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Chapter 1

INTRODUCTION

Corruption of data is a fact of life. Error-correcting codes (or just codes) are clever

ways of representing data so that one can recover the original information even if parts of

it are corrupted. The basic idea is to judiciously introduce redundancy so that the original

information can be recovered even when parts of the (redundant) data have been corrupted.

Perhaps the most natural and common application of error correcting codes is for com-

munication. For example, when packets are transmitted over the Internet, some of the

packets get corrupted or dropped. To deal with this, multiple layers of the TCP/IP stack use

a form of error correction called CRC Checksum [87]. Codes are used when transmitting

data over the telephone line or via cell phones. They are also used in deep space commu-

nication and in satellite broadcast (for example, TV signals are transmitted via satellite).

Codes also have applications in areas not directly related to communication. For exam-

ple, codes are used heavily in data storage. CDs and DVDs work fine even in presence of

scratches precisely because they use codes. Codes are used in Redundant Array of Inex-

pensive Disks (RAID) [24] and error correcting memory [23]. Codes are also deployed in

other applications such as paper bar codes, for example, the bar code used by UPS called

MaxiCode [22].

In this thesis, we will think of codes in the communication scenario. In this framework,

there is a sender who wants to send (say) � message symbols over a noisy channel. The

sender first encodes the � message symbols into  symbols (called a codeword) and then

sends it over the channel. The receiver gets a received word consisting of  symbols.

The receiver then tries to decode and recover the original � message symbols. The main

challenge in coding theory is to come up with “good” codes along with efficient encoding

and decoding algorithms. In the next section, we will define more precisely the notion of

codes and the noise model.

Typically, the definition of a code gives the encoding algorithm “for free.” The decoding

procedure is generally the more challenging algorithmic task. In this thesis, we concentrate

more on the decoding aspect of the problem. In particular, we will consider two relaxations

of the “usual” decoding problem in which either the algorithm outputs the original message

that was sent or gives up (when too many errors have occurred). The two relaxations

are called list decoding and property testing. The motivations for considering these two

notions of decoding are different: list decoding is motivated by a well known limit on the

number of errors one can decode from using the usual notion of decoding while property
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testing is motivated by a notion of “spot-checking” of received words that has applications

in complexity theory. Before we delve into more details of these notions, let us first review

the basic definitions that we will need.

1.1 Basics of Error Correcting Codes

We will now discuss some of the basic notions of error correcting codes that are needed to

put forth the contributions of this thesis.1 These are the following.� Encoding The encoding function with parameters �"!� is a function #%$�&('*) & � ,
where & is called the alphabet. The encoding function # takes a message � +,&-'
and converts it into a codeword #.�/�0� . We will refer to the algorithm that implements

the encoding function as an encoder.� Error Correcting Code An error correcting code or just a code corresponding to an

encoding function # is just the image of the encoding function. In other words, it is

the collection of all the codewords. A code 1 with encoding function #2$�& ' ) &3�
is said to have dimension � and block length  . In this thesis, we will focus on codes

of large block length.� Rate The ratio 45
5 ��6� is called the rate of a code. This notion captures the amount

of redundancy used in the code. This is an important parameter of a code which will

be used throughout this thesis.� Decoding Consider the basic setup for communication. A sender has a message

that it sends as a codeword after encoding. During transmission the codeword gets

distorted due to errors. The receiver gets a noisy received word from which it has

to recover the original message. This “reverse” process of encoding is achieved via

a decoding function 7 $8& � ) &9' . That is, given a received word, the decoding

function picks a message that it thinks was the message that was sent. We will refer

to the algorithm that implements the decoding function as a decoder.� Distance The minimum distance (or just distance) of a code is a parameter that cap-

tures how much two different codewords differ. More formally, the distance between

any two codewords is the number of coordinates in which they differ. The (minimum)

distance of a code is the minimum distance between any two distinct codewords in

the code.

1We will define some more “advanced” notions later.
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1.1.1 Historical Background and Modeling the Channel Noise

The notions of encoding, decoding and the rate appeared in the seminal work of Shan-

non [94]. The notions of codes and the minimum distance were put forth by Hamming [67].

Shannon modeled the noise probabilistically. For such a channel, he also defined a real

number called the capacity, which is an upper bound on the rate of a code for which one

can have reliable communication. Shannon also proved the converse result. That is, there

exist codes for any rate less than the capacity of the channel for which one can have reliable

communication. This striking result essentially kick-started the fields of information theory

and coding theory.

Perhaps an undesirable aspect of Shannon’s noise model is that its effectiveness depends

on how well the noise is modeled. In some cases it might not be possible to accurately

model the channel. In such a scenario, one option is to model the noise adversarialy. This

was proposed by Hamming. In Hamming’s noise model, we think of the channel as an

adversary who has the full freedom in picking the location as well as nature of errors to

be introduced. The only restriction is on the number of errors. We will consider this noise

model in the thesis.

Alphabet Size and the Noise Model

We would like to point out that the noise model is intimately tied with the alphabet. A

symbol in the alphabet is the “atomic” unit on which the noise acts. In other words, a

symbol that is fully corrupted and a symbol that is partially corrupted are treated as the

same. That is, the smaller the size of the alphabet, the more fine-grained the noise. This

implies that the decoder has to take care of more error patterns for a code defined over a

smaller alphabet. As a concrete example, say we want to design a decoder that can handle:<;>=
of errors. Consider a code 1 that is defined over an alphabet of size � (i.e., each

symbols consists of two bits). Now, let ? be an error pattern in which every alternate bit of

a codeword in 1 is flipped. Note that this implies that all the symbols of the codeword have

been corrupted and hence the decoder does not need to recover from ? . However, if 1 were

defined over the binary alphabet then the decoder would have to recover from ? . Thus, it is

harder to design decoders for codes over smaller alphabets.

Further, the noise introduced by the channel should be independent of the message

length. However, in this thesis, we will study codes that are defined over alphabets whose

size depends on the message length. In particular, the number of bits required to represent

any symbol in the alphabet would be logarithmic in the message length. The reason for

this is two-fold: As was discussed in the paragraph above, designing decoding algorithms

is strictly easier for codes over larger alphabets. Secondly, we will use such codes as a

starting point to design codes over fixed sized alphabets.

With the basic definitions in place, we now turn our attention to the two relaxations of

the decoding procedure that will be the focus of this thesis.
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1.2 List Decoding

Let us look at the decoding procedure in more detail. Upon getting the noisy received

word, the decoder has to output a message (or equivalently a codeword) that it thinks was

actually transmitted. If the output message is different from the message that was actually

transmitted then we say that a decoding error has taken place. For the first part of the thesis,

we will consider decoders that do not make any decoding error. Instead, we will consider

the following notion called unique decoding. For any received word, a unique decoder

either outputs the message that was transmitted by the sender or reports a decoding failure.

One natural question to ask is how many errors such a unique decoder can tolerate.

That is, is there a bound on the number of errors (say @�AB , so @CA is the fraction of errors)

such that for any error pattern with total error at most @DAD  , the decoder always outputs the

transmitted codeword?

We first argue that @CAFEHGJI, 4 . Note that the codeword of  symbols really contains� symbols of information. Thus, the receiver should have at least � uncorrupted symbols

among the  symbols in the received word to have any hope of recovering the transmitted

message. In other words, the information theoretic limit on the number of errors from

which one can recover is  KIL � . This implies that @�ALEM�/ KIL �C�N6� L 
O GPIQ4 . Can this

information theoretic limit be achieved ?

Before answering the question above, we argue that the limit also satisfies @DASR,TU6C�WVX Y� ,
where we assume that the distance of the code T is even. Consider two distinct messages�[Z\!��]� such that the distance between #.�^�_Z`� and #a�/�]�b� is exactly T . Now say that the

sender sends the codeword #a�/�KZN� over the channel and the channel introduces Tc6<V errors

and distorts the codeword into a received word d that is at a distance of TU6eV from both#a�/�[ZN� and #a�/�]�b� (see Figure 1.1).

Now, when the decoder gets d as an input it has no way of knowing whether the original

transmitted codeword was #.�^�KZf� or #.�/�g�\� .2 Thus, the decoder has to output a decoding

failure when it receives d and so we have @�AHRh TU6U�iVX j� . How far is TU6C�WVX Y� from the

information theoretic bound of GkIK4 ? Unfortunately the gap is quite big. By the so called

Singleton bound, TlEm _IL �onpG or Tc6� q RrGsIt4 . Thus, the limit of TU6C�WVX Y� is at most

half the information theoretic bound. We note that even though the limits differ by “only a

small constant,” in practice the potential to correct twice the number of errors is a big gain.

Before we delve further into this gap between the information theoretic limit and half

the distance bound, we next argue that the the bound of TU6<V is in fact tight in the following

sense. If @CAB �
 Tc6<VuIvG , then for an error pattern with at most @�AD errors, there is

always a unique transmitted codeword. Suppose that this were not true and let #a�/�wZN� be

the transmitted codeword and let d be the received word such that d is within distance@UAD  from both #.�/�SZN� and #.�/�g�\� . Then by the triangle inequality, the distance between#a�/�[ZN� and #.�^�]�\� is at most VX @CAD  x 
vTyI�V0 Rz T , which contradicts the fact that T is the

2Throughout this thesis, we will be assuming that the only communication between the sender and the

receiver is through the channel and that they do not share any side information/channel.
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Figure 1.1: Bad example for unique decoding. The picture on the left shows two codewords#a�/�SZN� and #.�^�]�b� that differ in exactly T positions while the received word d differs from

both #.�^�SZf� and #.�^�]�\� in Tc6<V many positions. The picture on the right is another view

of the same example. Every  -symbol vector is now drawn on the plane and the distance

between any two points is the number of positions they differ in. Thus, #a�/�{ZN� and #.�^�]�b�
are at a distance T and d is at a distance Tc6<V from both. Further, note that any point that is

strictly contained within one of the balls of radius TU6eV has a unique closest-by codeword.

minimum distance of the code (also see Figure 1.1). Thus, as long as @BAB  w 
|Tc6<V} ItG , the

decoder can output the transmitted codeword. So if one wants to do unique decoding then

one can correct up to half the distance of the code (but no further). Due to this “half the

distance barrier”, much effort has been devoted to designing codes with as large a distance

as possible.

However, all the discussion above has not addressed one important aspect of decoding.

We argued that for @CAB w 
|TU6eV} ItG , there exists a unique transmitted codeword. However,

the argument sheds no light on whether the decoder can find such a codeword efficiently.

Of course, before we can formulate the question more precisely, we need to state what we

mean by efficient decoding. We will formulate the notion more formally later on but for

now we will say that a decoder is efficient if its running time is polynomial in the block

length of the code (which is the number of symbols in the received word). As a warm up,

let us consider the following naive decoding algorithm. The decoder goes through all the

codewords in the code and outputs the codeword that is closest to the received word. The

problem with this brute-force algorithm is that its running time is exponential in the block

length for constant rate codes (which will be the focus of the first part of the thesis) and

thus, is not an efficient algorithm. There is a rich body of beautiful work that focuses on

designing efficient algorithms for unique decoding for many families of codes. These are

discussed in detail in any standard coding theory texts such as [80, 104].
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We now return to the gap between the half the distance and the information theoretic

limit of  uI~ � .

1.2.1 Going Beyond Half the Distance Bound

Let us revisit the bound of half the minimum distance on unique decoding. The bound

follows from the fact that there exists an error pattern for which one cannot do unique

decoding. However, such bad error patterns are rare. This follows from the nature of the

space that the codewords (and the received words) “sit” in. In particular, one can think of

a code of block length  as consisting of non-overlapping spheres of radius TU6<V , where the

codewords are the centers of the spheres (see Figure 1.2). The argument for half the distance

bound uses the fact that at least two such spheres touch. The touching point corresponds

to the received word d that was used in the argument in the last section. However, the way

the spheres pack in high dimension (recall the dimension of such a space is equal to the

block length of the code  ), almost every point in the ambient space has a unique by closest

codeword at distances well beyond TU6<V (see Figure 1.2).

E(m )3 E(m )4

E(m )1 E(m )2y

d/2
d/2

d/2
d/2

y’

Figure 1.2: Four close by codewords #a�/�_ZN�\!f#.�^�]�b�b!f#.�/�u��� and #a�/�u�\� with two possible

received words d and dY� . #a�/�SZN�b!f#.�/�g�\� and d form the bad example of Figure 1.1. How-

ever, the bad examples lie on the dotted lines. For example, d � is at a distance more thanTc6<V from its (unique) closest codewords #.�^�0�\� . In high dimension, the space outside the

balls of radius Tc6<V contains almost the entire ambient space.

Thus, by insisting on always getting back the original codeword, we are giving up on
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correcting from error patterns from which we can recover the original codeword. One

natural question one might ask is if one can somehow meaningfully relax this stringent

constraint.

In the late 1950s, Elias and Wozencraft independently proposed a nice relaxation of

unique decoding that gets around the barrier of half the distance bound [34, 106]. Under

list decoding, the (list) decoder needs to output a “small” list of answers with the guarantee

that the transmitted codeword is present in the list.3 More formally, for a given error bound@>  and a received word d , the list-decoding algorithm has to output all codewords that are

at a distance at most @�  from d . Note that when @�  is an upper bound on the number of

errors that can be introduced by the channel, the list returned by the list-decoding algorithm

will have the transmitted codeword in the list.

There are two immediate questions that arise: (i) Is list decoding a useful relaxation of

unique decoding? (ii) Can we correct a number of errors that is close to the information

theoretic limit using list decoding ?

Before we address these questions, let us first concentrate on a new parameter that this

new definition throws into the mix: the worst case list size. Unless mentioned otherwise, we

will use � to denote this parameter. Note that the running time of the decoding algorithm

is �s�i�8� as the decoder has to output every codeword in the list. Since we are interested

in efficient, polynomial time, decoding algorithms, this puts an a priori requirement that� be a polynomial in the block length of the code. For a constant rate code, which has

exponentially many codewords, the polynomial bound on � is very small compared to the

total number of codewords. This bound was what we meant by small lists while defining

list decoding.

Maximum Likelihood Decoding

We would like to point out that list decoding is not the only meaningful relaxation of unique

decoding. Another relaxation called maximum likelihood decoding (or MLD) has been

extensively studied in coding theory. Under MLD, the decoder must output the codeword

that is closest to the received word. Note that if the number of errors is at most ��T�ItG��N6<V ,
then MLD and unique decoding coincide. Thus, MLD is indeed a generalization of unique

decoding.

MLD and list decoding are incomparable relaxations. On the one hand, if one can list

decode efficiently up to the maximum number of errors that the channel can introduce then

one can do efficient MLD. On the other hand, MLD does not put any restriction on the

number of errors it needs to tolerate (whereas such a restriction is necessary for efficient

list decoding). The main problem with MLD is that is turns out to be computationally in-

tractable in general [17, 79, 4, 31, 37, 91] as well as for specific families of codes [66]. In

3The condition on the list size being small is important. Otherwise, here is a trivial list-decoding algo-

rithm: output all codewords in the code. This, however is a very inefficient and more pertinently a useless

algorithm. We will specify more carefully what we mean by small lists soon.
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fact, there is no non-trivial family of codes known for which MLD can be done in polyno-

mial time. However, list decoding is computationally tractable for many interesting families

of codes (some of which we will see in this thesis).

We now turn to the questions that we raised about list decoding.

1.2.2 Why is List Decoding Any Good ?

We will now devote some time to address the question of whether list decoding is a mean-

ingful relaxation of the unique decoding problem. Further, what does one do when the

decoder outputs a list ?

In the communication setup, where the receiver might not have any side information,

the receiver can still use a list-decoding algorithm to do “normal” decoding. It runs the

list-decoding algorithm on the received word. If the list returned has just one codeword

in it, then the receiver accepts that codeword as the transmitted codeword. If the list has

more than one codeword, then it declares a decoding failure. First we note that this is no

worse than the original unique decoding setup. Indeed if the number of errors is at mostTc6<VyIpG , then by the discussion in Section 1.2 the list is going to contain one codeword

and we would be back in the unique decoding regime. However, as was argued in the last

section, for most error patterns (with total number of errors well beyond TU6<V ) there is a

unique closest by codeword. In other words, the list size for such error patterns would

be one. Thus, list decoding allows us to correct from more error patterns than what was

possible with unique decoding.

We now return to the question of whether list decoding can allow us to correct errors

up to the information theoretic limit of G( I~ 4 ? In short, the answer is yes. Using random

coding arguments one can show that for any ��� ;
, with high probability a random code of

rate 4 , has the potential to correct up to G( IF4tI�� fraction of errors with a worst case list

size of �� � G̀� 6X �<� (see Chapter 2 for more details). Further, one can show that for such codes,

the list size is one for most received words.4

Other Applications of List Decoding

In addition to the immense practical potential of correcting more than half the distance

number of errors in the communication setup, list decoding has found many surprising

applications outside of the coding theory domain. The reader is referred to the survey by

Sudan [98] and the thesis of Guruswami [49] (and the references therein) for more details

on these applications. A key feature in all these applications is that there is some side

information that one can use to sift through the list returned by the list-decoding algorithm

to pick the “correct” codeword. A good analogy is that of a spell checker. Whenever a word

is mis-spelt, the spell checker returns to the user a list of possible words that the user might

have intended to use. The user can then prune this list to choose the word that he or she had

4This actually follows using the same arguments that Shannon used to establish his seminal result.



9

intended to use. Indeed, even in the communication setup, if the sender and the receiver

can use a side channel (or have some shared information) then one can use list decoding to

do “unambiguous” decoding [76].

1.2.3 The Challenge of List Decoding (and What Was Already Known)

In the last section, we argued that list decoding is a meaningful relaxation of unique de-

coding. More encouragingly, we mentioned that random codes have the potential to correct

errors up to the information theoretic limit using list decoding. However, there are two

major issues with the random codes result. First, these codes are not explicit. In real world

applications, if one wants to communicate messages then one needs an explicit code. How-

ever, depending on the application, one might argue that doing a brute force search for such

a code might work as this is a “one-off” cost that one has to pay. The second and perhaps

more serious drawback is that the lack of structure in random codes implies that it is hard

to come up with efficient list decodable algorithms for such codes. Note that for decoding,

one cannot use a brute-force list-decoding algorithm.

Thus, the main challenge of list decoding is to come up with explicit codes along with

efficient list-decoding (and encoding) algorithms that can correct errors close to the infor-

mation theoretic limit of  g IF� .

The first non-trivial list-decoding algorithm is due to Sudan [97], which built on the

results in [3]. Sudan devised a list-decoding algorithm for a specific family of codes called

Reed-Solomon codes [90] (widely used in practice [105]), which could correct beyond half

the distance barrier for Reed-Solomon codes of rate at most G�6X� . This result was then

extended to work for all rates by Guruswami and Sudan [63]. It is worthwhile to note that

even though list decoding was introduced in the late 1950s, these results came nearly forty

years later. There was no improvement to the Guruswami-Sudan result until the recent

work of Parvaresh and Vardy [85], who designed a code that is related to Reed-Solomon

codes and presented efficient list-decoding algorithms that could correct more errors than

the Guruswami-Sudan algorithm. However, the result of Parvaresh and Vardy does not meet

the information theoretic limit (see Chapter 3 for more details). Further, for list decoding

Reed-Solomon codes there has been no improvement over [63].

This concludes our discussion on the background for list decoding. We now turn to

another relaxation of decoding that constitutes the second part of this thesis.

1.3 Property Testing of Error Correcting Codes

Consider the following communication scenario in which the channel is very noisy. The

decoder, upon getting a very noisy received word, does its computation and ultimately

reports a decoding failure. Typically, the decoding algorithm is an expensive procedure and

it would be nice if one could quickly test if the received word is “far” from any codeword (in

which case it should reject the received word) or is “close” to some codeword (in which case
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it should accept the received word). In the former case, we would not run our expensive

decoding algorithm and in the latter case, we would then proceed to run the decoding

algorithm on the received word.

The notion of efficiency that we are going to consider for such spot checkers is going

to be a bit different from that of decoding algorithms. We will require the spot checker

to probe only a few positions in the received word during the course of its computation.

Intuitively this should be possible as spot checking is a strictly easier task than decoding.

Further, the fact that the spot checkers need to make their decision based on a portion of

the received word should make spot checking very efficient. For example, if one could

design spot checkers that look at only constant many positions (independent of the block

length of the code), then we would have a spot checkers that run in constant time. However,

note that since the spot checker cannot look at the whole received word it cannot possibly

predict accurately if the received word is “far” from all the codewords or is “close” to some

codeword. Thus, this notion of testing is a relaxation of the usual decoding as one sacrifices

in the accuracy of the answer while gaining in terms of number of positions that one needs

to probe.

A related notion of such spot checkers is that of locally testable codes (LTCs). LTCs

have been the subject of much research over the years and there has been heightened activ-

ity and progress on them recently [46, 11, 74, 14, 13, 44]. LTCs are codes that have spot

checkers as those discussed above with one crucial difference: they only need to differenti-

ate between the cases when the received word is far from all codewords and the case when it

is a codeword. LTCs arise in the construction of Probabilistically Checkable Proofs (PCPs)

[5, 6] (see the survey by Goldreich [44] for more details on the interplay between LTCs and

PCPs). Note that in the notion of LTC, there is no requirement on the spot checker for input

strings that are very close to a codeword. This “asymmetry” in the way the spot checker

accepts and rejects an input reflects the way PCPs are defined, where the emphasis is on

rejecting “wrong” proofs.

Such spot checkers fall under the general purview of property testing (see for example

the surveys by Ron [92] and Fischer [38]). In property testing, for some property � , given

an object as an input, the spot checker has to decide if the given object satisfies the property� or is “far” from satisfying � . LTCs are a special case of property testing in which the

property � is membership in some code and the objects are received words.

The ideal LTCs are codes with constant rate and linear distance that can be tested by

probing only constant many position in the received word. However, unlike the situation in

list decoding (where one can show the existence of codes with the “ideal” properties), it is

not known if such LTCs exist.

1.3.1 A Brief History of Property Testing of Codes

The field of codeword testing, which started with the work of Blum, Luby and Rubin-

feld [21] (who actually designed spot checkers for a variety of numerical problems), later

developed into the broader field of property testing [93, 45]. LTCs were first explicitly de-
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fined in [42, 93] and the systematic study of whether ideal LTCs (as discussed at the end

of the last section) was initiated in [46]. Testing for Reed-Muller codes in particular has

garnered a lot of attention [21, 9, 8, 36, 42, 93, 7, 1, 74], as they were crucial building

blocks in the construction of PCPs [6, 5], Kaufman and Litsyn [73] gave a sufficient con-

dition on an important class of codes that imply that the code is an LTC. Ben-Sasson and

Sudan [13] built LTCs from a variant of PCPs called the Probabilistically Checkable Proof

of Proximity– this “method” of constructing LTCs was initiated by Ben-Sasson et al. [11].

1.4 Contributions of This Thesis

The contributions of this thesis are in two parts. The first part deals with list decoding while

the second part deals with property testing of codes.

1.4.1 List Decoding

This thesis advances our understanding of list decoding. Our results can be roughly divided

into three parts: (i) List decodable codes of optimal rate over large alphabets, (ii) List

decodable codes over small alphabets, and (iii) Limits to list decodability. We now look at

each of these in more detail.

List Decodable Codes over Large Alphabets

Recall that for codes of rate 4 , it is information theoretically not possible to correct beyondG�Io4 fraction of errors. Further, using random coding argument one can show the existence

of codes that can correct up to G�I� 4oIP� fraction of errors for any ��� ;
(using list decoding).

Since the first non-trivial algorithm of Sudan [97], there has been a lot of effort in designing

explicit codes along with efficient list-decoding algorithms that can correct errors close to

the information theoretic limit. In Chapter 3, we present the culmination of this line of

work by presenting explicit codes (which are in turn extensions of Reed-Solomon codes)

along with polynomial time list-decoding algorithm that can correct G�Ix 4tI�� fraction of

errors in polynomial time (for every rate
; RO4� R�G and any �~ � ;

). This answers a

question that has been open for close to 50 years and meets one of the central challenges in

coding theory.

This work was done jointly with Venkatesan Guruswami and was published in the pro-

ceedings of the 38th Symposium on Theory of Computing (STOC), 2006 [58] and is under

review for the journal IEEE Transactions on Information Theory.

List Decodable Codes over Small Alphabets

The codes mentioned in the last subsection are defined over alphabets whose size increases

with the block length of the code. As discussed in Section 1.1.1, this is not a desirable

feature. In Chapter 4, we show how to use our codes from Chapter 3 along with known
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techniques of code concatenation and expander graphs to design codes over alphabets of

size V<�"��������� that can still correct up to G�IF4QIl� fraction of errors for any �*� ;
. To get to

within � of the information theoretic limit of  ] I~ � , it is known that one needs an alphabet

of size Ve� �����X�i� (see Chapter 2 for more details).

However, if one were interested in codes over alphabets of fixed size, the situation is

different. First, it is known that for fixed size alphabets, the information theoretic limit

is much smaller than  { I� � (see Chapter 2 for more details). Again, one can show that

random codes meet this limit. In Chapter 4, we present explicit codes along with efficient

list-decoding algorithms that correct errors up to the so called Blokh-Zyablov bound. These

results are the currently best known via explicit codes, though the number of errors that can

be corrected is much smaller than the limit achievable by random codes.

This work was done jointly with Venkatesan Guruswami and appears in two different

papers. The first was published in in the proceedings of the 38th Symposium on Theory of

Computing (STOC), 2006 [58] and is under review for the journal IEEE Transactions on

Information Theory. The second paper will appear in the proceedings of the 11th Interna-

tional Workshop on Randomization and Computation (RANDOM) [60].

Explicit codes over fixed alphabets, considered in Chapter 4, are constructed using code

concatenation. However, as mentioned earlier, the fraction of errors that such codes can

tolerate via list decoding is far from the information theoretic limit. A natural question to

ask is whether one can use concatenated codes to achieve the information theoretic limit?

In Chapter 5 we give a positive answer to this question in following sense. We present a

random ensemble of concatenated codes that with high probability meet the information

theoretic limit: That is, they can potentially list decode as large a fraction of errors as

general random codes, though with larger lists.

This work was done jointly with Venkatesan Guruswami and is an unpublished

manuscript [61].

Limits to List Decoding Reed-Solomon Codes

The results discussed in the previous two subsections are of the following flavor. We know

that random codes allow us to list decode up to a certain number of errors, and that is

optimal. Can we design more explicit codes (maybe with efficient list-decoding algorithms)

that can correct close to the number of errors that can be corrected by random codes?

However, consider the scenario where one is constrained to work with a certain family of

codes, say Reed-Solomon codes. Under this restriction what is the most number of errors

from which one can hope to list decode?

The result of Guruswami and Sudan [63] says that one can efficiently correct up to w I|�  j� many errors for Reed-Solomon codes. However, is this the best possible? In

Chapter 6, we give some evidence that the Guruswami-Sudan algorithm might indeed be the

best possible. Along the way we also give some explicit constructions of “bad list-decoding

configurations.” A bad list-decoding configuration refers to a received word d along with an
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error bound @ such that there are super-polynomial (in  ) many Reed-Solomon codewords

within a distance of @�  from d .

This work was done jointly with Venkatesan Guruswami and appears in two different

papers. The first was published in in the proceedings of the 37th Symposium on Theory

of Computing (STOC), 2005 [56] as well as in the IEEE Transactions on Information The-

ory [59]. The second paper is an unpublished manuscript [62].

1.4.2 Property Testing

We now discuss our results on property testing of error correcting codes.

Testing Reed-Muller Codes

Reed-Muller codes are generalizations of Reed-Solomon codes. Reed-Muller codes are

based on multivariate polynomials while Reed-Solomon codes are based on univariate poly-

nomials. Local testing of Reed-Muller codes was instrumental in many constructions of

PCPs. However, the testers were only designed for Reed-Muller codes over large alpha-

bets. In fact, the size of the alphabet of such codes depends on the block length of the

codes. In Chapter 7, we present near-optimal local testers for Reed-Muller codes defined

over (a class of) alphabets of fixed size.

This work was done jointly with Charanjit Jutla, Anindya Patthak and David Zuckerman

and was published in the proceedings of the 45th Symposium on Foundation of Computer

Science (FOCS), 2005 [72] and is currently under review for the journal Random Structures

and Algorithms.

Tolerant Locally Testable Codes

Recall that the notion of spot checkers that we were interested in had to accept the received

word if it is far from all codewords and reject when it is close to some codeword (as opposed

to LTCs, which only require to accept when the received word is a codeword). Surprisingly,

such testers were not considered in literature before. In Chapter 8, we define such testers,

which we call tolerant testers. Our results show that in general LTCs do not imply tolerant

testability, though most LTCs that achieve the best parameters also have tolerant testers.

As a slight aside, we look at certain strong form of local testability (called robust testa-

bility) of certain product of codes. Product of codes are also special cases of certain con-

catenated codes considered in Chapter 4. We show that in general, certain product of codes

cannot be robustly testable.

This work on tolerant testing was done jointly with Venkatesan Guruswami and was

published in the proceedings of the 9th International Workshop on Randomization and

Computation (RANDOM) [57]. The work on robust testability of product of codes is joint

work with Don Coppersmith and is an unpublished manuscript [26].
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1.4.3 Organization of the Thesis

We start with some preliminaries in Chapter 2. In Chapter 3, we present the main result

of this thesis: codes with optimal rate over large alphabets. This result is then used to de-

sign new codes in Chapters 4 and 5. We present codes over small alphabets in Chapter 4,

which are constructed by a combination of the codes from Chapter 3 and code concatena-

tion. In Chapter 5, we show that certain random codes constructed by code concatenation

also achieve the list-decoding capacity. In Chapter 6, we present some limitations to list

decoding Reed-Solomon codes. We switch gears in Chapter 7 and present new local testers

for Reed-Muller codes. We present our results on tolerant testability in Chapter 8. We

conclude with the major open questions in Chapter 9.


