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Chapter 5

LIST DECODABILITY OF RANDOM LINEAR CONCATENATED

CODES

5.1 Introduction

In Chapter 2, we saw that for any fixed alphabet of size �§�õV there exist codes of rate 4
that can be list decoded up to ² å�Z¯ �`G-I,45IF�<� fraction of errors with list of size ���`G�6X�e� .
For linear codes one can show a similar result with lists of size � ��� Z � �Ñ� . These results are

shown by choosing the code at random. However, as we saw in Chapter 4 the explicit

constructions of codes over finite alphabets are nowhere close to achieving list-decoding

capacity.

The linear codes in Chapter 4 are based on code concatenation. A natural question to

ask is whether linear codes based on code concatenation can get us to list-decoding capacity

for fixed alphabets.

In this chapter, we answer the question above in the affirmative. In particular, in Sec-

tion 5.4 we show that if the outer code is random linear code and the inner codes are also

(independent) random linear codes, then the resulting concatenated codes can get to within� of the list-decoding capacity with list of constant size depending on � only. In Section 5.5,

we also show a similar result when the outer code is the folded Reed-Solomon code from

Chapter 3. However, we can only show the latter result with polynomial-sized lists.

The way to interpret the results in this chapter is the following. We exhibit an ensemble

of random linear codes with more structure than general random (linear) codes that achieve

the list-decoding capacity. This structure gives rise to the hope of being able to list decode

such a random ensemble of codes up to the list-decoding capacity. Furthermore, for design-

ing explicit codes that meet the list-decoding capacity, one can concentrate on concatenated

codes. Another corollary of our result is that we need fewer random bits to construct a code

that achieves the list-decoding capacity. In particular, a general random linear code requires

number of random bits that grows quadratically with the block length. On the other hand,

random concatenated codes with outer codes as folded Reed-Solomon code require number

of random bits that grows quasi-linearly with the block length.

The results in this chapter (and their proofs) are inspired by the following results due to

Blokh and Zyablov [19] and Thommesen [102]. Blokh and Zybalov show that random con-

catenated linear binary codes (where both the outer and inner codes are chosen uniformly

at random) have with high probability the same minimum distance as general random lin-

ear codes. Thommesen shows a similar result when the outer code is the Reed-Solomon

code. The rate versus distance tradeoff achieved by random linear codes satisfies the so
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called Gilbert-Varshamov (GV) bound. However, like list decodability of binary codes,

explicit codes that achieve the GV bound are not known. Coming up with such explicit

constructions is one of the biggest open questions in coding theory.

5.2 Preliminaries

We will consider outer codes that are defined over ��È , where ö|
L �X' for some fixed ���tV .
The outer code will have rate and block length of 4 and ~ respectively. The outer code1\���b
 will either be a random linear code over �UÈ or the folded Reed-Solomon code from

Chapter 3. In the case when 1 ���b
 is random, we will pick 1 ���b
 by selecting
� 
 4ø~

vectors uniformly at random from �}�È to form the rows of the generator matrix. For every

position G[EmÍyE ~ , we will choose an inner code 1 ÎÎ � to be a random linear code over� ¯ of block length  and rate Gy
p�C6� . In particular, we will work with the corresponding

generator matrices í.Î , where every í.Î is a random ��îo matrix over � ¯ . All the generator

matrices í.Î (as well as the generator matrix for 1 ���b
 , when we choose a random 1 ���b
 ) are

chosen independently. This fact will be used crucially in our proofs.

Given the outer code 1 ���b
 and the inner codes 1 ÎÎ � , the resulting concatenated code 1|
1\���b
?���i1 ZÎ � !¥¤¥¤¥¤�!f1 �Î � � is constructed as follows.1 For every codeword É´ 
v�WÉkZ\!¥¤¥¤¥¤�!NÉ � �(+1\���b
 , the following codeword is in 1 :É³í Ä û�Ì
� ��É³Zëí]Z�!NÉä�\íu��!¥¤�¤¥¤�!NÉ � í � �b!
where the operations are over � ¯ .

We will need the following notions of the weight of a vector. Given a vector ÅF+S�ú�Y�¯ ,

its Hamming weight is denoted by �:_��/Åµ� . Given a vector d 
 �?;�Z\!¥¤¥¤¥¤�!Z; � �_+O�ç �B � ¯ ���
and a subset ¶¾�� 5~u¡ , we will use � _ Þ �/dµ� to denote the Hamming weight over � ¯ of the

subvector �?;eÎ��ÑÎ Ù Þ . Note that �:_��/d��k 
��:_ � � � �<;�� .
We will need the following lemma due to Thommesen, which is stated in a slightly

different form in [102]. For the sake of completeness we also present its proof.

Lemma 5.1 ([102]). Given a fixed outer code 1¹�>�\
 of block length ~ and an ensemble of

random inner linear codes of block length  given by generator matrices íKZ�!¥¤¥¤¥¤�!bí � the

following is true. Let d´+] � �Y�¯ . For any codeword É´+S1 �>�\
 , any non-empty subset ¶º�÷ 5~g¡
such that ÉjÎ9Ï
 ; for all Í3+K¶ and any integer �uE, 8·¸¶-·X�(.>G�I Z¯�2 :

I�JX  � _ Þ �WÉ³í2Iwd��9E��U¡jEQ� å � ¿ Þ ¿ � Z½å � ¾ ���Ù�� Ê � �N� !
where the probability is taken over the random choices of íKZ�!¥¤¥¤¥¤�!bí � .

1Note that this is a slightly general form of code concatenation that is considered in Chapter 4. We did

consider the current generalization briefly in Section 4.4.
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Proof. Let ·¸¶-·" 
ûÁ and w.l.o.g. assume that ¶t
% 5Á¥¡ . As the choices for íKZ�!¥¤¥¤¥¤�!bí � are

made independently, it is enough to show that the claimed probability holds for the random

choices for í0Z\!�¤¥¤¥¤�!\í Â . For any G�E ÍgE Á and any ;|+÷ � � ¯ , since ÉjÎ0Ï
 ; , we haveINJ
	 �  »ÉúÎiíaÎ�
¼;� ¡Y 
q� å � . Further, these probabilities are independent for every Í . Thus, for

any d5 
MÆ?;c Z�!�¤¥¤¥¤�!Z;�Â È +÷�ç � � ¯ � Â , I�J�	 � � �O� � � 	 þ  »ÉúÎiíaÎ( 
F;XÎ for every G]EvÍ�EÅ Á¥¡Ð
H � å � Â . This

implies that:

INJ�	 � � � � � � 	 þ   �:_ Þ �WÉ³í2Iwd��8E� �U¡�
t� å � Â 
ü � ÛCý�þ  	Á�yÿ �W�JI�G�� � ¤
The claimed result follows from the Proposition 2.1.
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Figure 5.1: Geometric interpretations of functions ��������� and �� ��� ������� .

For
; E � E|G define � ¯ � � �³
pG�I�² ¯ �`G�Il� �ëå�Z �b¤ (5.1)

We will need the following property of the function above.

Lemma 5.2. Let �*�tV be an integer. For every
; E � EpG ,� ¯ � � �8E � ¤
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Proof. The proof follows from the subsequent sequence of relations:� ¯ � � �k 
pG�I�² ¯ �`GÐI�� �ëå�Z �
pG�IQ�`G�I�� �ëå�Z �c¨ª©£«>¯��W�-IQG��ÁnL ��G�Il� �bå�Z �Üª©£«£̄���G�I�� �ëå�Z �únF� �ëå�Z � � I�G��
 � � �ëå�Z nL ��G�I�� �ëå�Z � þ GÐIl̈ª©£« ¯ þ �-IQGG�I�� �ëå�Z ÿJÿE � !
where the last inequality follows from the facts that � �ëå�Z EM G and GPIQ� �ëå�Z EM GPI|G�6e� ,
which implies that ¨ª©£«>¯� . ¯ å�ZZ½å ¯/. �X� 2 �|G .

We will consider the following function�� ��� ¯ �10>�k 
÷ �`G�I20£� å�Z ��² å�Z¯ ��G�I20X¬��\!
where

; E30C!̀ ¬0E|G . We will need the following property of this function.2

Lemma 5.3 ([102]). Let �*�tV be an integer. For any ¬0� ; and
; E>;§EQ� ¯ �/¬��N6�¬ ,Ö Ó ­ý¤Ï!46Ï B �� ��� ¯ �10>�k 
÷ �`G�I8;�� å�Z ² å�Z¯ ��G�I´¬l;��b¤

Proof. The proof follows from the subsequent geometric interpretations of �£��� ¯ �� ��� and� ¯ ����� . See Figure 5.1 for a pictorial illustration of the arguments used in this proof (for�P
L V ).
First, we claim that for any

; E � ý E÷G , � ¯ � � � satisfies the following property: the line

segment between ��� ¯ � � ý �\!f² å�Z¯ ��GkIK� ¯ � � ý �N�̀ � and � � ý ! ; � is tangent to the curve ² å�Z¯ ��G³I � �
at � ¯ � � ý � .

Thus, we need to show thatIò² å�Z¯ �`GÐI�� ¯ � � ý �N�� ý Il� ¯ � � ý � 
z �W² å�Z¯ � � �`G�Il� ¯ � � ý � �̀\¤ (5.2)

One can check that �i² å�Z¯ � � ��G<I-¬��³
 å�Z� 
¾ � � �e�¾ � Z�å� � �®� 
 å�Z¹»º½¼`¾ � ¯ å�Z � å ¹»º½¼�¾ � � �e�¾ � Z�å� � �®� � ¹»º� ¼�¾ � Z�å � �e�¾ � Z�å� � �®� .
Now, � ý Il� ¯ � � ý �k 
 � ý IQG8nL ��G�I�� � Æ å�Z �c¨ª©£«£¯����JIQG� �ä It��G�I�� � Æ å�Z �U¨ª©<«>¯��`G�I�� � Æ å�Z �I�� � Æ å�Z � � ý I�G��
 ��G�I�� � Æ å�Z �ä�À�Ñ¨ª©<«>¯��W�JI�G��ä I´ ¨ª©£«>¯��`G�Il� � Æ å�Z �ún � ý I�G �
 ² å�Z¯ ��G�I�� ¯ � � ý �N�ä�À�Ñ¨ª©<«>¯��W�JI�G��ä I´ ¨ª©£«>¯��i² å�Z¯ ��G�Il� ¯ � � ý � �̀N�nS¨ª©<«>�̄�`G�IF² å�Z¯ ��G�I�� ¯ � � ý �N�N� �
 Iò² å�Z¯ ��G�Il� ¯ � � ý �N��i² å�Z¯ � � �`GÐI�� ¯ � � ý �N� !

2 Lemma 5.3 was proven in [102] for the
~65 * case. Here we present the straightforward extension of

the result for general
~
.
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which proves (5.2) (where we have used the expression for � ¯ � � � and �i² å�Z¯ � � ��GòI � � and

the fact that G�Il� �bå�Z 
5² å�Z¯ �`GÐI�� ¯ � � �N� ).
We now claim that �� �¥� ¯ ��0>� is the intercept of the line segment through ��¬Y! ; � and�10e¬j!ë² å�Z¯ �`GYI70e¬"�N� on the “ ; -axis.” Indeed, the “ ; -coordinate” increases by ² å�Z¯ �`GYI70e¬"� in

the line segment from ¬ to 0e¬ . Thus, when the line segment crosses the “ ; -axis”, it would

cross at an intercept of G�6C��G�I20£� times the “gain” going from ¬ to 0X¬ . The lemma follows

from the fact that the function ² å�Z¯ �`GòIòG>� is a decreasing (strictly) convex function of G
and thus, the minimum of �X ��� ¯ ��0£� would occur at 0� 
±; provided ;c ¬0EQ� ¯ ��¬"� .
5.3 Overview of the Proof Techniques

In this section, we will highlight the main ideas in our proofs. Our proofs are inspired by

Thommesen’s proof of the following result [102]. Binary linear concatenated codes with

an outer Reed-Solomon code and independently and randomly chosen inner codes meet the

Gilbert-Varshamov bound3. Given that our proof builds on the proof of Thommesen, we

start out by reviewing the main ideas in his proof.

The outer code 1 ���b
 in [102] is a Reed-Solomon code of length ~ and rate 4 (over��È ) and the inner codes (over � ¯ such that ö�
m�e' for some �w�%G ) are generated by ~
randomly chosen �_îw generator matrices í 
� �½ íSZb !�¤¥¤¥¤�!\ í � � , where G´ 
M��6� . Note

that since the final code will be linear, to show that with high probability the concatenated

code will have distance close to ² å�Z ��G}I±G£4} � , it is enough to show that the probability

of the Hamming weight of É³í over � ¯ being at most �i² å�Z �`GsI>G£4P�8I��<�½ ´~ (for some

Reed-Solomon codeword Éx 
 ��É3Z\!¥¤¥¤¥¤�!NÉ � � ), is small. Let us now concentrate on a fixed

codeword É%+ 1 ���b
 . Now note that if for some GxEùÍSE ~ , ÉjÎ. 
 ; , then for every

choice of íÂÎ , ÉúÎiía Î� 
 ; . Thus, only the non-zero symbols of É contribute to � _���É³í] � .
Further, for a non-zero ÉjÎ , ÉúÎiía Î takes all the values in � � ¯ with equal probability over

the random choices of íÂÎ . Also for two different non-zero positions ÍfZ�Ï
 Í�� in É , the

random variables ÉjÎ � ía Î � and ÉúÎ Ø í.Î Ø are independent (as the choices for íÂÎ � and í.Î Ø are

independent). This implies that É³í takes each of the possible �X��8 9 
 �;:�� values in �B �t�¯ with

the same probability. Thus, the total probability that É³í has a Hamming weight of at most� is � 
9 ÛCý � ��8 9 
 �;:��9 � � å ��8 9 
 �;:�� EQ� å �<8 9 
 �;:�� � Z�å � � �Ù>= ? ] �-@6� � �̀ . The rest of the argument follows by

doing a careful union bound of this probability for all non zero codewords in 1� ���b
 (using

the known weight distribution of Reed-Solomon codes4).

Let us now try to extend the idea above to show a similar result for list decoding of a

code similar to the one above (the inner codes are the same but we might change the outer

3A binary code of rate A satisfies the Gilbert-Varshamov bound if it has relative distance at least B�C c hQt�uA�n .
4In fact, the argument works just as well for any code that has a weight distribution that is close to that

of the Reed-Solomon code. In particular, it also works for folded Reed-Solomon codes– we alluded to this

fact in Section 4.4.
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code). We want to show that for any Hamming ball of radius at most �. 
z�W² å�Z �`Gk I G£4} ��I�e�½ 	 ~ has at most � codewords from the concatenated code 1 (assuming we want to show

that � is the worst case list size). To show this let us look at a set of �ònuG codewords from 1
and try to prove that the probability that all of them lie within some ball of radius � is small.

Let É Z !¥¤�¤¥¤�!NÉ 
�� Z be the corresponding codewords in 1 ���b
 . As a warm up, let us try and

show this for a Hamming ball centered around ñ . Thus, we need to show that all of the �Jn§G
codewords É Z íK!¥¤¥¤�¤�!NÉ 
�� Z í have Hamming weight at most � . Note that �v
 ; reverts

back to the setup of Thommesen, that is, any fixed codeword has weight at most � with

small probability. However, we need all the codewords to have small weight. Extending

Thommesen’s proof would be straightforward if the random variables corresponding to

each of É Î í having small weight were independent. In particular, if we can show that for

every position G´ErÍ§E½~ , all the non-zero symbols in ¢XÉ ZÎ !NÉ �Î !¥¤�¤¥¤�!NÉ 
�� ZÎ ¦ are linearly

independent5 over � ¯ then the generalization of Thommesen’s proof is immediate.

Unfortunately, the notion of independence discussed above does not hold for every��nz G tuple of codewords from 1 ���b
 . A fairly common trick to get independence when

dealing with linear codes is to look at messages that are linearly independent. It turns out

that if 1\���b
 is a random linear code over ��È then we have a good approximation of the the

notion of independence above. Specifically, we show that with very high probability for a

linearly independent (over �UÈ ) set of messages6 L Z !¥¤¥¤¥¤�!hL 
�� Z , the set of codewords É Z 
1\���b
`��L Z �\ !¥¤¥¤�¤¥!fÉ � 
M 1\���b
`��L � � have the following approximate independence property.

For most of the positions GÂE÷ÍsEû~ , most of the non-zero symbols in ¢XÉ ZÎ !¥¤�¤¥¤�!NÉ �Î ¦ are

linearly independent over � ¯ . It turns out that this approximate notion of independence is

enough for Thommesen’s proof to go through. Generalizing this argument to the case when

the Hamming ball is centered around an arbitrary vector from �ú�Y�¯ is straightforward.

We remark that the notion above crucially uses the fact that the outer code is a random

linear code. However, the argument is bit more tricky when 1¹���b
 is fixed to be (say) the

Reed-Solomon code. Now even if the messages L Z !¥¤¥¤¥¤�!hL 
�� Z are linearly independent

it is not clear that the corresponding codewords will satisfy the notion of independence

in the above paragraph. Interestingly, we can show that this notion of independence is

equivalent to showing good list recoverability properties for 1� �>�\
 . Reed-Solomon codes

are however not known to have optimal list recoverability (which is what is required in our

case). In fact, the results in Chapter 6 show that this is impossible for Reed-Solomon codes

in general. However, as we saw in Chapter 3, folded Reed-Solomon codes do have optimal

list recoverability and we exploit this fact in this chapter.

5Recall that
� �ED

is isomorphic to
�GF�

and hence, we can think of the symbols in
�!H

as vectors over
� �

.

6Again any set of IIk t messages need not be linearly independent. However, it is easy to see that some

subset of J 5LK;MON>P H hQI�k t6nSR of messages are indeed linearly independent. Hence, we can continue the

argument by replacing I k t with J .
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5.4 List Decodability of Random Concatenated Codes

In this section, we will look at the list decodability of concatenated codes when both the

outer code and the inner codes are (independent) random linear codes.

The following is the main result of this section.

Theorem 5.1. Let � be a prime power and let
; RÛGlROG be an arbitrary rational. Let; R%��Rr� ¯ �<G>� be an arbitrary real, where � ¯ �<G£� is as defined in (5.1), and

; Rö 4hE��� ¯ �<G>�äIl�<�`6�G be a rational. Then the following holds for large enough integers  ³!^~ such

that there exist integers � and
�

that satisfy �§
¼GX and
� 
|4 ~ . Let 1 ���b
 be a random

linear code over � ¯/T that is generated by a random
� î¹~ matrix over � ¯/T . Let 1 ZÎ � !¥¤¥¤¥¤�!f1 �Î �

be random linear codes over � ¯ , where 1 ÎÎ � is generated by a random �.îÂ matrix í§Î and

the random choices for 1 ���b
�!b í0 Z�!¥¤¥¤�¤¥!\ í � are all independent. Then the concatenated code1|
L 1\���b
?�P�i1 ZÎ � !¥¤¥¤�¤¥!ë1 �Î � � is a þ ² å�Z¯ ��G�I�4{G>�äI´�c !N� � U V Ù3 Ø ���/��WB � X ÿ -list decodable code with

probability at least G(Ix� å � � �t�µ� over the choices of 1 ���b
� !\í]Z�!¥¤¥¤¥¤�!b í � . Further, with high

probability, 1 has rate G£4 .

In the rest of this section, we will prove the above theorem.

Define ö|
t�e' . Let � be the worst-case list size that we are shooting for (we will fix its

value at the end). The first observation is that any �8n*G -tuple of messages ��L Z !¥¤¥¤¥¤�!hL 
�� Z �9+�ç � � È � 
�� Z contains at least Ò0 
��̂ ¨ª©£« È �i�unxG�� � many messages that are linearly independent

over �}È . Thus, to prove the theorem it suffices to show that with high probability, no

Hamming ball over �B �t�¯ of radius �i² å�Z¯ �`G9I#G£4P�jIw�e�½ ´~ contains a Ò -tuple of codewords�W1a�QL Z �\ !¥¤¥¤¥¤�!f1a�QL Ô �N� , where L Z !¥¤¥¤¥¤�!hL Ô are linearly independent over ��È .

Define @, 
 ² å�Z¯ �`G}I�4 G>�Ð IL � . For every Ò -tuple of linearly independent messages�QL Z !¥¤�¤¥¤�!hL Ô �s+5�ç � � È � Ô and received word dQ+l� �Y�¯ , define an indicator random variableY �/d8!hL Z !�¤¥¤¥¤�!̂ L Ô>� as follows.
Y �/d3!^L Z !¥¤¥¤¥¤�!hLôÔ£�ò
�G if and only if for every G§EK�_E3Ò ,�:_��i1���L �¥�äI´dµ�9E,@�  	 ~ . That is, it captures the bad event that we want to avoid. DefineO À 
 üØ Ù |�Ù
Z¾ ü� M � � �O� � � M ß � ÙÛÚ 0 Þ � È"� �µ� Ô�� Y �/d3!̂ L Z !¥¤¥¤¥¤�!hL Ô �

where ÓÑ­ Ò ��ö�! � !sÒY � denotes the collection of subsets of �UÈ -linearly independent vectors

from � � È of size Ò . We want to show that with high probability O À 
 ; . By Markov’s

inequality, the theorem would follow if we can show that:ã(  O À ¡�
 üØ Ù |oÙ[Z¾ ü� M � � � � � � M ß � Ù*Ú 0 Þ � ÈB � �ä� Ô¥� ã�   Y �/d3!hL Z !�¤¥¤¥¤�!̂ L Ô �Ñ¡ is � å � � �t��� ¤ (5.3)

Note that the number of distinct possibilities for d8!hL Z !¥¤¥¤¥¤�!hL Ô is upper bounded by � �t� �ö � � Ô 
5� �Y�3� Z � � � Ô�� . Fix some arbitrary choice of d3!hL Z !¥¤¥¤¥¤�!hL Ô . To prove (5.3), we will

show that � �t�k� Z � � � Ô¥� �*ã�   Y �^ d8!^L Z !¥¤¥¤¥¤�!hL Ô �½¡ is � å � � �Y��� ¤ (5.4)
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Before we proceed, we need some more notation. Given vectors É Z !�¤¥¤¥¤�!fÉèÔ.+K���È , we

define î( �WÉ Z !¥¤¥¤�¤�!NÉèÔ£�Ð
2� ú9Z\ !¥¤¥¤�¤¥!!ú � � as follows. For every G*ELÍ�EK~ , úµÎõ �2 yÒ�¡ denotes

the largest subset such that the elements �^Ë � Î � � Ù � � are linearly independent over � ¯ (in case

of a tie choose the lexically first such set), where É �́Â
 �^Ë � Z !¥¤�¤¥¤�!�Ë � � � . A subset of �}È is

linearly independent over � ¯ if its elements, when viewed as vectors from �j '¯ (recall that� ¯/T is isomorphic to �ú'¯ ) are linearly independent over � ¯ . If Ë � Î + úäÎ then we will call Ë � Î
a good symbol. Note that a good symbol is always non-zero. We will also define another

partition of all the good symbols, \. �WÉ Z !¥¤¥¤¥¤�!NÉ Ô �k
÷�<HjZ�!¥¤¥¤¥¤�!ZH Ô � by setting H � 
q¢� Í�· �a+¥úäÎÑ¦
for GPE �aECÒ .

Since L Z !¥¤�¤¥¤�!hL Ô are linearly independent over �UÈ , the corresponding codewords in1\���b
 are distributed uniformly in �}�È . In other words, for any fixed ��É Z !�¤¥¤¥¤�!NÉèÔ>�8+��^���È ��Ô ,
I�J À!]_^ ] ` Ôa� Û Z 1\���b
N�QL � �k 
tÉ �[b 
 ö å � Ô 
t� å � �Y� Ô ¤ (5.5)

Recall that we denote the (random) generator matrices for the inner code 1 ÎÎ � by í.Î for

every G} EQÍ8E¼~ . Also note that every ��É Z !¥¤¥¤¥¤�!NÉèÔ£��+F�ç���È ��Ô has a unique î( �WÉ Z !�¤¥¤¥¤�!fÉèÔ£� .
In other words, the V � Ô choices of î partition the tuples in �^� � È � Ô .

Let �K
÷@� ́ ~ . Consider the following calculation (where the dependence of î and \
on É Z !¥¤¥¤¥¤�!NÉ Ô have been suppressed for clarity):ã�  Y �/d3!̂ L Z !¥¤�¤¥¤�!hL Ô �Ñ¡� 
 ü�;: � � �O� � � : ß � Ù � | Zc � ß I�J 	 Û � 	 � � �O� � � 	 Z � ` Ôa� Û Z �:_��WÉ � í2I´ dµ�9E�� b (5.6)

��I�J À!]_^ ] ` Ôa� Û Z 1\���b
N�QL � �k 
tÉ �db

 � å � �Y� Ô ü�;: � � � �O� � : ß � Ù � | Zc � ß I�J 	 Û � 	 � � �O� � � 	 Z � ` Ôa� Û Z �:_��WÉ � ímIw d��8E� � b

(5.7)E � å � �Y� Ô ü�;: � � � � � � : ß � Ù � | Zc � ß I�J
	 Û � 	 � � � �O� � 	 Z � ` Ôa� Û Z � _ ð S �WÉ � í2I´ dµ�9E�� b
(5.8)
 � å � �Y� Ô ü�;: � � � �O� � : ß � Ù � | Zc � ß Ôå� Û Z I�J
	fey� _ ð S �WÉ � í2I´dµ�ÐE��hg (5.9)

In the above (5.6) follows from the fact that the (random) choices for 1� ���b
 and í 
�Ñ í0 Z\!�¤¥¤¥¤�!\í � � are all independent. (5.7) follows from (5.5). (5.8) follows from the simple
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fact that for every d´+��̂ �B � ¯ ��� and HK�÷ 5~u¡ , � _ ð �^ d��9E � _��̂ d�� . (5.9) follows from the subse-

quent argument. By definition of conditional probability, I�Ji	�jlk Ô� Û Z �:_ ð S �WÉ � í2Iw d��9E��nm
is the same as

INJ
	 ` �:_ ð ß ��É Ô ímIw d��9E��poo Ô å�Za� Û Z � _ ð S ��É � í2I´ dµ�9E�� b ��I�J
	 ` Ô å�Za� Û Z � _ ð S �WÉ � í2I´ dµ�9E� � b ¤
Now as all symbols corresponding to H Ô are good symbols, for every Í.+¾H Ô , the value

of É ÔÎ í.Î is independent of the values of ¢XÉ ZÎ ía Î�!¥¤¥¤¥¤�!NÉ Ô å�ZÎ ía Î½ ¦ . Further since each ofí]Z�!¥¤¥¤¥¤�!b í � are chosen independently (at random), the event �:_ ð ß ��ÉèÔ� í IFd��} Eq� is in-

dependent of the event k Ô å�Z� Û Z �:_ ð S �WÉ � í÷IKdµ�9E�� . Thus, I�J
	 j k Ô� Û Z �:_ ð S �WÉ � í2Iw d��9E�� m
is I�J
	fe®�:_ ð ß �WÉ Ô ímIw d��9E��hg��© I�J�	 ` Ô å�Za� Û Z �:_ ð S �WÉ � í2I´dµ�ÐE�� b ¤
Inductively applying the argument above gives (5.9).

Further,ã�  Y �/d3!̂ L Z !¥¤¥¤¥¤�!hL Ô �Ñ¡� 
 ü�;: � � �O� � � : ß � Ù � | Zc � ß Ôå� Û Z � å � �t� �© I�J�	re®�:_ ð S �WÉ � ímIw d��9E��hg (5.10)


 ü��Ä � � �O� � � Ä ß � Ù Ýiý � � �O� � � à ß ü�;:X� � �O� � � : ß � Ù � | Zc � ß �� ¿ ð � ¿ Û Ä � � �O� � � ¿ ð ß ¿ Û Ä ß � Ôå� Û Z I�J
	fe®�:_ ð S �WÉT�¥í2I´ d��9E��hg� � �t�
(5.11)E ü��Ä � � � � � � Ä ß �Ù ÝWý � �O� � � � à ß � ÔÛ� � � � � � Ô��ds ßSlt � Ä S Ôå� Û Z½�¿ ð S ¿ Û Ä S INJ
	fe®� _ ð S �WÉT��í2I´ dµ�9E��ug� � �t�
(5.12)
 ü��Ä � � �O� � � Ä ß � Ù Ýiý � � �O� � � à ß Ôå� Û ZÑ �¿ ð S ¿ Û Ä S I�J
	re®�:_ ð S �WÉT��í2Iw d��9E��hg� � U å � �6Ä S å �µ� å ß�v SÙ å Z Ù X (5.13)

In the above (5.10), (5.11), (5.13) follow from rearranging and grouping the summands.

(5.12) uses the following argument. Given a fixed î�
÷� ú� Z\ !¥¤¥¤¥¤�!,ú � � , the number of tuples��É Z !¥¤¥¤�¤¥!fÉèÔ£� such that î-��É Z !¥¤¥¤¥¤�!NÉèÔ>�� 
 î is at most wz
yx �Î Û Z � ¿ � � ¿ ' �e� ¿ � � ¿ ��Ô å ¿ � � ¿ � , where

the � ¿ � � ¿ ' is an upper bound on the number of ·�ú³Î̀ · linearly independent vectors from � '¯ and� ¿ � � ¿ ��Ô å ¿ � � ¿ � follows from the fact that every bad symbol ¢� Ë � Î ¦ � ÚÙ � � has to take a value that is a
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linear combination of the symbols ¢� Ë � Î ¦ � Ù � � . Now wpE�x �Î Û Z � ¿ � � ¿ � ' � Ô¥�Y 
5�£� ' � Ô��[s Z� t � ¿ � � ¿ 
� � ' � Ô�� s ßSlt � ¿ ð S ¿ . Finally, there are V Ô*� EQ� ÔÛ� distinct choices for î .

(5.13) implies the following� �t�3� Z � � � Ô�� �*ã(  Y �^ d9!hL Z !¥¤¥¤¥¤�!hL Ô �½¡jE ü��Ä � � � � � � Ä ß � Ù Ýiý � � � � � � à ß Ôå� Û Z # �
where # � 
t� å � U å � �6Ä S å �k� Z�å� � �®� å Z ß å ßzv SÙ å Z Ù X �© I�J�	re®�:_ ð S �WÉ � ímIw d��9E��hg³¤

We now proceed to upper bound # � by � å � � �t�µ� for every GgEü�́ E�Ò . Note that this

will imply the claimed result as there are at most � ~H n5G�� Ô 
p� � � �t�µ� choices for different

values of T � ’s.

We first start with the case when T � R,T X , whereT X 
 ~w�`G�I�4QI8YÁ�\!
for some parameter

; RWYtR�GòIQ4 to be defined later. In this case we use the fact thatI�J
	fey� _ ð S �WÉ � í2I´dµ�ÐE��hgsE|G . Thus, we would be done if we can show thatG~ þ G��WT � I ~´�� G�IF4P�N�Án ~ Ò n ÒÁT<Î n ~  Âÿ EqIJÝ � R ; !
for some Ý� �"� ; that we will choose soon. The above would be satisfied ifT �~ R|��G�I�4}�äI GG þ GÒ n ÒÁT � 	 ~ n G Ðÿ I Ý� �G !
which is satisfied if we choose YQ� �� . ZÔ n ÔÚÄ S�t� n Z� 2 n � 
� as T � RvT X . Note that if  5�V Òÿ. ÔÚÄ S� nQG 2 and if we set Ý � 
 ZÔ , it is enough to choose Yg 
 �Ô � .

We now turn our attention to the case when T � �QT�X . The arguments are very similar to

the ones employed by Thommesen in the proof of his main theorem in [102]. In this case,

by Lemma 5.1 we have# � EQ� å �rÄ S|{ Z�å � ¾ { �Ù v S�} å � { Z�å Z ���/��WB �v S~} å Zv S ß å ßÙ å ZÙ v S�} ¤
The above implies that we can show that # � is � å � � �t�k� Z�å� �B å�} �®� provided we show that for

every T X EQTaE ~ ,�D 6C�^ úTU�9Et² å�Z¯ þ G�I8G þ G�I ~´�� G�IF4P�T ÿ I ~T2Ò I Ò I ~ úTÁÿ I�ÝX !
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for ÝL
 �<6X� . Now if  ö � V Ò � , then both Ô� E �� Ô& Ä and ��jÄ E �� ÔÚÄ . In other words,Ô� n ��rÄ E �ÔÚÄ . Using the fact that ² å�Z¯ is increasing, the above is satisfied if

�B 6U�/  úTc�9Et² å�Z¯ þ G�I8G þ G�I ~w�`G�I�4QI8YÁ�T ÿ I V�~T2Òoÿ I�Ý�!
By Lemma 5.4, as long as Ò_���>Ü �¯ 6C�WÝ � �`G8I´4}�N� (and the conditions on Y are satisfied), the

above can be satisfied by picking�D 6C�/ ´~[�3 
L ² å�Z¯ ��G�IãG£4P�äI��£ÝP
�@"!
as required. We now verify that the conditions on Y in Lemma 5.4 are satisfied by our

choice of Y0 
 �Ô � . Note that if we choose ÒS
t�� Üb �¯ 6C��Ý � �`G�IF4}� �̀ , we will have Y0 
 � Ø � Z�å� � �× 
 ¾ � .

Now, as 4pR�G , we also have Y[EtÝ � 6C�?G<Üë� ¯ � . Finally, we show that YSEp� G̀�I�4}�`6<V . Indeed

Yg 
 Ý � �`G�I�4}�Ü �¯ G 
 � � �`G�I�4}�� Ü �¯ G E �U�`G�I�4}�� G E � ¯ �<G>�\ � G̀�IF4P�� G R G�I�4V !
where the first inequality follows from the facts that Ü��¯ � G and ��E G . The second

inequality follows from the assumption on � . The third inequality follows from Lemma 5.2.

Note that Ò´
÷� . Z� Z�å� � � � Ø 2 , which implies �,
 ö ��� Z � �®� Z�å� � � � Ø � as claimed in the state-

ment of the theorem.

We still need to argue that with high probability the rate of the code 1 
 1� �>�\ 
 ��W1 ZÎ � !¥¤¥¤¥¤�!f1 �Î � � is G<4 . One way to argue this would be to show that with high probabil-

ity all of the generator matrices have full rank. However, this is not the case: in fact, with

some non-negligible probability at least one of them will not have full rank. However, we

claim that with high probability 1 has distance � ; . Note that as 1 is a linear code, this

implies that for every distinct pair of messages L Z Ï
AL � +5 � � È are mapped to distinct

codewords, which implies that 1 has �æ � � � � codewords, as desired. We now briefly argue

why 1 has distance � ; . The proof above in fact implies that with high probability 1 has

distance about ² å�Z¯ ��G( I G£4P�½  	 ~ . It is easy to see that to show that 1 has distance at least� , it is enough to show that with high probability � M Ù |d� c Y �iñú!hL��} 
 ; . Note that this is

a special case of our proof, with Ò|
ùG and d÷
Oñ and hence, with probability at leastGÐI��X� � �Y��� , the code 1 has large distance. The proof is complete.

Remark 5.1. In a typical use of concatenated codes, the block lengths of the inner and

outer codes satisfy  w 
ó�y��̈ª©£« ~[� , in which case the concatenated code of Theorem 5.1 is

list decodable with lists of size ~ � � ��� Ø � Z½å� � �^ �e� � . However, the proof of Theorem 5.1 also

works with smaller  . In particular as long as  is at least � Ò � , the proof of Theorem 5.1

goes through. Thus, with  in �o�� Ò � � , one can get concatenated codes that are list decodable

up to the list-decoding capacity with lists of size � � � ���YýN� Z½å� � �^ � s � .
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Lemma 5.4. Let � be a prime power, and G§Eõ QEF~ be integers. Let
; R Ge!ë4 R G be

rationals and Ý]� ; be a real such that 4 E%��� ¯ �<G>�k I�Ýe�N6�G and Ý] Ev� ¯ �<G>� , where � ¯ �<G>�
is as defined in (5.1). Let Yx� ; be a real such that YxEõÖ Ó ­ . Z�å� �� ! � Ø× 
 ¾ � 2 , where Üë� ¯ is the

constant that depends only on � from Lemma 2.4. Then for all integers ÒL � � × 
 ¾� Ø � Z�å� � � and�g Ep�W² å�Z¯ ��G9I¥G£4}�úI´ V<Ý<�Ñ 	 ~ the following is satisfied. For every integer �`G8I´4,I¥YÁ��~M ETaE�~ , � úT Et² å�Z¯ þ G�I8G þ G�I ~´��G�IF4�I8YÁ�T ÿ I V�~ÒÁT( ÿ ¤ (5.14)

Proof. Using the fact ² å�Z¯ is an increasing function, (5.14) is satisfied if the following is

true (where T� X9
÷�` G�I�4QIãYú�Z~ ):� ´~ E Ö Ó ­Ä
� Ï Ä Ï � é þ T~Fÿ �X² å�Z¯ þ GÐI8G þ G�I ~w��G�I�4�I8Yú�T ÿ I V�~T X ÒÐÿ ê ¤
Define a new variable 0} 
÷ GúI ~´��Gj Ig4KI YÁ�N6eT . Note that as T X 
÷�� GjIg 4KI YÁ��~öEtT�E ~ ,; E� 0oE54xn Y . Also TU6Ú~ö
z�`G�IF4QI8Yú�\ �`G�I20>� å�Z . Thus, the above inequality would be

satisfied if� ´~ E÷�` GÐIF4QIãYÁ� Ö Ó ­ý6Ï!46Ï � � } é ��G�I20£� å�Z ² å�Z¯ þ G�I8G�0sI V�`G�IF4�I8YÁ�¤Ò ÿ ê ¤
Again using the fact that ² å�Z¯ is an increasing function along with the fact that YFE �`G-I4P�N6<V , we get that the above is satisfied if� ´~ Ep� G̀�I�4QI8YÁ� Ö Ó ­ý¤Ï!46Ï � � } é �`G�I20£� å�Z ² å�Z¯ þ G�I8G�0sI �� G̀ÐIF4}�¤Ò ÿ ê ¤
By Lemma 2.4, if Òl� � × 
 ¾� Ø � Z�å� � � , then7 ² å�Z¯ . G�IãG�0sI �� Z�å� � ��Ô 2 �q² å�Z¯ ��G( I G�0>��IFÝ . Since

for every
; E30yEt4[n Y , ��GjIg 4_I YÁ����GjI 0>� å�Z Ý*EQÝ , the above equation would be satisfied

if � ´~ Ep� G̀�I�4QI8YÁ� Ö Ó ­ý¤Ð!46Ï � � } � � � ¯ �10> �äIlÝX¤
Note that the assumptions Y� E Ý � 6U�<G<Üë� ¯ �tE Ý<6�G (as ÝH E G and Üë�¯ � G ) and 4 E��� ¯ �<G> �PIz Ý<�`6�G , we have 4vn/YùE � ¯ �?G>�N6© G . Thus, by using Lemma 5.3 we get that��G*I�4õI YÁ�cÖ Ó ­ ý¤ Ð!46Ï � � }�� � � ¯ ��0£�] 
h ² å�Z¯ ��G�I G£4õI�G�YÁ� . By Lemma 2.4, the facts thatYSEQÝ � 6C�<G<Ü �¯ � and ² å�Z¯ is increasing, we have ² å�Z¯ ��GYI G£4{I G�YÁ�9�t² å�Z¯ �`GYI G£4P��Ig Ý . This

implies that (5.14) is satisfied if �D 6C�^ 	 ~[�9Et² å�Z¯ ��G�IãG£4P�äIFV<Ý , as desired.

7We also use the fact that B"C c� is increasing.
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5.5 Using Folded Reed-Solomon Code as Outer Code

In this section, we will prove a result similar to Theorem 5.1, with the outer code being

the folded Reed-Solomon code from Chapter 3. The proof will make crucial use of the list

recoverability of folded Reed-Solomon codes. Before we begin we will need the following

definition and results.

5.5.1 Preliminaries

We will need the following notion of independence.

Definition 5.1 (Independent tuples). Let 1 be a code of block length ~ and rate 4 defined

over � ¯ T . Let Ò{ �|G and
; EQTCZ\ !�¤¥¤¥¤�!fT Ô E�~ be integers. Let �_
õ Æ�TCZ�!¥¤¥¤¥¤�!NT Ô È . An ordered

tuple of codewords ��Ü Z !�¤¥¤¥¤�!NÜÛÔ�� , Ü � +�1 is said to be ���8!� � ¯ � -independent if the following

holds. TCZ8
�� _���Ü Z � and for every G} R �. EêÒ , T � is the number of positions Í such that Ü � Î is� ¯ -independent of the vectors ¢XÜ ZÎ !¥¤�¤¥¤�!NÜ � å�ZÎ ¦ , where Ü S 
÷��Ü S Z !¥¤¥¤¥¤�!NÜ S � � .
Note that for any tuple of codewords ��Ü Z !¥¤�¤¥¤�!NÜ Ô � there exists a unique � such that it is�1�8 !� � ¯ � -independent.

The next result will be crucial in our proof.

Lemma 5.5. Let 1 be a folded Reed-Solomon code of block length ~ that is defined over��È with ö 
�� ' as guaranteed by Theorem 3.6. For any � -tuple of codewords from 1 ,

where �2�/ Ò{ �B � ~o6X� � � � � ���X �% Ô ¹»º� ¼ � ¯ � � � � (where �{ � ; is same as the one in Theorem 3.6),

there exists a sub-tuple of Ò codewords such that the Ò -tuple is ���8 !� � ¯ � -independent, where�K
zÆ�TCZ�!¥¤¥¤�¤�!NT Ô È such that for every GsE �. EC Ò , T � �p��G�I�4�Il�<��~ .

Proof. The proof is constructive. In particular, given an � -tuple of codewords, we will con-

struct a Ò sub-tuple with the required property. The correctness of the procedure will hinge

on the list recoverability of the folded Reed-Solomon code as guaranteed by Theorem 3.6.

We will construct the final sub-tuple iteratively. In the first step, pick any non-zero

codeword in the � -tuple– call it Ü Z . Note that as 1 has distance �`GòI�4P��~ (and ñF+Q1 ),Ü Z is non-zero in at least TCZ*�%�`GJIQ4}�Z~ � �`GòIQ4�Ix�<�Z~ many places. Note that Ü Z is

vacuously independent of the “previous” codewords in these positions. Now, say that the

procedure has chosen codewords Ü Z !¥¤¥¤¥¤�!NÜ Â such that the tuple is �1�Y �^ !� � ¯ � -independent for�j �D 
ÊÆ�TCZ�!¥¤¥¤�¤�!NT�Â È , where for every G�Eò�ÂE Á , T � �õ��G( IF4QI��e��~ . For every G� EtÍ9E ~ ,

define ¶" Î to be the � ¯ -span of the vectors ¢XÜ ZÎ !¥¤¥¤�¤�!NÜ ÂÎ ¦ in �Á'¯ . Note that ·¸¶" ÎN·ÐEö� Â . CallÜ�
÷�WÜ�Z�!¥¤¥¤¥¤�!NÜ � �8 +K1 to be a bad codeword, if there does not exist any TkÂ � Z9�÷�`GC Iy4ÂI��<��~
such that �WÜ Z !¥¤�¤¥¤�!NÜ Â !NÜ¥� is ���8 !� � ¯ � -independent for �K
zÆWTCZ�!¥¤�¤¥¤�!NT�Â � Z È . In other words, Ü is a

bad codeword if and only if some HC�÷ 5~g¡ with · Hy·> 
÷�i4´n{�e��~ satisfies Ü\ ÎY +_¶B Î for everyÍ3 + H . Put differently, Ü satisfies the condition of being in the output list for list recovering1 with input ¶ä Z\ !¥¤¥¤�¤�!f¶ � and agreement fraction 4´nK� . Thus, by Theorem 3.6, the number

of such bad codewords is wõ 
H ��~� 6X� � � � � ���e� Â ¹»º½¼ � ¯ � � � � Em��~� 6X� � � � � ���X �% Ô ¹»º� ¼ � ¯ � � � � , where Ò is
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the number of steps for which this greedy procedure can be applied. Thus, as long as at

each step there are strictly more than w codewords from the original � -tuple of codewords

left, we can continue this greedy procedure. Note that we can continue this procedure Ò
times, as long as Ò_Et�86�w . The proof is complete.

Finally, we will need a bound on the number of independent tuples for folded Reed-

Solomon codes.

Lemma 5.6. Let 1 be a folded Reed-Solomon code of block length ~ and rate
; R�4pR�G

that is defined over ��È , where ö|
t�e' . Let ÒK�pG and
; EQTCZ�!¥¤¥¤¥¤�!NT Ô E�~ be integers and

define �_
zÆ�TCZ�!�¤¥¤¥¤�!NT Ô È . Then the number of ���8!� � ¯ � -independent tuples in 1 is at most� � ÔX��Ô � Z � Ôå� Û Z ö E ¡E� ��Ä S å �k� Z�å� � � � Z½� ý � ¤
Proof. Given a tuple �WÜ Z !¥¤�¤¥¤�!NÜ*Ô>� that is ���8 !� � ¯ � -independent, define H � �2 5~u¡ with · H � ·C
T � , for G�Eý�5E Ò to be the set of positions Í , where Ü � Î is linearly independent of the

values ¢XÜ ZÎ !�¤¥¤¥¤�!fÜ � å�ZÎ ¦ . We will estimate the number of ���8 !� � ¯ � -independent tuples by first

estimating a bound w � on the number of choices for the � á�Ë codeword in the tuple (given a

fixed choice of the first ��IQG codewords). To complete the proof, we will show thatw � EQ� �3��Ô � Z � �� ö E ¡E� ��Ä S å �3� Z½å� � � � Z½� ý � ¤
A codeword Üò+K1 can be the � á�Ë codeword in the tuple in the following way. Now for every

position in  �~u¡ [ H � , Ü can take at most �j� å�Z EQ� Ô values (as in these position the value has

to lie in the � ¯ span of the values of the first ��ItG codewords in that position). Since 1 is

folded Reed-Solomon, once we fix the values at positions in  5~g¡ [ H � , the codeword will be

completely determined once any Ö C�EÁ�i4 ~QI[� ~tI.T � �<n[G£! ; ��
tÖ C�Eú��T � I ~w�`G�IÂ4P�<n[G£! ; �
positions in H � are chosen (w.l.o.g. assume that they are the “first” so many positions). The

number of choices for H � is � �Ä S � EtV��,Et�B � . Thus, we havew � EQ� � �c ��� Ô � � å Ä S �� ö E ¡� � ��Ä S å �3� Z½å� � � � Z½� ý � EQ� �k��Ô � Z � �� ö E ¡� � ��Ä S å �3� Z�å� � � � Z � � ý � !
as desired.

5.5.2 The Main Result

We will now prove the following result.

Theorem 5.2. Let � be a prime power and let
; RòG� R�G be an arbitrary rational. Let

; R�� R,� ¯ �<G>� an arbitrary real, where � ¯ �<G>� is as defined in (5.1), and
; R�4pEp��� ¯ �<G£�B I] �<�`6�G

be a rational. Then the following holds for large enough integers  ³!^~ such that there exist

integers � and
�

that satisfy �S
WGX  and
� 
24 ~ . Let 1 ���b
 be a folded Reed-Solomon
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code over � ¯zT of block length ~ and rate 4 . Let 1 ZÎ � !¥¤¥¤¥¤�!f1 �Î � be random linear codes over� ¯ , where 1 ÎÎ � is generated by a random �8î� matrix íÂÎ over � ¯ and the random choices forí] Z�!¥¤¥¤¥¤�!bí � are all independent. Then the concatenated code 1m
Ê1¹���b
��*�W1 ZÎ � !¥¤¥¤�¤�!f1 �Î � �
is a þ ² å�Z¯ �`G�I�4{G>�äI´�c!�� �� Ø � � � �����f� Z½å� � �^ � Ø ¹»º� ¼ � Z � � � � ÿ -list decodable code with probability at

least GJI�� å � � �t��� over the choices of í[Z\!¥¤�¤¥¤�!bí � . Further, with high probability, 1 has

rate G<4 .

In the rest of this section, we will prove the above theorem.

Define ö 
Ê� ' . Let � be the worst-case list size that we are shooting for (we will fix

its value at the end). By Lemma 5.5, any �wn|G -tuple of 1¹���b
 codewords �WÉ ý !¥¤¥¤¥¤�!NÉ 
 ��+�W1\���b
i� 
�� Z contains at least Ò_
ÿ+ë �W�[ntG��`6C� ~o6�Y � � � � } �e�>Ô ¹»º½¼ � ¯ � � � � - codewords that form an�1�8!� � ¯ � -independent tuple, for some �~ 
 ÆWT�Z\!�¤¥¤¥¤�!fT Ô È , with T � �H ��G-Ix45I YÁ��~ (we will

specify Y ,
; RAYõ R� G� Iq4 , later). Thus, to prove the theorem it suffices to show that

with high probability, no Hamming ball in � �t�¯ of radius �i² å�Z¯ ��G( IîG£4P��I��e�½  	 ~ contains

a Ò -tuple of codewords �WÉ Z íS!¥¤�¤¥¤�!NÉèÔ� íg � , where ��É Z !�¤¥¤¥¤�!fÉèÔ£� is a Ò -tuple of folded Reed-

Solomon codewords that is �1�8 !�� ¯ � -independent. For the rest of the proof, we will call aÒ -tuple of 1\���b
 codewords �WÉ Z !¥¤¥¤�¤¥!fÉ Ô � a good tuple if it is �1�8!�� ¯ � -independent for some�K
zÆ�TCZ�!¥¤¥¤�¤�!NT Ô È , where T � �p�`G�I�4QI8YÁ�Z~ for every GsE �. EC Ò .

Define @� 
L ² å�Z¯ ��GÐIF4 G>�Y I´� . For every good Ò -tuple of 1 ���b
 codewords �WÉ Z !¥¤¥¤¥¤�!NÉ Ô �
and received word d� +r�"�t�¯ , define an indicator variable

Y �^ d8!NÉ Z !¥¤�¤¥¤�!NÉèÔ>� as follows.Y �/d8!NÉ Z !¥¤�¤¥¤�!NÉèÔ>�o 
ùG if and only if for every GKE �xE Ò , �:_��WÉ � íö I,d��. E @> 	 ~ . That

is, it captures the bad event that we want to avoid. DefineO À 
 üØ Ù |�Ù[Z¾ ü
good �;: � � �O� � � : ß � Ù � À!]S^ ] � ß Y �^ d8!NÉ Z !¥¤¥¤�¤¥!fÉ Ô �\ ¤

We want to show that with high probability O À 
 ; . By Markov’s inequality, the theorem

would follow if we can show that:ã�  O À ¡"
 üØ Ù |�Ù
Z¾ ü
good �;: � � � � � � : ß � Ù � À� ]S^ ] � ß ã(  Y �/d8!NÉ Z !¥¤¥¤¥¤�!NÉ Ô �½ ¡úEt� å � � �t�µ� ¤ (5.15)

Before we proceed, we need a final bit of notation. For a good tuple �WÉ Z !¥¤¥¤¥¤�!NÉ Ô �
and every GQE½�÷E Ò , define H � �WÉ Z !¥¤¥¤¥¤�!NÉ Ô �#�  �~u¡ to be the set of positions Í such

that É � Î is � ¯ -independent of the set ¢XÉ ZÎ !¥¤¥¤¥¤�!NÉ � å�ZÎ ¦ . Note that since the tuple is good,· H � ��É Z !¥¤¥¤¥¤�!NÉ Ô ��·c �p�`G�IF4�Iã Yú�Z~ .

Let �[
q@�  ´~ . Consider the following sequence of inequalities (where below we have

suppressed the dependence of H � on ��É Z !¥¤¥¤�¤¥!fÉèÔ£� for clarity):ã�  O À ¡" 
 üØ Ù |�Ù
Z¾ ü
good �;: � � � � � � : ß � Ù � À� ]S^ ] � ß I�J�	 Û � 	 � � �O� � � 	 Z � ` Ôa� Û Z �:_��WÉ � ímIw d��9E�� b (5.16)
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E üØ Ù |�Ù[Z¾ ü
good �;: � � �O� � � : ß � Ù � À!]S^ ] � ß I�J 	 Û � 	 � � � �O� � 	 Z � ` Ôa� Û Z �:_ ð S �WÉ � í2Iw d��9E�� b (5.17)


 üØ Ù | Ù[Z¾ ü
good �;: � � � �O� � : ß � Ù � À!]_^ ] � ß Ôå� Û Z I�J
	fey� _ ð S �WÉ Î í2I´ dµ�9E��ug (5.18)

E üØ Ù |�Ù[Z¾ ü
good �;: � � �O� � � : ß � Ù � À!]S^ ] � ß Ôå� Û Z � å � ¿ ð S ¿ { Z�å � ¾ { �Ù�� � S � }n} (5.19)


 üØ Ù |oÙ[Z¾ ü��Ä � � � �O� � Ä ß �Ù Ý � Z½å� �B å�} �j� � �O� � � � à ß ü
good �;:X � � � � � � : ß � Ù � À� ]S^ ] � ß �� ¿ ð � ¿ Û Ä � � � �O� � ¿ ð ß ¿ Û Ä ß � Ôå� Û Z � å �jÄ S� { Z�å � ¾ { �Ù v S }h} (5.20)

E ü��Ä � � � �O� � Ä ß �Ù Ý � Z½å� �B å�} �j� � �O� � � � à ß � �t� ��� � Ô���Ô � Z � Ôå� Û Z ö E ¡� � ��Ä S å � Z�å� � �j� � ZÑ� ý � Ôå� Û Z � å �rÄ S� { Z�å � ¾ { �Ù v S�}n}
(5.21)E ü��Ä � � � �O� � Ä ß �Ù Ý � Z½å� �B å�} �j� � �O� � � � à ß � �t� ��� � Ô���Ô � Z � Ôå� Û Z ö Ä S å � Z½å� �B å�} �j� Ôå� Û Z � å �jÄ S� { Z�å � ¾ { �Ù v S�}h}
(5.22)
 ü��Ä � � � �O� � Ä ß �Ù Ý � Z�å� �B å�} �j� � � �O� � � à ß Ôå� Û Z � å �jÄ S|{ Z½å � ¾ {��Ù v Si} å � { Z½å �����| W£����� Zv S } å Zßzv S å Z � ß p �H�Ù v S3} ¤ (5.23)

In the above (5.16) follows from the definition of the indicator variable. (5.17) follows

from the simple fact that for every vector É of length ~ and every H��  5~u¡ , � _ ð ��É���E�:_��WÉ�� . (5.18) follows by an argument similar to the one used to argue (5.9) from (5.8)

in the proof of Theorem 5.1. Basically, we need to write out the probability as a product

of conditional probabilities (with �t
 Ò “taken out” first) and then using the facts that

the tuple ��É Z !¥¤�¤¥¤�!NÉ Ô � is good and the choices for í[Z�!¥¤¥¤¥¤�!bí � are independent.8 (5.19)

follows from Lemma 5.1. (5.20) follows from rearranging the summand and using the

fact that the tuple is good (and hence T � � ��GoIp4vI YÁ��~ ). (5.21) follows from the

fact that there are � �t� choices9 for d and Lemma 5.6. (5.22) follows from the fact that

8In Theorem 5.1, the tuple of codewords were not ordered while they are ordered here. However, it is easy

to check that the argument in Theorem 5.1 also works for ordered tuples as long as the induction is applied

in the right order.

9 As the final code � will be linear, it is sufficient to only look at received words that have Hamming

weight at most �j-�� . However, this gives a negligible improvement to the final result and hence, we just

bound the number of choices for � by
~ `i� .
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T � I5�`G( Ix4}�Z~H n5G�E|T � I5�`G( I, 4tIºYÁ��~ (for ~� �vG�6�Y ) and that T � �2�`G-Ix4LI YÁ��~ .

(5.23) follows by rearranging the terms.

Now, as long as  F� Òk�� Òun5G�� , we have �3��Ô � Z ��rÄ E �ÔÚÄ . (5.23) will imply (5.15) (along

with the fact that ² å�Z¯ is increasing) if we can show that for every ��GµI[4́ I YÁ�Z~OEtTaE�~ ,� úT Et² å�Z¯ þ G�IãG þ G�I �`G�IF4QIã YÁ��~T ÿ I V�~ÒÁT ÿ IlÝX!
for Ýl
M�e6e� . Thus, by Lemma 5.4 (and using the arguments used in the proof of The-

orem 5.1 to show that the conditions of Lemma 5.4 are satisfied), we can select Ò in� . Z� Ø � Z�å� � � 2 (and Y in �y�/� � ��G�I�4} � 6̀� G>� ), and pick�D 6C�/ ´~[�3 
L ² å�Z¯ �`G�IãG£4P�äIl�P
�@"!
as desired. This along with Lemma 5.5, implies that we can set�l
÷ � ~�6�� � � � � ���¥�f� Z�å� � �^ � Ø ¹»º� ¼ � ¯ � � � � !
as required.

Using arguments similar to those in the proof of Theorem 5.1, one can show that the

code 1\���b
1�P�W1 ZÎ � !¥¤¥¤¥¤�!f1 �Î � � with high probability has rate G£4 .

Remark 5.2. The idea of using list recoverability to argue independence can also be used

to prove Theorem 5.1. That is, first show that with good probability, a random linear outer

code will have good list recoverability. Then the argument in this section can be used to

prove Theorem 5.1. However, this gives worse parameters than the proof presented in Sec-

tion 5.4. In particular, by a straightforward application of the probabilistic method, one can

show that a random linear code of rate 4 over �UÈ is �i4xnîYä ! 
 !, ö{S � } � -list recoverable [49,

Sec 9.3.2]. In proof of Theorem 5.2,



is roughly � Ô , where Ò is roughly G�6X � � . Thus, if we

used the arguments in the proof of Theorem 5.2, we would be able to prove Theorem 5.1

but with lists of size of ö ¯ � � 3 � Ø � ����WB � �X � � , which is worse than the list size of ö � � ��� Ø � Z�å� � �^ �X � �
guaranteed by Theorem 5.1.

5.6 Bibliographic Notes and Open Questions

The material presented in this chapter appears in [61].

Theorem 5.1 in some sense generalizes the following result of Blokh and Zyablov [19].

Blokh and Zyablov show that the concatenated code where both the outer and inner codes

are chosen to be random linear codes with high probability lies on the Gilbert-Varshamov

bound of relative minimum distance is (at least) ² å�Z¯ ��G�IF4P� for rate 4 .

The arguments used in this chapter also generalize Thommesen’s proof that concate-

nated codes obtained by setting Reed-Solomon codes as outer codes and independent ran-

dom inner code lie on the Gilbert-Varshamov bound [102]. In particular by using d to be
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the all zero vector and ÒS
5 ��
÷ G in proof of Theorem 5.2, one can recover Thommesen’s

proof. Note that when ÒS
z G , a codeword ï is �NÆv � È !� � ¯ � -independent if �:_��l�u�3
�� . Thus,

the proof of Thommesen only required a knowledge of the weight distribution of the Reed-

Solomon code. However, for our purposes, we need a stronger form of independence in the

proof of Theorem 5.2 for which we used the strong list-recoverability property of folded

Reed-Solomon codes.

Theorem 5.2 leads to the following intriguing possibility.

Open Question 5.1. Can one list decode the concatenated codes from Theorem 5.2 up to

the fraction of errors for which Theorem 5.2 guarantees it to be list decodable (with high

probability)?

Current list-decoding algorithms for concatenated codes work in two stages. In the

first stage, the inner code(s) are list decoded and in the second stage the outer code is list

recovered (for example see Chapter 4). In particular, the fact that in these algorithms the

first phase is oblivious to the outer codes seems to be a bottleneck. Somehow “merging”

the two stages might lead to a positive resolution of the question above.


