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ABSTRACT
In this paper, we prove the following two results that ex-
pose some combinatorial limitations to list decoding Reed-
Solomon codes.

1. Given n distinct elements α1, . . . , αn from a field F,
and n subsets S1, . . . , Sn of F each of size at most `, the
list decoding algorithm of Guruswami and Sudan [7]
can in polynomial time output all polynomials p of
degree at most k which satisfy p(αi) ∈ Si for every i,
as long as ` < dn

k
e. We show that the performance of

this algorithm is the best possible in a strong sense;
specifically, we show that when ` = dn

k
e, the list of

output polynomials can be super-polynomially large
in n.
One way to interpret our result is the following. The
algorithm in [7] can, when given as input n′ distinct
pairs (βi, γi) ∈ F2 (the βi’s need not be distinct),
find and output all degree k polynomials p such that
p(βi) = γi for at least t values of i, provided t >√

kn′. By our result, an improvement to the Reed-
Solomon list decoder of [7] that works with slightly

smaller agreement, say t >
√

kn′ − k/2, can only be
obtained by exploiting some property of the βi’s (for
example, their (near) distinctness).

2. For Reed-Solomon codes of block length n and dimen-
sion k where k = nδ for small enough δ, we exhibit
an explicit received word r with a super-polynomial
number of Reed-Solomon codewords that agree with
it on (2− ε)k locations, for any desired ε > 0 (we note
agreement of k is trivial to achieve). Such a bound
was known earlier only for a non-explicit center. We
remark that finding explicit bad list decoding config-
urations is of significant interest — for example the
best known rate vs. distance trade-off is based on a
bad list decoding configuration for algebraic-geometric
codes [14] which is unfortunately not explicitly known.
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1. INTRODUCTION
Reed-Solomon codes are an important and extensively

studied family of error-correcting codes. The codewords of a
Reed-Solomon code (henceforth, RS code) over a field F are
obtained by evaluating low degree polynomials at distinct
elements of F. If the degree of the polynomials is at most k,
and a polynomial p is encoded as 〈p(α1), p(α2), . . . , p(αn)〉,
this gives an [n, k+1, n−k] code, i.e., a code of block length
n, dimension k+1 and distance n−k (the distance property
follows from the fact that two distinct degree k polynomials
can agree on at most k points). This is optimal in terms
of distance to dimension trade-off (meets the so-called “Sin-
gleton bound”), which along with the code’s nice algebraic
properties, give RS codes a prominent place in coding the-
ory.

As a result the problem of decoding RS codes has received
much attention. The best known polynomial time algorithm
today (in terms of number of errors corrected) can, given a
received word 〈y1, . . . , yn〉 ∈ Fn, find and output a list of all
degree k polynomials p which satisfy p(αi) = yi for at least

t values of i ∈ {1, . . . , n}, provided t >
√

kn [11, 7]. Note
that this is a list decoding algorithm that outputs a list of all
codewords with the requisite agreement. The performance
of the algorithm in [7] matches the so-called Johnson bound
(cf. [8]) which gives a general lower bound on the number
of errors one can correct using small lists in any code, as a
function of the distance of the code. Our work in this paper
is motivated by the question of whether this result is the
best possible (i.e., whether the Johnson bound is “tight” for
Reed-Solomon codes). By this we mean whether attempt-
ing to decode with a lower agreement parameter t might
lead to super-polynomially large lists as output, which of
course will preclude a polynomial time algorithm (at least
in the standard model where the list has to be produced



explicitly). While we don’t quite show this to be the case
in this paper, we give evidence in this direction by demon-
strating that in a somewhat more general setting to which
also the algorithm of Guruswami and Sudan [7] applies, its
performance is indeed the best possible. The details follow.

1.1 Limitations to “list recovering”
The algorithm in [7] in fact solves the following more gen-

eral polynomial reconstruction problem in polynomial time:
Given n′ distinct pairs (βi, γi) ∈ F2 (we stress that the βi’s
need not be distinct), output a list of all polynomials p

of degree k which satisfy p(βi) = γi for more than
√

kn′

values of i ∈ {1, 2, . . . , n′}. In particular, the algorithm
can solve the following “list recovering” problem1 for an
[n, k+1, n−k]q Reed-Solomon code as long as the parameter
` satisfies ` < dn

k
e:

Definition 1 (List Recovering). For a q-ary code C
of block length n, the list recovering problem is the following.
We are given a set Si ⊆ Fq of possible symbols for the i’th
symbol for each position i, 1 ≤ i ≤ n, and the goal is to
output all codewords c = 〈c1, . . . , cn〉 such that ci ∈ Si for
every i. When each Si has at most ` elements, we refer to
the problem as list recovering with input lists of size `.

In other words, given n distinct elements α1, . . . , αn from a
field F, and n subsets S1, . . . , Sn of F each of size at most `,
one can output all degree ≤ k polynomials p which satisfy
p(αi) ∈ Si for every i in polynomial time. In Section 2, we
demonstrate that this latter performance is the best possible
with surprising accuracy — specifically, we show that when
` = dn

k
e, there are settings of parameters for which the list

of output polynomials needs to be super-polynomially large
in n (Theorem 3).

As a corollary, this rules out an efficient solution to the
polynomial reconstruction algorithm that works even under
the slightly weaker condition t >

√
kn′ − k/2.2 In this re-

spect, the “square root” bound achieved by [7] is optimal,
and any improvement to their list decoding algorithm which
works with agreement fraction t/n <

√
r where r = k/n is

the rate of the code, or in other words which works beyond
the Johnson bound, must exploit the fact that the evalua-
tion points βi are distinct (or “almost distinct”). We are
tempted to view this as evidence that the

√
r bound is the

minimum agreement under which list decoding is possible
for the RS code, and hope that this work paves the way
towards eventual resolution of this question.

While this part on tightness of Johnson bound remains
speculatory at this stage, for the problem of list recovering
itself, our work proves that RS codes are indeed sub-optimal,
as we describe below. Guruswami and Indyk [6] prove that
there exists a fixed R > 0 such that for every integer `
there are codes of rate R which are list recoverable given
input lists of size ` (the alphabet size and output list size
will necessarily grow with `). On the other hand, by our
work Reed-Solomon codes for list recovering with input lists
of size ` must have rate at most 1/`. Thus, despite the
fact that most of the initial success in efficient list decoding

1The terminology “list recovering” was coined in [6] though
the problem was considered in many guises before, including
for example in [12].
2This in turn rules out, for every ε > 0, a solution to the
polynomial reconstruction algorithm that works as long as
t ≥

p
(1− ε)kn′.

has been for algebraic codes like Reed-Solomon codes, one
needs to look for new codes in other domains in order to
make progress towards the construction of and algorithms
for near-optimal list-decodable codes.

1.2 Explicit “bad” list decoding configurations
The result mentioned above presents an explicit bad list

recovering configuration, i.e., an input instance to the list
recovering problem with a super-polynomial number of so-
lutions. To prove results on limitations of list decoding, such
as the tightness of the Johnson bound, we need to demon-
strate a received word (or center) r with super-polynomially
many codewords that agree with r at t or more places. A
simple counting argument establishes the existence of such
received words for certain settings of parameters n, k, t [10,
2]– in particular for n = kδ, one can get t = k

δ
for any

δ > 0. In Section 3, we demonstrate an explicit construction
of such a received word with super-polynomial number of
codewords with agreement t up to (2 − ε)k for any ε > 0.
Note that such a construction is trivial for t = k since we
can interpolate degree k polynomials through any set of k
points.

In general, the quest for explicit constructions of this sort
(namely small Hamming balls with several codewords) is
well motivated. If achieved with appropriate parameters
they will lead to a derandomization of the inapproximabil-
ity result for computing the minimum distance of a linear
code [3]. However, for this application it is important to get

2nΩ(1)
codewords in a ball of radius ρ times the distance of

the code for some constant ρ < 1. While we get the former,
we only achieve ρ = 1− o(1).

As another motivation, we point out that the current best
trade-off between rate and relative distance is achieved by
a non-linear code comprising of precisely a bad list decod-
ing configuration in certain algebraic-geometric codes [14].
Unfortunately the associated center is only shown to exist
by a counting argument and its explicit specification will be
required to get explicit codes with these parameters.

1.3 Proof Approach
We show our result on list recovering Reed-Solomon codes

by proving a super-polynomial (in n = qm) bound on the
number of polynomials over Fqm of degree k about qm−1

that take values in Fq at every point in Fqm , for any prime
power q. Note that this implies that there can be a super-
polynomial number of solutions to list recovering when input
list sizes are dn

k
e. We establish this bound on the number of

such polynomials by exploiting a folklore connection of such
polynomials to a classic family of cyclic codes called BCH
codes, followed by an (exact) estimation of the size of BCH
codes with certain parameters. We also write down an ex-
plicit collection of polynomials, obtained by taking Fq-linear
combinations of translated norm functions, all of which take
values only in Fq. By the BCH bound, we conclude that this
in fact is a precise description of the collection of all such
polynomials.

Our explicit construction of a center with several RS code-
words with non-trivial agreement with it is obtained using
ideas from [2] relating to representations of elements in an
extension finite field by products of distinct linear factors.

1.4 Related Work
Our work, specifically the part that deals with precisely



describing the collection of polynomials that take values only
in Fq, bears some similarity to [5] which also exhibited limits
to list recoverability of codes. One of the simple yet pow-
erful ideas used in [5], and also in the work on extractor
codes [12], is that polynomials which are r’th powers of a
lower degree polynomial take only values in a multiplicative
subgroup consisting of the r’th powers in the field. Specif-

ically, the construction in [12, 5] yields roughly n
`k
n code-

words for list recovering where ` is the size of the Si’s in
Definition 1. Note that this gives super-polynomially many
codewords only when the input lists are asymptotically big-
ger than n/k.

In our work, we also use r’th powers, but the value of
r is such that the r’th powers form a subfield of the field.
Therefore, one can also freely add polynomials which are
r’th powers and the sum still takes on values in the subfield.
This lets us demonstrate a much larger collection of polyno-
mials which take on only a small possible number of values
at every point in the field. Proving bounds on the size of
this collection of polynomials uses techniques that are new
to this line of study.

The technique behind our results in Section 3 is closely
related to that of the recent result of Cheng and Wan [2] on
connections between Reed-Solomon list decoding and the
discrete logarithm problem over finite fields.

2. BCH CODES AND LIST RECOVERING
REED-SOLOMON CODES

2.1 Main Result
We will work with polynomials over Fqm of characteristic

p where q is a power of p, and m ≥ 1. We will denote by F∗qm

the set of nonzero elements in the field Fqm . Our goal in this
section is to prove the following result, and in Section 2.2 we
will use it to state corollaries on limits to list decodability
of Reed-Solomon codes. (We will only need a lower bound
on the number of polynomials with the stated property but
the result below in fact gives an exact estimation, which in
turn is used in Section 2.3 to give a precise characterization
of the concerned polynomials.)

Theorem 1. Let q be a prime power, and m ≥ 1 be an in-
teger. Then, the number of univariate polynomials in Fqm [z]

of degree at most qm−1
q−1

which take values in Fq when evalu-

ated at every point in Fqm is exactly q2m

. That is,

˛̨̨
{P (z) ∈ Fqm [z] | deg(P ) ≤ qm − 1

q − 1
and ∀α ∈ Fqm ,

P (α) ∈ Fq}
˛̨̨
= q2m

.

In the rest of this section, we prove Theorem 1. The proof
is based on a connection of polynomials with the stated prop-
erty to a family of cyclic codes called BCH codes, followed
by an estimation of the size (or dimension) of the associated
BCH code. We begin with the definition of BCH codes,
(what we define are actually referred to more specifically as
narrow-sense primitive BCH codes, but we will just use the
term BCH codes for them). We point the reader to [9], Ch.
7, Sec. 6, and Ch. 9, Secs. 1-3, for detailed background
information on BCH codes.

Definition 2. Let α be a primitive element of Fqm , and
let n = qm − 1. The BCH code BCHq,m,d,α of designed
distance d is a linear code of block length n over Fq defined
as:

BCHq,m,d,α = { 〈c0, c1, . . . , cn−1〉 ∈ Fn
q |

c(αi) = 0 for i = 1, 2, . . . , d− 1,

where c(x) = c0 + c1x + · · ·+ cn−1x
n−1 ∈ Fq[x] } .

We will omit one or more the subscripts in BCHq,m,d,α for
notational convenience when they are clear from the context.

Our interest in BCH codes is due to the following folklore
result, which presents an alternate view of BCH codes as
what are called subfield subcodes (cf. [9, Ch. 7, Sec. 7]) of
Reed-Solomon codes. (It is our opinion that this alternate
view, despite being much easier to state, does not get the
mention it deserves in the standard coding textbooks. For
sake of completeness, and since we view our work as a good
opportunity to do so, we present a proof in Appendix A.)

Lemma 1 (BCH codes are subfield subcodes of RS codes).
Let q be a prime power and m ≥ 1 an integer. Let n =
qm − 1, d be an integer in the range 1 < d < n, and
α be a primitive element of Fqm . Then the codewords of
BCHq,m,d,α are in one-one correspondence with elements of
the set

{〈P (α0), P (α1), . . . , P (αn−1)〉 ∈ Fn
q | P ∈ Fqm [z],

deg(P ) ≤ n− d, and P (γ) ∈ Fq ∀γ ∈ Fqm} .

In light of the above lemma, in order to prove Theorem 1,
we have to prove that |BCHq,m,d,α| = q2m

when d = (qm −
1)(1− 1

q−1
). We turn to this task next. We begin with the

following bound on the size of BCH codes [1, Ch. 12], and
give a sketch of its proof for the sake of completeness.

Lemma 2 (Dimension of BCH Codes). For integer i,
n, define bicn by the conditions i = bicn mod n and 0 ≤
bicn ≤ n− 1. Then |BCHq,m,d,α| = q|I(q,m,d)| where

I(q, m, d) = {i | 0 ≤ i ≤ n− 1, biqjcn ≤ n− d

for all j, 0 ≤ j ≤ m− 1} (1)

for n = qm − 1. (Note that for this value of n, if i =
i0 + i1q + · · · im−1q

m−1, then biqcn = im−1 + i0q + i1q
2 +

· · ·+ im−2q
m−1, and so biqcn is obtained by a simple cyclic

shift of the q-ary representation of i.)

Proof. It follows from Definition 2 that the BCH code-
words are simply polynomials c(x) over Fq of degree at most
(n − 1) which vanish at αi for 1 ≤ i < d. Note that if
c(x), c′(x) are two such polynomials, then so is c(x) + c′(x).
Moreover, since αn = 1, xc(x) mod (xn − 1) also vanishes
at each designated αi. It follows that if c(x) is a code-
word, then so is r(x)c(x) mod (xn−1) for every polynomial
r(x) ∈ Fq[x].

In other words BCHq,m,d is an ideal in the quotient ring
R = Fq[x]/(xn − 1). It is well known that R is a principal
ideal ring, i.e., a ring in which every ideal is generated by



one element. Therefore there is a unique monic polynomial
g(x) ∈ Fq[x] such that

BCHq,m,d,α = {g(x)h(x) | h(x) ∈ Fq [x]; deg(h) ≤ n−1−deg(g)} .

It follows that |BCHq,m,d,α| = qn−deg(g), and so it remains
to prove that deg(g) = n − |I(q, m, d)| where I(q, m, d) is
defined as in (1).

It is easily argued that the polynomial g(x) is the monic
polynomial of lowest degree over Fq that has αi for every
i, 1 ≤ i < d, as roots. Now comes the simple but crucial
property: since g(x) has coefficients in Fq, and q is a power
of the characteristic of the field, g(xq) = g(x)q identically as
polynomials, and in particular for every γ ∈ Fqm

g(γ) = 0 if and only if g(γq) = 0.

Recalling the way bicn was defined and that γn = 1 for all
γ ∈ F∗qm , the above implies that for every i, 0 ≤ i ≤ n − 1,
and every j, 0 ≤ j ≤ m− 1,

g(α−i) = 0 if and only if g(α−biqjcn) = 0. (2)

Using the above we claim that for 0 ≤ i ≤ n − 1, if i /∈
I(q, m, d), then g(α−i) = 0. This immediately gives us the
lower bound deg(g) ≥ n − |I(q, m, d)|, as g has at least
n−|I(q, m, d)| distinct roots. Indeed, suppose i /∈ I(q, m, d).
Then there must exist some j, 0 ≤ j ≤ m − 1 such that
biqjcn > n−d, or equivalently i′ = n−biqjcn ≤ d−1. Since

g(x) belongs to the BCH code, g(αi′) = g(α−biqjcn) = 0,
which by (2) implies g(α−i) = 0.

For the other direction, define the polynomial h(x) ∈
Fqm [x] as

h(x) =
Y

i/∈I(q,m,d)
0≤i≤n−1

(x− α−i) .

By definition of h and I(q, m, d), it is easily seen that γ
is a root of h if and only if γq is a root of h. By a well-
known algebra fact (cf. [13, Thm. 1.1.22]), this implies that
the coefficients of h lie in Fq, i.e., h(x) ∈ Fq[x]. Also note
that if n − d < i ≤ n − 1, then clearly i /∈ I(q, m, d), and
therefore h(α−i) = 0 for n − d < i ≤ n − 1, or equivalently
h(αi) = 0 for 1 ≤ i < d. Thus h(x) belongs to the BCH code
and therefore must be divisible by g(x). Hence deg(g) ≤
deg(h) = n − |I(q, m, d)|, which combined with our earlier
lower bound gives deg(g) = n− |I(q, m, d)|.

Let’s now use the above to compute the size of BCHq,m,d,α

where d = (qm − 1) − qm−1
q−1

. We need to compute the

quantity |I(q, m, d)|, i.e., the number of i, 0 ≤ i < qm − 1

such that biqjcqm−1 ≤ qm−1
q−1

= 1 + q + · · · + qm−1 for each
j = 0, 1, . . . , m − 1. This condition is equivalent to saying
that if i = i0 + i1q + · · ·+ im−1q

m−1 is the q-ary expansion
of i, then all the m integers whose q-ary representations are
cyclic shifts of (i0, i1, . . . , im−1) are at most 1+q+· · ·+qm−1.
Clearly, this condition is satisfied if and only if that for each
j = 0, 1, . . . , m − 1, ij ∈ {0, 1}. There are 2m choices for i
with this property, and hence we conclude |I(q, m, d)| = 2m

when d = (qm − 1)− qm−1
q−1

.

Together with Lemma 1, we conclude that the number of
polynomials of degree at most qm−1

q−1
over Fqm which take

on values only in Fq at every point in Fqm is precisely q2m

.
This is exactly the claim of Theorem 1.

Before moving on to state implications of above result for
Reed-Solomon list decoding, we state the following general-
ization of Theorem 1 which can proved in the same manner
(the result of Theorem 1 is the case when parameter k = m):

Theorem 2. Let q be a prime power, and m ≥ 1 be an
integer. Then, for each k, 1 ≤ k ≤ m, the number of uni-
variate polynomials in Fqm [z] of degree at most

Pk
j=1 qm−j

which take values in Fq when evaluated at every point in Fqm

is exactly q
Pk

j=0 (m
j ). And the number of such polynomials of

degree strictly less than qm−1 is exactly q (namely just the
constant polynomials, so there are no polynomials with this
property for degrees between 1 and qm−1 − 1).

2.2 Implications for Reed-Solomon List De-
coding

In the result of Theorem 1, if we imagine keeping q ≥ 3
fixed and let m grow, then for the choice n = qm and
k = (qm − 1)/(q− 1) (so that dn

k
e = q), Theorem 1 immedi-

ately gives us the following “negative” result on polynomial
reconstruction algorithms and Reed-Solomon list decoding.3

Theorem 3. For every prime power q ≥ 3, there exist
infinitely many pairs of integers k, n such that dn

k
e = q for

which there are Reed-Solomon codes of dimension (k + 1)
and block length n, such that list recovering them with input

lists of size dn
k
e requires super-polynomial (in fact qn1/ lg q

)
output list size.

The above result is exactly tight in the following sense. It
is easy to argue combinatorially (via the “Johnson type”
bounds, cf. [8]) that when ` < dn

k
e, the number of code-

words is polynomially bounded. Moreover [7] presents a
polynomial time algorithm to recover all the solution code-
words in this case.

The algorithm in [7] solves the more general problem of
finding all polynomials of degree at most k which agree with
at least t out of n′ distinct pairs (βi, γi) whenever t >

√
kn′.

The following corollary states that, in light of Theorem 3,
this is essentially the best possible trade-off one can hope for
from such a general algorithm. We view this as providing
the message that a list decoding algorithm for Reed-Solomon
codes that works with fractional agreement t/n that is less
than

√
r where r is the rate, must exploit the fact that the

evaluation points βi are distinct or almost distinct (by which
we mean that no βi is repeated too many times). Note that
for small values of r (close to 0), our result covers even an
improvement of the necessary fractional agreement by O(r)
which is substantially smaller than

√
r.

Corollary 1. Suppose A is an algorithm that takes as
input n′ distinct pairs (βi, γi) ∈ F2 for an arbitrary field F
and outputs a list of all polynomials p of degree at most k
for which p(βi) = γi for more than

√
kn′ − k

2
pairs. Then,

there exist inputs under which A must output a list of super-
polynomial size.

Proof. Note that in the list recovering setting of Theo-
rem 3, the total number of pairs n′ = n` = ndn

k
e < n(n

k
+1),

and the agreement parameter t = n. Then

√
kn′ − k

2
<

r
kn

“n

k
+ 1

”
− k

2
= n

r
1 +

k

n
− k

2
3We remark that we used the notation n = qm − 1 in the
previous subsection, but for this Subsection we will take
n = qm.



≤ n
“
1 +

k

2n

”
− k

2
= n = t .

Therefore there can be super-polynomially many candidate
polynomials to output even when the agreement parameter
t satisfies t >

√
kn′ − k/2.

2.3 A precise description of polynomials with
values in base field

We proved in Section 2.1, for Q = qm−1
q−1

, there are exactly

q2m

polynomials over Fqm of degree Q or less that evaluate
to a value in Fq at every point in Fqm . The proof of this
obtains the coefficients of such polynomials using a “Fourier
transform” of codewords of an associated BCH code, and
as such gives little insight into the structure of these poly-
nomials. One of the natural questions to ask is: Can we
say something more concrete about the structure of these
q2m

polynomials? In this section, we answer this question
by giving an exact description of the set of all these q2m

polynomials.
We begin with the following well-known fact which simply

states that the “Norm” function of Fqm over Fq takes only
values in Fq.

Lemma 3. For all x ∈ Fqm , x
qm−1
q−1 ∈ Fq.

Theorem 4. Let q be a prime power, and let m ≥ 1. Let
α be a primitive element of Fqm . Then, there are exactly

q2m

univariate polynomials in Fqm [z] of degree at most Q =
qm−1
q−1

which take values in Fq when evaluated at every point
in Fqm , and these are precisely the polynomials in the set

N = {
2m−1X
i=0

βi(z + αi)Q | β0, β1, . . . , β2m−1 ∈ Fq} .

Proof. By Lemma 3, clearly every polynomial P in the
set N satisfies P (γ) ∈ Fq for all γ ∈ Fqm . The claim that

there are exactly q2m

polynomials over Fqm of degree Q or
less that take values only in Fq was already established in
Theorem 1. So the claimed result that N precisely describes
the set of all these polynomials follows if we show that |N | =
q2m

.
Note that by definition, |N | ≤ q2m

. To show that |N | ≥
q2m

, it clearly suffices to show (by linearity) that if

2m−1X
i=0

βi(z + αi)Q = 0 (3)

as polynomials in Fqm [z], then β0 = β1 = · · · = β2m−1 = 0.
We will prove this by setting up a full rank homogeneous
linear system of equations that the βi’s must satisfy. For
this we need Lucas’ theorem, stated below.

Lemma 4 (Lucas’ Theorem, cf. [4]). Let p be a prime.
Let a and b be positive integers with p-ary expansions a0 +
a1p + · · ·+ arp

r and b0 + b1p + · · ·+ brp
r respectively. Then`

a
b

´
=

`
a0
b0

´`
a1
b1

´
· · ·

`
ar
br

´
mod p which gives us

`
a
b

´
6= 0 mod p

if and only if aj ≥ bj for all j ∈ {0, 1, · · · , r}.

Define the set

T = {
X
j∈S

qj | S ⊆ {0, · · · , m− 1} } .

Applying Lemma 4 with p being the characteristic of the
field Fq, we note that when operating in the field Fqm , the

binomial coefficient of zj in the expansion of (z + αi)Q is 1
if j ∈ T and 0 otherwise. It follows that (3) holds if and

only if
P2m−1

i=0 (αi)Q−jβi = 0 for all j ∈ T , which by the
definition of T and the fact that Q = 1+ q + q2 + · · ·+ qm−1

is equivalent to

2m−1X
i=0

(αj)iβi = 0 for all j ∈ T . (4)

Let us label the 2m elements {αj | j ∈ T} as α0, α1, . . . , α2m−1

(note that these are distinct elements of Fqm since α is primi-
tive in Fqm). The coefficient matrix of the homogeneous sys-
tem of equations (4) with unknowns β0, . . . , β2m−1 is then
the Vandermonde matrix0BBB@

1 α0 α2
0 · · · α2m−1

0

1 α1 α2
1 · · · α2m−1

1

...
...

...
...

...

1 α2m−1 α2
2m−1 · · · α2m−1

2m−1

1CCCA
which has full rank. Therefore, the only solution to the
system (4) is β0 = β1 = · · · = β2m−1 = 0, as desired.

2.4 Some further facts on the BCH code and
list recovering associated RS code

The results in the previous subsections show that a large
number q2m

of polynomials over Fqm take on values in Fq at
every evaluation point, and this proved the tightness of the
“square-root” bound for agreement t = n = qm and total
number of points n′ = nq (recall Corollary 1). It is a natural
question whether similarly large list size can be shown at
other points (t, n′), specifically for slightly smaller n′ and
t. For example, what if n′ = n(q − 1) and we consider list
recovering from lists of size q − 1. In particular, how many
polynomials of degree Q = (qm − 1)/(q − 1) take on values
in Fq \ {0} at t points in Fqm . It is easily seen that when
t = n = qm, there are precisely (q − 1) such polynomials,
namely the constant polynomials which equal an element of
F∗q . Indeed, by the Johnson bound, since t >

√
Qn′ for the

choice t = n and n′ = n(q−1), we should not expect a large
list size. However, even for the slightly smaller amount of
agreement t = n−1 = b

√
Qn′c, there are only about a linear

in n number of codewords, as Lemma 5 below shows. Hence
obtaining super-polynomial number of codewords at other
points on the square-root bound when the agreement t is
less than the block length remains an interesting question
which perhaps the BCH code connection just by itself cannot
resolve.

Lemma 5. Let q be a prime power and let m > 1. For
any polynomial P (z) over Fqm [z], let it’s Hamming weight
be defined as |{β ∈ Fqm |P (β) 6= 0}|. Then, there are exactly
(q−1)qm univariate polynomials in Fqm [z] of degree at most

Q = (qm−1)
q−1

which take values in Fq when evaluated at every

point in Fqm and which have Hamming weight (qm − 1).
Furthermore, these are precisely the polynomials in the set
W = {λ(z + β)Q | β ∈ Fqm , λ ∈ F∗q}.

Proof. It is obvious that all the polynomials in W satisfy
the required property and are distinct polynomials. We next
show that any polynomial of degree at most Q which satisfies
the required properties belongs to W completing the proof.

Let P (z) be a polynomial of degree at most Q which satis-
fies the required properties. We must show that P (z) ∈ W .



Let γ ∈ Fqm be such that P (γ) = 0. Clearly, for each
β ∈ (Fqm − {γ}), P (β)/(β − γ)Q ∈ F∗q . By a pigeon-
hole argument, there must exist some λ ∈ F∗q such that

P (β) = λ(β − γ)Q for at least qm−1
q−1

= Q values of β in

Fqm − {γ}. Since P (γ) = 0, we have that the degree Q
polynomials P (z) and λ(z − γ)Q agree on at least Q + 1
field elements, which means that they must be equal to each
other. Thus the polynomial P (z) belongs to W and the
proof is complete.

3. EXPLICIT HAMMING BALLS WITH SEV-
ERAL REED-SOLOMON CODEWORDS

Throughout this section, we will be concerned with an
[q, k + 1] Reed-Solomon code RS[q, k] over Fq. We will be
interested in a center r ∈ Fq

q such that a super-polynomial
number of codewords of RS[q, k] agree with r on t or more
positions, and the aim would be to prove such a result for t
non-trivially larger than k. It is easy to prove the existence of
such an r with at least

`
q
t

´
/qt−k codewords with agreement

at least t with r. One way to see this is that this quantity
is the expected number of such codewords for a received
word that is the evaluation of a random polynomial of degree
t [10].4 A related way is suggested in [2] based on an element
β in Fqh = Fq(α), for some positive integer h, that can be

written as a product
Q

a∈T (α+a) for at least
`

q
t

´
/qh subsets

T ⊂ Fq with |T | = t — the existence of such a β again follows
by a trivial counting argument. Here we use the fact that
for certain settings of parameters and fields such a β can be
explicitly specified with only a slight loss in the number of
subsets T (see Theorem 5 below), and thereby get an explicit
center r with several close-by codewords from RS[q, k].

Theorem 5. Let ε > 0 be arbitrary. Let q be a prime
power, h be a positive integer and α be such that Fq(α) =
Fqh . For any β ∈ F∗qh , let Nt(β) denote the number of

t-tuples 〈a1, a2, . . . , at〉 of distinct ai ∈ Fq such that β =Qt
i=1(α + ai). If t ≥ ( 4

ε
+ 2)(h + 1) and5 q ≥ max(t2, (h −

1)
(2+ε)t

t−(2+ε) ), then for all β ∈ F∗qh , Nt(β) > (t− 1)qt−h−1.

Proof. From the proof of Theorem 4 in [2], we obtain

Nt(β) ≥ E1 − E2, where E1 =
qt−(t

2)qt−1

qh−1
and E2 = (1 +`

t
2

´
)(h − 1)tq

t
2 . Observe that from the choice of q,

`
t
2

´
=

t2

2
− t

2
≤ q−t

2
.

We first give a lower bound on E1. Indeed, using
`

t
2

´
≤

q−t
2

and qh − 1 < qh, we have E1 > 2qt−(q−t)qt−1

2qh = qt−h

2
+

t
2
qt−h−1.

Note that from our choice of t, we have t > ( 4
ε
+2)h, that

is, t−h > ( 4+ε
4+2ε

)t. Further, from our choice of q, (h− 1)t ≤
q

t
2+ε

−1. We now bound E2 from above. From our bounds

on
`

t
2

´
and (h − 1)t, we have E2 ≤ (1 + q−t

2
)q( 4+ε

4+2ε
)t−1 <

(1 + q−t
2

)qt−h−1 = qt−h

2
− ( t

2
− 1)qt−h−1, where the second

inequality comes from our bound on t− h.
Combining the bounds on E1 and E2 proves the theorem.

4The bound can be improved slightly to
`

q
t

´
/qt−1−k by using

a random monic polynomial.
5We also need ε < t − 2, but this will be satisfied since we
will think of ε as a fixed constant and let q, h and t grow.

We now state our main result of this section concerning
Reed-Solomon codes:

Theorem 6. Let ε > 0 be arbitrary, q a prime power,
and h any positive integer. If t ≥ ( 4

ε
+ 2)(h + 1) and q ≥

max(t2, (h−1)
(2+ε)t

t−(2+ε) ) then for every k in the range t−h ≤
k ≤ t− 1, there exists an explicit received word r ∈ Fq

q such

that there are at least qk

t!(k+h
t )

codewords of RS[q, k] which

agree with r in at least t positions.

We will prove the above theorem at the end of this sec-
tion. As ε → 0, and q, g, h → ∞ in the above, we can get
super-polynomially many codewords with agreement (1+δ)k
for some δ = δ(ε) > 0 for a Reed-Solomon code of di-

mension tending to q1/2. As ε → ∞, we can get super-
polynomially many codewords with agreement tending to
2k with dimension still being qΩ(1). We record these as
two corollaries below. We note that the non-explicit bound`

q
t

´
/qt−k gives a super-polynomial number of codewords for

agreement t ≥ k/δ for dimension about k = qδ−o(1), where
as our explicit construction can give agreement at most 2k
(or dimension at most

√
q).

Corollary 2. For all 0 < γ < 1, there exists δ > 0 such
that for all large enough prime powers q, there exists an
explicit r ∈ Fq

q such that the Reed-Solomon code RS[q, k =

qδ] contains a super-polynomial (in q) number of codewords
with agreement at least (2− γ)k with r.

Corollary 3. For all 0 < γ < 1
2
, there exists δ > 0,

such that for all large enough prime powers q, there is an
explicit r ∈ Fq

q such that the Reed-Solomon code RS[q, k =

q1/2−γ ] contains a super-polynomial (in q) number of code-
words with agreement at least (1 + δ)k with r.

Proof of Theorem 6. In what follows, we fix H(x) to be
a polynomial of degree h that is irreducible over Fq. For the
rest of this proof we will denote Fq[x]/(H(x)) by Fqh . Also
note that for any root α of H, Fq(α) = Fqh .

Pick any ` where 0 ≤ ` ≤ h−1 and note that q and t satisfy
the conditions of Theorem 5. For any B = (b0, b1, · · · , b`),

where bi ∈ Fq with at least one non zero bj ; define LB(x)
def
=P`

i=0 bix
i. Fix r(x) to be an arbitrary non-zero polynomial

of degree at most h−1. By their definitions, r(α) and LB(α)
are elements of F∗qh .

We will set the center r to be 〈 r(a)
H(a)

〉a∈Fq . Note that since

H(x) is an irreducible polynomial, H(a) 6= 0 for all a ∈ Fq,
and r is a well-defined element of Fq

q.
We now proceed to bound from below the number of

polynomials of degree k
def
= t + ` − h which agree with r

on t positions. For each non-zero tuple B ∈ F`+1
q , define

QB(x) = − r(x)
LB(x)

. Clearly, QB(α) ∈ F∗qh . For notational

convenience we will use NB to denote Nt(QB(α)). Then,
for j = 1, · · · , NB there exist A(B,j) where A(B,j) ⊂ Fq

and |A(B,j)| = t such that P
(j)
B (α)

def
=

Q
a∈A(B,j)

(α + a) =

QB(α). By Theorem 5, we have NB ≥ (t − 1)qt−h−1 for
every B — let us denote by N this latter quantity. Re-
calling the definition of QB , we have that for any (B, j),

r(α)
LB(α)

= −P
(j)
B (α), or equivalently r(α)+P

(j)
B (α)LB(α) = 0.

Since H is the irreducible polynomial of α over Fq, this im-

plies that H(x) divides P
(j)
B (x)LB(x) + r(x) in Fq[x].



Finally we define T
(j)
B (x) to be a polynomial of degree

k = t + l − h such that

T
(j)
B (x)H(x) = P

(j)
B (x)LB(x) + r(x). (5)

Clearly T
(j)
B (−a) equals r(−a)/H(−a) for each a ∈ A(B,j)

and thus the polynomial T
(j)
B agrees with r on at least

t positions. To complete the proof we will give a lower
bound on the number of distinct polynomials in the col-

lection {T (j)
B }. For a fixed B, out of the NB choices for

P
(j)
B , t! choices of j would lead to the same6 polynomial

of degree t. Since NB ≥ N , there are at least (q`+1−1)N
t!

choices of pairs (B, j). Clearly for j1 6= j2 the polynomials

P
(j1)
B (x) and P

(j2)
B (x) are distinct, however we could have

P
(j1)
B1

(x)LB1(x) = P
(j2)
B2

(x)LB2(x) (both are equal to say

S(x)) leading to T
(j1)
B1

(x) = T
(j2)
B2

(x). However the degree
of S is at most t + ` = k + h, and hence S can have at
most k + h roots, and therefore at most

`
k+h

t

´
factors of the

form
Q

a∈T (x + a) with |T | = t. It follows that no single

degree k polynomial is counted more than
`

k+h
t

´
times in

the collection {T (j)
B }, and hence there must be at least

(q`+1 − 1)N

t!
`

k+h
t

´ ≥ qk

t!
`

k+h
t

´
distinct polynomials among them, where we used N = (t−
1)qt−h−1 and (q`+1 − 1)(t − 1) ≥ q`+1 = qk−t+h+1 since
k = t + `− h.

Comparison with the Cheng-Wan paper [2]
Our results in this subsection build upon the results in [2]–
however, our aim is slightly different compared to theirs in
that we want to get a large collection of codewords close
by to a received word. In particular in Theorem 5, we get
an estimate on Nt(β) while Cheng and Wan only require
Nt(β) > 0. Also Cheng and Wan consider equation (5) only
with the choice LB(x) = 1.

4. CONCLUSIONS AND OPEN QUESTIONS

Our work exposes limitations to the kind of trade-offs for
list recovering achievable using Reed-Solomon codes, and in
particular demonstrates that RS codes are quite far from
the best possible in this regard. Specifically, they can have
rate at most 1/` for list recovering with input lists of size
` when the best, albeit non-explicit, codes can achieve con-
stant rate. It is interesting that the result is exactly tight:
list recovering for input lists of size ` when ` < dn

k
e is pos-

sible in polynomial time, while at ` = dn
k
e we might have

to confront super-polynomial number of solution codewords.
Our work raises several interesting questions for future work;
we list some of them below:

• We have shown that RS codes of rate 1/` cannot be
list recovered with input lists of size ` in polynomial
time when ` is a prime power. Can one show a similar
result for other values of `? Using the density of primes
and our work, we can bound the rate by O(1/`), but

6If 〈a1, · · · , at〉 is a solution of the equation β =
Qt

i=1(α +
ai) then so is 〈aσ(1), · · · , aσ(t)〉 for any permutation σ on
{1, · · · , t}.

if it is true it will be nice to show it is at most 1/` for
every `.

• We have shown that the
√

kn′ bound for polynomial re-
construction is the best possible given n’ general pairs
(βi, γi) ∈ F2 as input. It remains a big challenge to
determine whether this is the case also when the βi’s
are all distinct, or equivalently whether the Johnson
bound is the true list decoding radius of RS codes.
We conjecture this to be the case. One approach that
might give at least partial results would be to use some
of our ideas (in particular those using the norm func-
tion, possibly extended to other symmetric functions of
the automorphisms of Fqm over Fq) together with ideas
in the work of Justesen and Høholdt [10] who used the
Trace function to demonstrate that a linear number of
codewords could occur at the Johnson bound.

• Can one show an analog of Theorem 5 on products of
linear factors for the case when t is linear in the field
size q (the currently known results work only for t up

to q1/2)? This is an interesting field theory question
in itself, and furthermore might help towards show-
ing the existence of super-polynomial number of Reed-
Solomon codewords with agreement t ≥ (1 + ε)k for
some ε > 0 for constant rate (i.e. when k is linear in
n)? It is important for the latter, however, that we
show that Nt(β) is very large for some special field ele-
ment β in an extension field, since by a trivial counting
argument it follows that there exist β ∈ F∗qh for which

Nt(β) ≤
`

q
t

´
/(qh − 1).
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APPENDIX

A. BCH CODES ARE SUBFIELD SUBCODES
Lemma 2 Let q be a prime power and m ≥ 1 an integer.
Let n = qm − 1, d be an integer in the range 1 < d < n,
and α be a primitive element of Fqm . Then the codewords
of BCHq,m,d,α are in one-one correspondence with elements
of the set

{〈P (α0), P (α1), . . . , P (αn−1)〉 | P ∈ Fqm [z], deg(P ) ≤ n−d,

and P (γ) ∈ Fq ∀γ ∈ Fqm} .

Proof. Our goal is to prove that the two sets

S1 = { 〈c0, c1, . . . , cn−1〉 |

c(αi) = 0 for i = 1, 2, . . . , d− 1,

where c(x) = c0 + c1x + · · ·+ cn−1x
n−1 ∈ Fq[x] } ,

S2 = {〈P (α0), P (α1), . . . , P (αn−1)〉 | P ∈ Fqm [z],

deg(P ) ≤ n− d, and P (γ) ∈ Fq ∀γ ∈ Fqm} ,

are identical. We will do so by showing both the inclusions
S2 ⊆ S1 and S1 ⊆ S2.

We begin with showing S2 ⊆ S1. Let P (z) =
Pn−d

j=0 ajz
j ∈

Fqm [z] be a polynomial of degree at most (n− d) that takes
values in Fq. Then, for r = 1, 2, . . . , d− 1, we have

n−1X
i=0

P (αi)(αr)i =

n−1X
i=0

“n−dX
j=0

ajαij
”
αri =

n−dX
j=0

aj

n−1X
i=0

(αr+j)i = 0 ,

where in the last step we use that
Pn−1

i=0 γi = 0 for every

γ ∈ Fqm \ {1} and αr+j 6= 1 since 1 ≤ r + j ≤ n − 1 and α
is primitive. Therefore, 〈P (α0), P (α1), . . . , P (αn−1)〉 ∈ S1.

We next proceed to show the inclusion S1 ⊆ S2. Suppose
〈c0, c1, . . . , cn−1〉 ∈ S1. For 0 ≤ j ≤ n− 1, define (this is the
“inverse Fourier transform”)

aj =
1

n

n−1X
i=0

ciα
−ji ,

where by 1
n
, we mean the multiplicative inverse of n · 1 in

the field Fqm . Note that aj = 1
n
c(α−j) = 1

n
c(αn−j) where

c(x) =
Pn−1

i=0 cix
i. So, by the definition of S1, it follows that

aj = 0 for j > n− d. Therefore the polynomial P (z) ∈ Fqm

defined by

P (z) =

n−1X
j=0

ajz
j =

n−dX
j=0

ajz
j

has degree at most (n− d).
We now claim that for P (αs) = cs for 0 ≤ s ≤ n − 1.

Indeed,

P (αs) =

n−1X
j=0

ajα
sj =

n−1X
j=0

„
1

n

n−1X
i=0

ciα
−ji

«
αsj

=

n−1X
i=0

ci

n

n−1X
j=0

(αs−i)j = cs ,

where in the last step we used the fact that
Pn−1

j=0 (αs−i)j =
0 whenever i 6= s, and equals n when i = s. Therefore,
〈c0, c1, . . . , cn−1〉 = 〈P (α0), . . . , P (αn−1)〉. We are pretty
much done, except that we have to check also that P (0) ∈ Fq

(since we wanted P (γ) ∈ Fq for all γ ∈ Fqm , including γ =
0). Note that P (0) = a0 = 1

n
·
Pn−1

i=0 ci. Since n = qm−1, we

have n + 1 = 0 in Fqm and so 1
n

= −1 ∈ Fq. This together
with the fact that ci ∈ Fq for every i implies that P (0) ∈ Fq

as well, completing the proof.


