy extension of the result for
general q (the proof can be found in [11, Chap. 5]).

Lemma 2.3. ([14]) Let q > 2 be an integer. For any
x > 0 and 0 6 y 6 αq(x)/x,

min
06θ6y

fx,q(θ) = (1 − y)−1H−1
q (1 − xy).

2.2 Basic Coding Definitions A code of dimension
k and block length n over an alphabet Σ is a subset of
Σn of size |Σ|k. The rate of such a code equals k/n.
Each vector in C is called a codeword. In this paper,
we will focus on the case when Σ is a finite field. We
will denote by Fq the field with q elements. A code C
over Fq is called a linear code if C is a subspace of Fn

q .
In this case the dimension of the code coincides with
the dimension of C as a vector space over Fq. By abuse
of notation we will also think of a code C as a map
from elements in Fk

q to their corresponding codeword in
Fn

q . If C is linear, this map is a linear transformation,
mapping a row vector x ∈ Fk

q to a vector xG ∈ Fn
q for a

k × n matrix G over Fq called the generator matrix.
The Hamming distance between two vectors in Σn

is the number of places they differ in. The (minimum)
distance of a code C is the minimum Hamming distance
between any two pairs of distinct codewords from C.
The relative distance is the ratio of the distance to the
block length.

2.3 Code Concatenation Concatenated codes are
constructed from two different kinds of codes that are
defined over alphabets of different sizes. Say we are
interested in a code over Fq (in this paper, we will
always think of q > 2 as being a fixed constant).
Then the outer code Cout is defined over FQ, where
Q = qk for some positive integer k and has block length
N . The second type of code, called the inner codes,
which are denoted by C1

in, . . . , CN
in are defined over Fq

and are each of dimension k (note that the message
space of Ci

in for all i and the alphabet of Cout have
the same size). The concatenated code, denoted by
C = Cout ◦ (C1

in, . . . , CN
in), is defined as follows. Let

the rate of Cout be R and let the block lengths of Ci
in

be n (for 1 6 i 6 N). Define K = RN and r = k/n.
The input to C is a vector m = 〈m1, . . . ,mK〉 ∈ (Fk

q)K .
Let Cout(m) = 〈x1, . . . , xN 〉. The codeword in C
corresponding to m is defined as follows

C(m) = 〈C1
in(x1), C2

in(x2), . . . , CN
in(xN)〉.

The outer code Cout will either be a random linear
code over FQ or the folded Reed-Solomon code from [6].
In the case when Cout is random, we will pick Cout by
selecting K = RN vectors uniformly at random from
FN

Q to form the rows of the generator matrix. For
every position 1 6 i 6 N , we will choose an inner
code Ci

in to be a random linear code over Fq of block
length n and rate r = k/n. In particular, we will work
with the corresponding generator matrices Gi, where
every Gi is a random k × n matrix over Fq. All the
generator matrices Gi (as well as the generator matrix
for Cout, when we choose a random Cout) are chosen

independently. This fact will be used crucially in our
proofs.

Given the outer code Cout and the inner codes Ci
in,

recall that for every codeword u = (u1, . . . ,uN) ∈ Cout,

the codeword uG
def
= (u1G1,u2G2, . . . ,uNGN) is in

C = Cout◦(C1
in, . . . , CN

in), where the operations are over
Fq.

We will need the following notions of the weight of
a vector. Given a vector v ∈ FnN

q , its Hamming weight
is denoted by wt(v). Given a vector y = (y1, . . . , yN) ∈
(Fn

q)N and a subset S ⊆ [N], we will use wtS(y) to
denote the Hamming weight over Fq of the subvector
(yi)i∈S . Note that wt(y) = wt[N](y).

We will need the following simple lemma due to
Thommesen, which is stated in a slightly different form
in [14]. For the sake of completeness we also present its
proof.

Lemma 2.4. ([14]) Given a fixed outer code Cout of
block length N and an ensemble of random inner linear
codes of block length n given by generator matrices
G1, . . . ,GN the following is true. Let y ∈ FnN

q . For
any codeword u ∈ Cout, any non-empty subset S ⊆ [N]
such that ui 6= 0 for all i ∈ S and any integer h 6

n|S| ·
(
1 − 1

q

)
:

Pr[wtS(uG− y) 6 h] 6 q−n|S|(1−Hq(h
n|S|)),

where the probability is taken over the random choices
of G1, . . . ,GN .

Proof. Let |S| = s and w.l.o.g. assume that S = [s]. As
the choices for G1, . . . ,GN are made independently, it
is enough to show that the claimed probability holds for
the random choices for G1, . . . ,Gs. For any 1 6 i 6 s
and any y ∈ Fn

q , since ui 6= 0, we have PrGi [uiGi =
y] = q−n. Further, these probabilities are independent
for every i. Thus, for any y = 〈y1, . . . , ys〉 ∈ (Fn

q)s,
PrG1,...,Gs [uiGi = yi for every 1 6 i 6 s] = q−ns. This
implies that:

PrG1,...,Gs [wtS(uG− y) 6 h] = q−ns
h∑

j=0

(
ns

j

)
(q − 1)j .

The claimed result follows from the following well known
inequality for h/(ns) 6 1 − 1/q ([9]):

h∑
j=0

(
ns

j

)
(q − 1)j 6 qnsHq(h

ns).

�

2.4 List Decoding and List Recovery

Definition 2.1. (List decodable code) For 0 <
ρ < 1 and an integer L > 1, a code C ⊆ Fn

q is said
to be (ρ, L)-list decodable if for every y ∈ Fn

q , the num-
ber of codewords in C that are within Hamming distance
ρn from y is at most L.

We will also crucially use a generalization of list decod-
ing called list recovery, a term first coined in [5] even
though the notion had existed before. List recovery
has been extremely useful in list-decoding concatenated
codes. The input for list recovery is not a sequence
of symbols but rather a sequence of subsets of allowed
codeword symbols, one for each codeword position.

Definition 2.2. (List recoverable code) A code
C ⊆ Fn

q , is called (ρ, `, L)-list recoverable if for every se-
quence of sets S1, S2, . . . , Sn, where Si ⊆ Fq and |Si| 6 `
for every 1 6 i 6 n, there are at most L codewords in
c ∈ C such that ci ∈ Si for at least (1− ρ)n positions i.

The classical family of Reed-Solomon (RS) codes over
a field F are defined to be the evaluations of low-
degree polynomials at a sequence of distinct points
of F. Folded Reed-Solomon codes are obtained by
viewing the RS code as a code over a larger alphabet Fs

by bundling together consecutive s symbols for some
folding parameter s. We will not need any specifics
of folded RS codes (in fact even its definition) beyond
(i) the strong list recovery property guaranteed by
the following theorem from [6], and (ii) the fact that
specifying any K + 1 positions in a dimension K folded
Reed-Solomon code suffices to identify the codeword
(equivalently, a dimension K and length N folded RS
code has distance at least N −K).

Theorem 2.1. ([6]) For every integer ` > 1, for all
constants ε > 0, for all 0 < R < 1, and for every
prime p, there is an explicit family of folded Reed-
Solomon codes, over fields of characteristic p that have
rate at least R and which can be (1−R−ε, `, L(N))-list
recovered in polynomial time, where for codes of block
length N , L(N) = (N/ε2)O(ε−1 log(`/R)) and the code is
defined over alphabet of size (N/ε2)O(ε−2 log `/(1−R)).

3 Overview of the Proof

Our proofs are inspired by Thommesen’s proof [14] of
the following result concerning the rate vs. distance
trade-off of concatenated codes: Binary linear concate-
nated codes with an outer Reed-Solomon code and in-
dependently and randomly chosen inner codes meet the
Gilbert-Varshamov bound with high probability5, pro-

5A q-ary code of rate R meets the Gilbert-Varshamov bound
if it has relative distance at least H−1

q (1−R).

vided a moderate condition on the outer and inner rates
is met. Given that our proof builds on the proof of
Thommesen, we start out by reviewing the main ideas
in his proof.

The outer code Cout in [14] is a Reed-Solomon code
of length N and rate R (over FQ where Q = qk for some
integer k > 1). The inner linear codes (over Fq) are gen-
erated by N randomly chosen k × n generator matrices
G = (G1, . . . ,GN), where r = k/n. Note that since the
final code will be linear, to show that with high proba-
bility the concatenated code will have distance close to
H−1

q (1− rR), it is enough to show that the probability
of the Hamming weight of uG over Fq being at most
(H−1

q (1 − rR) − ε)nN (for some Reed-Solomon code-
word u = (u1, . . . ,uN) and ε > 0), is small. Fix a code-
word u ∈ Cout. Now note that if for some 1 6 i 6 N ,
ui = 0, then for every choice of Gi, uiGi = 0. Thus,
only the non-zero symbols of u contribute to wt(uG).
Further, for a non-zero ui, uiGi takes all the values in
Fn

q with equal probability over the random choices of
Gi. Since the choice of the Gi’s are independent, this
implies that uG takes each of the possible qn·wt(u) val-
ues in FnN

q with the same probability. Thus, the total
probability that uG has a Hamming weight of at most
h is

∑h
w=0

(
n·wt(u)

w

)
q−n·wt(u) 6 q−n·wt(u)(1−Hq(h

n·wt(u))).
The rest of the argument follows by doing a careful
union bound of this probability for all non zero code-
words in Cout, using the weight distribution of the RS
code. This step imposes an upper bound on the outer
rate R (specifically, R 6 αq(r)/r), but still offers enough
flexibility to achieve any desired value in (0, 1) for the
overall rate rR (even with the choice r = 1, i.e., when
the inner encodings don’t add any redundancy).

Let us now try to extend the idea above to show
a similar result for list decoding. We want to show
that for any Hamming ball of radius at most h =
(H−1

q (1 − rR) − ε)nN has at most L codewords from
the concatenated code C (assuming we want to show
that L is the worst case list size). To show this let us
look at a set of L + 1 codewords from C and try to
prove that the probability that all of them lie within
some fixed ball B of radius h is small. Let u1, . . . ,uL+1

be the corresponding codewords in Cout. Extending
Thommesen’s proof would be straightforward if the
events corresponding to ujG belonging to the ball B
for various 1 6 j 6 L + 1 were independent. In
particular, if we can show that for every position 1 6
i 6 N , all the non-zero symbols in {u1

i ,u
2
i , . . . ,u

L+1
i }

are linearly independent over Fq then the generalization
of Thommesen’s proof is immediate.

Unfortunately, the notion of independence dis-
cussed above does not hold for every L + 1 tuple of
codewords from Cout. The natural way to get inde-

pendence when dealing with linear codes is to look at
messages that are linearly independent. It turns out
that if Cout is also a random linear code over FQ then
we have a good approximation of the the notion of
independence above. Specifically, we show that with
very high probability for a linearly independent (over
FQ) set of messages6 m1, . . . ,mL+1, the set of code-
words u1 = Cout(m1), . . . ,uL+1 = Cout(mL+1) have
the following approximate independence property. For
many positions 1 6 i 6 N , many non-zero symbols
in {u1

i , . . . ,u
L+1
i } are linearly independent over Fq. It

turns out that this approximate notion of independence
is enough for Thommesen’s proof to go through.

We remark that the notion above crucially uses the
fact that the outer code is a random linear code. The
argument gets more tricky when Cout is fixed to be
(say) the Reed-Solomon code. Now even if the mes-
sages m1, . . . ,mL+1 are linearly independent it is not
clear that the corresponding codewords will satisfy the
notion of independence in the above paragraph. Inter-
estingly, we can show that this notion of independence
is equivalent to showing good list recoverability prop-
erties for Cout. Reed-Solomon codes are however not
known to have optimal list recoverability (which is what
is required in our case). In fact, the results in [7] show
that this is impossible for Reed-Solomon codes in gen-
eral. However, folded RS codes do have near-optimal
list recoverability and we exploit this in our proof.

4 Using Folded Reed-Solomon Code as Outer
Code

In this section, we will prove that concatenated codes
with the outer code being the folded Reed-Solomon code
from [6] and using random and independent inner codes
can achieve list-decoding capacity. The proof will make
crucial use of the list recoverability of the outer code as
stated in Theorem 2.1.

4.1 Linear Independence from List Recover-
ability

Definition 4.1. (Independent tuples) Let C be a
code of block length N and rate R defined over Fqk . Let
J > 1 and 0 6 d1, . . . , dJ 6 N be integers. Let d =
〈d1, . . . , dJ〉. An ordered tuple of codewords (c1, . . . , cJ),
cj ∈ C is said to be (d, Fq)-independent if the following
holds. d1 = wt(c1) and for every 1 < j 6 J , dj is the
number of positions i such that cj

i is Fq-independent of
the vectors {c1

i , . . . , c
j−1
i }, where c` = (c`

1, . . . , c
`
N).

6Again any set of L + 1 messages need not be linearly
independent. However, it is easy to see that some subset of
J = dlogQ(L + 1)e of messages are indeed linearly independent.
Hence, we can continue the argument by replacing L + 1 with J .

Note that for any tuple of codewords (c1, . . . , cJ) there
exists a unique d such that it is (d, Fq)-independent.
The next result will be crucial in our proof.

Lemma 4.1. Let C be a folded Reed-Solomon code of
block length N that is defined over FQ with Q = qk

as guaranteed by Theorem 2.1. For any L-tuple of
codewords from C, where L > J · (N/ε2)O(ε−1J log(q/R))

(where ε > 0 is same as the one in Theorem 2.1), there
exists a sub-tuple of J codewords such that the J-tuple
is (d, Fq)-independent, where d = 〈d1, . . . , dJ〉 such that
for every 1 6 j 6 J , dj > (1 −R − ε)N .

Proof. The proof is constructive. In particular, given
an L-tuple of codewords, we will construct a J sub-
tuple with the required property. The correctness
of the procedure will hinge on the list recoverability
of the folded Reed-Solomon code as guaranteed by
Theorem 2.1.

We will construct the final sub-tuple iteratively. In
the first step, pick any non-zero codeword in the L-
tuple– call it c1. As C has distance at least (1 − R)N
(and 0 ∈ C), c1 is non-zero in at least d1 > (1 −
R)N > (1 − R − ε)N many places. Note that c1 is
vacuously independent of the “previous” codewords in
these positions. Now, say that the procedure has chosen
codewords c1, . . . , cs such that the tuple is (d′, Fq)-
independent for d′ = 〈d1, . . . , ds〉, where for every 1 6
j 6 s, dj > (1−R−ε)N . For every 1 6 i 6 N , define Si

to be the Fq-span of the vectors {c1
i , . . . , c

s
i} in Fk

q . Note
that |Si| 6 qs. Call c = (c1, . . . , cN) ∈ C to be a bad
codeword, if there does not exist any ds+1 > (1−R−ε)N
such that (c1, . . . , cs, c) is (d, Fq)-independent for d =
〈d1, . . . , ds+1〉. In other words, c is a bad codeword
if and only if some T ⊂ [N] with |T | = (R + ε)N
satisfies ci ∈ Si for every i ∈ T . Put differently, c
satisfies the condition of being in the output list for
list recovering C with input S1, . . . , SN and agreement
fraction R + ε. Thus, by Theorem 2.1, the number of
such bad codewords is U = (N/ε2)O(ε−1s log(q/R)) 6

(N/ε2)O(ε−1J log(q/R)), where J is the number of steps
for which this greedy procedure can be applied. Thus,
as long as at each step there are strictly more than
U codewords from the original L-tuple of codewords
left, we can continue this greedy procedure. Note that
we can continue this procedure J times, as long as
J 6 L/U . �

Finally, we will need the following bound on the
number of independent tuples for folded Reed-Solomon
codes. Its proof follows from the fact that a codeword in
a dimension K folded RS code is completely determined
once values at K + 1 of its positions are fixed.

Lemma 4.2. Let C be a folded Reed-Solomon code of
block length N and rate 0 < R < 1 that is defined over
FQ, where Q = qk. Let J > 1 and 0 6 d1, . . . , dJ 6 N
be integers and define d = 〈d1, . . . , dJ〉. Then the
number of (d, Fq)-independent tuples in C is at most
qNJ(J+1)

∏J
j=1 Qmax(dj−N(1−R)+1,0).

Proof. Given a tuple (c1, . . . , cJ) that is (d, Fq)-
independent, define Tj ⊆ [N] with |Tj | = dj , for
1 6 j 6 J to be the set of positions i, where cj

i is
Fq-independent of {c1

i , . . . , c
j−1
i }. We will estimate the

number of (d, Fq)-independent tuples by first estimat-
ing a bound Uj on the number of choices for the jth

codeword in the tuple (given a fixed choice of the first
j − 1 codewords). To complete the proof, we will show
that

Uj 6 qN(J+1) ·Qmax(dj−N(1−R)+1,0).

A codeword c ∈ C can be the jth codeword in the tuple
in the following way. For every position in [N]\Tj , c can
take at most qj−1 6 qJ values (as in these position the
value has to lie in the Fq span of the values of the first j−
1 codewords in that position). Since C is folded Reed-
Solomon, once we fix the values at positions in [N] \Tj ,
the codeword will be completely determined once any
max(RN − (N −dj)+1, 0) = max(dj −N(1−R)+1, 0)
positions in Tj are chosen (w.l.o.g. assume that they are
the “first” so many positions). The number of choices
for Tj is

(
N
dj

)
6 2N 6 qN . Thus, we have

Uj 6 qN · (qJ)N−dj ·Qmax(dj−N(1−R)+1,0)

6 qN(J+1) ·Qmax(dj−N(1−R)+1),0),

as desired. �

4.2 The Main Result

Theorem 4.1. (Main) Let q be a prime power and let
0 < r 6 1 be an arbitrary rational. Let 0 < ε < αq(r)
an arbitrary real, where αq(r) is as defined in (2.1),
and 0 < R 6 (αq(r) − ε)/r be a rational. Then the
following holds for large enough integers n, N such that
there exist integers k and K that satisfy k = rn and
K = RN . Let Cout be a folded Reed-Solomon code over
Fqk of block length N and rate R. Let C1

in, . . . , CN
in be

random linear codes over Fq, where Ci
in is generated

by a random k × n matrix Gi over Fq and the ran-
dom choices for G1, . . . ,GN are all independent.7Then
the concatenated code C = Cout ◦ (C1

in, . . . , CN
in) is a(

H−1
q (1 −Rr) − ε,

(
N
ε2

)O(ε−4(1−R)−2 log(1/R))
)

-list de-

codable code with probability at least 1−q−Ω(nN) over the
choices of G1, . . . ,GN . Further, C has rate rR w.h.p.

7We stress that we do not require that the Gi’s have rank k.

Remark 4.1. For any desired rate R∗ ∈ (0, 1 − ε) for
the final concatenated code (here ε > 0 is arbitrary),
one can pick the outer and inner rates R, r such that
Rr = R∗ while also satisfying R 6 (αq(r) − ε)/r.
In fact we can pick r = 1 and R = R∗ so that the
inner encodings are linear transformations specified by
random k× k matrices and do not add any redundancy.

The rest of this section is devoted to proving Theo-
rem 4.1.

Define Q = qk. Let L be the worst-case list
size that we are shooting for (we will fix its value
at the end). By Lemma 4.1, any L + 1-tuple of
Cout codewords (u0, . . . ,uL) ∈ (Cout)L+1 contains at
least J =

⌊
(L + 1)/(N/γ2)O(γ−1J log(q/R))

⌋
codewords

that form an (d, Fq)-independent tuple, for some d =
〈d1, . . . , dJ〉, with dj > (1−R− γ)N (we will specify γ,
0 < γ < 1 − R, later). Thus, to prove the theorem it
suffices to show that with high probability, no Hamming
ball in FnN

q of radius (H−1
q (1−rR)−ε)nN contains a J-

tuple of codewords (u1G, . . . ,uJG), where (u1, . . . ,uJ)
is a J-tuple of folded Reed-Solomon codewords that
is (d, Fq)-independent. For the rest of the proof, we
will call a J-tuple of Cout codewords (u1, . . . ,uJ) a
good tuple if it is (d, Fq)-independent for some d =
〈d1, . . . , dJ〉, where dj > (1 − R − γ)N for every 1 6
j 6 J .

Define ρ = H−1
q (1 − Rr) − ε. For every good J-

tuple of Cout codewords (u1, . . . ,uJ) and received word
y ∈ FnN

q , define an indicator variable I(y,u1, . . . ,uJ)
as follows. I(y,u1, . . . ,uJ) = 1 if and only if for every
1 6 j 6 J , wt(ujG − y) 6 ρnN . That is, it captures
the bad event that we want to avoid. Define

XC =
∑

y∈FnN
q

∑
good (u1,...,uJ)∈(Cout)J

I(y,u1, . . . ,uJ).

We want to show that with high probability XC = 0.
By Markov’s inequality, the theorem would follow if we
can show that:

E[XC] =
∑

y∈FnN
q

∑
good (u1,...,uJ)

∈(Cout)
J

E[I(y,u1, . . . ,uJ)]

6 q−Ω(nN).(4.2)

Before we proceed, we need a final bit of notation.
For a good tuple (u1, . . . ,uJ) and every 1 6 j 6 J ,
define Tj(u1, . . . ,uJ) ⊆ [N] to be the set of positions i

such that uj
i is Fq-independent of the set {u1

i , . . . ,u
j−1
i }.

Note that since the tuple is good, |Tj(u1, . . . ,uJ)| >
(1 −R − γ)N .

Let h = ρnN . Consider the following sequence
of inequalities (where below we have suppressed the

dependence of Tj on (u1, . . . ,uJ) for clarity):

E[XC] =
∑

y∈FnN
q

∑
good

(u1,..,uJ)

∈(Cout)
J

Pr
G

 J∧
j=1

wt(ujG− y) 6 h

(4.3)

6
∑

y∈FnN
q

∑
good

(u1,..,uJ)

∈(Cout)
J

Pr
G

 J∧
j=1

wtTj
(ujG− y) 6 h

(4.4)

=
∑

y∈FnN
q

∑
good

(u1,..,uJ)

∈(Cout)
J

J∏
j=1

Pr
G

[
wtTj

(uiG− y) 6 h
]

(4.5)

In the above (4.3) follows from the definition of
the indicator variable. (4.4) follows from the simple
fact that for every vector u of length N and every
T ⊆ [N], wtT (u) 6 wt(u). (4.5) follows from the sub-
sequent argument. By definition of conditional prob-
ability, PrG

[∧J
j=1 wtTj (u

jG− y) 6 h
]

is the same as

PrG
[
wtTJ

(uJG− y) 6 h
∣∣ ∧J−1

j=1 wtTj (u
jG− y) 6 h

]
·

PrG
[∧J−1

j=1 wtTj (u
jG− y) 6 h

]
. Now as all symbols

corresponding to TJ are good symbols, for every i ∈
TJ , the value of uJ

i Gi is independent of the val-
ues of {u1

i Gi, . . . ,uJ−1
i Gi}. Further since each of

G1, . . . ,GN are chosen independently (at random), the
event wtTJ

(uJG − y) 6 h is independent of the event∧J−1
j=1 wtTj (u

jG− y) 6 h. Thus,

Pr
G

 J∧
j=1

wtTj (u
jG− y) 6 h

 =

Pr
G

[
wtTJ

(uJG− y) 6 h
]
Pr
G

J−1∧
j=1

wtTj (u
jG− y) 6 h

Inductively applying the argument above gives

(4.5). Further (where below we use D to denote
(1 −R − γ)N),

E[XC] 6
∑

y∈FnN
q

∑
good

(u1,...,uJ)

∈(Cout)
J

J∏
j=1

q
−n|Tj |

“
1−Hq

“
h

n|Tj |

””(4.6)

=
∑

y∈FnN
q

∑
(d1,..,dJ)∈
{D,..,N}J

∑
good

(u1,..,uJ)

∈(Cout)
J ,

|T1|=d1,..,
|TJ |=dJ

J∏
j=1

q
−ndj+ndjHq

“
h

ndj

”(4.7)

6
∑

(d1,...,dJ)∈
{D,...,N}J

qnN · qNJ(J+1)·
(4.8)

J∏
j=1

Qmax(dj−(1−R)N+1,0)
J∏

j=1

q
−ndj

“
1−Hq

“
h

ndj

””

6
∑

(d1,...,dJ)∈
{D,...,N}J

qnN · qNJ(J+1)·
(4.9)

J∏
j=1

Qdj−(1−R−γ)N
J∏

j=1

q
−ndj

“
1−Hq

“
h

ndj

””

=
∑

(d1,...,dJ)∈
{D,...,N}J

J∏
j=1

q−ndjE ,

(4.10)

where E is the expression

1 −Hq

(
h

ndj

)
− r

(
1 − (1 −R − γ)N

dj

)
− N

Jdj

− N(J + 1)
ndj

.

(4.6) follows from (4.5) and Lemma 2.4. (4.7) follows
from rearranging the summand and using the fact that
the tuple is good (and hence dj > (1 − R − γ)N).
(4.8) follows from the fact that there are qnN choices
for y and Lemma 4.2.8 (4.9) follows from the fact that
dj−(1−R)N +1 6 dj−(1−R−γ)N (for N > 1/γ) and
that dj > (1 − R − γ)N . (4.10) follows by rearranging
the terms.

Now, as long as n > J(J+1), we have N(J+1)
nd 6 N

Jd .
Now (4.10) will imply (4.2) if we can show that for every
(1 −R − γ)N 6 d 6 N ,

h

nd
6 H−1

q

(
1 − r

(
1 − (1 −R − γ)N

d

)
− 2N

Jd

)
− δ,

for δ = ε/3. By Lemma 4.3 (which is stated at the end
of this section), as long as J > 4c′q/(δ2(1−R)) (and the

8 As the final code C will be linear, it is sufficient to only
look at received words that have Hamming weight at most ρnN .
However, this gives a negligible improvement to the final result
and hence, we just bound the number of choices for y by qnN .

conditions on γ are satisfied), the above can be satisfied
by picking

h/(nN) = H−1
q (1 − rR) − 3δ = ρ,

as required. We now verify that the conditions on γ
in Lemma 4.3 are satisfied by picking γ = 4

Jr . Note
that if we choose J = 4c′q/(δ2(1 − R)), we will have

γ = δ2(1−R)
c′qr . Now, as 0 < R < 1, we also have

γ 6 δ2/(rc′q). Finally, we show that γ 6 (1 − R)/2.
Indeed

γ =
δ2(1 −R)

c′qr
=

ε2(1 −R)
9c′qr

6
ε(1 −R)

9r

<
αq(r)(1−R)

9r
<

1 −R

2
,

where the first inequality follows from the facts that
c′q > 1 and ε 6 1. The second inequality follows from
the assumption on ε. The third inequality follows from
Lemma 2.2. As J is in Θ

(
1

ε2(1−R)

)
(and γ is in Θ(ε2(1−

R)/r)), we can choose L = (N/ε2)O(ε−4(1−R)−2 log(q/R)),
as required.

We still need to argue that with high probability
the rate of the code C = Cout ◦ (C1

in, . . . , CN
in) is rR.

One way to argue this would be to show that with high
probability all of the generator matrices have full rank.
However, this is not the case: in fact, with some non-
negligible probability at least one of them will not have
full rank. However, we claim that with high probability
C has distance > 0, and thus is a subspace of dimension
rRnN . The proof above in fact implies that with high
probability C has distance (H−1

q (1 − rR) − δ)nN for
any small enough δ > 0 with high probability. It is
easy to see that to show that C has distance at least
h, it is enough to show that with high probability∑

m∈FK
Q

I(0,m) = 0. Note that this is a special case
of our proof, with J = 1 and y = 0 and hence, with
probability at least 1 − qΩ(nN), the code C has large
distance.

The proof is thus complete, modulo the following
lemma, which we prove next (following a similar argu-
ment in [14]).

Lemma 4.3. Let q be a prime power, and 1 6 n 6 N
be integers. Let 0 < r, R 6 1 be rationals and δ > 0
be a real such that R 6 (αq(r) − δ)/r and δ 6 αq(r),
where αq(r) is as defined in (2.1). Let γ > 0 be a real

such that γ 6 min
(

1−R
2 , δ2

c′qr

)
, where c′q is the constant

that depends only on q from Lemma 2.1. Then for all
integers J >

4c′q
δ2(1−R) and h 6 (H−1

q (1−rR)−2δ)nN the
following is satisfied. For every integer (1−R− γ)N 6

d 6 N ,
(4.11)

h

nd
6 H−1

q

(
1 − r

(
1 − N(1 −R − γ)

d

)
− 2N

Jd

)
.

Proof. Using the fact H−1
q is an increasing function,

(4.11) is satisfied if the following is an upper bound on
h/(nN) for every d∗ 6 d 6 N (where d∗ = (1 − R −
γ)N):(

d

N

)
·H−1

q

(
1 − r

(
1 − N(1 −R − γ)

d

)
− 2N

d∗J

)
.

Define a new variable θ = 1−N(1−R−γ)/d. Note that
as d∗ = (1 − R − γ)N 6 d 6 N , 0 6 θ 6 R + γ. Also
d/N = (1−R−γ)(1−θ)−1. Thus, the above inequality
would be satisfied if h/(nN(1 −R − γ) is at most

min
06θ6R+γ

{
(1 − θ)−1H−1

q

(
1 − rθ − 2

(1 −R − γ)J

)}
.

Again using the fact that H−1
q is an increasing function

along with the fact that γ 6 (1−R)/2 , we get that the
above is satisfied if h/(nN(1 −R − γ) is at most

min
06θ6R+γ

{
(1 − θ)−1H−1

q

(
1 − rθ − 4

(1 −R)J

)}
.

By Lemma 2.1, if J >
4c′q

δ2(1−R) , then9

H−1
q

(
1 − rθ − 4

(1−R)J

)
> H−1

q (1 − rθ) − δ. Since

for every 0 6 θ 6 R + γ, (1−R− γ)(1− θ)−1δ 6 δ, the
above equation would be satisfied if

h

nN
6 (1 −R − γ) min

0<θ6R+γ
fr,q(θ) − δ.

Note that the assumptions γ 6 δ2/(rc′q) 6 δ/r (as
δ 6 1 and c′q > 1) and R 6 (αq(r) − δ)/r, we have
R + γ 6 αq(r)/r. Thus, by using Lemma 2.3 we get
that (1−R−γ) min0<θ6R+γ fr,q(θ) = H−1

q (1−rR−rγ).
By Lemma 2.1, the facts that γ 6 δ2/(rc′q) and H−1

q is
increasing, we have H−1

q (1−rR−rγ) > H−1
q (1−rR)−δ.

This implies that (4.11) is satisfied if h/(nN) 6 H−1
q (1−

rR) − 2δ, as desired. �

5 List Decodability of Random Concatenated
Codes

In this section, we will look at the list decodability of
concatenated codes when both the outer code and the
inner codes are (independent) random linear codes. The
following is the main result of this section. The proof
is similar to that of Theorem 5.1 and is omitted due to
space limitations (see [11, Chap. 5] for the full proof).

9We also use the fact that H−1
q is increasing.

Theorem 5.1. Let q be a prime power and let 0 < r 6
1 be an arbitrary rational. Let 0 < ε < αq(r) be an
arbitrary real, where αq(r) is as defined in (2.1), and
0 < R 6 (αq(r)− ε)/r be a rational. Then the following
holds for large enough integers n, N such that there exist
integers k and K that satisfy k = rn and K = RN . Let
Cout be a random linear code over Fqk that is generated
by a random K × N matrix over Fqk . Let C1

in, . . . , CN
in

be random linear codes over Fq, where Ci
in is gener-

ated by a random k × n matrix Gi and the random
choices for Cout,G1, . . . ,GN are all independent. Then
the concatenated code C = Cout ◦ (C1

in, . . . , CN
in) is

a
(

H−1
q (1 −Rr) − ε, q

O
“

rn
ε2(1−R)

”)
-list decodable code

with probability at least 1 − q−Ω(nN) over the choices
of Cout,G1, . . . ,GN . Further, with high probability, C
has rate rR.

Remark 5.1. In a typical use of concatenated codes,
the block lengths of the inner and outer codes sat-
isfy n = Θ(log N), in which case the concatenated
code of Theorem 5.1 is list decodable with lists of size
NO(ε−2(1−R)−1). However, the proof of Theorem 5.1
also works with smaller n. In particular as long as n
is at least 3J2, the proof of Theorem 5.1 goes through.
Thus, with n in Θ(J2), one can get concatenated codes
that are list decodable up to the list-decoding capacity
with lists of size qO(ε−6(1−R)−3).

6 Open Questions

In this work, we have shown that the family of concate-
nated codes is rich enough to contain codes that achieve
the list-decoding capacity. But realizing the full poten-
tial of concatenated codes and achieving capacity (or
even substantially improving upon the Blokh-Zyablov
bound [8]) with explicit codes and polynomial time de-
coding remains a huge challenge. Achieving an explicit
construction even without the requirement of an effi-
cient list-decoding algorithm (but only good combina-
torial list-decodability properties) is itself wide open.

The difficulty with explicit constructions is that
we do not have any handle on the structure of inner
codes that lead to concatenated codes with the required
properties. In fact, we do not know of any efficient
algorithm to even verify that a given set of inner codes
will work, so even a Las Vegas construction appears
difficult (a similar situation holds for binary codes
meeting the Gilbert-Varshamov trade-off between rate
and relative distance).

References

[1] E. L. Blokh and Victor V. Zyablov. Existence of linear
concatenated binary codes with optimal correcting
properties. Prob. Peredachi Inform., 9:3–10, 1973.

[2] Ilya I. Dumer. Concatenated codes and their multilevel
generalizations. In V. S. Pless and W. C. Huffman,
editors, Handbook of Coding Theory, volume 2, pages
1911–1988. North Holland, 1998.

[3] G. David Forney. Concatenated Codes. MIT Press,
Cambridge, MA, 1966.

[4] Venkatesan Guruswami, Johan Hastad, Madhu Sudan,
and David Zuckerman. Combinatorial bounds for list
decoding. IEEE Transactions on Information Theory,
48(5):1021–1035, 2002.

[5] Venkatesan Guruswami and Piotr Indyk. Expander-
based constructions of efficiently decodable codes. In
Proceedings of the 42nd Annual IEEE Symposium
on Foundations of Computer Science, pages 658–667,
2001.

[6] Venkatesan Guruswami and Atri Rudra. Explicit
capacity-achieving list-decodable codes. In Proceedings
of the 38th Annual ACM Symposium on Theory of
Computing, pages 1–10, May 2006.

[7] Venkatesan Guruswami and Atri Rudra. Limits to list
decoding Reed-Solomon codes. IEEE Transactions on
Information Theory, 52(8), August 2006.

[8] Venkatesan Guruswami and Atri Rudra. Better binary
list-decodable codes via multilevel concatenation. In
Proceedings of the 11th International Workshop on
Randomization and Computation (RANDOM), pages
554–568, 2007.

[9] F. J. MacWilliams and Neil J. A. Sloane. The Theory
of Error-Correcting Codes. Elsevier/North-Holland,
Amsterdam, 1981.

[10] Jørn Justesen. A class of constructive asymptotically
good algebraic codes. IEEE Transactions on Informa-
tion Theory, 18:652–656, 1972.

[11] Atri Rudra. List Decoding and Property Testing of
Error Correcting Codes. PhD thesis, University of
Washington, 2007.

[12] Michael Sipser and Daniel Spielman. Expander
codes. IEEE Transactions on Information Theory,
42(6):1710–1722, 1996.

[13] Daniel Spielman. The complexity of error-correcting
codes. In 11th International Symposium on Fundamen-
tals of Computation Theory, Krakow, Poland, LNCS
#1279, pp. 67-84, 1997

[14] Christian Thommesen. The existence of binary lin-
ear concatenated codes with Reed-Solomon outer codes
which asymptotically meet the Gilbert-Varshamov
bound. IEEE Transactions on Information Theory,
29(6):850–853, November 1983.

	Introduction
	Preliminaries
	q-ary Entropy and Related Functions
	Basic Coding Definitions
	Code Concatenation
	List Decoding and List Recovery

	Overview of the Proof
	Using Folded Reed-Solomon Code as Outer Code
	Linear Independence from List Recoverability
	The Main Result

	List Decodability of Random Concatenated Codes
	Open Questions

