
15

Chapter 2

PRELIMINARIES

In this chapter we will define some basic concepts and notations that will be used

throughout this thesis. We will also review some basic results in list decoding that will

set the stage for our results. Finally, we will look at some specific families of codes that

will crop up frequently in the thesis.

2.1 The Basics

We first fix some notation that will be used frequently in this work, most of which is stan-

dard.

For any integer � ��G , we will use �u¡ to denote the set ¢cG£!¥¤¥¤¥¤�!��K¦ . Given positive

integers and � , we will denote the set of all length vectors over �u¡ by �§¡ � . Unless

mentioned otherwise, all vectors in this thesis will be row vectors. ¨ª©£«3¬ will denote the

logarithm of ¬ in base V . ¨®­�¬ will denote the natural logarithm of ¬ . For bases other thanV and ? , we will specify the base of the logarithm explicitly: for example logarithm of ¬ in

base � will be denoted by ¨ª©£«�¯�¬ .

A finite field with � elements will be denoted by � ¯ or °�±����£� . For any real value ¬ in

the range
; E�¬0E|G , we will use ² ¯ ��¬��³
Q¬-¨ª©£«£¯����3IwG��DI]¬(¨ª©£«>¯�¬PI´��GµI]¬��c¨ª©£«£¯���GµI]¬�� to

denote the � -ary entropy function. For the special case of �y
|V , we will simply use ²w��¬"�
for ²y���/¬�� . For more details on the � -ary entropy function, see Section 2.2.2.

For any finite set ¶ , we will use ·¸¶J· to denote the size of the set.

We now move on to the definitions of the basic notions of error correcting codes.

2.1.1 Basic Definitions for Codes

Let �*�tV be an integer.

Code, Blocklength, Alphabet size :�
An error correcting code (or simply a code) 1 is a subset of ¸��¡ � for positive integers� and . The elements of 1 are called codewords.�
The parameter � is called the alphabet size of 1 . In this case, we will also refer to 1
as a � -ary code. When �P
5V , we will refer to 1 as a binary code.�
The parameter is called the block length of the code.

16

Dimension and Rate :� For a � -ary code 1 , the quantity ��
t¨ª©<«�¯�·¸1.· is called the dimension of the code (this

terminology makes more sense for certain classes of codes called linear codes, which

we will discuss shortly).�
For a � -ary code 1 with block length , its rate is defined as the ratio 45
H¹»º½¼`¾�¿ ÀÁ¿� .

Often it will be useful to use the following alternate way of looking at a code. We will

think of a � -ary code 1 with block length and ·¸1Â·£
LÃ as a function ÄÃL¡") ¸��¡ � . Every

element ¬ in ¸ÃL¡ is called a message and 1a�/¬�� is its associated codeword. If Ã is a power

of � , then we will think of the message as length � -vector in »��¡ ' . Viewed this way, 1
provides a systematic way to add redundancy such that messages of length � over ¸��¡ are

mapped to symbols over »��¡ .
(Minimum) Distance and Relative distance : Given any two vectors ÅQ
%Æ^ÇCZ�!�¤¥¤¥¤�!`Ç � È
and ÉÊ
 Æ/ËÁZ�!�¤¥¤¥¤�!�Ë � È in ¸��¡ª� , their Hamming distance (or simply distance), denoted byÌ �/Å8!NÉ�� , is the number of positions that they differ in. In other words,

Ì �^Å8!NÉ��3
v·�¢�Í¥· Ë"ÎÐÏ
Ç�ÎÑ¦ . � The (minimum) distance of a code 1 is the minimum Hamming distance between

any two codewords in the code. More formallyÒ�Ó®Ô`Õ �i1��k
 Ö Ó ­× � � ×�Ø`Ù À �× �NÚÛ ×WØ Ì ��Ü�Z\!NÜ\�\�\¤� The relative distance of a code 1 of block length is defined as ÝP
HÞfß»àªá � À �� .

2.1.2 Code Families

The focus of this thesis will be on the asymptotic performance of decoding algorithms. For

such analysis to make sense, we need to work with an infinite family of codes instead of

a single code. In particular, an infinite family of � -ary codes â is a collection ¢e1�Î`· Í-+wã3¦ ,
where for every Í , 18Î is a � -ary code of length �Î and "Îä�~ "Îæå�Z . The rate of the family â is

defined as 4o�çâµ�³
Q¨ Ó Ö Ó ­CèÎ é ¨ª©<«>¯µ·¸13ÎN· BÎ ê ¤
The relative distance of such a family is defined asÝU�^âä�k
Q¨ Ó Ö Ó ­UèÎ é Ò�Ó®Ô`Õ �i13Î�� "Î ê ¤

From this point on, we will overload notation by referring to an infinite family of codes

simply as a code. In particular, from now on, whenever we talk a code 1 of length , rate

17

4 and relative distance Ý , we will implicitly assume the following. We will think of as

large enough so that its rate 4 and relative distance Ý are (essentially) same as the rate and

the relative distance of the corresponding infinite family of codes.

Given this implicit understanding, we can talk about the asymptotics of different algo-

rithms. In particular, we will say that an algorithm that works with a code of block length is efficient if its running time is ���/ × � for some fixed constant Ü .
2.1.3 Linear Codes

We will now consider an important sub-class of codes called linear codes.

Definition 2.1. Let � be a prime power. A � -ary code 1 of block length is said to be linear

if it is a linear subspace (over some field � ¯) of the vector space �B�¯ .

The size of a � -ary linear code is obviously �£' for some integer � . In fact, it is the

dimension of the corresponding subspace in ���¯ . Thus, the dimension of the subspace is

same as the dimension of the code. (This is the reason behind the terminology of dimension

of a code.)

We will denote a � -ary linear code of dimension � , length and distance T as an ³!ë�"!NT£¡ ¯ code. (For a general code with the same parameters, we will refer to it as an�^ ³!ë�"!NTU� ¯ code.) Most of the time, we will drop the distance part and just refer to the code

as an ³!ë��¡ ¯ code. Finally, we will drop the dependence on � if the alphabet size is clear

from the context.

We now make some easy observations about � -ary linear codes. First, the zero vector is

always a codeword. Second, the minimum distance of a linear code is equal to the minimum

Hamming weight of the non-zero codewords, where the Hamming weight of a vector is the

number of positions with non-zero values.

Any �!b�>¡ ¯ code 1 can be defined in the following two ways.� 1 can be defined as a set ¢�ì�í{· ì,+w� '¯ ¦ , where í is an �0î0 matrix over � ¯ . í is

called a generator matrix of 1 .� 1 can also be characterized by the following subspace ¢Xï"·»ïl+�� �¯ and ²]ïeð�
�ñ�¦ ,
where ² is an �^ KIt���òî_ matrix over � ¯ . ² is called the parity check matrix of1 . The code with ² as its generator matrix is called the dual of 1 and is generally

denoted by 1}ó .

The above two representations imply the following two things for an ³!ë��¡ ¯ code 1 .

First, given the generator matrix í and a message ì5+F� �¯ , one can compute 1a�/¬�� using���/ j��� field operations (by multiplying ìj ð with í). Second, given a received word d´+]� � ¯
and the parity check matrix ² for 1 , one can check if d´+K1 using �a�^ k�/ }I[�C�N� operations

(by computing ²ud and checking if it is the all zeroes vector).

18

Finally, given a � -ary linear code 1 , we can define the following equivalence relation.ì�ô À d if and only if ìwI, dz+�1 . It is easy to check that since 1 is linear this indeed

is an equivalence relation. In particular, ô À partitions � � ¯ into equivalence classes. These

are called cosets of 1 (note that one of the cosets is the code 1 itself). In particular, every

coset is of the form dwn�1 , where either dõ
M ñ or döÏ+÷ 1 and dwn�1 is shorthand for¢� dun�ï"·»ï�+K1*¦ .
We are now ready to talk about definitions and preliminaries for list decoding and prop-

erty testing of codes.

2.2 Preliminaries and Definitions Related to List Decoding

Recall that list decoding is a relaxation of the decoding problem, where given a received

word, the idea is to output all “close-by” codewords. More precisely, given an error bound,

we want to output all codewords that lie within the given error bound from the received

word. Note that this introduces a new parameter into the mix: the worst case list size. We

will shortly define the notion of list decoding that we will be working with in this thesis.

Given integers ���LV , {�pG , ; Et?�E, and a vector ì´+~ »��¡ � , we define the Hamming

ball around ì of radius ? to be the set of all vectors in » ��¡æ� that are at Hamming distance at

most ? from ì . That is, ø ¯ �^ìk!f?X�k
q¢� d�· d´+F »��¡ � and
Ì �/ d3!�ìµ�9EQ?<¦c¤

We will need the following well known result.

Proposition 2.1 ([80]). Let ���OV and ?>!� õ �ùG be integers such that ?´Eh�`G}I÷ G�6e�£�Ñ .

Define @o
t?X6� . Then the following relations are satisfied.· ø ¯ �iñú!N?X��·>
 ûü Î ÛCýuþ ÍXÿ �W�JIQG�� Î EQ��� ¾ � û � �����
t��� ¾ ���̀ ��� ¤ (2.1)· ø ¯ �iñú!N?X��·U�Q��� ¾ ���`��� å�� � ��� ¤ (2.2)

We will be using the following definition quite frequently.

Definition 2.2 (List-Decodable Codes). Let 1 be a � -ary code of block length . Let�z �ö G be an integer and
; RÊ@lR%G be a real. Then 1 is called �^@"!f�8� -list decodable if

every Hamming ball of radius @� has at most � codewords in it. That is, for every dl+g�ú� ¯ ,· ø �/ d8!�@> Y�	�]1.·UEt� .

In the definitions above, the parameter � can depend on the block length of the code.

In such cases, we will explicitly denote the list size by ���/ Y� , where is the block length.

We will also frequently use the notion of list-decoding radius, which is defined next.

19

Definition 2.3 (List-Decoding Radius). Let 1 be a � -ary code of block length . Let; Rx@§RqG be a real and define ?P
t@> . 1 is said to have a list-decoding radius of @ (or ?)
with list size � if @ (or ?) is the maximum value for which 1 is �/@B!f�8� -list decodable.

We will frequently use the term list-decoding radius without explicitly mentioning the

list size in which case the list size is assumed to be at most some fixed polynomial in

the block length. Note that one way to show that a code 1 has a list-decoding radius of

at least @ is to present a polynomial time list-decoding algorithm that can list decode 1
up to a @ fraction of errors. Thus, by abuse of notation, given an efficient list-decoding

algorithm for a code that can list decode a @ fraction (or ? number) of errors, we will

say that the list-decoding algorithm has a list-decoding radius of @ (or ?). In most places,

we will be exclusively talking about list-decoding algorithms in which case we will refer

to their list-decoding radius as decoding radius or just radius. In such a case, the code

under consideration is said to be list decodable up to the corresponding decoding radius

(or just radius). Whenever we are talking about a different notion of decoding (say unique

decoding), we will refer to the maximum fraction of errors that a decoder can correct by

qualifying the decoding radius with the specific notion of decoding (for example unique

decoding radius).

We will also use the following generalization of list decoding.

Definition 2.4 (List-Recoverable Codes). Let 1 be a � -ary code of block length . Let
 !f�Q�z G be integers and
; RQ@uRpG be a real. Then 1 is called �/@"!
 !f�8� -list recoverable if

the following is true. For every sequence of sets ¶µZ�!¥¤¥¤¥¤�!f¶ � , where ¶"Î��� ¸��¡ and ·¸¶" ÎN·úE

for every GsE, Í8 E, , there are at most � codewords ï*
õÆ�ÜX Z�!¥¤¥¤¥¤�!NÜ � È +K1 such that Üë Îä +K¶B Î
for at least ��G�I´@C�½ positions Í .

Further, code 1 is said to �^@"!
 � -list recoverable in polynomial time if it is �/@"!
 !f�(�/ j�N� -
list recoverable for some polynomially bounded function �(����� , and moreover there is a

polynomial time algorithm to find the at most �(�/ j� codewords that are solutions to any�^@"!
 !ë �� �/ Y �`� -list recovery instance.

List recovery has been implicitly studied in several works; the name itself was coined in

[52]. Note that a �/ @B!�G<!ë �3 � -list recoverable code is a �^@"!f�8� -list decodable code and hence, list

recovery is indeed a generalization of list decoding. List recovery is useful in list decoding

codes obtained by a certain code composition procedure. The natural list decoder for such

a code is a two stage algorithm, where in the first stage the “inner” codes are list decoded

to get a sequence of lists, from which one needs to recover codewords from the “outer”

code(s). For such an algorithm to be efficient, the outer codes need to be list recoverable.

We next look at the most fundamental tradeoff that we would be interested in for list

decoding.

2.2.1 Rate vs. List decodability

In this subsection, we will consider the following question. Given limits �÷ ��G and
; R@´R G on the worst case list size and the fraction of errors that we want to tolerate, what

20

is the maximum rate that a �^@"!f�8� -list decodable code can achieve? The following results

were implicit in [110] but were formally stated and proved in [35]. We present the proofs

for the sake of completeness.

We first start with a positive result.

Theorem 2.1 ([110, 35]). Let ���tV be an integer and
; R,Ý�EpG be a real. For any integer�t�vG and any real

; RL@0Rõ G(ILG�6e� , there exists a �/@"!f�8� -list decodable � -ary code with

rate at least G�I�² ¯ �^ @��ä I Z
�� Z I Z��� .
Proof. We will prove the result by using the probabilistic method [2]. Choose a code 1 of

block length and dimension �a
��̀ ��G�IF² ¯ �^ @��ä I Z
�� Z �Ñ g I´ Z�å���� at random. That is, pick

each of the � ' codewords in 1 uniformly (and independently) at random from ¸��¡ç� . We will

show that with high probability, 1 is �/ @B!ë �3 � -list decodable.

Let ·¸1.·c
�Ã
5� ' . We first fix the received word d�+~ ¸��¡®� . Consider an �i�SntG�� -tuple

of codewords ��ï Z !¥¤¥¤¥¤� !Nï
�� Z � in 1 . Now if all these codewords fall in a Hamming ball of

radius @� around d , then 1 is not �/@B!f�8� -list decodable. In other words, this �W�KnLG�� -tuple

forms a counter-example for 1 having the required list decodable properties. What is the

probability that such an event happens ? For any fixed codeword ï´+�1 , the probability

that it lies in

ø �/ d3!�@� Y� is exactly · ø �/ d8 !�@> Y��·� � ¤
Now since every codeword is picked independently, the probability that the tuple �Wï Z !�¤¥¤¥¤�!ï
�� Z � forms a counter example is

þ ·
ø �^ d8 !�@� j��·� � ÿ
�� Z EQ� å �
�� Z ���<� Z½å � ¾ ���N�®� !

where the inequality follows from Proposition 2.1 (and the fact that the volume of a Ham-

ming ball is translation invariant). Since there are ���
�� Z�� EL Ã
�� Z different choices of ��nSG
tuples of codewords from 1 , the probability that there exists at least one �wn�G -tuple that

lies in

ø �^ d8 !�@� j� is at most (by the union bound):Ã
�� Z ��� å �
�� Z ���<� Z�å � ¾ ���̀ �®�
L� å �
�� Z ���<� Z½å � ¾ ���̀ � å�� � !
where 4ù
ù�C6� is the rate of 1 . Finally, since there are at most �X � choices for d , the

probability that there exists some Hamming ball with �SnQG codewords from 1 is at most� � ��� å �
�� Z ���<� Z½å � ¾ ���̀ � å�� �
L� �
�� Z ���<� Z½å � ¾ ���̀ � å��Bå�Z � �
�� Z � EQ� å �e�/� � !
where the last inequality follows as ��6� ��OGsIt² ¯ �^ @��8 I|G� 6C�W�´n|G��8 I|G� 6� � . Thus, with

probability GyI�� å �e�/� � � ;
(for large enough), 1 is a �/@"!f�8� -list decodable code, as

desired.

The following is an immediate consequence of the above theorem.

21

Corollary 2.2. Let �*�tV be an integer and
; R~ @ÂR� GÐI�G� 6e� . For every ��� ; , there exists

a � -ary code with rate at least G�IF² ¯ �/ @C�ä Il� that is �/ @B!ë�� �`G� 6X �<�`� -list decodable.

We now move to an upper bound on the rate of good list decodable codes.

Theorem 2.3 ([110, 35]). Let �o�5V be an integer and
; R�@gE÷ G� IQG�6e� . For every �o� ; ,

there do not exist any � -ary code with rate GJI,² ¯ �/@C�µnx� that is �/ @B!f�(�/ j�N� -list decodable

for any function ���/ Y� that is polynomially bounded in .

Proof. The proof like that of Theorem 2.1 uses the probabilistic method. Let 1 be any � -
ary code of block length with rate 45
÷GkI_² ¯ �/@���nK� . Pick a received word d uniformly

at random from »��¡ � . Now, the probability that for some fixed ï�+_1 ,
Ì �/ d8 !Nïc�8E�@� is· ø �iñú!�@� Y�¥·� � �Q� �e� � ¾ ���`� å�Z � å�� � ��� !

where the inequality follows from Proposition 2.1. Thus, the expected number of code-

words within a Hamming ball of radius @� around d is at least·¸1.·X ��� �e� � ¾ ���̀ � å�Z � å�� � ���
t� �e� �"å � Z½å � ¾ ���`�®�®� å�� � ��� !
which by the value of 4 is � � � ��� . Since the expected number of codewords is exponential,

this implies that there exists a received word d that has exponentially many codewords

from 1 within a distance @� from it. Thus, 1 cannot be �/@"!f�(�^ Y�`� -list decodable for any

polynomially bounded (in fact any subexponential) function �(����� .
List decoding capacity

Theorems 2.1 and 2.3 say that to correct a @ fraction of errors using list decoding with small

list sizes the best rate that one can hope for and can achieve is G�IF² ¯ �/@C� . We will call this

quantity the list-decoding capacity.

The terminology is inspired by the connection of the results above to Shannon’s theorem

for the special case of the � -symmetric channel (which we will denote by �e¶31 �). In this

channel, every symbol (from »��¡) remains untouched with probability GyI�@ while it is

changed to each of the other symbols in »��¡ with probability �¯ å�Z . Shannon’s theorem states

that one can have reliable communication with code of rate less than GPI5² ¯ �/@C� but not

with rates larger than G(I~² ¯ �^@�� . Thus, Shannon’s capacity for �e¶k1 � is G(I~² ¯ �^@�� , which

matches the expression for the list-decoding capacity.

Note that in �e¶31 � , the expected fraction of errors when a codeword is transmitted is @ .

Further, as the errors on each symbol occur independently, the Chernoff bound implies that

with high probability the fraction of errors is concentrated around @ . However, Shannon’s

proof crucially uses the fact that these (roughly) @ fraction of errors occur randomly. What

Theorems 2.1 and 2.3 say is that even with a @ fraction of adversarial errors1 one can

1Where both the location and the nature of errors are arbitrary.

22

have reliable communication via codes of rate GJI,² ¯ �/@C� with list decoding using lists of

sufficiently large constant size.

We now consider the list-decoding capacity in some more detail. First we note the fol-

lowing special case of the expression for list-decoding capacity for large enough alphabets.

When � is V�� � Z � �Ñ� , GµIg @(I]� is a good approximation of ² ¯ �/@C� (see Proposition 2.2). Recall

that in Section 1.2, we saw that G(Il@ is the information theoretic limit for codes over any

alphabet. The discussion above states that we match this bound for large alphabets.

The proof of Theorem 2.1 uses a general random code. A natural question to ask is if

one can prove Theorem 2.1 for special classes of codes: for example, linear codes. For��
õV it is known that Theorem 2.1 is true for linear codes [51]. However, unlike general

codes, where Theorem 2.1 (with ÝaRz G) holds for random codes with high probability, the

result in [51] does not hold with high probability. For �o�LV , it is only known that random

linear codes (with high probability) are �/@B!f�8� -list decodable with rate at least G8Iw² ¯ �^@��ÁIZ¹»º�¼ ¾ �
�� Z � I �U�`G�� .
Achieving List-Decoding Capacity with Explicit Codes

There are two unsatisfactory aspects of Theorem 2.1: (i) The codes are not explicit and (ii)

There is no efficient list-decoding algorithm. In light of Theorem 2.1, we can formalize the

challenge of list decoding that was posed in Section 1.2.3 as follows:

Grand Challenge. Let �*�tV and let
; R~@ÂR�GkI�G�6e� and ��� ; be reals. Give an explicit

construction2 of a � -ary code 1 with rate G3I{² ¯ �/@���I_� that is �^@"!f�a��G�6X �e�N� -list decodable.

Further, design a polynomial time list-decoding algorithm that can correct @ fraction of

errors while using lists of size ���`G�6X �<� .
We still do not know how to meet the above grand challenge in its entirety. In Chapter 3,

we will show how to meet the challenge above for large enough alphabets (with lists of

larger size).

2.2.2 Results Related to the � -ary Entropy Function

We conclude our discussion on list decoding by recording few properties of the � -ary en-

tropy function that will be useful later.

We first start with a calculation where the � -ary entropy function naturally pops up. This

hopefully will give the reader a feel for the function (and as a bonus will pretty much prove

the lower bound in Proposition 2.1). Let
; EL¬SEz G and �y�� V . We claim that the quantity� �� �! � ���PILG��i� � is approximated very well by � � ¾ � � ��� for large enough . To see this, let us

2By explicit construction, we mean an algorithm that in time polynomial in the block length of the code

can output some succinct description of the code. For a linear code, such a description could be the

generator matrix of the code.

23

first use Stirling’s approximation of �#" by �/�06e?X�%$ (for large enough �)3 to approximate� �� �! � :þ �¬Dÿ
 �"�/ Á¬"�&"®�/ uI´ �¬��&"(' "�£?�� � ?�� å � ��^ Á¬"� � � �/ uI´ Á¬"� � å � � ? �
 � � ¹»º�¼�¾ �� � � ¹»º½¼`¾ � � � � � �<� Z� å�� � ¹»º�¼`¾ � �e� Z� å�� �®�
t� å �<� � ¹»º�¼`¾ � � � Z� å�� � ¹»º�¼`¾ � Z½ å�� �®� ¤
Thus, we have

þ �¬Dÿ �W�JI�G�� � � ' � å �e� � ¹»º�¼`¾ � � � Z½ å�� � ¹»º½¼`¾ � Z� å�� �®� ��� � � ¹»º½¼`¾ � ¯ å�Z �
L��� ¾ � � ��� !
as desired.

Figure 2.1 gives a pictorial view of the � -ary function for the first few values of � .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

H
q
(x

)
 -

--
>

x --->

q=2
q=3
q=4

Figure 2.1: A plot of ² ¯ ��¬�� for �§
2VU!f� and � . The maximum value of G is achieved at¬§
÷G�IQG� 6X � .
We now look at the � -ary entropy function for large � .

Proposition 2.2. For small enough � , G9I´² ¯ �/@��8 �|G9I{ @PI{� for every
; R~@ÂE|G9IxG�6e� if

and only if � is V�� � Z � �Ñ� .
3There is a) *,+�- factor that we are ignoring.

24

Proof. We first note that ² ¯ �^@��³
Q@8¨ª©£«£�̄ ���jIgG��>Iy @9¨ª©£«£¯�@kI0 �� G"Io@C�Üª©<«£�̄ �� G"Io@C�k
�@9¨ª©<«> ¯��W �úIG���nQ²w�/@C�N6µ¨ª©<« � � . Now if �g
HV Z � � , we get that ² ¯ �/@C��Eõ@yn,� as ¨ª©£«> ¯��W �}IqG� ��E%G and²w�^@��JEvG . Next we claim that for small enough � , if �Â�vG�6X � � then ¨ª©£« ¯ �W�sILG��J�vG(I~� .
Indeed, ¨ª©£«> ¯� ���ÐI�G��k
pGµn~� G̀�6µ̈®­� �<�U¨®­ú� G̀³IFG�6e�<�³
pGk I_�/. Z¯ ¹10 ¯�2 , which is at least GkIK � for���|G� 6X� � . Finally, if �P
5V � � �3 � (but �� �pG�6� � �), then for fixed @ , ²w �/@��`6µ̈ª©£«8�P
Q�c�54-�`G�� . Then@8¨ª©£«£¯��W�cIyG� �fn}²w �^@��N6ä¨ª©£«3���, @"IJ�£ns���64(� G̀��8�x@�ns� , which implies that G£Is² ¯ �/@C�9R�G£I-@"IJ� ,
as desired.

Next, we look at the entropy function when its value is very close to G .
Proposition 2.3. For small enough ��� ; ,² ¯ þ G�I G� Il� ÿ E|G�I�Ü ¯ � � !Ü ¯ is constant that only depends on � .
Proof. The intuition behind the proof is the following. Since the derivate of ² ¯ ��¬"� is zero

at ¬u
pGkIFG�6e� , in the Taylor expansion of ² ¯ ��G3I�G�6e�9IS �<� the � term will vanish. We will

now make this intuition more concrete. We will think of � as fixed and G� 6� � as growing. In

particular, we will assume that �� RqG� 6e� . Consider the following equalities:² ¯ ��G�IQG�6X�JI �́<�³
 I þ G�I G� Il� ÿ ¨ª©£«£¯ þ GÐIQG�6e�-I´��-IQG ÿ I þ G� n�� ÿ ¨ª©<«>¯ þ G� nl� ÿ
 Il¨ª©£« ¯ þ G� þ G�I �X ��JIQG ÿJÿ n þ G� nl� ÿ ¨ª©£« ¯ þ G�IQ�����£�`6C�W�-I�G��G8n���� ÿ
 G�I G¨®­(�87 ¨®­ þ GÐI ����-IQG ÿ I þ G� n�� ÿ ¨®­ þ G� IQ�����£�`6C�W�-IQG��G9nl�X � ÿ:9
 G9n �C�/� � �ä I G¨®­��87 I �X ��JIQG I � � � �V��W�-IQG�� � I þ G� n�� ÿ þ I �X ��-IQGI � � � �V����JI�G�� � Il���� n � � � �Vöÿ:9 (2.3)
 G9n �C�/� � �ä I G¨®­��87 I �X ��JIQG I � � � �V��W�-IQG�� �I þ G� n�� ÿ þ I �X � ��JIQG n � � � � ���JI�V>�V��W�-I�G�� � ÿ� 9
 G9n �C�/� � �ä I G¨®­�� 7 I � � � �V��W�-IQG�� � n � � � ��JI�G I � � � � ���JIFV£�V����JI�G�� � 9 (2.4)
 G�I � � � �V�̈®­� �C���-IQG�� n �C�/� � �

25

E G�I � � � ��k¨®­(�U�W�-IQG��
(2.5)

(2.3) follows from the fact that for · ¬�·jR2G , ¨®­j�`G�n,¬" �ò
õ¬uIx ¬ � 6<Vòn,¬ � 6X ��I�¤¥¤¥¤ and by

collecting the � � and smaller terms in �C�/� � � . (2.4) follows by rearranging the terms and by

absorbing the � � term in �U��� � � . The last step is true assuming � is small enough.

We will also work with the inverse of the � -ary entropy function. Note that ² ¯ �� ��� on the

domain ; !¥G-ILG�6e��¡ is an bijective map into ; !¥G�¡ . Thus, we define ² å�Z¯ �<;���
|¬ such that² ¯ �/¬��³
=; and
; E�¬0E|G�IQG�6e� . Finally, we will need the following lower bound.

Lemma 2.4. For every
; E>;§E|G�I�G�6e� and for every small enough ��� ; ,² å�Z¯ �<;�Il� � 6eÜ �¯ �9�t² å�Z¯ �<;��ä Il�� !

where Ü �¯ �|G is a constant that depends only on � .
Proof. It is easy to check that ² å�Z¯ �?;�� is a strictly increasing convex function in the range;r+ ; !¥G�¡ . This implies that the derivate of ² å�Z¯ �<;�� increases with ; . In particular,�W² å�Z¯ �½ �^�`G��0� �i² å�Z¯ �½ �/�?;�� for every

; E@;qE G . In other words, for every
; RA;�E G ,

and (small enough) Ýy� ;
, � �e�¾ �6Bë � å � �X�¾ �6B å�� �� E � �e�¾ � Z � å � �X�¾ � Z½å�� �� . Proposition 2.3 along with

the facts that ² å�Z¯ ��G��}
öGòIqG� 6e� and ² å�Z¯ is increasing completes the proof if one picksÜë �¯
tÖDC�EÁ�`G£!¥G�6eÜ ¯ � and ÝP
Q� � 6eÜë �¯ .
2.3 Definitions Related to Property Testing of Codes

We first start with some generic definitions. Let �*�tV , {�|G be integers and let
; Rx �*R�G

be a real. Given a vector ìz+2 » ��¡ � and a subset ¶F�ù » ��¡ � , we say that ì is � -close to ¶
if there exist a dp+�¶ such that ÝU�^ ìk !`dµ�aEH� , where ÝU�^ ì3!�dµ�y
 Ì �ç ì3!�d� �`6� is the relative

Hamming distance between ì and d . Otherwise, ì is � -far from ¶ .

Given a � -ary code 1 of block length , an integer Gg�mG and real
; Rq�§RvG , we say

that a randomized algorithm H À is an �? G<! �̀<� -tester for 1 if the following conditions hold:�
(Completeness) For every codeword d´+K1 , I�JX H À �^ d��k
pG�¡�
pG , that is, H À always

accepts a codeword.� (Soundness) For every dl+F »��¡ª� that is � -far from 1 , I�JX H À �^ d��k
pG�¡jE|G�6e � , that is,

with probability at least V£6e� , H À rejects d .�
(Query Complexity) For every random choice made by H À , the tester only probes at

most G positions in d .

26

We remark that the above definition only makes sense when 1 has large distance. Oth-

erwise we could choose 1ö
 ¸��¡®� and the trivial tester that accepts all received words is

a � ; ! �̀<� -tester. For this thesis, we will adopt the convention that whenever we are taking

about testers for a code 1 , 1 will have some non trivial distance (in most cases 1 will have

linear distance).

The above kind of tester is also called a one-sided tester as it never makes a mistake

in the completeness case. Also, the choice of V> 6X � in the soundness case is arbitrary in the

following sense. The probability of rejection can be made G(I~ Ý for any Ý. � ;
, as long as

we are happy with �a�? G>� many queries, which is fine for this thesis as we will be interested

in the asymptotics of the query complexity. The number of queries (or G) can depend on .

Note that there is a gap in the definition of the completeness and soundness of a tester. In

particular, the tester can have arbitrary output when the received word d is not a codeword

but is still � -close to 1 . In particular, the tester can still reject (very) close-by codewords.

We will revisit this in Chapter 8.

We say that a �? G<! �̀<� tester is a local tester if it makes sub-linear number of queries4,

that is, Gy
K�U�/ j � and � is some small enough constant. A code is called a Locally Testable

Code (or LTC), if it has a local tester. We also say that a local tester for a code 1 allows for

locally testing 1 .

2.4 Common Families of Codes

In this section, we will review some code families that will be used frequently in this thesis.

2.4.1 Reed-Solomon Codes

Reed-Solomon codes (named after their inventors [90]) is a linear code that is based on

univariate polynomials over finite fields. More formally, an ³!ë ��nlG�¡ ¯ Reed-Solomon code

with �_R� and �§�p is defined as follows. Let �k Z�!¥¤¥¤¥¤� !N� � be distinct elements from � ¯
(which is why we needed �� �,). Every message Lh
z Æ^� ý !¥¤¥¤¥¤�!�� ' È +]�Á' � Z¯ is thought of

as a degree � polynomial over � ¯ by assigning the �3n_G symbols to the �3n_G coefficients of

a degree � polynomial. In other words, �NM��<O{�³
�� ý na�[ZPOtn0�����½ n� � ' O ' . The codeword

corresponding to L is defined as follows4P¶��QL���
z ÆW�RM��W��ZN�b!�¤¥¤¥¤�!ë �(M���� � � È ¤
Now a degree � polynomial can have at most � roots in any field. This implies that any two

distinct degree � polynomials can agree in at most � places. In other words,

Proposition 2.5. An ³!ë �}ntG�¡ ¯ Reed-Solomon code is an ³!ë �}nQG£!NTo
� uI~ �� ¡ ¯ code.

4Recall that in this thesis we are implicitly dealing with code families.

27

By the Singleton bound (see for example [80]), the distance of any code of dimension�-n~G and length is at most aIw� . Thus, Reed-Solomon codes have the optimal distance:

such codes are called Maximum Distance Separable (or MDS) codes. The MDS property

along with its nice algebraic structure has made Reed-Solomon code the center of a lot of

research in coding theory. In particular, the algebraic properties of these codes have been

instrumental in the algorithmic progress in list decoding [97, 63, 85]. In addition to their

nice theoretical applications, Reed-Solomon codes have found widespread use in practical

applications. In particular, these codes are used in CDs, DVDs and other storage media,

deep space communications, DSL and paper bar codes. We refer the reader to [105] for

more details on some of these applications of Reed-Solomon codes.

2.4.2 Reed-Muller Codes

Reed-Muller codes are generalization of Reed-Solomon codes. For integers

 � G and� �hG , the message space is the set of all polynomials over � ¯ in

variables that have

total degree at most � . The codeword corresponding to a message is the evaluation of

the corresponding

-variate polynomial over distinct points in �TS ¯ (note that this requires� S �÷). Finally, note that when

 G and ��
m� , we get an ³!ë �ynqG�¡ ¯ Reed-Solomon

code. Interestingly, Reed-Muller codes [82, 89] were discovered before Reed-Solomon

codes.

2.5 Basic Finite Field Algebra

We will be using a fair amount of finite field algebra in the thesis. In this section, we recap

some basic notions and facts about finite fields.

A field consists of a set of elements that is closed under addition, multiplication and

(both additive and multiplicative) inversion. It also has two special elements
;

and G , which

are the additive and multiplicative identities respectively. A field is called a finite field if its

set of elements is finite. The set of integers modulo some prime U , form the finite field �B� .
The ring of univariate polynomials with coefficients from � will be denoted by �k O[¡ .

A polynomial #a �<O{� is said to be irreducible if for every way of writing #. �?O{�(
WV*�?O{�³�ø �?O{� , either V*�?O{� or

ø �<O{� is a constant polynomial. A polynomial is called monic, if the

coefficient of its leading term is G .
If #. �<O_� is an irreducible polynomial of degree T over a field � , then the quotient ring�k O[¡^6C�i#a �<O{�`� , consisting of all polynomials in �³ O[¡ modulo #. �?O{� is itself a finite field

and is called field extension of � . The extension field also forms a vector space of dimensionT over � .

All finite fields are either ��� for prime U or is an extension of a prime field. Thus, the

number of elements in a finite field is a prime power. Further, for any prime power � there

exists only one finite field (up to isomorphism). For any � that is a power of prime U , the

field � ¯ has characteristic of U . The multiplicative groups of non-zero elements of a field

28

� ¯ , denoted by �	X¯ , is known to be cyclic. In other words, �(X¯
O ¢cG£!ZYµ!ZY � !�¤¥¤¥¤�!�Y ¯ åU� ¦ for

some element YS+g� ¯\[¢ ; ¦ . Y is also called the primitive element or generator of �R X¯ .
The following property of finite fields will be crucial. Any polynomial �µ�<O_� of degree

at most T in �k O[¡ has at most T roots, where �p+Q� is a root of ���?O{� if �������*
 ;
. We

would be also interested in finding roots of univariate polynomials (over extension fields)

for which we will use a classical algorithm due to Berlekamp [16].

Theorem 2.4 ([16]). Let U be a prime. There exists a deterministic algorithm that on input

a polynomial in ���̂]� O[¡ of degree T , can find all the irreducible factors (and hence the roots)

in time polynomial in T , U and _ .

