
52

Chapter 4

RESULTS VIA CODE CONCATENATION

4.1 Introduction

In Chapter 3, we presented efficient list-decoding algorithms for folded Reed-Solomon

codes that can correct G*I|4õI�� fraction of errors with rate 4 (for any �Q� ;
). One

drawback of folded Reed-Solomon codes is that they are defined over alphabets whose size

is polynomial in the blocklength of the code. This is an undesirable feature of the code and

we address this issue in this chapter.

First, we show how to convert folded Reed-Solomon codes to a related code that can still

be list decoded up to G>IP4yIò� fraction of errors with rate 4 (for any ��� ;). However, unlike

folded Reed-Solomon codes these codes are defined over alphabets of size V �"������� ¹»º�¼ � Z � �Ñ�®� .
Recall that codes that can be list decoded up to G9I´4,Iw� fraction of errors need alphabets

of size Ve� �����X�i� (see section 2.2.1).

Next, we will show how to use folded Reed-Solomon codes to obtain codes over fixed

alphabets (for example, binary codes). We will present explicit linear codes over fixed

alphabets that achieve tradeoffs between rate and fraction of errors that satisfy the so

called Zyablov and Blokh-Zyablov bounds (along with efficient list-decoding algorithms

that achieve these tradeoffs). The codes list decodable up to the Blokh-Zyablov bound

tradeoff are the best known to date for explicit codes over fixed alphabets. However, unlike

Chapter 3, these results do not get close to the list-decoding capacity (see Figure 4.1). In

particular, for binary codes, if G�6<V}IºY fraction of errors are targeted, our codes have rate�s�<Y � � . By contrast, codes on list-decoding capacity will have rate �P�?Y � � . Unfortunately (as

has been mentioned before), the only codes that are known to achieve list-decoding capac-

ity are random codes for which no efficient list-decoding algorithms are known. Previous

to our work, the best known explicit codes had rate �y�?Y � � [51] (these codes also had effi-

cient list-decoding algorithms). We choose to present the codes that are list decodable up

to the Zyablov bound (even though the code that are list decodable up to the Blokh Zyablov

have better rate vs. list decodability tradeoff) because of the following reasons (i) The con-

struction is much simpler and these codes give the same asymptotic rate for the high error

regime and (ii) The worst case list sizes and the code construction time are asymptotically

smaller.

All our codes are based on code concatenation (and their generalizations called multi-

level code concatenation). We next turn to an informal description of code concatenation.

53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

R

(R
A

T
E

)
 -

--
>

ρ (ERROR-CORRECTION RADIUS) --->

List decoding capacity
Zyablov bound (Section 4.3)

Blokh Zyablov bound (Section 4.4)

Figure 4.1: Rate 4 of our binary codes plotted against the list-decoding radius @ of our

algorithms. The best possible trade-off, i.e., list-decoding capacity, @o5² å�Z �`GúIg4P� is also

plotted.

4.1.1 Code Concatenation and List Recovery

Concatenated codes were defined in the seminal thesis of Forney [40]. Concatenated codes

are constructed from two different codes that are defined over alphabets of different sizes.

Say we are interested in a code over »��¡ (in this chapter, we will always think of �§�õV as

being a fixed constant). Then the outer code 1¹���b
 is defined over 5ös¡ , where ö%m� ' for

some positive integer � . The second code, called the inner code is defined over ¸��¡ and is

of dimension � (Note that the message space of 19Î � and the alphabet of 1 ���b
 have the same

size). The concatenated code, denoted by 1 m1¹���b
��s13Î � , is defined as follows. Let the

rate of 1\���b
 be 4 and let the blocklengths of 1 �>�\
 and 13Î � be ~ and respectively. Define� 4 ~ and G[��6� . The input to 1 is a vector L MÆ^�KZ�!¥¤¥¤¥¤�!��J� È +÷�f »��¡ ' � � . Let1\���b
`��L��³zÆ/¬ÁZ\!¥¤¥¤�¤�!`¬ � È . The codeword in 1 corresponding to L is defined as follows1a�QL��³zÆW13Î � �/¬ÁZN�\!f13Î � ��¬D�b�\!¥¤¥¤¥¤�!f13Î � ��¬ � � È ¤
It is easy to check that 1 has rate G<4 , dimension � � and blocklength ´~ .

Notice that to construct a � -ary code 1 we use another � -ary code 1ÐÎ � . However, the

nice thing about 18Î � is that it has small blocklength. In particular, since 4 and G are con-

stants (and typically ö and ~ are polynomially related), wp�a�/¨ª©£« ~S� . This implies that

we can use up exponential time (in) to search for a “good” inner code. Further, one can

use the brute force algorithm to (list) decode 19Î � .

54

Table 4.1: Values of rate at different decoding radius for List decoding capacity (4 À 9 �),
Zyablov bound (4��) and Blokh Zyablov bound (4����) in the binary case. For rates above; ¤¸� , the Blokh Zyablov bound is

;
up to 3 decimal places, hence we have not shown this.@ 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.30 0.354 À 9 � 0.919 0.858 0.805 0.713 0.531 0.390 0.278 0.188 0.118 0.0654�� 0.572 0.452 0.375 0.273 0.141 0.076 0.041 0.020 0.009 0.0024���� 0.739 0.624 0.539 0.415 0.233 0.132 0.073 0.037 0.017 0.006

Finally, we motivate why we are interested in list recovery. Consider the following

natural decoding algorithm for the concatenated code 1¹���b
2��13Î � . Given a received word in�N ¸��¡ � � � , we divide it into ~ blocks from »��¡ � . Then we use a decoding algorithm for 19Î � to

get an intermediate received word to feed into a decoding algorithm for 1����b
 . Now one can

use unique decoding for 18Î � and list decoding for 1 ���b
 . However, this loses information in

the first step. Instead, one can use the brute force list-decoding algorithm for 1�Î � to get a

sequence of lists (each of which is a subset of 5ös¡). Now we use a list-recovery algorithm

for 1\���b
 to get the final list of codewords.

The natural algorithm above is used to design codes over fixed alphabets that are list

decodable up to the Zyablov bound in Section 4.3 and (along with expanders) to design

codes that achieve list-decoding capacity (but have much smaller alphabet size as compared

to those for folded Reed-Solomon codes) in Section 4.2.

4.2 Capacity-Achieving Codes over Smaller Alphabets

Theorem 3.5 has two undesirable aspects: both the alphabet size and worst-case list size

output by the list-decoding algorithm are a polynomial of large degree in the block length.

We now show that the alphabet size can be reduced to a constant that depends only on the

distance � to capacity.

Theorem 4.1. For every 4 ,
; Rr4�R G , every �F� ;

, there is a polynomial time con-

structible family of codes over an alphabet of size V �"������� ¹»º½¼ � Z � �Ñ�®� that have rate at least 4
and which can be list decoded up to a fraction ��G�I�4�Il�<� of errors in polynomial time.

Proof. The theorem is proved using the code construction scheme used by Guruswami

and Indyk in [54] for linear time unique decodable codes with optimal rate, with different

components appropriate for list decoding plugged in. We briefly describe the main ideas

behind the construction and proof below. The high level approach is to concatenate two

codes 1 º�� á and 1 ß 0 , and then redistribute the symbols of the resulting codeword using an

expander graph. Assume that ��Rq�`G�IF4P�N6p� and let ÝPt� � .
The outer code 1 º�� á will be a code of rate �`G9I�VX�<� over an alphabet & of size � Z � � ���������

that can be ����!f�a��G�6X�<�`� -list recovered in polynomial time (to recall definitions pertaining to

55

list recovery, see Definition 2.4), as guaranteed by Theorem 3.6. That is, the rate of 1 º�� á
will be close to G , and it can be ��<�!6��� -list recovered for large � and <*) ;

.

The inner code 1 ß 0 will be a �N��G}I54÷IQ�>�<�b!f�a��G�6X�<�`� -list decodable code with near-

optimal rate, say rate at least �i4Fn´�<�<� . Such a code is guaranteed to exist over an alphabet

of size ���`G�6�� � � using random coding arguments. A naive brute-force for such a code, how-

ever, is too expensive, since we need a code with ·Ä&P·C� � � Z � codewords. Guruswami and

Indyk [52], see also [49, Sec. 9.3], prove that there is a small (quasi-polynomial sized)

sample space of pseudolinear codes in which most codes have the needed property. Fur-

thermore, they also present a deterministic polynomial time construction of such a code

(using derandomization techniques), see [49, Sec. 9.3.3].

The concatenation of 1 º�� á and 1 ß 0 gives a code 1 � º%0 �8¡ á of rate at least ��GPItVX�<���W45n�<�e���v4 over an alphabet & of size ·Ä&}·�2�a��G�6X� � � . Moreover, given a received word of

the concatenated code, one can find all codewords that agree with the received word on a

fraction 4xnl�>� of locations in at least �`G�Il�e� fraction of the inner blocks. Indeed, we can

do this by running the natural list-decoding algorithm, call it ¢ , for 1£� º%0 �8¡ á that decodes

each of the inner blocks to a radius of �`GäI[4wIu�>�e� returning up to �úL�a��G�6X�<� possibilities

for each block, and then ����!¤��� -list recovering 1 º�� á in polynomial time.

The last component in this construction is a 7� �a��G�6X� � � -regular bipartite expander

graph which is used to redistribute symbols of the concatenated code in a manner so that

an overall agreement on a fraction 4~n¥�X� of the redistributed symbols implies a fractional

agreement of at least 4tnx�>� on most (specifically a fraction �`GJIx�<�) of the inner blocks

of the concatenated code. In other words, the expander redistributes symbols in a manner

that “smoothens” the distributions of errors evenly among the various inner blocks (except

for possibly a � fraction of the blocks). This expander based redistribution incurs no loss in

rate, but increases the alphabet size to ���`G�6�� � ���"� Z � �W���j LV<�"������� ¹»º½¼ � Z � �Ñ�®� .
We now discuss some details of how the expander is used. Suppose that the block length

of the folded Reed-Solomon code 1 º�� á is ~yZ and that of 1 ß 0 is ~}� . Let us assume that ~��
is a multiple of 7 , say ~��� 2 ú�ë7 (if this is not the case, we can make it so by padding

at most 7mI�G dummy symbols at a negligible loss in rate). Therefore codewords of 1 ß 0 ,
and therefore also of 1 � º%0 �8¡ á , can be thought of as being composed of blocks of 7 symbols

each. Let ~r ~oZ½ ú� , so that codewords of 1 � º%0 �8¡ á can be viewed as elements in �Ñ & 	 ��� .

Let °O �i��!f4y!f#�� be a 7 -regular bipartite graph with ~ vertices on each side (i.e.,·¸�J·£õ·¸4a·£ ~), with the property that for every subset ÷ �t4 of size at least �i4~n��X�e��~ ,

the number of vertices belonging to � that have at most �i4�nãqe�<�`7 of their neighbors in ÷
is at most ÝÃ~ (for ÝuÊ� �). It is a well-known fact (used also in [54]) that if ° is picked

to be the double cover of a Ramanujan expander of degree 7%�t�U6C��Ý�� � � , then ° will have

such a property.

We now define our final code 1 X z °� �i1¦� ºP 0 �8¡ á �{�2�Ñ & 	 � � formally. The codewords in1 X are in one-one correspondence with those of 1§� º%0 �v¡ á . Given a codeword Üs+{1 � º%0 �8¡ á , its~07 symbols (each belonging to &) are placed on the ~07 edges of ° , with the 7 symbols

in its Í ’th block (belonging to & 	 , as defined above) being placed on the 7 edges incident

56

Codeword in

¨
©
¨ ª «8¬ ¨ ¬ ©®¯

¯

°�± ²
°�± ²
° ± ²

C
o
d
e
w

o
rd

in

³H´µ¶ C
o
d
e
w

o
rd

in·¹¸
«

©

«
Expander graph º»>¼

»8½
»v¾>¿ °�À Á ²yÀ ÂÄÃ

Figure 4.2: The code 1 X used in the proof of Theorem 4.1. We start with a codewordÆ^ËÁZ�!¥¤¥¤¥¤�!�Ë � � È in 1\���b
 . Then every symbol is encoded by 19Î � to form a codeword in 1 × � � × 9

(this intermediate codeword is marked by the dotted box). The symbols in the codeword

for 1 × � � × 9
 are divided into chunks of 7 symbols and then redistributed along the edges of

an expander ° of degree 7 . In the figure, we use 7öp� for clarity. Also the distribution

of three symbols @ , ; and Ü (that form a symbol in the final codeword in 1 X) is shown.

on the Í ’th vertex of � (in some fixed order). The codeword in 1 X corresponding to Ü has as

its Í ’th symbol the collection of 7 symbols (in some fixed order) on the 7 edges incident

on the Í ’th vertex of 4 . See Figure 4.2 for a pictorial view of the construction.

Note that the rate of 1 X is identical to that 1 � ºP 0 �8¡ á , and is thus at least 4 . Its alphabet

size is ·Ä&}· 	 5�a��G�6X� � � �"� Z � � � � LV �"��� ��� ¹»º�¼ � Z � �Ñ�®� , as claimed. We will now argue how 1 X can

be list decoded up to a fraction �`G�IF4QI��X�e� of errors.

Given a received word Ål+m�Ñ & 	 � � , the following is the natural algorithm to find all

codewords of 1 X with agreement at least �i4ong�X�<�Z~ with Å . Redistribute symbols according

to the expander backwards to compute the received word Å<� for 1 � º%0 �8¡ á which would result

in Å . Then run the earlier-mentioned decoding algorithm ¢ on Åe� .
We now briefly argue the correctness of this algorithm. Let ï� +K1 X be a codeword with

57

agreement at least �i4xn¥�X�<�Z~ with Å . Let ï � denote the codeword of 1§� º%0 �8¡ á that leads to ï
after symbol redistribution by ° , and finally suppose ï � � is the codeword of 1 º�� á that yieldsï<� upon concatenation by 1 ß 0 . By the expansion properties of ° , it follows that all but a Ý
fraction of ~õ 7 -long blocks of ÅX� have agreement at least �i4yn qe�<�`7 with the corresponding

blocks of ï£� . By an averaging argument, this implies that at least a fraction �`G3I,� Ý<� of the~*Z blocks of ï � that correspond to codewords of 1 ß 0 encoding the ~oZ symbols of ï � � , agree

with at least a fraction ��GòI�� Ý<���W4Ln±q<�<�Pö�`GòIx�<�\�i4Ln=q<�e���H4tn,�>� of the symbols

of the corresponding block of ÅX� . As argued earlier, this in turn implies that the decoding

algorithm ¢ for 1 � º%0 �8¡ á when run on input ÅX� will output a polynomial size list that will

include ï<� .
4.3 Binary Codes List Decodable up to the Zyablov Bound

Concatenating the folded Reed-Solomon codes with suitable inner codes also gives us

polytime constructible binary codes that can be efficiently list decoded up to the Zyablov

bound, i.e., up to twice the radius achieved by the standard GMD decoding of concate-

nated codes [41]. The optimal list recoverability of the folded Reed-Solomon codes plays

a crucial role in establishing such a result.

Theorem 4.2. For all
; RQ4*!ZGyR�G and all ��� ; , there is a polynomial time constructible

family of binary linear codes of rate at least 4Q�rG which can be list decoded in polynomial

time up to a fraction �`G�I�4}�`² å�Z ��G�I8G>�äIl� of errors.

Proof. Let YS� ; be a small constant that will be fixed later. We will construct binary codes

with the claimed property by concatenating two codes 1òZ and 1Ð� . For 1(Z , we will use a

folded Reed-Solomon code over a field of characteristic V with block length ³Z , rate at least4 , and which can be �`GCIy4ÂIÜYä!6��� -list recovered in polynomial time for �ú ��G ; 6�Y � . Let the

alphabet size of 1-Z be V � where Ã is ���<Y åU� ¨ª©£«"��G�6�YÁ����GÐIl4P� å�Z ¨ª©<«3 YZf� (by Theorem 3.6,

such a 1(Z exists). For 1Ð� , we will use a binary linear code of dimension Ã and rate at leastG which is �/@"!6��� -list decodable for @´�² å�Z ��GPIòGyI>YÁ� . Such a code is known to exist

via a random coding argument that employs the semi-random method [51]. Also, a greedy

construction of such a code by constructing its Ã basis elements in turn is presented in

[51] and this process takes V>�"� � � time. We conclude that the necessary inner code can be

constructed in �"� } � Ø � Z½ å�� �^ �X� ¹»º�¼ � Z � } �®�Z time. The code 1-Z , being a folded Reed-Solomon code

over a field of characteristic V , is �ú� -linear, and therefore when concatenated with a binary

linear inner code such as 1�� , results in a binary linear code. The rate of the concatenated

code is at least 4��rG .
The decoding algorithm proceeds in a natural way. Given a received word, we break it

up into blocks corresponding to the various inner encodings by 1sZ . Each of these blocks

is list decoded up to a radius @ , returning a set of at most � possible candidates for each

outer codeword symbol. The outer code is then �`GòI�4qI Yä!6�W� -list recovered using these

sets, each of which has size at most � , as input. To argue about the fraction of errors this

58

algorithm corrects, we note that the algorithm fails to recover a codeword only if on more

than a fraction ��GäI[4wI YÁ� of the inner blocks the codeword differs from the received word

on more than a fraction @ of symbols. It follows that the algorithm correctly list decodes up

to a radius ��G"I.4]I YÁ�½@y÷ �`G"Ia40I YÁ��² å�Z �`G"I GYI YÁ� . If we pick an appropriate Y in �y��� � � ,
then by Lemma 2.4, ² å�Z �`GúI G³I Yú�9�t² å�Z �`GúI G£�UI§�e6e� (and �`GúIu4KI YÁ�8�pGúIg4KIÂ�<6X�),
which implies ��G�IF4�I8YÁ�`² å�Z ��G�IãGsIãYÁ�9�÷ ��G�I�4}��² å�Z �`G�I8G£�µÍ � as desired.

Optimizing over the choice of inner and outer codes rates G<!f4 in the above results, we

can decode up to the Zyablov bound, see Figure 4.1. For an analytic expression, see (4.2)

with ÁòpG .
Remark 4.1. In particular, decoding up to the Zyablov bound implies that we can correct a

fraction �`G�6<V³Iu�e� of errors with rate �P�/� � � for small �P) ;
, which is better than the rate of�s��� � 6µ¨ª©£«B�`G�6X�<�`� achieved in [55]. However, our construction and decoding complexity are ������� Ø ¹»º�¼ � Z � �Ñ�®� whereas these are at most ���/�<�Ñ × for an absolute constant Ü in [55]. Also,

we bound the list size needed in the worst-case by �"�����e� ¹»º½¼ � Z � �Ñ�®� , while the list size needed

in the construction in [55] is �`G�6X�<�`��� ¹»º½¼e¹»º½¼ � Z � �Ñ�®� .
4.4 Unique Decoding of a Random Ensemble of Binary Codes

We will digress a bit to talk about a consequence of (the proof of) Theorem 4.2.

One of the biggest open questions in coding theory is to come up with explicit binary

codes that are on the Gilbert Varshamov (or GV) bound. In particular, these are codes that

achieve relative distance Ý with rate G-I,²w��Ý<� . There exist ensembles of binary codes for

which if one picks a code at random then with high probability it lies on the GV bound.

Coming up with an explicit construction of such a code, however, has turned out to be an

elusive task.

Given the bleak state of affairs, some attention has been paid to the following prob-

lem. Give a probabilistic construction of binary codes that meet the GV bound (with high

probability) together with efficient (encoding and) decoding up to half the distance of the

code. Zyablov and Pinsker [110] give such a construction for binary codes of rate about; ¤ ; V with subexponential time decoding algorithms. Guruswami and Indyk [53] give such

a construction for binary linear codes up to rates about G ; å�� with polynomial time encoding

and decoding algorithms. Next we briefly argue that Theorem 4.2 can be used to extend

the result of [53] to work till rates of about
; ¤ ; V . In other words, we get the rate achieved

by the construction of [110] but (like [53]) we get polynomial time encoding and decoding

(up to half the GV bound).

We start with a brief overview of the construction of [53], which is based on code

concatenation. The outer code is chosen to be the Reed-Solomon code (of say length ~ and

rate 4) while there are ~ linear binary inner codes of rate G (recall that in the “usual” code

concatenation only one inner code is used) that are chosen uniformly (and independently)

at random. A result of Thommesen [102] states that with high probability such a code

59

lies on the GV bound provided the rates of the codes satisfy 4�Ev�9�<G>�`6�G , where �9�<G>�PGÐI´²´��GÐIlV � å�Z � . Guruswami and Indyk then give list-decoding algorithms for such codes

such that for (overall) rate G£4ùEùG ; å�� , the fraction of errors they can correct is at leastZ� �£² å�Z �`G(IºG£4P� (that is, more than half the distance on the GV bound) as well as satisfy

the constraint in Thommesen’s result.

Given Theorem 4.2, here is the natural way to extend the result of [53]. We pick the

outer code of rate 4 to be a folded Reed-Solomon code (with the list recoverable properties

as required in Theorem 4.2) and the pick ~ independent binary linear codes of rate G as

the inner codes. It is not hard to check that the proof of Thommesen also works when the

outer code is folded Reed-Solomon. That is, the construction just mentioned lies on the

GV bound with high probability. It is also easy to check that the proof of Theorem 4.2 also

works when all the inner codes are different (basically the list decoding for the inner code

in Theorem 4.2 is done by brute-force, which of course one can do even if all the ~ inner

codes are different). Thus, if G£4 E��9�<G>� , we can list decode up to �`GsI54P� ²̀ å�Z �`GPI±G>�
fraction of errors and at the same time have the property that with high probability, the

constructed code lies on the GV bound. Thus, all we now need to do is to check what is

the maximum rate G£4 one can achieve while at the same time satisfying G£4rEm�9�? G>� and��G"I.4P�`² å�Z �`GBI G>�9� Z� ² å�Z �`GBI G£4}� . This rate turns out to be around
; ¤ ; V (see Figure 4.3).

Thus, we have argued the following.

Theorem 4.3. There is a probabilistic polynomial time procedure to construct codes whose

rate vs. distance tradeoff meets the Gilbert-Varshamov bound with high probability for all

rates up to
; ¤ ; V . Furthermore, these codes can be decoded in polynomial time up to half

the relative distance.

One might hope that this method along with ideas of multilevel concatenated codes

(about which we will talk next) can be used to push the overall rate significantly up from; ¤ ; V that we achieve here. However, the following simple argument shows that one cannot

go beyond a rate of
; ¤ ; � . If we are targeting list decoding up to @ fraction of errors (and

use code concatenation), then the inner rate G must be at most G-Ix²w�/@�� (see for example

(4.2)). Now by the Thommesen condition the overall rate is at most �9�? G>� . It is easy to check

that �9����� is an increasing function. Thus, the maximum overall rate that we can achieve is�9��GsIQ²´�^ @��`� — this is the curve titled “Limit of the method” in Figure 4.3. One can see

from Figure 4.3, the maximum rate for which this curve still beats half the GV bound is at

most
; ¤ ; � .

4.5 List Decoding up to the Blokh Zyablov Bound

We now present linear codes over any fixed alphabet that can be constructed in polynomial

time and can be efficiently list decoded up to the so called Blokh-Zyablov bound (Fig-

ure 4.1). This achieves a sizable improvement over the tradeoff achieved by codes from

Section 4.3 (see Figure 4.1 and Table 4.1).

60

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.02 0.04 0.06 0.08 0.1

ρ

(F

R
A

C
T

IO
N

 O
F

 E
R

R
O

R
S

)
 -

--
>

R0 (OVERALL RATE) --->

Half the GV bound
Truncated Zyablov bound

Limit of the method

Figure 4.3: Tradeoffs for decoding certain random ensemble of concatenated codes. “Half

the GV bound” is the curve
Z� ��² å�Z �`G*I|4 ý � while “Truncated Zyablov bound” is the

limit till which we can list decode the concatenated codes (and still satisfy the Thommesen

condition, that is for inner and outer rates G and 4 , G£4��4 ý E �9�<G>�). “Limit of the

method” is the best tradeoff one can hope for using list decoding of code concatenation

along with the Thommesen result.

Our codes are constructed via multilevel concatenated codes. We will provide a formal

definition later on — we just sketch the basic idea here. For an integer Áo�zG , a multilevel

concatenated code 1 over � ¯ is obtained by combining Á “outer” codes 1 ý���b
 !f1 Z���b
 !¥¤�¤¥¤�!f1 Â½ å�Z���b

of the same block length , say ~ , over large alphabets of size say � 9�Æ !N� 9 � !¥¤¥¤¥¤�!N� 9 þ �e� , respec-

tively, with a suitable “inner” code. The inner code is of dimension @ ý n�@CZ"�����/n�@�Â½ å�Z . Given

messages � ý !�� Z !¥¤¥¤�¤¥!`� Â½ å�Z for the Á outer codes, the encoding as per the multilevel gener-

alized concatenation codes proceeds by first encoding each � � as per 1 ��>�\
 . Then for everyGPE�Í3 E¼~ , the collection of the Í th symbols of 1 ����b
 �^� � � for
; Eº�.E Á(I�G , which can be

viewed as a string over � ¯ of length @ ý nÇ@�Z�nl���¥��nÇ@�Â½ å�Z , is encoded by the inner code. ForÁòpG this reduces to the usual definition of code concatenation.

We present a list-decoding algorithm for 1 , given list-recovery algorithms for the outer

codes and list-decoding algorithms for the inner code and some of its subcodes. What

makes this part more interesting than the usual code concatenation (like those in Section

4.3), is that the inner code in addition to having good list-decodable properties, also needs

to have good list-decodable properties for certain subcodes. Specifically, the subcodes of

dimension @ � n¥ @ � � ZµnL �����>n¥ @�Â½ å�Z of the inner code obtained by arbitrarily fixing the first

61@ ý n5�����cn�@ � å�Z symbols of the message, must have better list-decodability properties for

increasing � (which is intuitively possible since they have lower rate). In turn, this allows

the outer codes 1 ����b
 to have rates increasing with � , leading to an overall improvement in

the rate for a certain list-decoding radius.

To make effective use of the above approach, we also prove, via an application of the

probabilistic method, that a random linear code over � ¯ has the required stronger condi-

tion on list decodability. By applying the method of conditional expectation ([2]), we can

construct such a code deterministically in time singly exponential in the block length of the

code (which is polynomial if the inner code encodes messages of length �a�/¨ª©£« ~S�). Note

that constructing such an inner code, given the existence of such codes, is easy in quasi-

polynomial time by trying all possible generator matrices. The lower time complexity is

essential for constructing the final code 1 in polynomial time.

4.5.1 Multilevel Concatenated Codes

We will be working with multilevel concatenation coding schemes [33]. We start this sec-

tion with the definition of multilevel concatenated codes. As the name suggests, these are

generalizations of concatenated codes. Recall that for a concatenated code, we start with

a code 1\���b
 over a large alphabet (called the outer code). Then we need a code 1�Î � that

maps all symbols of the larger alphabet to strings over a smaller alphabet (called the inner

code). The encoding for the concatenated code (denoted by 1��>�\
1�� 13 Î �) is done as follows.

We think of the message as being a string over the large alphabet and then encode it using1\���b
 . Now we use 18Î � to encode each of the symbols in the codeword of 1¹���b
 to get our

codeword (in 1 ���b
1�� 13 Î �) over the smaller alphabet.

Multilevel code concatenation generalizes the usual code concatenation in the following

manner. Instead of there being one outer code, there are multiple outer codes. In partic-

ular, we “stack” codewords from these multiple outer codes and construct a matrix. The

inner codes then act on the columns of these intermediate matrix. We now formally define

multilevel concatenated codes.

There are Á}�|G outer codes, denoted by 1 ý���b
 !f1 Z���b
 !�¤¥¤¥¤�!ë1 Â½ å�Z�>�\
 . For every
; E,Í3 E�Á³IwG ,1 Î���b
 is a code of block length ~ and rate 4JÎ and defined over a field ��È � . The inner code13 Î � is code of block length and rate G that maps tuples from �UÈ Æ îu�}È � î{���¥�B îu��È þ �X� to

symbols in � ¯ . In other words, 1 Î���b
 $��^ �}È � � � � �) �ç �}È � � � !13 Î � $X�}È Æ îg �}È � î{�����B îg �}È þ �e�) �^ � ¯ � � ¤
The multilevel concatenated code, denoted by �W1 ý���b
 î_1 Z���b
 îF¤¥¤�¤f1 Â½ å�Z���b
 �É�ò13 Î � is a map of

the following form:�W1 ý���b
 î[1 Z���b
 îw ¤¥¤�¤f1 Â½ å�Z���b
 ���(13 Î � $D�ç �}È Æ � � Æ � îl�ç �}È � � � � � îw�����B îl�^ ��È1Ê �e� � � þ �e� �) �^ � ¯ � �t� ¤

62

We now describe the encoding scheme. Given a message �/ � ý !�� Z !¥¤¥¤�¤�!�� Â½ å�Z �9+��ç �}È Æ � � Æ �*î�ç ��È � � � � �5î��¥���úî~�ç�}È Ê �X� � � þ �e� � , we first construct an Áoî#~ matrix Ã , whose Í á�Ë row is

the codeword 1 Î���b
 �/ � Î � . Note that every column of Ã is an element from the set �lÈ Æ î��È � îw�¥���" îg �}È þ �e� . Let the � á�Ë column (for G} Eº�.E¼~) be denoted by Ã � . The codeword

corresponding to the multilevel concatenated code (1 Ä û�Ì �i1 ý���b
 îK1 Z���b
 îl¤¥¤¥¤ë1 Â½ å�Z���b
 �l�- 13 Î �)
is defined as follows1a�^� ý !�� Z !¥¤¥¤�¤�!�� Â½ å�Z �k ÷ �i13 Î � �iÃ�Zf�b!f13 Î � �WÃ �́ë�\!������ä!f13Î � �iÃ � �N�"¤
(The codeword can be naturally be thought of as an tîò~ matrix, whose Í ’th column

corresponds to the inner codeword encoding the Í ’th symbols of the Á outer codewords.)

For the rest of the chapter, we will only consider outer codes over the same alphabet,

that is, ö ý ¼ö*Z8p������¼ö Â½ å�Z8 ¼ö . Further, ö÷5� 9 for some integer @Â�pG . Note that if1 ý�>�\
 !�¤¥¤¥¤�!ë1 Â½ å�Z�>�\
 and 18Î � are all � ¯ linear, then so is �W1 ý���b
 î[1 Z���b
 îw�¥���"î[1 Â½ å�Z���b
 ���� 13Î � .
The gain from using multilevel concatenated codes comes from looking at the inner

code 13Î � along with its subcodes. For the rest of the section, we will consider the case

when 13Î � is linear (though the ideas can easily be generalized for general codes). Let°ù+L � 9 Â6Í �¯ be the generator matrix for 19Î � . Let G ý Î@kÁX6� denote the rate of 18Î � . For; E��qE ÁoIzG , define G � G ý ��G*Iò �C6ÃÁe� , and let ° � denote G � tî� submatrix of °
containing the last G � rows of ° . Denote the code generated by ° � by 1 �Î � ; the rate of 1 �Î �
is G � . For our purposes we will actually look at the subcode of 1�Î � where one fixes the first; E �.E�Á8IFG message symbols. Note that for every � these are just cosets of 1 �Î � . We will

be looking at 18Î � , which in addition to having good list decoding properties as a “whole,”

also has good list-decoding properties for each of its subcode 1 �Î � .
The multilevel concatenated code 1 (v�W1 ý���b
 îw������îS1 Â½ å�Z���b
 �l�(13Î �) has rate 4y�i1�� that

satisfies 4o�W1� �³ G ýÁ Â½ å�Zü Î ÛCý 4� Îj¤ (4.1)

The Blokh-Zyablov bound is the trade-off between rate and relative distance obtained

when the outer codes meet the Singleton bound (i.e., 1 ����b
 has relative distance GYI] 4 �), and

the various subcodes 1 �Î � of the inner code, including the whole inner code 1ÐÎ � L 1 ýÎ � , lie on

the Gilbert-Varshamov bound (i.e., have relative distance Ý � �t² å�Z¯ �`GcI G � �). The multilevel

concatenated code then has relative distance at least Ö Ó ý6Ï � Ï Â½ å�Z��`GoIp4 � �`² å�Z¯ �`GyIKG � � .
Expressing the rate in terms of distance, the Blokh-Zyablov bound says that there exist

multilevel concatenated code 1 with relative distance at least Ý with the following rate:4 Â��� �W1� �³ Ö C�Eý6Ð � Ð Z�å � ¾ � � � GsI G Á Â½ å�Zü Î ÛCý Ý² å�Z¯ �`G�I8G(nîGXÍ�6�ÁX � ¤ (4.2)

As Á increases, the trade-off approaches the integral4����Y�i1� �kpG�IF² ¯ ��Ý<�µIlÝ � Z½ å � ¾ � � �ý T£¬² å�Z¯ ��G�Il¬"� ¤ (4.3)

63

The convergence of 4 Â��� �i1� � to 4����ä �W1�� happens quite quickly even for small Á such asÁspG ; .
Nested List Decoding

We will need to work with the following generalization of list decoding. The definition

looks more complicated than it really is.

Definition 4.1 (Nested linear list decodable code). Given a linear code 1 in terms of some

generator matrix °÷+]�ú' Í �¯ , an integer Á that divides � , a vector ÑFz ÆW� ý !ë�8Z�!¥¤¥¤¥¤�!f�õÂ½ å�Z È of

integers � � (
; E �§E¼ Á-IQG), a vector @. ÊÆ^ @ ý !�@�ZÁ¤¥¤¥¤�! @̀�Â½ å�Z È with

; R�@ � RpG , and a vectorÅ*mÆ? G ý !¥¤¥¤¥¤�!ZG�Â½ å�Z È of reals where G ý ÷�C 6� and
; E G�Â½ å�Z-R÷ ������R�G¥Îk R=G ý , 1 is called an�vÅU!�@B!6ÑÐ� -nested list decodable if the following holds:

For every
; Eò �§E Á(ItG , 1 � is a rate G � code that is �/ @ � !f� � � -list decodable, where 1 �

is the subcode of 1 generated by the the last G � rows of the generator matrix ° .

4.5.2 Linear Codes with Good Nested List Decodability

In this section, we will prove the following result concerning the existence (and con-

structibility) of linear codes over any fixed alphabet with good nested list-decodable prop-

erties.

Theorem 4.4. For any integer Á] �%G and reals
; R/G�Â½ å�Z*R/G�Â½åU��RH �����3 R GeZ*R G ý R G ,�F� ;

, let @ � ² å�Z¯ �`G}I�G � I5Ve�<� for every
; Eù �tE@ Á�IzG . Let Å´ Æ? G ý !¥¤¥¤¥¤�!ZG�Â½å�Z È ,@´ Æ^ @ ý ! @̀�Z�!¥¤¥¤¥¤�!�@kÂ½å�Z È and Ñõ Æi� ý !f�9Z�!¥¤¥¤¥¤�!f�õÂ½å�Z È , where � � � Z � � . For large enough , there exists a linear code (over fixed alphabet � ¯) that is �8Åc !�@"!oÑÐ� -nested list decodable.

Further, such a code can be constructed in time � ��� � � �Ñ� .
Proof. We will show the existence of the required codes via a simple use of the proba-

bilistic method (in fact, we will show that a random linear code has the required properties

with high probability). We will then use the method of conditional expectation ([2]) to

derandomize the construction with the claimed time complexity.

Define � � "!? G�Îæ �$ for every
; E �aE�Á�IgG . We will pick a random � ý îJ matrix ° with

entries picked independently from � ¯ . We will show that the linear code 1 generated by °
has good nested list decodable properties with high probability. Let 1 � , for

; E �§E¼ Á(ItG
be the code generated by the “bottom” � � rows of ° . Recall that we have to show that

with high probability 1 � is �^ @ � !N� Z � �f� list decodable for every
; E �ÂE¼ Á(IQG (1 � obviously

has rate G �). Finally for integers Ò�!ë�t�ùG , and a prime power � , let ÓÑ Ò ���U!ë�"!sÒj � denote

the collection of subsets ¢� ¬ Z !`¬ � !�¤¥¤¥¤�!N¬?Ôc¦ �x � '¯ such that all vectors ¬ Z !¥¤¥¤�¤�!`¬�Ô are linearly

independent over � ¯ .
We recollect the following two straightforward facts: (i) Given any � distinct vectors

from �Á'¯ , for some �´��G , at least �^ ¨ª©£« ¯ � � of them are linearly independent; (ii) Any set

of linearly independent vectors in �ú'¯ are mapped to independent random vectors in � � ¯ by

64

a random �uî] matrix over � ¯ . The first claim is obvious. For the second claim, first note

that for any Å´ +]� '¯ and a random �. î§ matrix í (where each of the �� values are chosen

uniformly and independently at random from � ¯) the values at the different positions inÅ[�>í are independent. Further, the value at position G*E5 ÍÐE5 , is given by ÅS�£íuÎ , whereíaÎ is the Í á�Ë column of í . Now for fixed Å , ÅF�DíÂÎ takes values from � ¯ uniformly at

random (note that íÂÎ is a random vector from � '¯). Finally, for linearly independent vectorsÅ Z !¥¤¥¤¥¤�!�Ǻ $ by a suitable linear invertible map can be mapped to the standard basis vectorsÕ Z\!¥¤�¤¥¤�! Õ $. Obviously, the values
Õ Zµ�<í.ÎÐ¤¥¤¥¤�! Õ $ �<í. Î are independent.

We now move on to the proof of existence of linear codes with good nested list de-

codability. We will actually do the proof in a manner that will facilitate the derandom-

ization of the proof. Define ÒO �^ ¨ª©£« ¯ ��� Z � � nHG� � � . For any vector dh +ö � � ¯ , integer; E¼ �SE ÁòI5 G , subset Hõ 2¢�¬ Z !¥¤�¤¥¤�!`¬ Ô ¦§+�ÓÑ Ò ���U!ë� � !sÒY � and any collection Ö of subsets¶Y Zb!ë¶Á�� !¥¤¥¤¥¤�!f¶ Ô �v¢cG£!¥¤�¤¥¤�!� ä¦ of size at most @ � , define an indicator variable ×B � ��!�d8!ZH(!�Ö-�
in the following manner. ×B���> ! d̀3 !ZH(!�Ö(�3pG if and only if for every GPE,Í3 ECÒ , 1a�/¬ Î � differs

from d in exactly the set ¶"Î . Note that if for some
; E �tE Á*I÷ G , there are � Z � � nzG

codewords in 1 � all of which differ from some received word d in at most @ � places, then

this set of codewords is a “counter-example” that shows that 1 is not �/ d3!�@"!oÑÐ� -nested list

decodable. Since the � Z � �³nqG codewords will have some set H of Ò linearly independent

codewords, the counter example will imply that ×B � ��!�d8!ZH(!�Ö-�y G for some collection of

subsets Ö . In other words, the indicator variable captures the set of bad events we would

like to avoid. Finally define the sum of all the indicator variables as follows:¶ À Â½å�Zü � ÛCý üØ Ù |�Ù ¾ üð ÙÛÚ 0 Þ � ¯ � ' S � Ô�� üÜ Û1Ý%Þ � � � �O� � Þtßsà �Þ �âá Ý Z½ � �O� � � � à � ¿ Þ � ¿ Ï � S � ×B � ��!�d8!ZH(!�Ö-�b ¤
Note that if ¶ À ;

, then 1 is �/ d3 ! @̀B!oÑÐ� -nested list decodable as required. Thus, we can

prove the existence of such a 1 if we can show that ã¦äJ ¸¶ À ¡³Rõ G . By linearity of expecta-

tion, we have ã� Ä ¶ À ¡� Â½å�Zü � ÛCý üØ Ù |�Ù ¾ üð ÙÛÚ 0 Þ � ¯ � ' S � Ô�� üÜ Û1Ý%Þ � � � �O� � Þtßsà �Þ �âá Ý Z½ � �O� � � � à � ¿ Þ � ¿ Ï � S � ã� O×"� ��!�d8!ZH(!�Ö- �Ñ ¡Ñ¤ (4.4)

Fix some arbitrary �>!�d8!ZHz2¢�¬ Z !`¬ � !¥¤�¤¥¤�!`¬ Ô ¦c !�Öq2¢e¶Y Z\!f¶Á�� !¥¤¥¤¥¤�!f¶ Ô ¦ (in their correspond-

ing domains). Then we haveã(O×B ���> ! d̀3 !�H(!�Ö(�½ ¡ä I�J� O×B ����!�d3!�H(!�Ö(�3pG�¡ å� � Ù ð I�JX ¸ 1a�/¬ Î � differ from d in exactly the positions in ¶�Îç ¡
 Ôå Î Û Z þ �JI�G� ÿ ¿ Þ � ¿ þ G� ÿ � å ¿ Þ � ¿ (4.5)

65

 Ôå Î Û Z ���JIQG�� ¿ Þ � ¿� � ! (4.6)

where the second and the third equality follow from the definition of the indicator variable,

the fact that vectors in H are linearly independent and the fact that a random matrix maps

linearly independent vectors to independent uniformly random vectors in � � ¯ . Using (4.6)

in (4.4), we getã� Ä ¶ À ¡� Â½å�Zü � ÛCý üØ Ù |�Ù ¾ üð Ù*Ú 0 Þ � ¯ � ' S � Ô¥� üÜ Û1Ý�Þ � � �O� � � ÞYßÛà �Þ �âá Ý ZÑ � � �O� � � à � ¿ Þ � ¿ Ï � S � Ôå Î Û Z �W�-IQG�� ¿ Þ � ¿� �
 Â½å�Zü � ÛCý üØ Ù | Ù ¾ üð Ù*Ú 0 Þ � ¯ � ' S � Ô¥� ü� S � � S Ø � � �O� � S ß � Ù Ýiý �»Z½ � � �O� � � S � à ß Ôå Î Û Z þ
 Î^ÿ ���JIQG�� S �� � Â½å�Zü � ÛCý üØ Ù |�Ù ¾ üð Ù*Ú 0 Þ � ¯ � ' S � Ô¥� � � S �ü S ÛCý þ
 ÿ �W�-IQG�� S� � � Ô
E Â½å�Zü � ÛCý üØ Ù | Ù ¾ üð ÙÛÚ 0 Þ � ¯ � ' S � Ô�� � �æÔ�� � ¾ ��� S � å�Z �E Â½å�Zü � ÛCý � � ��� Ô ' S ��� �B ÔX� � ¾ ��� S � å�Z �E Â½å�Zü � ÛCý � �B ÔX� Z � Ô � � S � Z�å � S åU� � å�Z �E Á�� å ���B Ô ¤ (4.7)

The first inequality follows from Proposition 2.1. The second inequality follows by upper

bounding the number of Ò linearly independent vectors in � ' S¯ by � Ô ' S . The third inequality

follows from the fact that � � !? G � �$ and @ � %² å�Z¯ ��GPI>G � ILVe�e� , The final inequality

follows from the fact that ÒS �^¨ª©£«�¯� �W� Z � �Y ntG� � � .
Thus, (4.7) shows that there exists a code 1 (in fact with high probability) that is�^ d8!�@"!oÑÐ� -nested list decodable. In fact, this could have been proved using a simpler argu-

ment. However, the advantage of the argument above is that we can now apply the method

of conditional expectations to derandomize the above proof.

The algorithm to deterministically generate a linear code 1 that is �/ d3!�@"!oÑÐ� -nested list

decodable is as follows. The algorithm consists of steps. At any step GKEH ÍoEH , we

choose the Í á�Ë column of the generator matrix to be the value Å Î +_�Á' Æ¯ that minimizes the

conditional expectation ã� ¸ ¶ À · í] Za%Å Z !�¤¥¤¥¤�!\íaÎç å�Za %Å Îç å�Z !b í. Î} %Å Î ¡ , where í. Î denotes

the Í á�Ë column of í and Å Z !¥¤¥¤�¤�!�Å Îç å�Z are the column vectors chosen in the previous ÍµItG

66

steps. This algorithm would work if for any G_E Ía E and vectors Å Z !¥¤¥¤�¤�!�Å Î , we can

exactly compute ã(¸ ¶ À · í0Z}2Å Z !¥¤¥¤¥¤�!b í. Î� vÅ Î ¡ . Indeed from (4.4), we have ã� Ä ¶ À · í] Z� Å Z !¥¤¥¤¥¤�!b í. Îj �Å Î ¡ isÂ½å�Zü � ÛCý üØ Ù |oÙ ¾ üð ÙÛÚ 0 Þ � ¯ � ' S � Ô�� üÜ Û1Ý%Þ � � � � � � Þtßsà �Þ �H á Ý Z½ � �O� � � � à � ¿ Þ � ¿ Ï � S � ã� Ä×B � �� !�d8!�H(!�Ö-��· í] Z(�Å Z !¥¤¥¤¥¤� !b í. Îú�Å Î ¡i¤
Thus, we would be done if we can compute the following for every value of �� !�d8!ZH�¢�¬ Z !¥¤¥¤�¤¥!N¬ Ô ¦c !�Ö� ¢e¶Y Z�!¥¤¥¤¥¤�!f¶ Ô ¦ : ã� Ä×B ���>!�d9!ZH(!�Ö(�� Gc· í0 Z_ Å Z !¥¤�¤¥¤�!b íaÎg Å Î ¡ . Note

that fixing the first Í columns of ° implies fixing the value of the codewords in the first Í
positions. Thus, the indicator variable is

;
(or in other words, the conditional expectation we

need to compute is
;
) if for some message, the corresponding codeword does not disagree

with d exactly as dictated by Ö in the first Í positions. More formally, ×B ���>!�d8!ZH(!�Ö-�� ;
if

the following is true for some GgE
 EvÍ and
; EvÍ½ �8E�Ò : ¬ Î �Uí S Ï2d S , if

 Ï+t¶"Î and¬ Î �Uí S õ d S otherwise. However, if none of these conditions hold, then using argument

similar to the ones used to obtain (4.6), one can show thatã� O ×"���>!`d3!ZH- !�Ö-�¥· í0 Z�Q Å Z !¥¤¥¤¥¤� !b íaÎj �Å Î ¡" ÔåS Û Z þ �JI�G� ÿ ¿ Þ ç ¿ þ G� ÿ � å> Îç å ¿ Þ ç ¿ !
where ¶ �S L ¶ S [¢c G£!fVC!¥¤¥¤¥¤�!�ÍN¦ for every GPE
 ECÒ .

To complete the proof, we need to estimate the time complexity of the above algorithm.

There are steps and at every step Í , the algorithm has to consider �> ' Æ Eù� � different

choices of Å Î . For every choice of Å Î , the algorithm has to compute the conditional ex-

pectation of the indicator variables for all possible values of �>!`d3!ZH(!�Ö . It is easy to check

that there are � ÂÎ Û Z ���P�� ��Ô ' S �X V��B Ô*E�Á����<� Z � � Ô¥� possibilities. Finally, the computation of the

conditional expected value of a fixed indicator variable takes time ��� Á¥ èÒj � . Thus, in all the

total time taken is ���/ u��� � ��Á� � �<� Z � � Ô�� ��Á¥ èÒY �kt� ��� � � �Ñ� , as required.

4.5.3 List Decoding Multilevel Concatenated Codes

In this section, we will see how one can list decode multilevel concatenated codes, pro-

vided the outer codes have good list recoverability and the inner code has good nested

list decodability. We have the following result, which generalizes Theorem 4.2 for regular

concatenated codes (the case ÁspG).
Theorem 4.5. Let Á] �%G and

 �rG be integers. Let
; R24 ý Rv4PZyR ���¥�8Rv4{Â½å�ZyR G ,; R¾G ý RmG be rationals and

; Rêé ý !����¥�ä!�érÂ½å�Z�RmG , ; R|@ ý !������ä!�@kÂ½å�Z} RH G and �u� ;
be

reals. Let � be a prime power and let örH � 9 for some integer @´�%G . Further, let 1 ����b

(
; E �aE Á>I�G) be an � ¯ -linear code over �}È of rate 4 � and block length ~ that is �vé � !
 !ë�3 � -

list recoverable. Finally, let 19Î � be a linear �vÅc !`@B!oÑÐ� -nested list decodable code over � ¯ of

67

rate G ý and block length õW@�Áe6©G ý , where ÅF Æ? G ý !¥�¥���ä!ZG�Â½å�Z È with G¥Îy � G̀�ILÍ�6�ÁX ��G ý ,@oõÆ^@ ý !������ä!�@kÂ½å�Z È and ÑFzÆ
 !
 !������ä!
 È . Then 1q÷�i1 ý���b
 î_�����" î0 1 Â½å�Z���b
 ���� 13Î � is a linear�/Ö Ó � é � �� @ � !f� Â � -list decodable code. Further, if the outer code 1 ����b
 can be list recovered

in time H � � ~[� and the inner code 18Î � can be list decoded in time _ � �/ j � (for the � á�Ë level),

then 1 can be list decoded in time � .æ � Â½å�Z� ÛCý � � �? H � � ~[�ún ~H�r_ � �/ j �N� 2 .

Proof. Given list-recovery algorithms for 1 ��>�\
 and list-decoding algorithms for 19Î � (and

its subcodes 1 �Î �), we will design a list-decoding algorithm for 1 . Recall that the received

word is an *îø~ matrix over � ¯ . Each consecutive “chunk” of j 6�Á rows should be decoded

to a codeword in 1 ����b
 . The details follow.

Before we describe the algorithm, we will need to fix some notation. Define Ý�Ö Ó � é � @ � . Let ë + � �t�¯ be the received word, which we will think of as an 5 î±~
matrix over � ¯ (note that Á divides). For any] î ~ matrix Ã and for any GPE�Í3 E�~ , letÃKÎ³+S�D � ¯ denote the Í á�Ë column of the matrix Ã . Finally, for every

; Eò �uE Á-IQG , let 1 �Î �
denote the subcode of 18Î � generated by all but the first �� @ rows of the generator matrix of13Î � . We are now ready to describe our algorithm.

Recall that the algorithm needs to output all codewords in 1 that differ from ë in at

most Ý fraction of positions. For the ease of exposition, we will consider an algorithm

that outputs matrices from 1 ý���b
 îQ���¥��îF1 Â½å�Z���b
 . The algorithm has Á phases. At the end

of phase � (
; EÛ�~E�Á�I÷ G), the algorithm will have a list of matrices (called ì �) from1 ý���b
 î] �����c î§1 ��>�\
 , where each matrix in ì � is a possible submatrix of some matrix that will

be in the final list output by the algorithm. The following steps are performed in phase �
(where we are assuming that the list-decoding algorithm for 1 �Î � returns a list of messages

while the list-recovery algorithm for 1 ����b
 returns a list of codewords).

1. Set ì � to be the empty set.

2. For every ïw ù��Ü ý !������Y !fÜZ� å�Z �a+Cì � å�Z repeat the following steps (if this is the first

phase, that is �y ; , then repeat the following steps once):

(a) Let ° � be the first @� � rows of the generator matrix of 19Î � . Let íMm�i° � �Ñ ðu�eï ,

where we think of ï as an �� @§î ~ matrix over � ¯ . Let îxï ërI�í (for �Â ;
we use the convention that í is the all

;
s matrix). For every GÂE÷ ÍPE ~ , use

the list-decoding algorithm for 1 �Î � on column î�Î for up to @ � fraction of errors

to obtain list ¶ �Î �H �^��È3 � Â½å � . Let H �Î �|��È be the projection of every vector in¶ �Î on to its first component.

(b) Run the list-recovery algorithm for 1 ��>�\
 on set of lists ¢©H �Î ¦�Î obtained from the

previous step for up to é � fraction of errors. Store the set of codewords returned

in × � .
(c) Add ¢U�Wï�!�Å��¥· Ål+ð× � ¦ to ì � .

68

At the end, remove all the matrices Ã +ðì¹Â½å�Z , for which the codeword �W19Î � �WÃFZN�\ !13Î � �iÃw �\ �b !������ä!f13Î � �iÃ � � �̀ is at a distance more than Ý from ë . Output the remaining matri-

ces as the final answer.

We will first talk about the running time complexity of the algorithm. It is easy to check

that each repetition of steps 2(a)-(c) takes time ���<H � � ~[�Cn ~p��_ � �/ Y � �̀ . To compute the final

running time, we need to get a bound on number of times step 2 is repeated in phase � . It

is easy to check that the number of repetitions is exactly ·Oì � å�Z� · . Thus, we need to bound·Oì � å�Z�· . By the list recoverability property of 1 ��>�\
 , we can bound ·O × � · by � . This implies

that ·Oì � ·UEt�-·Oì � å�Z�· , and therefore by induction we have

·Oìk ÎN·UEt� Î � Z for Í� ; !�G<!�¤¥¤¥¤�!̂ Á(IQGJ¤ (4.8)

Thus, the overall running time and the size of the list output by the algorithm are as claimed

in the statement of the theorem.

We now argue the correctness of the algorithm. That is, we have to show that for everyÃ +51 ý�>�\
 î~ �����Y î´ 1 Â½å�Z���b
 , such that �i18Î � �iÃ�Zf�b !f13Î � �WÃ́ �ë �"���¥�ä !f13 Î � �WÃ � �N� is at a distance at

most Ý from ë (call such an Ã a good matrix), Ã +ðì�Â½å�Z . In fact, we will prove a stronger

claim: for every good matrix Ã and every
; E¼ �KEW ÁsI5 G , Ã=�o+ñì � , where Ã>� denotes

the submatrix of Ã that lies in 1 ý���b
 î´ ���¥��îK1 ����b
 (that is the first � “rows” of Ã). For the

rest of the argument fix an arbitrary good matrix Ã . Now assume that the stronger claim

above holds for � � I5G (R¾ÁJI5G). In other words, Ã � å�Z +Zì � å�Z . Now, we need to show

that Ã � +òì � .
For concreteness, let Ã %�/ � ý !������ä!�� Â½å�Z � ð . As Ã is a good matrix and Ý] Eóé � @ � ,13Î � �iÃKÎW� can disagree with ëuÎ on at least a fraction @ � of positions for at most é � fraction

of column indices Í . The next crucial observation is that for any column index Í , 1� Î � �WÃ_Î��k �W° � �iðu���^� ýÎ !������ä!�� � å�ZÎ �än� �W° [° � �iðg �U�/ � � Î !¥�¥���ä!�� Â½å�ZÎ � , where ° � is as defined in step

2(a), ° [° � is the submatrix of ° obtained by “removing” ° � and � � Î is the Í á�Ë component

of the vector � � . Figure 4.5.3 might help the reader to visualize the different variables.

Note that ° [° � is the generator matrix of 1 � Î � . Thus, for at most é � fraction of column

indices Í , �^� � Î !¥�¥���ä!�� Â½å�ZÎ �9�B �W° [° � � disagrees with ë§ÎµI�íaÎ on at least @ � fraction of

places, where í is as defined in Step 2(a), and í§Î denotes the Í ’th column of í . As 1 � Î �
is �/ @ � !
 � -list decodable, for at least G-IZé � fraction of column index Í , Ã � Î will be in ¶ � Î
(where Ã � Î is ÃKÎ projected on it’s last Á�Iº�� � co-ordinates and ¶ � Î is as defined in Step

2(a)). In other words, � � Î is in H � Î for at least G�Iôé � fraction of Í ’s. Further, as ·¸¶ � Î ·�E
 ,· H � Î ·úE
 . This implies with the list recoverability property of 1 � �>�\
 that � � +¥ × � , where× � is as defined in step 2(b). Finally, step 2(c) implies that Ã � +òì � as required.

The proof of correctness of the algorithm along with (4.8) shows that 1 is �WÝ� !ë� Â � -list

decodable, which completes the proof.

69

° ð �X Ã õö �W° � �ið �i° [° � �ið¥÷ø � õùùùùùùùùö
� ý Z ���¥� � ýÎ ����� � ý �...� � å�ZZ ���¥� � � å�ZÎ �����ù� � å�Z�� � Z ���¥� � � Î ����� � � �...� Â½å�ZZ ���¥� � Â½å�ZÎ ����� � Â½å�Z�

÷*úúúúúúúúø
 õö û û û13Î � �iÃ�ZN�h ������13Î � �WÃ_Î��� �¥����13 Î � �iÃ � �ü ü ü ÷ø

Figure 4.4: Different variables in the proof of Theorem 4.5.

4.5.4 Putting it Together

We combine the results we have proved in the last couple of subsections to get the main

result of this section.

Theorem 4.6. For every fixed field � ¯ , reals
; Rõ Ý[R G£! ; R/GKE�GòI�² ¯ �WÝe�\! �̀[� ; and

integer Á��|G , there exists linear codes 1 over � ¯ of block length ~ that are �WÝ³I]�� !ë�� � ~[�N� -
list decodable with rate 4 such that45 ±GsI G Á Â½å�Zü Î ÛCý Ý² å�Z¯ � G̀�IãG- nîG�Í 6̀ÃÁe� ! (4.9)

and �(��~[�k ÷ � ~o6X � � � � � Â ��� s � � � � �X�¾ � Z½å � � å� � � � . Finally, 1 can be constructed in time��~� 6X � � � ��� Â � ����ý � � �®� and list decoded in time polynomial in ~ .

Proof. Let Yö � ;
(we will define its value later). For every

; E �2E Á.I2G defineG � ±G�� G̀£I �U6�ÁX � and 4 � pG£I �� �e�¾ � Z�å � S � . The code 1 is going to be a multilevel concatenated

code �i1 ý���b
 î- �¥���� î91 Â½å�Z���b
 �6�> 13Î � , where 1 ����b
 is the code from Corollary 3.7 of rate 4 � and block

length ~u� (over � ¯�þ) and 13Î � is an �fÆ? G ý !¥¤�¤¥¤�!ZG�Â½å�Z È !�@"!oÑÐ� -nested list decodable code as guar-

anteed by Theorem 4.4, where for
; E �.E�Á3IlG , @ � L ² å�Z¯ ��G³I G � IKV� Y � � and � � t� Z � } Ø .

Finally, we will use the property of 1 ����b
 that it is ��GBI� 4 � I Yä!N� Z � } Ø !�� ~u�ª6� Y � � ��� } � s ¹»º�¼ � Z � � S �®� � -
list recoverable for any

; E> Y[Et4 � . Corollary 3.7 implies that such codes exist with (where

we apply Corollary 3.7 with 4 � QÖ C�E � 4 � pG�I�Ý<6e² å�Z¯ � G̀�IãG>6�ÁX �)� 9 z��~ � 6� Y � � ��� } ��� � �e�¾ � Z�å � � Â � � � � ¤ (4.10)

70

Further, as codes from Corollary 3.7 are � ¯ -linear, 1 is a linear code.

The claims on the list decodability of 1 follows from the choices of 4 � and G � , Corol-

lary 3.7 and Theorems 4.4 and 4.5. In particular, note that we invoke Theorem 4.5 with

the following parameters: é � G*Iq4 � I¼ Y and @ � ² å�Z¯ ��G*I¼G � IqV� Y � � (which by

Lemma 2.4 implies that that é � @ � �ùÝ� IL� as long as Yzÿ �y���e�),
 h � Z � } Ø and ����~u�ª6� Y � � ��� } �X� ¹»º�¼ � S � � S �®� . The choices of

and Y imply that �x2� ~o6X � � � �"��� � s ¹»º½¼ � Z � � S �®� . Now¨ª©<«"��G�6<4 � �9E� ¨ª©£«B � G̀�6<4 $ Î � � , where 4 $ Î � tÖ Ó � 4 � ÷G� I} Ýe6<² å�Z¯ �`G� I G>� . Finally, we use the

fact that for any
; Rò;§RqG , ¨®j ��G�6� ;��9EpG�6� ;�IQG to get that ¨ª©£«B �`G� 6<4 � �9EL�� �`G�6<4 $ Î � I�G��k �� �WÝe6C�i² å�Z¯ �`GsI G> �8IQÝe�N� . The claimed upper bound of �(��~[� follows as �(��~S�*EH� Â (by

Theorem 4.5).

By the choices of 4 � and G � and (4.1), the rate of 1 is as claimed. The construction time

for 1 is the time required to construct 19Î � , which by Theorem 4.4 is V£��� � � } Ø � where is

the block length of 18Î � . Note that _ï@�ÁX 6�G , which by (4.10) implies that the construction

time is � ~o6X � � � �������Yý Â � �e�¾ � Z�å � � Â � � � � � �®� . The claimed running time follows by using the bound² å�Z¯ ��G�I8G>6ÃÁe�8E|G .
We finally consider the running time of the list-decoding algorithm. We list decode

the inner code(s) by brute force, which takes V ��� �� � time, that is, _ � �^ Y �0�V ��� �� � . Thus,

Corollary 3.7, Theorem 4.5 and the bound on �(� ~[� implies the claimed running time com-

plexity.

Choosing the parameter G in the above theorem so as to maximize (4.9) gives us linear

codes over any fixed field whose rate vs. list-decoding radius tradeoff meets the Blokh-

Zyablov bound (4.2). As Á grows, the trade-off approaches the integral form (4.3) of the

Blokh-Zyablov bound.

4.6 Bibliographic Notes and Open Questions

We managed to reduce the alphabet size needed to approach capacity to a constant inde-

pendent of . However, this involved a brute-force search for a rather large code. Ob-

taining a “direct” algebraic construction over a constant-sized alphabet (such as variants of

algebraic-geometric codes, or AG codes) might help in addressing these two issues. To this

end, Guruswami and Patthak [55] define correlated AG codes, and describe list-decoding

algorithms for those codes, based on a generalization of the Parvaresh-Vardy approach to

the general class of algebraic-geometric codes (of which Reed-Solomon codes are a special

case). However, to relate folded AG codes to correlated AG codes like we did for Reed-

Solomon codes requires bijections on the set of rational points of the underlying algebraic

curve that have some special, hard to guarantee, property. This step seems like a highly

intricate algebraic task, and especially so in the interesting asymptotic setting of a family

of asymptotically good AG codes over a fixed alphabet.

Our proof of existence of the requisite inner codes with good nested list decodable

properties (and in particular the derandomization of the construction of such codes using

71

conditional expectation) is similar to the one used to establish list decodability properties

of random “pseudolinear” codes in [52] (see also [49, Sec. 9.3]).

Concatenated codes were defined in the seminal thesis of Forney [40]. Its generaliza-

tions to linear multilevel concatenated codes were introduced by Blokh and Zyablov [20]

and general multilevel concatenated codes were introduced by Zinoviev [108]. Our list-

decoding algorithm is inspired by the argument for “unequal error protection” property of

multilevel concatenated codes [109].

The results on capacity achieving list decodable codes over small alphabets (Section 4.2)

and binary linear codes that are list decodable up to the Zyablov bound (Section 4.3) ap-

peared in [58]. The result on linear codes that are list decodable up to the Blokh Zyablov

bound (Section 4.5) appeared in [60].

The biggest and perhaps most challenging question left unresolved by our work is the

following.

Open Question 4.1. For every
; RQ@] R÷G�6<V and every �a � ; give explicit construction of

binary codes that are �^@"!f�� �`G�6X�e�N� -list decodable with rate GJIx ²w�/ @��³I~ � . Further, design

polynomial time list decoding algorithms that can correct up to @ fraction of errors.

In fact, just resolving the above question for any fixed @ (even with an exponential time

list-decoding algorithm) is widely open at this point.

