
29

Chapter 3

LIST DECODING OF FOLDED REED-SOLOMON CODES

3.1 Introduction

Even though list decoding was defined in the late 1950s, there was essentially no algorith-

mic progress that could harness the potential of list decoding for nearly forty years. The

work of Sudan [97] and improvements to it by Guruswami and Sudan in [63], achieved effi-

cient list decoding up to a @a`cb<�i4P�k
pG³I � 4 fraction of errors for Reed-Solomon codes of

rate 4 . Note that GYIK� 4|�~@CAµ�i4}�³
÷��GYI04P�N6<V for every rate 4 ,
; R�4pR�G , so this result

showed that list decoding can be effectively used to go beyond the unique decoding radius

for every rate (see Figure 3.1). The ratio @d`cb<�i4P�N6�@UAµ�i4P� approaches V for rates 4r) ;
,

enabling error-correction when the fraction of errors approaches 100%, a feature that has

found numerous applications outside coding theory, see for example [98], [49, Chap. 12].

Unfortunately, the improvement provided by [63] over unique decoding diminishes for

larger rates, which is actually the regime of greater practical interest. For rates 4q) G , the

ratio ��e�fb� � ��hgC� � � approaches G , and already for rate 4r
 G�6<V the ratio is at most G£¤®Gji . Thus,

while the results of [97, 63] demonstrated that list decoding always, for every rate, enables

correcting more errors than unique decoding, they fell short of realizing the full quantitative

potential of list decoding (recall that the list-decoding capacity promises error correction

up to a G�IF45
LVX@CAµ�i4P� fraction of errors).

The bound @k`cb£�W4}� stood as the best known decoding radius for efficient list decoding

(for any code) for several years. In fact constructing �/@"!f�8� -list decodable codes of rate4 for @_�p@k`lb£�W4}� and polynomially bounded � , regardless of the complexity of actually

performing list decoding to radius @ , itself was elusive. Some of this difficulty was due to

the fact that G�I{� 4 is the largest radius for which small list size can be shown generically,

via the so-called Johnson bound which argues about the number of codewords in Hamming

balls using only information on the relative distance of the code, cf. [48].

In a recent breakthrough paper [85], Parvaresh and Vardy presented codes that are list-

decodable beyond the GBI � 4 radius for low rates 4 . The codes they suggest are variants of

Reed-Solomon (or simply RS) codes obtained by evaluating �O�|G correlated polynomials

at elements of the underlying field (with �
öG giving RS codes). For any � �%G , they

achieve the list-decoding radius @ �6$³�m�n �W4}�ò
�GòI olp �� � $ 4 $. For rates 4H) ;
, choosing� large enough, they can list decode up to radius GòI,�a�W4K¨ª©£«B�`G�6<4}�`� , which approaches

the capacity G�IF4 . However, for 4÷�pG�6cGrq , the best choice of � (the one that maximizes@ �6$³�m�n �i4P�) is in fact �
hG , which reverts back to RS codes and the list-decoding radiusGoI � 4 . (See Figure 3.1 where the bound GoI s� �c4 � for the case �
 V is plotted

30

— except for very low rates, it gives a small improvement over @l`cb<�i4}� .) Thus, getting

arbitrarily close to capacity for some rate, as well as beating the G-I�� 4 bound for every

rate, both remained open before our work1.

In this chapter, we describe codes that get arbitrarily close to the list-decoding capacity

for every rate (for large alphabets). In other words, we give explicit codes of rate 4 together

with polynomial time list decoding up to a fraction GsIt4qI,� of errors for every rate 4
and arbitrary �´� ;

. As mentioned in Section 2.2.1, this attains the best possible trade-

off one can hope for between the rate and list-decoding radius. This is the first result that

approaches the list-decoding capacity for any rate (and over any alphabet).

Our codes are simple to describe: they are folded Reed-Solomon codes, which are in

fact exactly Reed-Solomon codes, but viewed as codes over a larger alphabet by careful

bundling of codeword symbols. Given the ubiquity of RS codes, this is an appealing feature

of our result, and in fact our methods directly yield better decoding algorithms for RS codes

when errors occur in phased bursts (a model considered in [75]).

Our result extends easily to the problem of list recovery (recall Definition 2.4). The

biggest advantage here is that we are able to achieve a rate that is independent of the size of

the input lists. This is an extremely useful feature that will be used in Chapters 4 and 5 to

design codes over smaller alphabets. In particular, we will construct new codes from folded

Reed-Solomon codes that achieve list-decoding capacity over constant sized alphabets (the

folded Reed-Solomon codes are defined over alphabets whose size increases with the block

length of the code).

Our work builds on existing work of Guruswami and Sudan [63] and Parvaresh and

Vardy [85]. See Figure 3.1 for a comparison of our work with previous known list-decoding

algorithms (for various codes).

We start with the description of our code in Section 3.2 and give some intuition why

these codes might have good list decodable properties. We present the main ideas in our

list-decoding algorithms for the folded Reed-Solomon codes in Section 3.3. In Section 3.4,

we present and analyze a polynomial time list-decoding algorithm for folded RS codes of

rate 4 that can correct roughly G�I s� 4 � fraction of errors . In Section 3.5, we extend

the results in Section 3.4 to present codes that can be efficiently list decoded up to the

list-decoding capacity. Finally, we extend our results to list recovery in Section 3.6.

3.2 Folded Reed-Solomon Codes

In this section, we will define a simple variant of Reed-Solomon codes called folded Reed-

Solomon codes. By choosing parameters suitably, we will design a list-decoding algorithm

that can decode close to the optimal fraction G�I�4 of errors with rate 4 .

1Independent of our work, Alex Vardy (personal communication) constructed a variant of the code defined

in [85] which could be list decoded with fraction of errors more than tTu) v for all rates v . However, his

construction gives only a small improvement over the t�u) v bound and does not achieve the list-decoding

capacity.

31

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ρ

(F

R
A

C
T

IO
N

 O
F

 E
R

R
O

R
S

)
 -

--
>

R (RATE) --->

List decoding capacity (this chapter)
Unique decoding radius

Guruswami-Sudan
Parvaresh-Vardy

Figure 3.1: List-decoding radius @ plotted against the rate 4 of the code for known algo-

rithms. The best possible trade-off, i.e., list-decoding capacity, is @o
pGÐI´4 , and our work

achieves this.

3.2.1 Description of Folded Reed-Solomon Codes

Consider a ³!ë�-nFG�¡ ¯ Reed-Solomon code 1 consisting of evaluations of degree � polyno-

mials over � ¯ at the set � X¯ . Note that ��
t ÂntG . Let Y be a generator of the multiplicative

group � X¯ , and let the evaluation points be ordered as G£!ZYä!ZY � !¥¤¥¤�¤¥!�Y � å�Z . Using all nonzero

field elements as evaluation points is one of the most commonly used instantiations of

Reed-Solomon codes.

Let � �õG be an integer parameter called the folding parameter. For ease of presenta-

tion, we will assume that � divides [
t�JI�G .
Definition 3.1 (Folded Reed-Solomon Code). The � -folded version of the RS code 1 ,

denoted wyx{z�| ¾ � }�� $ � ' , is a code of block length ~ù
� Y6�� over � $ ¯ , where w
p�sILG . The

encoding of a message ���?O{� , a polynomial over � ¯ of degree at most � , has as its � ’th
symbol, for

; EF�,RH Y6�� , the � -tuple �W���? Yd� $ �b!f���? Yk� $ � Z �b!¥�¥���ä!f�µ�< Yk� $ � $ å�Z �`� . In other

words, the codewords of 1 �
�wyx{z�| ¾ � }�� $ � ' are in one-one correspondence with those of

the RS code 1 and are obtained by bundling together consecutive � -tuple of symbols in

codewords of 1 .

The way the above definition is stated the message alphabet is � ¯ while the codeword

alphabet is � $ ¯ whereas in our definition of codes, both the alphabets were the same. This

32

�P� �<�6�=�P� �Q���=�P� �<�����P� �<�6����� �<�6�=�P� �Q���=�P� �?���=�P� �<��� �P� �<�����6����� �<�����6���P� �<�����6���P� �?���� �5�
�P� �?�6��P� �Q�5��P� �<����P� �?�6�

��� �<�6���� �Q������ �<�6���� �Q���
�P� �?�����6��P� �?�����6��P� �?��������P� �?���� �5�

Figure 3.2: Folding of the Reed-Solomon Code with Parameter ���=� .
can be easily taken care of by bundling � consecutive message symbols from �(� to make

the message alphabet to be �T�� . We will however, state our results with the message symbols

as coming from ��� as this simplifies our presentation.

We illustrate the above construction for the choice � �W� in Figure 3.2. The polyno-

mial ¡R¢Q£¥¤ is the message, whose Reed-Solomon encoding consists of the values of ¡ at¦l§©¨�¦«ª&¨j¬r¬j¬r¨�¦d­�®lª where ¦d¯ �±° ¯ . Then, we perform a folding operation by bundling together

tuples of � symbols to give a codeword of length ²´³�� over the alphabet �´µ� .
Note that the folding operation does not change the rate ¶ of the original Reed-Solomon

code. The relative distance of the folded RS code also meets the Singleton bound and is at

least ·¹¸º¶ .

Remark 3.1 (Origins of term “folded RS codes”). The terminology of folded RS codes

was coined in [75], where an algorithm to correct random errors in such codes was pre-

sented (for a noise model similar to the one used in [27, 18]: see Section 3.7 for more de-

tails). The motivation was to decode RS codes from many random “phased burst” errors.

Our decoding algorithm for folded RS codes can also be likewise viewed as an algorithm

to correct beyond the ·{¸¼» ¶ bound for RS codes if errors occur in large, phased bursts

(the actual errors can be adversarial).

3.2.2 Why Might Folding Help?

Since folding seems like such a simplistic operation, and the resulting code is essentially

just a RS code but viewed as a code over a large alphabet, let us now understand why it can

possibly give hope to correct more errors compared to the bound for RS codes.

Consider the folded RS code with folding parameter �½�¾� . First of all, decoding the

folded RS code up to a fraction ¿ of errors is certainly not harder than decoding the RS

code up to the same fraction ¿ of errors. Indeed, we can “unfold” the received word of the

folded RS code and treat it as a received word of the original RS code and run the RS list-

decoding algorithm on it. The resulting list will certainly include all folded RS codewords

33

within distance @ of the received word, and it may include some extra codewords which we

can, of course, easily prune.

In fact, decoding the folded RS code is a strictly easier task. To see why, say we want to

correct a fraction G�6�� of errors. Then, if we use the RS code, our decoding algorithm ought

to be able to correct an error pattern that corrupts every � ’th symbol in the RS encoding

of �µ�<O{� (i.e., corrupts �µ��¬��½ÎW� for
; ErÍuR� Y6��). However, after the folding operation,

this error pattern corrupts every one of the symbols over the larger alphabet � �¯ , and thus

need not be corrected. In other words, for the same fraction of errors, the folding operation

reduces the total number of error patterns that need to be corrected, since the channel has

less flexibility in how it may distribute the errors.

It is of course far from clear how one may exploit this to actually correct more errors. To

this end, algebraic ideas that exploit the specific nature of the folding and the relationship

between a polynomial �µ�?O{� and its shifted counterpart �µ�?YÀO_� will be used. These will

become clear once we describe our algorithms later in the chapter.

We note that the above simplification of the channel is not attained for free since the

alphabet size increases after the folding operation. For folding parameter � that is an

absolute constant, the increase in alphabet size is moderate and the alphabet remains poly-

nomially large in the block length. (Recall that the RS code has an alphabet size that is

linear in the block length.) Still, having an alphabet size that is a large polynomial is some-

what unsatisfactory. Fortunately, existing alphabet reduction techniques, which are used in

Chapter 4, can handle polynomially large alphabets, so this does not pose a big problem.

3.2.3 Relation to Parvaresh Vardy Codes

In this subsection, we relate folded RS codes to the Parvaresh-Vardy (PV) codes [85], which

among other things will help make the ideas presented in the previous subsection more

concrete.

The basic idea in the PV codes is to encode a polynomial � of degree � by the evalu-

ations of Á]�HV polynomials � ý
 �B!ë�£Z�!¥¤�¤¥¤�!f�ÃÂ½å�Z where ��Î��<O{ �P
 ��Îçå�Z¥�?O{ �PÄpÖo© Ò #.�<O_�
for an appropriate power T (and some irreducible polynomial #.�?O{� of some appropriate

degree) — let us call Á the order of such a code. Our first main idea is to pick the irre-

ducible polynomial #a�<O{� (and the parameter T) in such a manner that every polynomial �
of degree at most � satisfies the following identity: ���?YcO{�-
Ê�µ�<O_�ZÄz Öo© Ò #a�<O{� , whereY is the generator of the underlying field. Thus, a folded RS code with bundling using anY as above is in fact exactly the PV code of order Á§
v� for the set of evaluation points¢cG£!ZY $!ZY � $!¥¤¥¤¥¤�!ZY � � � $ å�Z ��$ ¦ . This is nice as it shows that PV codes can meet the Singleton

bound (since folded RS codes do), but as such does not lead to any better codes for list

decoding.

We now introduce our second main idea. Let us compare the folded RS code to a PV

code of order V (instead of order � where � divides) for the set of evaluation points¢cG£!ZYä !¥¤¥¤�¤�Y $ åU� !ZY $!ZY $ � Z !¥¤¥¤¥¤�!ZY � $ åU� !�¤¥¤¥¤�!ZY � å $!ZY � å $ � Z ¤¥¤¥¤�!ZY � åU� ¦ . We find that in the

PV encoding of � , for every
; EöÍ§Eö j6�� Iz G and every

; RÅ �QR%� Iz G , ���?Y $ Î � ���

34

appears exactly twice (once as �µ�?YÀ$ Î � � � and another time as ��Z��< Y å�Z Yl$ Î � � �), whereas it ap-

pears only once in the folded RS encoding. (See Figure 3.3 for an example when ��
õ �
and Áò
5 V .) In other words, the PV and folded RS codes have the same information, but the

ÆPÇ,È
codeword

É!Ê5Ë%Ì�ÍÉ!Ê ÎhË%Ì�ÍÉ!Ê ÎhÏÐËPÌ�Í
É& Ê5Ë%Ì�ÍÉ& Ê ÎhË%Ì�ÍÉ& Ê ÎhÏ�Ë%Ì�ÍÉ& Ê ÎhÑ�Ë%Ì�Í

É!Ê5Ë%Ò�ÍÉ!Ê Î^ËPÒ�ÍÉ!Ê Î Ï̂� Ë%Ò�ÍÉ!Ê Î Ñ̂� Ë%Ò�Í
É& Ê5Ë%Ì�ÍÉ& Ê ÎhË Ì Í É!Ê Î^ËPÌ�ÍÉ!Ê Î Ï̂� Ë Ì Í É& Ê ÎhÏ�Ë%Ì�ÍÉ& Ê ÎhÑ�Ë Ì Í

É& Ê ÎhÑ�Ë%Ì�Í

ÓPÔ
codeword

É!Ê5Ë%Ò�ÍÉ!Ê Î^Ë Ò Í É& Ê ÎhË%Ò�ÍÉ!Ê Î Ï̂� Ë Ò Í É!Ê ÎhÏÐËPÒ�ÍÉ!Ê ÎhÑÐË Ò Í
Figure 3.3: The correspondence between a folded Reed-Solomon code (with � �� and ¦d¯ � ° ¯) and the Parvaresh Vardy code (of order Õ � Ö) evaluated over× · ¨ ° ¨ °TØ ¨ ° µ ¨r¬j¬j¬r¨ ° ­�® µ ¨j¬r¬j¬r¨ ° ­Ã® ØÚÙ . The correspondence for the first block in the folded

RS codeword and the first three blocks in the PV codeword is shown explicitly in the left

corner of the figure.

rate of the folded RS codes is bigger by a factor of Ø � ® Ø� �ÛÖÜ¸ Ø� . Decoding the folded

RS codes from a fraction ¿ of errors reduces to correcting the same fraction ¿ of errors for

the PV code. But the rate vs. list-decoding radius trade-off is better for the folded RS code

since it has (for large enough � , almost) twice the rate of the PV code.

In other words, our folded RS codes are chosen such that they are compressed forms of

suitable PV codes, and thus have better rate than the corresponding PV code for a similar

error-correction performance. This is where our gain is, and using this idea we are able to

construct folded RS codes of rate ¶ that are list decodable up to radius roughly ·\¸ Ý�Þ�ß» ¶áà
for any Õãâ · . Picking Õ large enough lets us get within any desired ä of list-decoding

capacity.

3.3 Problem Statement and Informal Description of the Algorithms

We first start by stating more precisely the problem we will solve in the rest of the chapter.

We will give list-decoding algorithms for the folded Reed-Solomon code åyæáçkè̂ é,ê ërê � ê ì of

rate ¶ . More precisely, for every ·îí Õ íï� and ðòñAó , given a received word ô �

35

Æ �̀<; ý !¥¤¥¤¥¤�!Z; $ å�Zf�b !¥¤�¤¥¤�!��<; � å $!�¤¥¤¥¤�!Z; � å�ZN� È (where recall p
M�yIz G), we want to output all

codewords in wyxáz�| ¾ � }�� $ � ' that disagree with d in at most G*Iõ � G̀PnqÝ<�õ� $$ åkÂ � ZÚ� 4 Â � � Â � Z �
fraction of positions in polynomial time. In other words, we need to output all degree� polynomials �µ�<O{� such that for at least ��GòntÝ<� � $$ åkÂ � ZÚ� 4 Â � � Â � Z � fraction of

; E Í�E j6��� ILG , �µ�< Y Î $ � �¥��
¾;X Î $ � � (for every
; E=�0 Eq� I5 G). By picking the parameters �_!, Á

and Ý carefully, we will get folded Reed-Solomon codes of rate 4 that can be list decoded

up to a G�IF4�Il� fraction of errors (for any ��� ;).
We will now present the main ideas need to design our list-decoding algorithm. Readers

familiar with list-decoding algorithms of [97, 63, 85] can skip the rest of this section.

For the ease of presentation we will start with the case when Áò
t� . As a warm up, let

us consider the case when Áò
Q��
pG . Note that for �%
pG , we are interested in list decod-

ing Reed-Solomon codes. More precisely, given the received word d_
õÆ? ; ý !¥¤¥¤¥¤�!Z; � å�Z È , we

are interested in all degree � polynomials �µ�?O{� such that for at least � G̀�n�Ý<� � 4 fraction

of positions
; E|ÍJEp 0I5G , �µ�< Y Î �(
/ ;X Î . We now sketch the main ideas of the algorithms

in [97, 63]. The algorithms have two main steps: the first is an interpolation step and the

second one is a root finding step. In the interpolation step, the list-decoding algorithm finds

a bivariate polynomial öa�<OS!�÷o� that fits the input. That is,

for every position Í , öa�< Y Î !Z;X ÎW�k
 ; .
Such a polynomial öa���æ!���� can be found in polynomial time if we search for one with large

enough total degree (this amounts to solving a system of linear equations). After the inter-

polation step, the root finding step finds all factors of öa�<OS!�÷o� of the form ÷LIw�µ�<O_� . The

crux of the analysis is to show that

for every degree � polynomial �µ�<O{� that satisfies �µ�< Y Î ��
K;X Î for at least � G̀�nÝe� � 4 fraction of positions Í , ÷qIF�µ�?O{ � is indeed a factor of öa�?OK!�÷y� .
However, the above is not true for every bivariate polynomial öa�<OS!�÷o� that satisfies öa�< Y Î !Z;X ÎW�
 ; for all positions Í . The main ideas in [97, 63] were to introduce more constraints onöa�?OK!�÷y� . In particular, the work of Sudan [97] added the constraint that a certain weighted

degree of öa�<OS!�÷�� is below a fixed upper bound. Specifically, öa�?OK!�÷y� was restricted

to have a non-trivially bounded � G̀£!ë��� -weighted degree. The � G̀£!ë��� -weighted degree of a

monomial O Î ÷ � is Í¥nø�U� and the � G̀<!b �C� -weighted degree of a bivariate polynomial öa�?OK!�÷y�
is the maximum ��G£!ë��� -weighted degree among its monomials. The intuition behind defin-

ing such a weighted degree is that given öa�?OK!�÷y� with weighted � G̀<!b �C� of 7 , the univariate

polynomial öa�<OS!f�µ�<O{ � �̀ , where ���?O{� is some degree � polynomial, has total degree at

most 7 . The upper bound 7 is chosen carefully such that if �µ�<O_� is a codeword that needs

to be output, then öa�?OK!f�µ�<O_�N� has more than 7 zeroes and thus öa�<OS!f�µ�<O{ � �̀�ô ; , which

in turn implies that ÷õ I� ���?O{ � divides öa�?OS!h÷y� . To get to the bound of GJI|��G(nQÝe� � 4 ,

Guruswami and Sudan in [63], added a further constraint on öa�<OS!�÷o� that required it to

have G roots at �< Y Î !Z;X ÎW� , where G is some parameter (in [97] G�
pG while in [63], G is roughlyG�6X Ý).

36

We now consider the next non-trivial case of �
 Át
 V (the ideas for this case

can be easily generalized for the general �
ùÁ case). Note that now given the received

word Æ �̀? ; ý !Z;cZN�\ !��<;£��!Z;<���b!�¤¥¤¥¤�!��?; � åU��!Z; � å�ZN� È we want to find all degree � polynomials �µ�<O{ �
such that for at least V���G�n|Ý<�Ns� 4 � fraction of positions

; E�Í_E� j6<VÂIvG , ���?Y �WÎ �K
;£�WÎ and �µ�< Y �iÎ � Z �{
 ;£�WÎ � Z . As in the previous case, we will have an interpolation and

a root finding step. The interpolation step is a straightforward generalization of �
� G
case: we find a trivariate polynomial öa�<OS!�÷8!!úJ� that fits the received word, that is, for

every
; EõÍ�EÊ j6<V�IqG , öa�< Y �WÎ !Z;£�iÎ½!Z;£�iÎ � ZN�P
 ;

. Further, öa�?OS!h÷8!,úò� has an upper bound

on its ��G£!ë�"!ë��� -weighted degree (which is a straightforward generalization of the ��G£!ë��� -
weighted degree for the bivariate case) and has a multiplicity of G at every point. These

straightforward generalization and their various properties are recorded in Section 3.4.1.

For the root finding step, it suffices to show that for every degree � polynomial �µ�<O_� that

needs to be output öa�<OS!f���?O{�\ !f�µ�< YcO{ � �̀³ô ; . This, however does not follow from weighted

degree and multiple root properties of öa�?OK!�÷8!,úò� . Here we will need two new ideas,

the first of which is to show that for some irreducible polynomial #.�<O_� of degree ��I5G ,�µ�?O{� ¯ ô����?YcO{ �LÖy© Ò �W#.�?O{ �N� (this is Lemma 3.4). The second idea, due to Parvaresh and

Vardy [85], is the following. We first obtain the bivariate polynomial (over an appropriate

extension field) H��Q÷8!,úò�-ôûöa�<OS!�÷9!,úò�tÖy© Ò �W#.�?O{ �N� . Note that by our first idea, we are

looking for solutions on the curve ú|
ü÷ ¯ (÷ corresponds to �µ�<O_� and ú corresponds to�µ�?YÀO_� in the extension field). The crux of the argument is to show that all the polynomials�µ�?O{� that need to be output correspond to (in the extension field) some root of the equationH��Q÷8!�÷ ¯ �k
 ; . See Section 3.4.3 for the details.

As was mentioned earlier, the extension of the �
ýÁ[
%V case to the general �
Ág�õ V case is fairly straightforward (and is presented in part as Lemma 3.6). To go fromÁ_
ö� to any ÁlE%� requires another simple idea: We will reduce the problem of list

decoding folded Reed-Solomon code with folding parameter � to the problem of list de-

coding folded Reed-Solomon code with folding parameter Á . We then use the algorithm

outlined in the previous paragraph for the folded Reed-Solomon code with folding param-

eter Á . A careful tracking of the agreement parameter in the reduction, brings down the

final agreement fraction (that is required for the original folded Reed-Solomon code with

folding parameter �) from �{ � G̀DnÂÝ<� olp �� 4 $ (which can be obtained without the reduction)

to � G̀ún[Ý<� � $$ åkÂ � ZÚ�ÿþ p �� 4 Â . This reduction is presented in detail in Section 3.4 for the Áò
L V
case. The generalization to any Á}E,� is presented in Section 3.5.

3.4 Trivariate Interpolation Based Decoding

As mentioned in the previous section, the list-decoding algorithm for RS codes from [97,

63] is based on bivariate interpolation. The key factor driving the agreement parameter _
needed for the decoding to be successful was the (� G̀£!ë��� -weighted) degree 7 of the interpo-

lated bivariate polynomial. Our quest for an improved algorithm for folded RS codes will

be based on trying to lower this degree 7 by using more degrees of freedom in the interpo-

37

lation. Specifically, we will try to use trivariate interpolation of a polynomial öa�?OK!�÷µZb !h÷B�\�
through points in � �¯ . This enables us to perform the interpolation with 7 in �� �N�Ñ� � j � Z � � � ,
which is much smaller than the �o��� �� Y� bound for bivariate interpolation. In principle,

this could lead to an algorithm that works for agreement fraction 4 � � � instead of 4 Z � � . Of

course, this is a somewhat simplistic hope and additional ideas are needed to make this ap-

proach work. We now turn to the task of developing a trivariate interpolation based decoder

and proving that it can indeed decode up to a G�IF4 � � � fraction of errors.

3.4.1 Facts about Trivariate Interpolation

We begin with some basic definitions and facts concerning trivariate polynomials.

Definition 3.2. For a polynomial öa�<OS!�÷Y Z\ !�÷"�\�*+x � ¯ OS!h÷ÁZ�!�÷"�N¡ , its � G̀<!b �B!b �C� -weighted de-

gree is defined to be the maximum value of

 ny�Ã�> Z�ny�Ã��� taken over all monomials O SP ÷ � �Z ÷ � Ø�

that occur with a nonzero coefficient in öa�<OS!�÷Y Z�!�÷"�b� . If öa�<OS!�÷úZ\ !�÷"�\�k ô ; then its � G̀£!ë�"!ë��� -
weighted degree is

;
.

Definition 3.3 (Multiplicity of zeroes). A polynomial öa�?OS!h÷Y Z\ !�÷"�\� over � ¯ is said to have

a zero of multiplicity G§�vG at a point ���8!��úZ�!��B�\�- +{ � �¯ if öa�?O�nx �8!h÷ÁZµn��ÁZ�!�÷"�³n��B�b� has

no monomial of degree less than G with a nonzero coefficient. (The degree of the monomialO Î ÷ � �Z ÷ � Ø� equals ÍÁn �<Zj n¥��� .)
Lemma 3.1. Let ¢U���j Î½!Z;XÎçZ�!Z;XÎª�\�f¦ �Î Û Z be an arbitrary set of triples from � �¯ . Let öa�?OS!h÷úZb !h÷B�\�+S� ¯ OS!h÷ÁZ�!h÷B�N¡ be a nonzero polynomial of ��G£!ë�"!ë�� � -weighted degree at most 7 that has a

zero of multiplicity G at �W�úÎ�!Z;XÎçZ�!Z;XÎª�b� for every ÍP+q "¡ . Let �µ�<O_�\!����<O{ � be polynomials of

degree at most � such that for at least _� �t7Â6� G values of Í9+x "¡ , we have �����äÎW�3
 ;XÎçZ and�����úÎW�k
±;XÎª� . Then, öa�<OS!f���?O{�\!����?O{ �N�³ô ; .
Proof. If we define 4o�?O{�9
¾öa�<OS!f�µ�<O{�b!����<O{ � �̀ , then 4o�?O{� is a univariate polynomial of

degree at most 7 , and for every Í9+, �¡ for which �����Y ÎW�8
�;XÎçZ and ���W�úÎW�8
�;XÎª� , �<OrI��úÎW���
divides 4y�<O{� . Therefore if G� _o�m7 , then 4o�<O_� has more roots (counting multiplicities)

than its degree, and so it must be the zero polynomial.

Lemma 3.2. Given an arbitrary set of triples ¢U���Y Î�!Z;XÎçZ\ !Z;XÎª�\�ë¦��Î Û Z from � �¯ and an integer

parameter G|� G , there exists a nonzero polynomial öa�<OS!�÷äZ\ !�÷"�\� over � ¯ of ��G£!ë�"!ë��� -
weighted degree at most 7 such that öa�?OS!h÷j Z\ !�÷"�\� has a zero of multiplicity G at �W�j Î�!Z;XÎçZ\!�;XÎ �\�
for all Í� +t �¡ , provided 	 s
 ' Ø �L � � � � �� � . Moreover, we can find such a öa�<OS!�÷Y Z\ !�÷"�\� in time

polynomial in ³!ZG by solving a system of homogeneous linear equations over � ¯ .
Proof. We begin with the following claims. (i) The condition that öa�?OK!�÷äZ\ !h÷B�\� has a zero

of multiplicity G at ���úÎ�!Z;XÎçZ�!Z;XÎª�b� for all Í_+ �¡ amounts to :� � � �� � homogeneous linear

conditions in the coefficients of ö ; and (ii) The number of monomials in öa�<OS!�÷µZb !h÷B�\�
equals the number, say ~� �X �i�"!f7§� , of triples �^ Íë!� �<Z\ ! ���b� of nonnegative integers that obey

38

Íj n��Ã�<Zä nQ�Ã���� E÷ 7 is at least 	 s
 ' Ø . Hence, if 	 s
 ' Ø �5 :� � � �� � , then the number of unknowns

exceeds the number of equations, and we are guaranteed a nonzero solution.

To complete the proof, we prove the two claims. To prove the first claim, it suffices to

show that for any arbitrary tuple ���8!��8!ZYÁ� , the condition that öa�<OS!�÷9!,úò� has multiplicity G
at point ���8!��8!ZYÁ� amounts to � � � �� � many homogeneous linear constraints. By the definition

of multiplicities of roots, this amounts to setting the coefficients of all monomials of total

degree G in öa�<O�n� �8!�÷0n��3 !!úon YÁ� to be zero. In particular, the coefficient of the monomialO Î � ÷ Î Ø ú Î s is given by � Î�
 � � Î � � Î�
 Ø � Î Ø�� Î�
 s � Î s � Î
 �Î � � � Î
 ØÎ Ø � � Î
sÎ s � � Î
 � � Î
 Ø�� Î
s � Î
 � å> Î � � Î
 Ø å> Î Ø Y Î
s å> Î s , where� Î
 � � Î
 Ø � Î
s is the coefficient of O Î
 � ÷ Î
 Ø ú Î
s in öa�<OS!�÷9!,úò� . Thus, the condition on multiplici-

ties on roots of öa�?OS!h÷8!,úò� at ���8!��3 !ZYú� follows if the following is satisfied by for every

triple �/ Í Z̀\ !�Í���!�ÍÑ ��� such that Í Z̀j nlÍ½�µ n´ Í½ �(E>G :üÎ�
 � � Î � üÎ�
 Ø � Î Ø üÎ�
 s � Î s þ Íi� ZÍ Z̀�ÿ þ Íi��Í½�Nÿ þ Íi� �ÍÑ �fÿ � Î
 � � Î
 Ø � Î
s � Î
 � å> Î � � Î
 Ø å> Î Ø Y Î
s å> Î s
 ; ¤
The claim follows by noting that the number of integral solutions to Íb Z3n� Í½�Ð n�ÍÑ �g EÅ G is� � � �� � .

To prove the second claim, following [85], we will first show that the number ~y���Ñ�"!f 7Â�
is at least as large as the volume of the 3-dimensional region 	
Ê¢�¬� n��� ;�Zµn��� ;£�}Ep7h·¬j !Z;cZ�!Z;£�J� ; ¦���� � . Consider the correspondence between monomials in � ¯ OK!�÷8!,ú�¡ and

unit cubes in � � : O Î � ÷ Î Ø ú Î s)ùâ8 �^ Í Z̀\ !�Í���!�ÍÑ ��� , where â3 �/ ÍNZb ! Í̀½��!�Í½ �b�3
z Í Z̀\ !�ÍNZcn_G��úîg Í���!�Í���n_G��úî ÍÑ ��!�ÍÑ �knLG�� . Note that the volume of each such cube is G . Thus, ~��X �i�"!f7Â� is the volume of

the union of cubes â8 �^ ÍfZb ! Í̀½��!�Í½ �\� for positive integers ÍNZ\ !�Í½��!�ÍÑ � such that Í Z̀µn,�� Í½�³n��> Í½ �} E|7 :

let � denote this union. It is easy to see that 	���� . To complete the claim we will show

that the volume of 	 equals 	 s
 ' Ø . Indeed the volume of 	 is� 	ý � � 	 å�� � � 'ý � � 	 å�� � � ' å B �ý T�;£�BT�;cZCT>¬u
 � 	ý � � 	 å�� � � 'ý þ 7õIl ¬� I8;cZ ÿ T�;cZCT£¬
 � 	ý �i7õI´¬�� �V> � � T>¬
 GV> � � � 	ý � � T �
 7 �q�� � !
where the third equality follows by substituting �
57z Il¬ .

3.4.2 Using Trivariate Interpolation for Folded RS Codes

Let us now see how trivariate interpolation can be used in the context of decoding the folded

RS code 1s��
¾wyxáz�| ¾ � }�� $ � ' of block length ~
2�W�òILG� �N6� � . (Throughout this section, we

39

denote S
5�JIQG .) Given a received word �. +~�^ �T$ ¯ ��� for 1 � that needs to be list decoded,

we define d´ +] �B�¯ to be the corresponding “unfolded” received word. (Formally, let the � ’th
symbol of � be � � � � ý !¥¤¥¤¥¤�! � � � $ å�ZN� for

; E �lRÛ~ . Then d is defined by ; � $ ���
 � � � � for; E �aR=~ and
; E �YRx � .)

Suppose that �µ�?O{� is a polynomial whose encoding agrees with � on at least _ locations

(note that the agreement is on symbols from �T$ ¯). Then, here is an obvious but important

observation:

For at least _��/�vIxG�� values of Í , ; E,Í3 R~ , both the equalities �µ�< Y Î �³
±;XÎ and�µ�?Y Î � Z �³
=;XÎ � Z hold.

Define the notation ���?O{ �3
q �µ�< YcO{ � . Therefore, if we consider the triples �< Y Î !�;XÎ�!Z;XÎ � ZN��+� �¯ for ÍK
 ; !¥G£!¥¤¥¤¥¤�!� ~IvG (with the convention ; �
 ; ý), then for at least _��/ �hI2G��
triples, we have �µ�< Y Î �k
±;XÎ and ���< Y Î �k
±;XÎ � Z . This suggests that interpolating a polynomialöa�?OK!�÷úZ\ !�÷"�b� through these triples and employing Lemma 3.1, we can hope that ���?O{� will

satisfy öa�?OK!f�µ�<O_�\!f�µ�< YcO{ �N�-
 ; , and then somehow use this to find �µ�<O{� . We formalize

this in the following lemma. The proof follows immediately from the preceding discussion

and Lemma 3.1.

Lemma 3.3. Let �a +��ç � $ ¯ � � and let dw +0 � � ¯ be the unfolded version of � . Let öa�<OS!�÷Y Zb !h÷B�\�
be any nonzero polynomial over � ¯ of � G̀£!ë�"!ë��� -weighted degree at 7 that has a zero of

multiplicity G at �< Y Î !Z;XÎ�!�;XÎ � Zf� for Í�
 ; !¥G£!¥¤¥¤�¤¥!̀ k IyG . Let _ be an integer such that _9� 	�6$ å�Z � � .
Then every polynomial �µ�<O{�y +�� ¯ O[¡ of degree at most � whose encoding according towyx{z�| ¾ � }�� $ � ' agrees with � on at least _ locations satisfies öa�<OS!f���?O{�\ !f�µ�< YcO{ � �̀kô ; .

Lemmas 3.2 and 3.3 motivate the following approach to list decoding the folded RS

code wyxáz�| ¾ � }�� $ � ' . Here �0+t�^�À$ ¯ ��� is the received word and d~
H�<; ý !Z;cZ\ !�¤¥¤¥¤�!�; � å�Zf�J+w �B� ¯
is its unfolded version. The algorithm uses an integer multiplicity parameter G. �õ G , and is

intended to work for an agreement parameter GsE±_ÐE�~ .

Algorithm Trivariate-FRS-decoder:

Step 1 (Trivariate Interpolation) Define the degree parameter72
"! s# � � �GC�<G-nQG����?G-nFV> �%$�nQGò¤ (3.1)

Interpolate a nonzero polynomial öa�?OK!�÷Y Z\ !�÷"�b� with coefficients from � ¯ with the

following two properties: (i) ö has � G̀<!b �B!b �C� -weighted degree at most 7 , and (ii) ö
has a zero of multiplicity G at �?Y Î !Z;XÎ�!Z;XÎ � ZN� for Í�
 ; !¥G£!¥¤¥¤¥¤�!� [ILG (where ; �
¾; ý).

(Lemma 3.2 guarantees the feasibility of this step as well as its computability in time

polynomial in ³!ZG .)
Step 2 (Trivariate “Root-finding”) Find a list of all degree EL� polynomials �µ�?O{�9 +] � ¯ O[¡

such that öa�?OK!f�µ�<O_�\!f�µ�< YcO{ �N�(
 ; . Output those whose encoding agrees with � on

at least _ locations.

40

Ignoring the time complexity of Step 2 for now, we can already claim the following

result concerning the error-correction performance of this algorithm.

Theorem 3.1. The algorithm Trivariate-FRS-decoder successfully list decodes the folded

Reed-Solomon code wyxáz�| ¾ � }�� $ � ' up to a radius of ~÷ I'&h~ $$ å�Z s(' Ø� Ø � G9n Z� � � G8n �� �*) IKV .
Proof. By Lemma 3.3, we know that any �µ�?O{ � whose encoding agrees with � on _ or more

locations will be output in Step 2, provided _s� 	�6$ å�Z � � . For the choice of 7 in (3.1), this

condition is met for the choice _Ð
õ G9n,+ s(' Ø ��6$ å�Z � s �NG8n Z� � �fG8n �� � n Z�6$ å�Z � �*- . Indeed, we

have 7�/ �HI�G��� G E G�/�HI�G��PG . s# � � TG��<G-nQG����?G(n~ V> �únQG 2
 G�HIQG s � � þ G9n GG�ÿ þ G3n VGÁÿ n G�^�HIQG��� GR�G9n/. G�HIQG s � � þ G9n GG ÿ þ G8n VG ÿ n G�^�HIQG��� G10
±_\ !
where the first inequality follows from (3.1) and the fact that for any real ¬´� ; , !/¬2$.E|¬
while the second inequality follows from the fact that for any real ¬0� ; , ¬0R3!^ ¬4$³nFG . The

decoding radius is equal to ~÷ I _ , and recalling that 0
Q� ~ , we get bound claimed in the

lemma.

The rate of the folded Reed-Solomon code is 45
z�i�3n_G� �N6� { �Q��6� , and so the fraction

of errors corrected (for large enough G) is GÐI $$ å�Z 4 � � � . Letting the parameter � grow, we

can approach a decoding radius of G�I�4 � � � .
3.4.3 Root-finding Step

In light of the above discussion, the only missing piece in our decoding algorithm is an

efficient way to solve the following trivariate “root-finding” problem:

Given a nonzero polynomial öa�<OS!�÷Y Z\ !h÷B�\� with coefficients from a finite field� ¯ , a primitive element Y of the field � ¯ , and an integer parameter �0 Rq�sILG ,
find the list of all polynomials ���?O{� of degree at most � such that öa�<OS!f�µ�<O{�b!f���?YcO{ �N�³ô;
.

The following simple algebraic lemma is at the heart of our solution to this problem.

Lemma 3.4. Let Y be a primitive element that generates � X¯ . Then we have the following

two facts:

41

1. The polynomial #.�<O_� Þ6587
 O ¯ å�Z I8Y is irreducible over � ¯ .
2. Every polynomial ���?O{ �9+] � ¯ O[¡ of degree less than �-I�G satisfies ���?YcO{�k
5�µ�?O{� ¯Öy© Ò #a�<O{� .

Proof. The fact that #.�<O_�k
±O ¯ å�Z IøY is irreducible over � ¯ follows from a known, precise

characterization of all irreducible binomials, i.e., polynomials of the form O:9�I~Ü , see for

instance [77, Chap. 3, Sec. 5]. For completeness, and since this is an easy special case,

we now prove this fact. Suppose #a�<O{� is not irreducible and some irreducible polynomial�µ�<O_�§+q� ¯ O[¡ of degree ; , G{E/ ;[R%�*I÷G , divides it. Let < be a root of �µ�?O{� in the

extension field � ¯�= . We then have < ¯ = å�Z
MG . Also, ���><���
 ;
implies #.��<���
 ;

, which

implies < ¯ å�Z
½Y . These equations together imply Y ¾ = �e�¾ �X�
 G . Now, Y is primitive in� ¯ , so that Y? 9F
 G iff @ is divisible by �W�aIvG� � . We conclude that �.IÊG must divide¯ = å�Z¯ å�Z
÷G�nÂ��n. � � n0 �����½nÂ�BA å�Z . This is, however, impossible since G�nÂ��n.� � n0�¥���½nÂ�BA å�Z ôC;�/ Öo© Ò �W�(I,G� �N� and
; R�;JR,�(I�G . This contradiction proves that #.�<O_� has no such factor

of degree less than �JIQG , and is therefore irreducible.

For the second part, we have the simple but useful identity �µ�<O{� ¯
p�µ�<O ¯ � that holds

for all polynomials in � ¯ O0¡ . Therefore, ���?O{� ¯ Ip���?YcO{�K
 �µ�<O ¯ �-Ip���?YcO{� . SinceO ¯
 YcO implies �µ�<O ¯ �{
 �µ�?YÀO_� , �µ�<O ¯ �òI÷�µ �< YcO{ � is divisible by O ¯ IKYcO , and

thus also by O ¯ å�Z IºY . Hence �µ�<O_� ¯ ôm�µ�< YcO{ �u��Öo© Ò #.�<O_�N� which implies that �µ�<O{ � ¯Öo© Ò #.�<O_�³
5 �µ�< YcO{ � since the degree of ���?YcO{ � is less than �JI�G .
Armed with this lemma, we are ready to tackle the trivariate root-finding problem.

Lemma 3.5. There is a deterministic algorithm that on input a finite field � ¯ , a primitive

element Y of the field � ¯ , a nonzero polynomial öa�<OS!�÷Y Z\ !�÷"�b�Ð+g � ¯ OS!�÷úZ\ !�÷"�N¡ of degree less

than � in ÷úZ , and an integer parameter �. R���I~G , outputs a list of all polynomials �µ�<O{� of

degree at most � satisfying the condition öa�<OS!f�µ�<O{�b!f���?YcO{ �N�3 ô ; . The algorithm has run

time polynomial in � .
Proof. Let #.�<O_��
ýO ¯ å�Z I=Y . We know by Lemma 3.4 that #a�<O{� is irreducible. We

first divide out the largest power of #a�<O{� that divides öa�<OS!�÷Y Z�!�÷"�\� to obtain ö ý �<OS!�÷úZ\!h÷B�\�
where öa�?OS!h÷úZ\ !�÷"�\�Â
 #.�<O_� A ö ý �<OS!�÷úZ\ !h÷B�\� for some ;K� ;

and #a�<O{� does not divideö ý �<OS!�÷úZ\ !h÷B�\� . Note that as #a�<O{� is irreducible, ���?O{� does not divide #a�<O{� . Thus, if�µ�<O_� satisfies öa�<OS!f�µ�<O{�b!f���?YcO{ �N�yô ;
, then ö ý �<OS!f���?O{�\ !f�µ�< YcO{ �`�oô ;

as well, so we

will work with ö ý instead of ö . Let us view ö ý �<OS!�÷úZ\ !�÷"�\� as a polynomial H ý �<÷úZ\!h÷B�\� with

coefficients from � ¯ O[¡ . Further, reduce each of the coefficients modulo #a�<O{� to get a

polynomial H��<÷j Z�!�÷"�b� with coefficients from the extension field � ¯ ¾ �e� (which is isomorphic

to � ¯ O[¡^ 6C�W#.�<O_�N� as #.�<O_� is irreducible over � ¯). We note that H��<÷j Z\ !�÷"�\� is a nonzero

polynomial since ö ý �<OS!�÷úZ�!�÷"�b� is not divisible by #a�<O{� .
In view of Lemma 3.4, it suffices to find degree E � polynomials �µ�?O{� satisfyingö ý �<OS!f�µ�<O{ �b!ë �µ�?O{ � ¯ �g �/ Öo© Ò #.�<O_�N�oô ;

. In turn, this means it suffices to find elements

42D
+m� ¯ ¾ �e� satisfying H��

D
!
D
¯ �S
 ;

. If we define the univariate polynomial 4y�Q÷Y ZN� Þ6587
H��Q÷úZ\ !�÷ ¯Z � , this is equivalent to finding all

D
+] � ¯ ¾ �e� such that 4y�

D
�³
 ; , or in other words

the roots in � ¯ ¾ �e� of 4o�Q÷úZ`� .
Now 4o�<÷úZN� is a nonzero polynomial since 4o�<÷Y ZN��
 ;

iff ÷B��I±÷ ¯Z divides H��Q÷úZ�!�÷"�\� ,
and this cannot happen as H� �Q÷j Z\ !h÷B�\� has degree less than � in ÷Y Z . The degree of 4y�Q÷j ZN� is at

most T> � where T is the total degree of öa�?OK!�÷j Z�!�÷"�b� . The characteristic of � ¯ ¾ �e� is at most� , and its degree over the base field is at most �µ¨ª«8� . Therefore, by Theorem 2.4 we can find

all roots of 4y�Q÷úZN� by a deterministic algorithm running in time polynomial in T�!N� . Each of

the roots will be a polynomial in � ¯ O0¡ of degree less than �Y ISG . Once we find all the roots,

we prune the list and only output those roots �µ�<O{ � that have degree at most � and satisfyö ý �<OS!f���?O{�\ !f�µ�< YcO{ �`�k
 ; .
With this, we have a polynomial time implementation of the algorithm Trivariate-FRS-

decoder. There is the technicality that the degree of öa�?OS!h÷Y Z\ !�÷"�\� in ÷úZ should be less than� . This degree is at most 7Â6£� , which by the choice of 7 in (3.1) is at most �<Gµn0��� s# Y6£�ÂR�?GPn, �� ��� Z � � . For a fixed G and growing � , the degree is much smaller than � . (In fact, for

constant rate codes, the degree is a constant independent of .) By letting �{!ZG grow in

Theorem 3.1, and recalling that the running time is polynomial in ³!ZG , we can conclude the

following main result of this section.

Theorem 3.2. For every Ý_� ; and 4 ,
; RH 4ö RrG , there is a family of � -folded Reed-

Solomon codes for � in �a ��G�6e Ý<� that have rate at least 4 and that can be list decoded up

to a fraction G�It��G8 nFÝe� 4̀ � � � of errors in time polynomial in the block length and G�6e Ý .
Remark 3.2 (Optimality of degree � of relation between �µ�<O{� and �µ�< YcO{�). Let � ¯ ¾ �e�
be the extension field � ¯ O[¡^ 6C�W#.�<O_�N� — its elements are in one-one correspondence with

polynomials of degree less than �*I÷G over � ¯ . Let

D
$�� ¯ ¾ �e�) � ¯ ¾ �X� be such that for

every �µ�?O{ ��+[� ¯ ¾ �e� ,
D
�i�µ�<O_�N�3
� ���W°a �?O{ �N� for some polynomial ° over � ¯ . (In the above,

we had

D
�W���?O{ �N�-
õ �µ�<O{ � ¯ Öo© Ò �i#a�<O{ �`� and °a�?O{�-
/YcO ; as a polynomial over � ¯ ¾ �e� ,

D
� úò�-
 ú ¯ , and hence had degree � .) Any such map

D
is an � ¯ -linear function on � ¯ ¾ �e� ,

and is therefore a linearized polynomial, cf. [77, Chap. 3, Sec. 4], which has only terms

with exponents that are powers of � (including � ý
pG). It turns out that for our purposes

D
cannot have degree G , and so it must have degree at least � .
3.5 Codes Approaching List Decoding Capacity

Given that trivariate interpolation improved the decoding radius achievable with rate 4
from GyIq4 Z � � to GyIq4 � � � , it is natural to attempt to use higher order interpolation to

improve the decoding radius further. In this section, we discuss the quite straightforward

technical changes needed for such a generalization.

Consider again the � -folded RS code 1P��
�wyx{z�| ¾ � }�� $ � ' . Let Á be an integer in the rangeGsE�Á�E, � . We will develop a decoding algorithm based on interpolating an � ÁD n[G� � -variate

43

polynomial öa�?OS!h÷úZ�!�÷"��!¥¤¥¤�¤�!�÷TÂN� . The definitions of the � G̀£!ë�"!ë�"!¥¤¥¤¥¤�!ë��� -weighted degree

(with � repeated Á times) of ö and the multiplicity at a point �W�8!��Y Z\ !��B��!¥¤�¤¥¤�!��ÀÂf�8 +] � Â � Z¯ are

straightforward extensions of Definitions 3.2 and 3.3.

As before let dx
 �?; ý !�;cZ\ !¥¤¥¤�¤�!Z; � å�ZN� be the unfolded version of the received word �[+�ç � $ ¯ � � of the folded RS code that needs to be decoded. For convenience, define ; �
; �FE º Þ � for �t�ö . Following algorithm Trivariate-FRS-decoder, for suitable integer

parameters 7] !ZG , the interpolation phase of the � Á> naG�� -variate FRS decoder will fit a nonzero

polynomial öa�?OK!�÷úZ\ !¥¤�¤¥¤�!�÷TÂf� with the following properties:

1. It has � G̀£!ë�"!ë�"!¥¤¥¤¥¤�!ë��� -weighted degree at most 7
2. It has a zero of multiplicity G at �?Y Î !Z;X Î� !Z;X Î � Z\ !�¤¥¤¥¤�!�;X Î � Â½ å�Zf� for Í³
 ; !¥G£!¥¤¥¤¥¤�!� g I�G .

The following is a straightforward generalization of Lemmas 3.2 and 3.3.

Lemma 3.6. (a) Provided 	 þ p �� Â � Z �HG ' þ � � � � ÂÂ � Z � , a nonzero polynomial öa�<OS!�÷Y Z\ !¥¤¥¤�¤¥!h÷ÀÂf�
with the following properties exists. öa�<OS!�÷Y Z\ !¥¤�¤¥¤�!�÷TÂf� has � G̀£!ë�"!¥¤¥¤¥¤�!ë��� weighted de-

gree at most 7 and has roots with multiplicity G at �< Y Î !Z;X Î� !�;X Î � Z�!�¤¥¤¥¤�!Z;X Î � Â½ å�ZN� for everyÍ3 +´ ¢ ; !¥¤�¤¥¤¥!� g IQGe¦ . Moreover such a öa�<OS!�÷j Z�!¥¤¥¤¥¤�!�÷TÂN� can be found in time polyno-

mial in , G Â and 7 Â � Z 6£� Â .
(b) Let _ be an integer such that _� � 	�6$ åkÂ � Z � � . Then every polynomial �µ�<O{ ��+[� ¯ O0¡ of

degree at most � whose encoding according to wyx{zk| ¾ � }�� $ � ' agrees with the received

word � on at least _ locations satisfies öa�<OS!f���?O{�\ !f�µ�< YcO{ �b !¥¤�¤¥¤�!f�µ�< Y Â½ å�Z O{ � �̀kô ; .
Proof. The first part follows from (i) a simple lower bound on the number of monomialsO 9 ÷ A �Z �����^÷IA þÂ with @ä nu����;¥ZenJ;ë�c n0�����½ nK;! ÂN�9Et7 , which gives the number of coefficients oföa �?OK!�÷úZ\ !¥¤¥¤�¤¥!h÷ÀÂf� , and (ii) an estimation of the number of ��ÁD n0 G�� -variate monomials of total

degree less than G , which gives the number of interpolation conditions per � ÁD n0 G�� -tuple. We

now briefly justify these claims. By a generalization of the argument in Lemma 3.2, one

can lower bound the number of monomials OL9Ú÷ A �Z �����, ÷ A þÂ such that @Ðn_����;¥Z�n´ �����M;! Âf�8 Et7
by the volume of 	 ÂÑ� 	
õ ¢� ¬on,�� ;c Zä n,�� ;£�³nt�����£n,�� ;�Â- E|7S· ¬j !�;cZ�!Z;£��!¥¤�¤¥¤�;�Â- � ; ¦ . We will

use induction on Á to prove that the volume of 	áÂÑ� 	 is 	 þ p �� Â � Z �HG ' þ . The proof of Lemma 3.2

shows this for Ás
LV . Now assume that the volume of 	áÂ½ å�Z½ � 	 is exactly 	 þÂ G ' þ �e� . Note that the

subset of 	 ÂÑ� 	 where the value of ;� Â3
t� is fixed is exactly 	 Â½ å�Z½ � 	 å '�N Thus, the volume of	: ÂÑ� 	 is exactly � 	 � 'ý �i7õ IF�� ;�Âf� ÂÁ�" � Â½ å�Z T�;�Âk
 GÁ�"�� Â � 	ý � Â T �
 7 Â � Z� Á9ntG� �! " � Â !
where the second equality follows by substituting �
5 7õ I~ �� ;� Â . Further, a straightforward

generalization of the argument in the proof of Lemma 3.2, shows that the condition on the

44

multiplicity of the polynomial öa�<OS!�÷j Z\ !¥¤�¤¥¤�!�÷TÂf� is satisfied if for every Í3 +´¢ ; !¥¤�¤¥¤�!� g IQGe¦
and every tuple �>�½!� �<Z�!¥¤¥¤¥¤�! �© ÂN� such that ��n �£Zún �� �ú�����en¥��Â9E>G the following is

;ü �
 � � ü
�
� � � � ü

�
Ø � � Ø �¥��� ü
�
þ � � þ þ � ��\ÿ þ � �Z�eZ�ÿ þ � ���� �Nÿ ����� þ � �Â�© Â� ÿ � �
 � �
� � Î�
 Ø � � �O� � �
þ Y Î � �
 å � � ; �
� åQP �Î ; �
Ø å � ØÎ � Z �¥���^; �
þ å � þÎ � Â½ å�Z !

where � �
 � �
� � �
Ø � � �O� � �
þ is the coefficient of the monomial O �
 ÷ �
�Z �¥���, ÷ �
þÂ in öa�<OS!�÷úZ\ !¥¤�¤¥¤�!�÷TÂf� .
The number of positive integral solutions for Íc n �> ZCn ���j �¥���bn ��Â9E>G is exactly � � � ÂÂ � Z�� . Thus,

the total number of constraints is {� � � ÂÂ � Z � . Thus, the condition in part (a) of the lemma,

implies that the set of homogeneous linear equations have more variables than constraints.

Hence, a solution can be found in time polynomial in the number of variables (Et7 Â � Z 6<� Â)
and constraints (at most �G �"� Â �).

The second part is similar to the proof of Lemma 3.3. If �µ�<O_� has agreement on at least _
locations of � , then for at least _��/ ��I Ác n§G�� of the � ÁcnÂG�� -tuples �?Y Î !�;X Î� !Z;X Î � Z\ !¥¤�¤¥¤�!Z;X Î � Â½ å�Zf� , we

have �µ�< Y Î � �¥�3
�;X Î � � for �o
 ; !¥G£!¥¤¥¤�¤¥!, Á(IQG . As in Lemma 3.1, we conclude that 4y�<O{� Þ6587
öa�?OS!ë�µ �?O{ �\ !f�µ�< YcO{ �b !�¤¥¤¥¤�!f�µ�< Y Â½ å�Z O{ �N� has a zero of multiplicity G at Y Î for each such � ÁÁn_G� � -
tuple. Also, by design 4o�?O{� has degree at most 7 . Hence if _��^ �ö I=Áòn|G� �PG_�27 , then4y�<O{� has more zeroes (counting multiplicities) than its degree, and thus 4o�?O{ �³ô ; .

Note the lower bound condition on 7 above is met with the choice72
R+ë �i� Â �G��?G-ntG� �B �����X �?G(n ÁX �N� Z � � Â � Z � - nQGò¤ (3.2)

The task of finding the list of all degree � polynomials �µ�<O_�Ð+g � ¯ O[¡ satisfyingöa �?OS!ë�µ �?O{ �\ !f�µ�< YcO{ �b !�¤¥¤¥¤�!f�µ�< Y Â½ å�Z O{ �N�g
 ;
can be solved using ideas similar to the proof

of Lemma 3.5. First, by dividing out by #.�<O_� enough times, we can assume that not all

coefficients of öa�<OS!�÷j Z\ !¥¤�¤¥¤�!�÷TÂf� , viewed as a polynomial in ÷Y Z\ !¥¤�¤¥¤�!�÷TÂ with coefficients in� ¯ O[¡ , are divisible by #.�<O_� . We can then go modulo #a�<O{� to get a nonzero polynomialH��Q÷úZ\ !�÷"��!�¤¥¤¥¤�!h÷ÀÂf� over the extension field � ¯ ¾ �e�
v� ¯ O[¡^ 6C�i#a �<O{ �`� . Now, by Lemma 3.4,

we have �µ�< Ya�, O_�]
� �µ�<O_� ¯�S Öo© Ò #.�<O_� for every ��� G . Therefore, the task at hand

reduces to the problem of finding all roots

D
+ � ¯ ¾ �e� of the polynomial 4y�Q÷j ZN� where4y�Q÷úZ`�-
üH��Q÷úZ\ !�÷ ¯Z !¥¤�¤¥¤�!�÷ ¯ þ �e�Z � . There is the risk that 4o�<÷j ZN� is the zero polynomial, but it

is easily seen that this cannot happen if the total degree of H is less than � . This will be the

case since the total degree is at most 7Â6£� , which is at most �<G(n ÁX �\ �/ Y6<��� Z � � Â � Z �UT � .
The degree of the polynomial 4o�<÷Y ZN� is at most � Â , and therefore all its roots in � ¯ ¾ �e�

can be found in � ��� Â � time (by Theorem 2.4). We conclude that the “root-finding” step can

be accomplished in polynomial time.

The algorithm works for agreement _Ð� 	�6$ åkÂ � Z � � , which for the choice of 7 in (3.2) is

satisfied if _Ð� .> G9n ÁG 2 �Ñ � Â Y� Z � � Â � Z ��HIºÁÐnQG nFV� ¤

45

Indeed, 7�/ �HI ÁÐntG��PG E G�^�HIºÁ9nLG��PG � .́ þ p �# � Â TG��<G-nQG� �B �����X �<G(nºÁe�únQG 2E G�^�HIºÁ9nLG��PG � . �<G(n ÁX � þ p �� � Â ÂnQG 2
 . G8n ÁG 2 �Ñ � Â j � Z � � Â � Z ��HI ÁÐnQG n GG��^ � I ÁÐntG��R . G8n ÁG 2 �Ñ � Â j � Z � � Â � Z ��HI ÁÐnQG n~ VE _\ !
where the first inequality follows from (3.2) along with the fact that for any real ¬L� ;

,!^ ¬4$�E�¬ while the second inequality follows by upper bounding Gj naÍ by Gún Á for every
; EÍ3E Á . We record these observations in the following, which is a multivariate generalization

of Theorem 3.1.

Theorem 3.3. For every integer � �� G and every Á , GlE Á�EO� , the ��Á}nõG�� -variate

FRS decoder successfully list decodes the � -folded Reed-Solomon code wyxáza| ¾ � }�� $ � ' up to

a radius j6� �HI8_ as long as the agreement parameter _ satisfies

_9� . G8n ÁG 2 �Ñ � Â Y� Z � � Â � Z ��HI Á�nQG n~ V� ¤ (3.3)

The algorithm runs in �"� Â � time and outputs a list of size at most ·¸±.· Â
÷ �^ ÂntG�� Â .
Recalling that the block length of wyx{z� | ¾ � }�� $ � ' is ~�
p Y6�� and the rate is �Ñ �*n5 G� �N6� ,

the above algorithm can decode a fraction of errors approachingGÐI . G3 n ÁG 2 ��HIºÁ9ntG 4 Â � � Â � Z � (3.4)

using lists of size at most � Â . By picking G<!�� large enough compared to Á , the decoding

radius can be made larger than GPIq�̀ G-nQÝ<� 4̀ Â � � Â � Z � for any desired ÝK� ; . We state this

result formally below.

Theorem 3.4. For every
; RvÝ[ErG , integer Á]�%G and

; R24%R G , there is a family of� -folded Reed-Solomon codes for � Ez �� ÁX6e Ý that have rate at least 4 and which can be

list decoded up to a G�IL � G̀8n~Ýe� 4̀ Â � � Â � Z � fraction of errors in time � ~u�[�̀ �"� Â � and outputs a

list of size at most ��~u�[� ��� Â � where ~ is the block length of the code. The alphabet size of

the code as a function of the block length ~ is ��~u�[� ���6$³� .
Proof. We first instantiate the parameters G and � in terms of Á and Ý :

G�
 �� ÁÝ ��
 ��Á(I�G� �����-nFÝ<�Ý ¤

46

Note that as Ý� EpG , �öE,�� ÁX6e Ý . With the above choice, we have

.� G8n ÁG 2 ��HI ÁÐntG
 þ G9n Ý� ÿ � R� G8nFÝ}¤
Together with the bound (3.4) on the decoding radius, we conclude that the ��Á9nQG�� -variate

decoding algorithm certainly list decodes up to a fraction G�It��G9n�Ý<� 4̀ Â � � Â � Z � of errors.

The worst case list size is � Â and the claim on the list size follows by recalling that�F
 {nÊG and ~
 Y6�� . The alphabet size is � $
 ��~g �0 � �"�6$³� . The running time

has two major components: (1) Interpolating the Á�nLG -variate polynomial öa�� ��� , which by

Lemma 3.6 is �^ �G Â � ��� Z � ; and (2) Finding all the roots of the interpolated polynomial, which

takes �e�" � Â � time. Of the two, the time complexity of the root finding step dominates, which

is ��~g �0 � �" � Â � .
In the limit of large Á , the decoding radius approaches the list-decoding capacity G�IK4 ,

leading to our main result.

Theorem 3.5 (Explicit capacity-approaching codes). For every
; RQ4pRqG and

; R��*E4 , there is a family of folded Reed-Solomon codes that have rate at least 4 and which can

be list decoded up to a GòIt4qI,� fraction of errors in time (and outputs a list of size at

most) ��~�6X � � � �������e� ¹»º½¼ � Z � � �®� where ~ is the block length of the code. The alphabet size of the

code as a function of the block length ~ is � ~o6X � � �� ��� Z � � Ø � .
Proof. Given ��!f4 , we will apply Theorem 3.4 with the choice

Ás
WV ¨ª©£«B� G̀� 6<4P�¨ª©£«B� G̀8n��e�YX and Ý}
 �U��G�IF4P�4o��G3 n��<� ¤ (3.5)

Note that as �oE54 , ÝoE÷ G . Thus, the list-decoding radius guaranteed by Theorem 3.4 is at

least G�IQ�̀ G8nFÝ<��4 Â � � Â � Z �
 G�IF4y� G̀3 nFÝ<�\ � G̀� 6<4P� Z � � Â � Z �� G�IF4y� G̀3 nFÝ<�\ � G̀8n��e� (by the choice of Á in (3.5))
 G�It�W4x nl�<� (using the value of Ý) ¤
We now turn our attention to the time complexity of the decoding algorithm and the

alphabet size of the code. To this end we first claim that � is �� � G̀� 6X � � � . First we note that

by the choice of Á , Á}E V�̈®­ú��G� 6<4}�¨®­j �� G8nl�<� E �k¨®­ú� G̀� 6<4P�� !
where the second inequality follows from the fact that for

; Rõ¬xE�G , ¨®­j �� G(n� ¬"���Ê¬�6<V .
Thus, we have�öE �� ÁÝ
��� Á(� 4o� G̀3 n��e��U��G�I� 4}� E=i� Á(� 4�U��G�IF4}� E �> V� � � 4S̈®­j � G̀� 6<4}�G�IF4 E �> V� � !

47

where for the last step we used ¨®­j � G̀� 6e4}�3E Z� I[G for
; R�4pE|G . The claims on the running

time, worst case list size and the alphabet size of the code follow from Theorem 3.4 and the

facts that � is �� � G̀� 6X � � � and Á is �� ��� å�Z ¨ª©<«" ��G� 6<4}�`� .
Remark 3.3 (Upper bound on � in Theorem 3.5). A version of Theorem 3.5 can also be

proven for �� ��4 . The reason it is stated for ��Et4 , is that we generally think of � as much

smaller than 4 (this is certainly true when we apply the generalization of Theorem 3.5

(Theorem 3.6) in Chapters 4 and 5). However, if one wants ���� 4 , first note that the

theorem is trivial for ���pG9Il4 . Then if 4pRx ��R� GÐI´4 , can do a proof similar to the one

above. However, in this range Ý�
 ��� Z½ å�� �� � Z � �Ñ� can be strictly greater than G . In such a case we

apply Theorem 3.4 with Ý�
z G (note that applying Theorem 3.4 with a smaller Ý than what

we want only increases the decoding radius). This implies that we have �ùEL �� Á , in which

case both the worst case list and the alphabet size become � ~5 ¨ª©<«" ��G� 6<4}� 6̀X �<�̀ ���X� ¹»º½¼ � Z � � � .
Remark 3.4 (Minor improvement to decoding radius). It is possible to slightly improve

the bound of (3.4) to G(I . GÐn Â� 2 . $ �$ åkÂ � Z 2 Â � � Â � Z � with essentially no effort. The idea is to

not use only a fraction �/ �� I ÁÁn_G� � 6̀� � of the 0��Áún_G� � -tuples for interpolation. Specifically,

we omit tuples with Y Î for ÍQÖy© Ò �O�x� IºÁ . This does not affect the number of ��Á�ntG� � -
tuples for which we have agreement (this remains at least _��/ �ÊI# Á³n~G� �), but the number of

interpolation conditions is reduced to ~w �^ � I Á�n5 G��Ð
5 k �^� I Á�nLG� �N6� � . This translates

into the stated improvement in list-decoding radius. For clarity of presentation, we simply

chose to use all tuples for interpolation.

Remark 3.5 (Average list size). Theorem 3.5 states that the worst case list size (over all

possible received words) is polynomial in the block length of the codeword (for fixed 4
and �). One might also be interested in what is the average list size (over all the possible

received words within a distance @> from some codeword). It is known that for Reed-

Solomon codes of rate 4 the average list size is T G even for @ close to G*I|4 [81].

Since folded Reed-Solomon codes are just Reed-Solomon codewords with symbols bundled

together, the arguments in [81] extend easily to show that even for folded Reed-Solomon

codes, the average list size is T G .
3.6 Extension to List Recovery

We now present a very useful generalization of the list decoding result of Theorem 3.5 to

the setting of list recovery. Recall that under the list recovery problem, one is given as input

for each codeword position, not just one but a set of several, say

, alphabet symbols. The

goal is to find and output all codewords which agree with some element of the input sets

for several positions. Codes for which this more general problem can be solved turn out to

be extremely valuable as outer codes in concatenated code constructions. In short, this is

because one can pass a set of possibilities from decodings of the inner codes and then list

recover the outer code with those sets as the input. If we only had a list-decodable code at

48

the outer level, we will be forced to make a unique choice in decoding the inner codes thus

losing valuable information.

This is a good time to recall the definition of list recoverable codes (Definition 2.4).

Theorem 3.5 can be generalized to list recover the folded RS codes. Specifically, for

a FRS code with parameters as in Section 3.5, for an arbitrary constant

 � G , we can�><�!
 � -list recover in polynomial time provided��G�IZ<���~O� .� G8n ÁG 2 þ p ��
 � Â�HI ÁÐnQG ! (3.6)

where ~
% j6� � . We briefly justify this claim. The generalization of the list-decoding

algorithm of Section 3.5 is straightforward: instead of one interpolation condition for each

symbol of the received word, we just impose ·¸¶ÁÎN·3E
 many interpolation conditions for

each position Í9+�¢cG£!fVC!¥¤¥¤�¤¥!� µ¦ (where ¶"Î is the Í ’th input set in the list recovery instance).

The number of interpolation conditions is at most
 , and so replacing by
 in the bound

of Lemma 3.6 guarantees successful decoding2. This in turn implies that the condition on

the number of agreement of (3.3) generalizes to the one in (3.6).3 This simple generalization

to list recovery is a positive feature of all interpolation based decoding algorithms [97, 63,

85] beginning with the one due to Sudan [97].

Picking G�[Á and �\[Á in (3.6), we get ��<�!
 � -list recoverable codes with rate 4 for<uEvG(IW�
 4 Â � Z � � Â � Z � . Now comes the remarkable fact: we can pick a suitable Á][
 and

perform �><�!
 � -list recovery with <0 EHGJI,45I~� which is independent of

! We state the

formal result below (Theorem 3.5 is a special case when

pG).

Theorem 3.6. For every integer

 � G , for all 4 ,

; Rù4 R G and
; RM��E� 4 , and

for every prime U , there is an explicit family of folded Reed-Solomon codes over fields of

characteristic U that have rate at least 4 and which are � G̀"IÂ4] I��c!
 !ë���/ Y �`� -list recoverable

in polynomial time, where �(�/ j �§
 ��~� 6X � � � �������X� ¹»º� ¼ � S � � �®� . The alphabet size of a code of

block length ~ in the family is � ~o6X � � � ������� Ø ¹»º½¼ S � � Z½ å�� �®� .
Proof. (Sketch) Using the exact same arguments as in the proof of Theorem 3.4 to the

agreement condition of (3.6), we get that one can list recover in polynomial time as long as<oE|GúI_�`G�ng Ý<�\ �
 4 Â � Z � � Â � Z � , for any
; R�Ý*E|G . The arguments to obtain an upper bound ofG�IF4QI�� are similar to the ones employed in the proof of theorem 3.5. However, Á needs

to be defined in a slightly different manner:Áò
WV ¨ª©£«B�
 6<4P�¨ª©£«B � G̀8nl�<� X ¤
2In fact, this extension also works when the average size of the size is at most ^ , that is _J`a�b�c2d e a d*fg ^%- .

3We will also need the condition that hjilkKmon� h -pôqsrtn cvu�wyx8z�cv{}|�~ . This condition is required to argue that

in the “root finding” step, the “final” polynomial v hj� c n is not the zero polynomial. The condition is met

for constant rate codes if ^�� ~s x (recall that we think of
~

as growing while i and m are fixed). In all our

applications of list recovery for folded Reed-Solomon codes, the parameter ^ will be a constant, so this is

not a concern.

49

Also this implies that � is �/ . ¹»º� ¼ S� Z½ å�� � � Ø 2 , which implies the claimed bound on the alphabet

size of the code as well as �(�/ j � .
We also note that increasing the folding parameter � only helps improve the result (at

the cost of a larger alphabet). In particular, we have the following corollary of the theorem

above.

Corollary 3.7. For every integer

 � G , for all constants

; R� ��E 4 , for all 4y!f4P� ;; R�4|Et4J�BR� G , and for every prime U , there is an explicit family of folded Reed-Solomon

codes, over fields of characteristic U that have rate at least 4 and which can be � G̀(Ix4L I��!
 !f�(��~S�`� -list recovered in polynomial time, where for codes of block length ~ , ��� ~[�Ð
��~� 6X � � � �������e� ¹»º½¼ � S � � �®� and the code is defined over alphabet of size � ~� 6� � � � �" ����� Ø ¹»º� ¼ S � � Z� å��
 �®� .
Note that one can trivially increase the alphabet of a code by thinking of every symbol

as coming from a larger alphabet. However, this trivial transformation decreases the rate

of the code. Corollary 3.7 states that for folded Reed-Solomon codes, we can increase the

alphabet while retaining the rate and the list recoverability properties. At this point this

extra feature is an odd one to state explicitly, but we will need this result in Chapter 4.

Remark 3.6 (Soft Decoding). The decoding algorithm for folded RS codes from Theorem

3.5 can be further generalized to handle soft information, where for each codeword posi-

tion Í the decoder is given as input a non-negative weight �(Îæ� � for each possible alphabet

symbol � . The weights �ÐÎæ� � can be used to encode the confidence information concerning

the likelihood of the the Í ’th symbol of the codeword being � . For any �u� ; , for suitable

choice of parameters, our codes of rate 4 over alphabet & have a soft decoding algorithm

that outputs all codewords Ü(
z Æ�Ü� Z\!fÜ\ ��!¥¤¥¤�¤¥!fÜ � È that satisfy�ü Î Û Z �ÐÎ®� ×v� �R�³� G̀3 n��e���i4 ~[� Â . �ü Î Û Z ü � ÙY� � Â � ZÎæ� � 2�� Z � � Â � Z � ¤
For Áa
 G , this soft decoding condition is identical to the one for Reed-Solomon codes in

[63].

3.7 Bibliographic Notes and Open Questions

We have solved the qualitative problem of achieving list-decoding capacity over large al-

phabets. Our work could be improved with some respect to some parameters. The size

of the list needed to perform list decoding to a radius that is within � of capacity grows

as �"� Z � �Ñ� where is the block length of the code. It remains an open question to bring

this list size down to a constant independent of , or even to �µ���e�½ × with an exponent Ü
independent of � (we recall that the existential random coding arguments work with a list

size of �� � G̀� 6X �e�).

50

These results in this chapter were first reported in [58]. We would like to point out

that the presentation in this chapter is somewhat different from the original papers [85, 58]

in terms of technical details, organization, as well as chronology. Our description closely

follows that of a survey by Guruswami [50]. With the benefit of hindsight, we believe

this alternate presentation to be simpler and more self-contained than the description in

[58], which used the results of Parvaresh-Vardy as a black-box. Below, we discuss some

technical aspects of the original development of this material, in order to shed light on the

origins of our work.

Two independent works by Coppersmith and Sudan [27] and Bleichenbacher, Kiayias

and Yung [18] considered the variant of RS codes where the message consists of two (or

more) independent polynomials over some field � ¯ , and the encoding consists of the joint

evaluation of these polynomials at elements of � ¯ (so this defines a code over � �¯).4 A

naive way to decode these codes, which are also called “interleaved Reed-Solomon codes,”

would be to recover the two polynomials individually, by running separate instances of

the RS decoder. Of course, this gives no gain over the performance of RS codes. The

hope in these works was that something can possibly be gained by exploiting that errors

in the two polynomials happen at “synchronized” locations. However, these works could

not give any improvement over the G*I � 4 bound known for RS codes for worst-case

errors. Nevertheless, for random errors, where each error replaces the correct symbol by a

uniform random field element, they were able to correct well beyond a fraction G�I � 4 of

errors. In fact, as the order of interleaving (i.e., number of independent polynomials) grows,

the radius approaches the optimal value GsIQ4 . This model of random errors is not very

practical or interesting in a coding-theoretic setting, though the algorithms are interesting

from an algebraic viewpoint.

The algorithm of Coppersmith and Sudan bears an intriguing relation to multivariate

interpolation. Multivariate interpolation essentially amounts to finding a non-trivial linear

dependence among the rows of a certain matrix (that consists of the evaluations of appropri-

ate monomials at the interpolation points). The algorithm in [27], instead finds a non-trivial

linear dependence among the columns of this same matrix! The positions corresponding

to columns not involved in this dependence are erased (they correspond to error locations)

and the codeword is recovered from the remaining symbols using erasure decoding.

In [84], Parvaresh and Vardy gave a heuristic decoding algorithm for these interleaved

RS codes based on multivariate interpolation. However, the provable performance of these

codes coincided with the GaI � 4 bound for Reed-Solomon codes. The key obstacle

in improving this bound was the following: for the case when the messages are pairs�W�µ�<O{ �b!����?O{ �N� of degree � polynomials, two algebraically independent relations were needed

to identify both �µ�?O{ � and ���<O_� . The interpolation method could only provide one such re-

lation in general (of the form öa�<OS!f�µ�<O{�b!����<O{ �`�k
 ; for a trivariate polynomial öa�<OS!�÷8!!úJ�).
This still left too much ambiguity in the possible values of �i�µ�<O_�\!����<O{ �`� . (The approach

4The resulting code is in fact just a Reed-Solomon code where the evaluation points belong to the subfield���
of the extension field over

�p�
of degree two.

51

in [84] was to find several interpolation polynomials, but there was no guarantee that they

were not all algebraically dependent.)

Then, in [85], Parvaresh and Vardy put forth the ingenious idea of obtaining the extra al-

gebraic relation essentially “for free” by enforcing it as an a priori condition satisfied at the

encoder. Specifically, instead of letting the second polynomial ���?O{ � to be an independent

degree � polynomial, their insight was to make it correlated with �µ�<O{ � by a specific alge-

braic condition, such as ���?O{ �k
��µ�<O_�%Ä÷Öo© Ò #a�<O{� for some integer T and an irreducible

polynomial #a�<O{� of degree �PnQG .
Then, once we have the interpolation polynomial öa�<OS!�÷8!!úJ� , �µ�<O_� can be obtained as

follows: Reduce the coefficients of öa�<OS!�÷9!,úò� modulo #a�<O{� to get a polynomial H��Q÷8!!úJ�
with coefficients from � ¯ O[¡/ 6U�i#.�?O{ �N� and then find roots of the univariate polynomialH��Q÷8!h÷ Ä � . This was the key idea in [85] to improve the GJI � 4 decoding radius for rates

less than G� 6UGrq . For rates 45) ;
, their decoding radius approached G�IF�� �i4S¨ª©£«B� G̀� 6<4P�N� .

The modification to using independent polynomials, however, does not come for free.

In particular, since one sends at least twice as much information as in the original RS code,

there is no way to construct codes with rate more than G� 6<V in the PV scheme. If we useÁy�qV correlated polynomials for the encoding, we incur a factor G�6�Á loss in the rate. This

proves quite expensive, and as a result the improvements over RS codes offered by these

codes are only manifest at very low rates.

The central idea behind our work is to avoid this rate loss by making the correlated poly-

nomial ���<O{ � essentially identical to the first (say ���<O_�}
m�µ�< YcO{ �). Then the evaluations

of ���?O{ � can be inferred as a simple cyclic shift of the evaluations of �µ�<O{ � , so intuitively

there is no need to explicitly include those too in the encoding.

