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Chapter 6

LIMITS TO LIST DECODING REED-SOLOMON CODES

6.1 Introduction

In Chapters 3 and 4 we were interested in the following question: Can one construct explicit

codes along with efficient list-decoding algorithms that can correct errors up to the list-

decoding capacity ? Note that in the question above, we have the freedom to pick the code.

In this chapter, we will turn around the question by focusing on a fixed code and then asking

what is the best possible tradeoff between rate and fraction of errors (that can be corrected

via efficient list decoding) for the given code.

In this chapter, we will primarily focus on Reed-Solomon codes. Reed-Solomon codes

are an important and extensively studied family of error-correcting codes. The codewords

of a Reed-Solomon code (henceforth, RS code) over a field � are obtained by evaluating low

degree polynomials at distinct elements of � . The rate versus distance tradeoff for Reed-

Solomon codes meets the Singleton bound, which along with the code’s nice algebraic

properties, give RS codes a prominent place in coding theory. As a result the problem of

decoding RS codes has received much attention.

As we already saw in Section 3.1, in terms of fraction of errors corrected, the best

known polynomial time list algorithm today can, for Reed-Solomon codes of rate 4 , correct

up to a G}I � 4 ([97, 63]) fraction of errors. The performance of the algorithm in [63]

matches the so-called Johnson bound (cf. [64]) which gives a general lower bound on the

number of errors one can correct using small lists in any code, as a function of the distance

of the code. As we saw in Chapter 3, there are explicit codes known that have better

list decodable properties than Reed-Solomon codes. However, Reed-Solomon codes have

been instrumental in all the algorithmic progress in list decoding (see Section 3.1 for more

details on these developments). In addition, Reed-Solomon codes have important practical

applications. Thus, given the significance (both theoretical and practical) of Reed-Solomon

codes, it is an important question to pin down the optimal tradeoff between the rate and list

decodability of Reed-Solomon codes.

This chapter is motivated by the question of whether the Guruswami-Sudan result is

the best possible (i.e., whether the Johnson bound is “tight” for Reed-Solomon codes).

By this we mean whether attempting to decode with a larger error parameter might lead

to super-polynomially large lists as output, which of course will preclude a polynomial

time algorithm. While we don’t quite show this to be the case, we give evidence in this

direction by demonstrating that in the more general setting of list recovery (to which also

the algorithm of Guruswami and Sudan [63] applies) its performance is indeed the best
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possible.

We also present constructions of explicit “bad list-decoding configurations” for Reed-

Solomon codes. The details follow.

6.2 Overview of the Results

6.2.1 Limitations to List Recovery

The algorithm in [63] in fact solves the following more general polynomial reconstruction

problem in polynomial time: Given  ú� distinct pairs �â��Î�!ZY>ÎW�9+] � � output a list of all polyno-

mials U of degree � that satisfy Uä �â�DÎ��8 Y£Î for more than � ��  � values of ÍÐ+l¢cG£!fVC!¥¤¥¤�¤¥!� ��ç¦
(we stress that the ��Î ’s need not be distinct). In particular, the algorithm can solve the

list recovery problem (see Definition 2.4). As a special case, it can solve the following

“error-free” or “noiseless” version of the list recovery problem.

Definition 6.1 (Noiseless List Recovery). For a � -ary code 1 of block length  , the noise-

less list recovery problem is the following. We are given a set ¶ÁÎN�Q� ¯ of possible symbols

for the Í ’th symbol for each position Í , G*E�Í� E5  , and the goal is to output all codewordsÜaMÆ�Ü�Z\!¥¤¥¤�¤�!NÜ � È such that ÜëÎJ+L¶BÎ for every Í . When each ¶"Î has at most



elements, we

refer to the problem as noiseless list recovery with input lists of size


.

Note that if a code 1 is � ; ! 
 !f�8� -list recoverable then � is the worst case output list size

when one solves the noiseless list recovery problem on 1 with input lists of size


.

Guruswami and Sudan algorithm [63] can solve the noiseless list recovery problem for

Reed-Solomon codes with input lists of size

 R � � ' � in polynomial time. That is, Reed-

Solomon codes are � ; !k� � ' � IyG£!f�(�/ j�N� -list recoverable for some polynomially bounded func-

tion �(�^ Y� . In Section 6.3, we demonstrate that this latter performance is the best possible

with surprising accuracy — specifically, we show that when

 ï� � ' � , there are settings of

parameters for which the list of output polynomials needs to be super-polynomially large

in  (Theorem 6.3). In fact, our result also applies to the model considered by Ar et al. [3],

where the input lists are “mixtures of codewords.” In particular, in their model the lists at

every position take values from a collection of



fixed codewords.

As a corollary, this rules out an efficient solution to the polynomial reconstruction al-

gorithm that works even under the slightly weaker condition on the agreement parameter:_.�r� �> � I5��6<V .1 In this respect, the “square root” bound achieved by [63] is optimal,

and any improvement to their list-decoding algorithm which works with agreement frac-

tion _N6�  ´R|� 4 where 4|v�i��nL G� � 6̀�  is the rate of the code, or in other words that works

beyond the Johnson bound, must exploit the fact that the evaluation points ��Î are distinct

(or “almost distinct”).

1This in turn rules out, for every ��� � , a solution to the polynomial reconstruction algorithm that works

as long as ����� hQt´u��sn>rÚ-�� .
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While this part on tightness of Johnson bound remains speculative at this stage, for the

problem of list recovery itself, our work proves that RS codes are indeed sub-optimal, as

we describe below. By our work Reed-Solomon codes for list recovery with input lists of

size



must have rate at most G�6 
 . On the other hand, Guruswami and Indyk [52] prove that

there exists a fixed 4 � ; (in fact 4 can be close to G ) such that for every integer



there

are codes of rate 4 which are list recoverable given input lists of size



(the alphabet size

and output list size will necessarily grow with



but the rate itself is independent of


). Note

that in Chapter 3, we showed that folded Reed-Solomon codes are explicit list recoverable

codes with optimal rate.

6.2.2 Explicit “Bad” List Decoding Configurations

The result mentioned above presents an explicit bad list recovery configuration, i.e., an

input instance to the list recovery problem with a super-polynomial number of solutions.

To prove results on limitations of list decoding, such as the tightness of the Johnson bound,

we need to demonstrate a received word d with super-polynomially many codewords that

agree with d at _ or more places. A simple counting argument establishes the existence

of such received words that have agreement _ with � � 
Z� 6e� 
/å ' many codewords [70, 25].

In particular, this implies the following for  z � . For �tM � (in which case we say

that the Reed-Solomon code has low rate), one can get _� '� � for any Ý´� ;
and for �

in �P�^ Y� (in which case we say that the Reed-Solomon code has high rate), one can get_Âù�. nq� . �¹»º�¼ � 2 . In Section 6.4.2, we demonstrate an explicit construction of such a

received word with super-polynomial number of codewords with agreement _ up to �WVj Iy�<�N�
(for any �]� ; ), where �Sõ � for any Ý]� ; . Note that such a construction is trivial for__ � since we can interpolate degree � polynomials through any set of � points. In

Section 6.4.3, we demonstrate an explicit construction of such a received word with super-

polynomial number of codewords with agreement _ up to �}n �¹»º�¼�� ���H� � , when � is in �s�/ Y� .
In general, the quest for explicit constructions of this sort (namely small Hamming balls

with several codewords) is well motivated. If achieved with appropriate parameters they

will lead to a derandomization of the inapproximability result for computing the minimum

distance of a linear code [32]. However, for this application it is important to get V>���æ���H�
codewords in a ball of radius @ times the distance of the code for some constant @,RO G .
Unfortunately, neither of our explicit constructions achieve @ smaller than G�I �U� G̀� � .

As another motivation, we point out that the current best trade-off between rate and

relative distance (for a code over constant sized alphabet) is achieved by a non-linear code

comprising of precisely a bad list-decoding configuration in certain algebraic-geometric

codes [107]. Unfortunately the associated received word is only shown to exist by a count-

ing argument and its explicit specification will be required to get explicit codes with these

parameters.
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6.2.3 Proof Approach

We show our result on list recovering Reed-Solomon codes by proving a super-polynomial

(in  5  �©$ ) bound on the number of polynomials over � ¯ o of degree � that take values

in � ¯ at every point in � ¯ o , for any prime power � where � is roughly � $ å�Z . Note that

this implies that there can be a super-polynomial number of solutions to list recovery when

input list sizes are � � ' � . We establish this bound on the number of such polynomials by

exploiting a folklore connection of such polynomials to a classic family of cyclic codes

called BCH codes, followed by an (exact) estimation of the size of BCH codes with certain

parameters. We also write down an explicit collection of polynomials, obtained by taking� ¯ -linear combinations of translated norm functions, all of which take values only in � ¯ .
By the BCH bound, we conclude that this in fact is a precise description of the collection

of all such polynomials.

Our explicit construction of a received word d with several RS codewords (for low rate

RS codes) with non-trivial agreement with d is obtained using ideas from [25] relating to

representations of elements in an extension finite field by products of distinct linear factors.

Our explicit construction for high rate RS codes is obtained by looking at cosets of certain

prime fields.

6.3 BCH Codes and List Recovering Reed-Solomon Codes

6.3.1 Main Result

We will work with polynomials over � ¯ o of characteristic U where � is a power of U , and� �%G . Our goal in this section is to prove the following result, and in Section 6.3.2 we

will use it to state corollaries on limits to list decodability of Reed-Solomon codes. (We

will only need a lower bound on the number of polynomials with the stated property but

the result below in fact gives an exact estimation, which in turn is used in Section 6.3.4 to

give a precise characterization of the concerned polynomials.)

Theorem 6.1. Let � be a prime power, and � �� G be an integer. Then, the number of

univariate polynomials in � ¯ o   � ¡ of degree at most
¯ o å�Z¯ å�Z which take values in � ¯ when

evaluated at every point in � ¯ o is exactly � � o . That is,ooo ¢e��� � �8+] � ¯ o   � ¡�· deg �i�� �8 E � $ IQG�JI�G and ���l+]� ¯ o !f���W���9+] � ¯ ¦ ooo t� � o
In the rest of this section, we prove Theorem 6.1. The proof is based on a connection of

polynomials with the stated property to a family of cyclic codes called BCH codes, followed

by an estimation of the size (or dimension) of the associated BCH code. Now, the latter

estimation itself uses basic algebra. In particular one can prove Theorem 6.1 using finite

field theory and Fourier transform without resorting to coding terminology. However, the

connection to BCH codes is well known and we use this body of prior work to modularize

our presentation.
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We begin with the definition of BCH codes2. We point the reader to [80], Ch. 7, Sec. 6,

and Ch. 9, Secs. 1-3, for detailed background information on BCH codes.

Definition 6.2. Let � be a primitive element of � ¯ o , and let  ~õ� $ I�G . The BCH code�� ¢¡ ¯ � $ � Ä � N of designed distance T is a linear code of block length  over � ¯ defined as:�£  ¢¡ ¯ � $ � Ä � N |¢CÆ�Ü ý !NÜ�Z�!¥¤¥¤¥¤�!NÜ � å�Z È +0 � � ¯ ·»Ü<��� Î �³ ; for Í�÷ G<!ëVU!�¤¥¤¥¤�!NT�I�G£! whereÜ<�/¬��ktÜ ý nFÜ�Z�¬ynQ�����enFÜ � å�Z�¬ � å�Z +] � ¯   ¬�¡�¦c¤
We will omit one or more the subscripts in

�� ¢¡ ¯ � $ � Ä � N for notational convenience when

they are clear from the context.

In our proof, we will use the following well-known result. For the sake of completeness,

we present its proof here.

Lemma 6.1 (BCH codes are subfield subcodes of RS codes). Let � be a prime power and� � G an integer. Let  xv�©$x I�G , T be an integer in the range GÂRz T_Rp , and � be a

primitive element of � ¯ o . Then the set of codewords of
�£  ¤¡ ¯ � $ � Ä � N maybe written as¢CÆW���W� ý �b!f���W� Z �\!¥¤¥¤¥¤�!f���W� � å�Z � È +] � � ¯ ·<�÷+] � ¯ o   � ¡Ñ ! Òu¥ «��W�� �9E, uI�T�!

and ���? Yú�8+]� ¯ �TY[+] � ¯ o ¦c¤
Proof. Our goal is to prove that the two sets¶YZkq¢�Æ�Ü ý !NÜ�Z\!¥¤�¤¥¤�!NÜ � å�Z È ·»Üe�W� Î �k ; for Í�pG£!fVC!¥¤¥¤�¤¥!fT}IQG<! whereÜe��¬��³tÜ ý n�Ü�Z�¬ynQ�¥���<n�Ü � å�Z�¬ � å�Z +] � ¯  »¬�¡"¦} !¶Á�Ð§¦�ÆW����� ý �\!f����� Z �b!�¤¥¤¥¤�!f����� � å�Z � È ·<�÷+] � ¯ o   � ¡Ñ ! Òu¥ «��W�� �9E, uI�T�! and ���? Yú�8+]� ¯�TY[+] � ¯ o ¦8!

are identical. We will do so by showing both the inclusions ¶Y �� �t¶YZ and ¶ä Z �t¶Á� .
We begin with showing ¶ú�{�� ¶YZ . Let ��� � �8ê� � å Ä� ÛCý @ � � �s+S� ¯ o   � ¡ be a polynomial of

degree at most �^ g IlTU� that takes values in � ¯ . Then, for G� pG£!fVC!¥¤¥¤¥¤�!NT�I�G , we have� å�Z¨ Î ÛCýª©¬«_ Î1® «_ � ®WÎ°¯ � å�Z¨ Î ÛCý�± � å Ä¨� ÛCý³² �  Î �
´  � Î°¯ � å Ä¨� ÛCý°² � � å�Z¨ Î ÛCý!«S � � � ®�Îµ¯·¶6¸
where in the last step we use that � � å�ZÎ ÛCý Y Î  ; for every YS+] � ¯ o [ ¢c Ge¦ and ��� � �*ÏpG sinceGsE>G-n �. E, g I�G and � is primitive. Therefore, ÆW����� ý �b!ë �o�W� Z �\!¥¤¥¤�¤¥!ë�o�W� � å�Z � È +K¶YZ .

2What we define are actually referred to more specifically as narrow-sense primitive BCH codes, but we

will just use the term BCH codes for them.
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We next proceed to show the inclusion ¶µZ{�p¶Á� . Suppose Æ�Ü ý !NÜ�Z\!¥¤�¤¥¤�!NÜ � å�Z È +�¶YZ . For; E �a E, g I�G , define (this is the “inverse Fourier transform”)@ �  G � å�Zü Î ÛCý ÜfÎ/� å � Î !
where by

Z� , we mean the multiplicative inverse of  K��G in the field � ¯ o . Note that @ � Z� Ü<��� å �¥�� Z� Üe�W� � å ��� where Ü<�/¬��� � � å�ZÎ ÛCý ÜfÎ^¬ Î . So, by the definition of ¶ä Z , it follows that@ �  ; for �.�~ u I�T . Therefore the polynomial �o� � �9+g � ¯ o defined by��� � �k � å�Zü � ÛCý @ � � �  � å Äü � ÛCý @ � � �
has degree at most �^ uI�Tc� .

We now claim that for ����� Â �ktÜÚÂ for
; E�Á�E, g I�G . Indeed,���W� Â �  � å�Zü � ÛCý @ � � Â �  � å�Zü � ÛCý�þ G � å�Zü Î ÛCý ÜëÎ/� å � Î ÿ � Â � � å�Zü Î ÛCý ÜfÎ � å�Zü � ÛCý ��� Â½å>Î � �  ÜÚÂ3!

where in the last step we used the fact that � � å�Z� ÛCý ��� Â½å>Î �Q�}  ; whenever Í*Ï Á , and equals when ÍkKÁ . Therefore, Æ�Ü ý !NÜ�Z�!¥¤¥¤¥¤�!NÜ � å�Z È ÊÆi�o�W� ý �\!¥¤¥¤�¤�!f���W� � å�Z � È . We are pretty much

done, except that we have to check also that ��� ; �} +F� ¯ (since we wanted ���? Yú�P+F� ¯ for

all YK+0� ¯ o , including Y0 ; ). Note that ��� ; �kï@ ý  Z� � � � å�ZÎ ÛCý ÜfÎ . Since  S5 � $ IQG , we

have  un�Gy ; in � ¯ o and so
Z� H I�G�+l� ¯ . This together with the fact that ÜbÎÐ+´� ¯ for

every Í implies that ��� ; �8+]� ¯ as well, completing the proof.

In light of the above lemma, in order to prove Theorem 6.1, we have to prove that· �£  ¤¡ ¯ � $ � Ä � N ·£t� � o when Ty÷�W� $ IlG� ����G³I Z¯ å�Z � . We turn to this task next. We begin with

the following bound on the size of BCH codes [15, Ch. 12]. For the sake of completeness,

we also give a proof sketch.

Lemma 6.2 (Dimension of BCH Codes). For integer Í ,  , let !çÍ%$ � be a shorthand for ÍÖo© Ò  . Then · �� ¢¡ ¯ � $ � Ä � N ·>t� ¿ ¹ � ¯ � $ � ÄN� ¿ where×B���U!��{!N Tc�kq¢�Í�· ; E� Í3 E, g I�G£! !çÍ�� � $ � E, g IlT for all �D! ; E �. E,�H IQGX ¦ (6.1)

for  H�� $ IÊG . (Note that for this value of  , if Í0�Í ý n� Í`Z��ynÊ�����fÍ $ å�Z�� $ å�Z , then!çÍ½�B$ � qÍ $ å�Zän�Í ý �( nFÍNZ�� � nt�����> n�Í $ åU�N�©$ å�Z , and so !çÍ½�B$ � is obtained by a simple cyclic

shift of the � -ary representation of Í .)
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Proof. It follows from Definition 6.2 that the BCH codewords are simply polynomials Ü<�/¬��
over � ¯ of degree at most �/ PIKG�� that vanish at � Î for GPE,Í3R�T . Note that if Ü<�/¬��\!NÜ � �/¬�� are

two such polynomials, then so is Ü<�/¬��fnsÜ��^��¬"� . Moreover, since � � pG , ¬DÜ<�/¬��tÖy© Ò �/¬ � I*G� �
also vanishes at each designated � Î . It follows that if Üe��¬"� is a codeword, then so is G���¬"��Üe��¬"�Öy© Ò �/¬ � I�G�� for every polynomial G��/¬��9+]� ¯   ¬�¡ .

In other words
�� ¢¡ ¯ � $ � Ä is an ideal in the quotient ring 4� ,� ¯   ¬�¡^ 6C�/¬ � IQG�� . It is well

known that 4 is a principal ideal ring, i.e., a ring in which every ideal is generated by one

element [77, Chap. 1, Sec. 3]. Therefore there is a unique monic polynomial ����¬"��+0� ¯  »¬�¡
such that �� ¢¡ ¯ � $ � Ä � N |¢Y���/¬����j�/¬��� ·��ú��¬"�9+]� ¯   ¬�¡�º Òu¥ «����B�8E� uIQGÐI Òu¥ «"�â���ë¦
It follows that · �£  ¤¡ ¯ � $ � Ä � N ·9M� � å Þ65 ¼ � P � , and so it remains to prove that

Òu¥ «"�H ���§O wI·O ×B���U!��{!NTc��· where ×B�W�c!��{!NTU� is defined as in (6.1).

It is easily argued that the polynomial ����¬�� is the monic polynomial of lowest degree

over � ¯ that has � Î for every Í , GPE,Í3R,T , as roots. It is well known ([80, Chap. 7, Sec. 5])

that ����¬"� is then given by����¬"�3 å» Ù � � N �Q¼ � � N Ø �_8 8 8 ¼ � � N v �X � � ��¬aI �µ��!
where ÃÊ�W� Î � is the cyclotomic coset3of � Î . Further for the ease of notation, define Ã Ä � N ÃÊ�����¾½]ÃÊ�W� � �B������½0ÃÊ��� Ä å�Z � . To complete the proof we will show that·<Ã Ä � N ·Ä� �Iõ·�×B �W�c!`�_!NTU�( ·U¤ (6.2)

To prove (6.2), we claim that for every
; E Í[E  lIÊG , � Î + Ã Ä � N if and only if�^ {I�Í��SÏ+ ×B �/ �_!N�U!NTU� . To see that this is true note that �/  {IQÍ��SÏ+ê×B���U!��{!NTc� if and only

if there is a
; E �¥Î�Rr� such that !� �/ wItÍ���� � � $ � O ´IQÍZX[�% ´I5T . In other words,!çÍ½� � � $ � öÍ% X , where

; E%ÍZX] RrT . This implies that �^  wIQÍ��_Ï+ ×"���U!��_!fTc � if and only if� Î +KÃÊ��� Î � � �tÃ Ä � N , which proves the claim.

Let’s now use the above to compute the size of
�£  ¢¡ ¯ � $ � Ä � N where Ty÷�W� $ I_G���I ¯ o å�Z¯ å�Z .

We need to compute the quantity ·O ×"���U!��_!fTc ��· , i.e., the number of Í , ; EpÍòRp� $ I5G such

that !^Í½� � $ ¯ o å�ZÐE ¯ o å�Z¯ å�Z ÷G3 nF��n������en��r$ å�Z for each �y ; !¥G£!¥¤¥¤¥¤�!��HI�G . This condition

is equivalent to saying that if ÍsvÍ ý n, Í`Z��snq���¥�Un,Í $ å�Z��r$ å�Z is the � -ary expansion of Í ,
then all the � integers whose � -ary representations are cyclic shifts of �/Í ý !�Í`Z\!�¤¥¤¥¤�!�Í $ å�Zf�
are E G*np�� n2�����Ánp�©$ å�Z . Clearly, this condition is satisfied if and only if for each�Â ; !¥G£!¥¤¥¤�¤¥!`� ILG , Í � +~¢ ; !�GX ¦ . There are V $ choices for Í with this property, and hence

we conclude ·O ×"���U!��_!fTc ��·£5 V�$ when Tyz���©$lIQG��äI ¯ o å�Z¯ å�Z .

3In other words ¿ h)À a n 5ÂÁ À a1Ã ÀªÄ a �1Å�Æ Ã�ÇzÇzÇ�Ã ÀªÄ a ��È!ÉSÊ�Ë_Å1Æ<Ì , where Í a is the smallest integer such thatÎÐÏ ~[Ñ É)Ò ` 5 Ï .
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Together with Lemma 6.1, we conclude that the number of polynomials of degree at

most
¯ o å�Z¯ å�Z over � ¯ o which take on values only in � ¯ at every point in � ¯ o is precisely � � o .

This is exactly the claim of Theorem 6.1.

Before moving on to state implications of the above result for Reed-Solomon list de-

coding, we state the following variant of Theorem 6.1.

Theorem 6.2. Let � be a prime power, and �ö�|G be an integer. Then, for each Á , GPE�Á�E� , the number of univariate polynomials in � ¯ o   � ¡ of degree at most � Â� Û Z � $ å � which take

values in � ¯ when evaluated at every point in � ¯ o is at least � s þSlt Æ � o S � . And the number

of such polynomials of degree strictly less than � $ å�Z is exactly � (namely just the constant

polynomials, so there are no polynomials with this property for degrees between G and� $ å�Z I�G ).
Since the proof of the theorem above is similar to the proof of Theorem 6.1, we will

just sketch it here. By Lemmas 6.1 and 6.2, to count the number of univariate polynomials

in � ¯ o   � ¡ of degree at most � $ å�Z n5 ���¥�> nx� $ åkÂ which take values in � ¯ , we need to count

the number of integers ÍkLÍ ý nlÍ`Z`�� nQ�����<n�Í $ å�Z��r$ å�Z such that all integers corresponding

to cyclic shifts of �/Í ý !¥¤¥¤¥¤�!�Í $ å�Zf� are at most � $ å�Z nl������nK� $ åkÂ . It is easy to see all integersÍ such that Í � +� ¢ ; !¥Ge¦ for all � and Í � öG for at most Á values of � , satisfy the required

condition. The number of such integers is � Â� ÛCý � $ � � , which implies the bound claimed in

the theorem. The argument when degree is R,�� $ å�Z is similar. In this case we have to count

the number of integers Í ý n, Í`Z��sn������c n,Í $ å�Z�� $ å�Z such that all integers corresponding to

all cyclic shifts of �/Í ý !¥¤¥¤¥¤�!�Í $ å�ZN� is R5�r$ å�Z . Note that if Í � Ï ; for some
; E±�gE� � ILG ,

then the �/� ILG-I#�U� th shift with be at least � $ å�Z . Thus, only Í� ; satisfies the required

condition, which implies claimed bound in the theorem.

6.3.2 Implications for Reed-Solomon List Decoding

In the result of Theorem 6.1, if we imagine keeping �*�Q� fixed and letting � grow, then for

the choice  [t�©$ and �a÷���©$lIQG��N6C���JI�G�� (so that � � ' � L� ), Theorem 6.1 immediately

gives us the following “negative” result on polynomial reconstruction algorithms and Reed-

Solomon list decoding.4

Theorem 6.3. For every prime power �S�2� , there exist infinitely many pairs of integers�"!� such that � � ' � q� for which there are Reed-Solomon codes of dimension �Ñ�� nLG�� and

block length  , such that noiselessly list recovering them with input lists of size � � ' � requires

super-polynomial (in fact � �e�SÓ[Ô Õ ¾ ) output list size.

The above result is exactly tight in the following sense. It is easy to argue combinatori-

ally (via the “Johnson type” bounds, cf. [64]) that when

 RÛ� � ' � , the number of codewords

4We remark that we used the notation - 5 ~�Ñ u t in the previous subsection, but for this Subsection we

will take - 5�~[Ñ
.
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is polynomially bounded. Moreover [63] presents a polynomial time algorithm to recover

all the solution codewords in this case. As was mentioned in the introduction, our results

also show the tightness of noiselessly list recovering Reed-Solomon codes in the special

setting of Ar, Lipton, Rubinfeld and Sudan [3]. One of the problems considered in [3] is

that of noiselessly list recovering Reed-Solomon codes with list size


, when the set ¶jÎ at

every position Í is the set of values of fixed



codewords at position Í . Note that our lower

bound also works in this restricted model if one takes the � fixed codewords to be the �
constant codewords.

The algorithm in [63] solves the more general problem of finding all polynomials of

degree at most � which agree with at least _ out of  ú� distinct pairs �v ��Î�!ZY£ÎW� whenever _} �� ��  � . The following corollary states that, in light of Theorem 6.3, this is essentially the

best possible trade-off one can hope for from such a general algorithm. We view this as

providing the message that a list-decoding algorithm for Reed-Solomon codes that works

with fractional agreement _N6� that is less than � 4 where 4 is the rate, must exploit the fact

that the evaluation points ��Î are distinct or almost distinct (by which we mean that no �B Î
is repeated too many times). Note that for small values of 4 (close to

;
), our result covers

even an improvement of the necessary fractional agreement by ���i4P� which is substantially

smaller than � 4 .

Corollary 6.4. Suppose ¢ is an algorithm that takes as input  j � distinct pairs �â��Î�!ZY> ÎW�9+]� �
for an arbitrary field � and outputs a list of all polynomials U of degree at most � for whichUY �v ��ÎW��ù Y£Î for more than � ��  � I ' � pairs. Then, there exist inputs under which ¢ must

output a list of super-polynomial size.

Proof. Note that in the list recovery setting of Theorem 6.3, the total number of pairs  Y �� 
 Q � � ' � R~ ³� � ' ntG�� , and the agreement parameter _kQ . Then� �>  � I � V R×Ö ��  .  � nLG 2 I � V Q Ö G8 n � I � VE� . G8 n �VX 2 I � V � [±_3¤
Therefore there can be super-polynomially many candidate polynomials to output even

when the agreement parameter _ satisfies _Ð��� �>  � I~�C6< V .

6.3.3 Implications for List Recovering Folded Reed-Solomon Codes

In this subsection, we will digress a bit and see what the ideas in Section 6.3.1 imply

about list recoverability of folded Reed-Solomon codes. Recall that a folded Reed-Solomon

code with folding parameter � is just a Reed-Solomon code with � consecutive evalua-

tion pointsbundled together (see Chapter 3). In particular, if we start with an    ³!ë ��¡ Reed-

Solomon code, then we get an � ~%� Y 6��_! � 5 ��6��[� folded Reed-Solomon code.
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It is not too hard to check that the one can generalize Theorem 6.1 to show the following.

Let @��öG be an integer and � be a prime power. Then there are � � þ codewords from an. ¯ þ$ ! ¯ þ å�Z$8� ¯ å�Z � 2 folded Reed-Solomon code such that every symbol of such a codeword takes

a value in �^ � ¯ � $ . The set of � � þ folded Reed-Solomon codewords are just the � � þ BCH

codewords from Theorem 6.1, with � consecutive positions in the BCH codeword “folded”

into one symbol. Thus, this shows that an � ~] ! � � folded Reed-Solomon code (with folding

parameter � ) cannot be noiselessly list recovered with input lists of size � �� � $ .

Let us now recall the algorithmic results for (noiselessly) list recovering folded Reed-

Solomon codes. From (3.6) it follows that an � ~g! � � folded Reed-Solomon code (with

folding parameter � ) can be noiselessly list recovered with input lists of size



if

~O� .� G8 n ÁG 2 þ ��HI ÁÐnQGCÿ þ p �� ~ � Â 
 !
where G§E ÁgEõ � , and G[�FÁ are parameters that we can choose. Thus for any �0� ; ifG� Â� , then we can satisfy the above condition if
 E÷ ��G�Il�<� Â � Z þ ~ � ÿ Â þ �HI ÁÐnQG� ÿ Â � Z ¤ (6.3)

The bound above unfortunately is much smaller than the bound of ��~� 6 � �Z$ , unlike the

case of Reed-Solomon codes where the two bounds were (surprisingly) tight. For the case

when
� W �U� ~[� , however one can show that for any Ý§� ; , the bound in (6.3) is at least��~� 6 � � $8� Z� å� � � . Indeed, one can choose Áo÷ �w ��G- Ix Ý<6eV> � , in which case the bound in (6.3)

is ��~� 6 � � $8� Z� å� � � �j� ~o6 � � $ � � � �WÝ<6<V£� $8� Z� å� � � � � � Z �`G*I��e � $8� Z½ å� � � � � � Z . The claimed expression

follows by noting that ~o6 � >4-�`G� � while ÝX ! �̀ and � are all �� �`G� � .
6.3.4 A Precise Description of Polynomials with Values in Base Field

We proved in Section 6.3.1, for ö  ¯ o å�Z¯ å�Z , there are exactly � � o polynomials over � ¯ o
of degree ö or less that evaluate to a value in � ¯ at every point in � ¯ o . The proof of this

obtains the coefficients of such polynomials using a “Fourier transform” of codewords of an

associated BCH code, and as such gives little insight into the structure of these polynomials.

One of the natural questions to ask is: Can we say something more concrete about the

structure of these � � o polynomials? In this section, we answer this question by giving an

exact description of the set of all these � � o polynomials.

We begin with the following well-known fact which simply states that the “Norm”

function of � ¯ o over � ¯ takes only values in � ¯ .
Lemma 6.3. For all ¬]+]� ¯ o , ¬ ¾ o �e�¾ �e� +]� ¯ .
Theorem 6.5. Let � be a prime power, and let �O�|G . Let � be a primitive element of � ¯ o .

Then, there are exactly � � o univariate polynomials in � ¯ o   � ¡ of degree at most öv ¯ o å�Z¯ å�Z
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that take values in � ¯ when evaluated at every point in � ¯ o , and these are precisely the

polynomials in the set

~%|¢ � o å�Zü Î ÛCý ��Î�� � n�� Î � È ·£ � ý !��ÁZ\ !¥¤�¤¥¤�!��B � o å�ZÐ+g � ¯ ¦} ¤
Proof. By Lemma 6.3, clearly every polynomial � in the set ~ satisfies �� �?YÁ�Â+t� ¯ for

all Y5 +t� ¯ o . The claim that there are exactly � � o polynomials over � ¯ o of degree ö or

less that take values only in � ¯ was already established in Theorem 6.1. So the claimed

result that ~ precisely describes the set of all these polynomials follows if we show that·5~l·£L� � o .

Note that by definition, ·5~l·CEt� � o . To show that ·5~�·U�L� � o , it clearly suffices to show

(by linearity) that if � o å�Zü Î ÛCý ��Î�� � n�� Î � È  ; (6.4)

as polynomials in � ¯ o   � ¡ , then � ý  �ÁZ�õ �����Bï�B � o å�ZÐ ; . We will prove this by setting

up a full rank homogeneous linear system of equations that the �"Î ’s must satisfy. For this

we need Lucas’ theorem, stated below.

Lemma 6.4 (Lucas’ Theorem, cf. [47]). Let U be a prime. Let @ and ; be positive integers

with U -ary expansions @ ý nñ@CZ? Uont�����<nñ@ � U2� and ; ý n¥;¥Z�U� nQ�����<n¥; � U2� respectively. Then� 9 A � @� 9 ÆA Æ � � 9 �A � � ������� 9 VA V � Öo© Ò U , which gives us � 9 A � Ï ; Öo© Ò U if and only if @ � �ó; � for

all �.+{¢ ; !¥G£!������ä!ZGc ¦ .
Define the set Htq¢ ü � Ù Þ � � ·ò¶º�� ¢ ; !������Y!�� I�Ge¦ò¦} ¤

Applying Lemma 6.4 with U being the characteristic of the field � ¯ , we note that when

operating in the field � ¯ o , the binomial coefficient of � � in the expansion of � � nF� Î � È is G
if �.+ H and

;
otherwise. It follows that (6.4) holds if and only if � � o å�ZÎ ÛCý �W� Î � È�å �¤ ��Îú ; for

all �S+îH , which by the definition of H and the fact that öm G�n,�Jn,� � n� �¥���� n,�r$ å�Z
is

equivalent to � o å�Zü Î ÛCý �W� � � Î ��Îú ; for all �a+ H . (6.5)

Let us label the V $ elements ¢X ���}·Ú�a+ Hs¦ as � ý !N�³Z\ !¥¤¥¤�¤�!N�ä� o å�Z (note that these are distinct

elements of � ¯ o since � is primitive in � ¯ o ). The coefficient matrix of the homogeneous

system of equations (6.5) with unknowns � ý !¥¤�¤¥¤�!��B � o å�Z is then the Vandermonde matrixõùùùö G � ý � �ý ������� � o å�ZýG ��Z � � Z ������� � o å�ZZ
...

...
...

...
...G �Y� o å�ZO� �� o å�Z ������� � o å�Z� o å�Z ÷*úúúø !
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which has full rank. Therefore, the only solution to the system (6.5) is � ý ó �ÁZs �����ä�B � o å�Zk ; , as desired.

6.3.5 Some Further Facts on BCH Codes

The results in the previous subsections show that a large number ( � � o ) of polynomials over� ¯ o take on values in � ¯ at every evaluation point, and this proved the tightness of the

“square-root” bound for agreement _3 t K5��$ and total number of points  � t ú� (recall

Corollary 6.4). It is a natural question whether similarly large list size can be shown at other

points �< _\ !� ��®� , specifically for slightly smaller  ú� and _ . For example, what if  Á��t ³�W�JIQG� �
and we consider list recovery from lists of size ��I~G . In particular, how many polynomials

of degree at most öm �W� $ I5 G� �N6C���PI5 G� � take on values in � ¯�[ ¢ ; ¦ at _ points in � ¯ o . It

is easily seen that when _3 � St��$ , there are precisely ���JIQG�� such polynomials, namely

the constant polynomials that equal an element of � X¯ . Indeed, by the Johnson bound, since_ò� � ös � for the choice _- | and  � | k ���PIL G� � , we should not expect a large list size.

However, even for the slightly smaller amount of agreement _òz SI5 G�  ! � ös � $ , there

are only about a linear in  number of codewords, as Lemma 6.5 below shows. Hence

obtaining super-polynomial number of codewords at other points on the square-root bound

when the agreement _ is less than the block length remains an interesting question, which

perhaps the BCH code connection just by itself cannot resolve.

Lemma 6.5. Let � be a prime power and let �O �qG . For any polynomial �� � � � over � ¯ o   � ¡ ,
let its Hamming weight be defined as ·�¢t � +z� ¯ o ·¸�� �v �µ�lÏ ; ¦�· . Then, there are exactly���òIQG� ��� $ univariate polynomials in � ¯ o   � ¡ of degree at most ö÷  � ¯ o å�Z �¯ å�Z that take values

in � ¯ when evaluated at every point in � ¯ o and that have Hamming weight ��� $ IvG�� .
Furthermore, these are precisely the polynomials in the set Ø  ¢�Ùä � � n ��� È · � +� ¯ o ![Ù0+]� X́¯ ¦ .
Proof. It is obvious that all the polynomials in Ø satisfy the required property and are

distinct polynomials. We next show that any polynomial of degree at most ö that satisfies

the required properties belongs to Ø completing the proof.

Let �o� � � be a polynomial of degree at most ö that satisfies the required properties.

We must show that �o� � ��+LØ . Let Y5 +t� ¯ o be such that �o�< YÁ�y ;
. Clearly, for each�l+F�ç � ¯ o [ ¢© Yj¦<� , �� �â���`6C�v �0 I8YÁ� È +0� X¯ . By a pigeonhole argument, there must exist someÙq+5 � X¯ such that �� �v �µ�aÚÙä �â�lI±Yú� È for at least

¯ o å�Z¯ å�Z ïö values of � in � ¯ o [ ¢© Yj¦ .
Since �� �?Yú��  ; , we have that the degree ö polynomials �o� � � and ÙY � � IºYÁ� È agree on at

least öqn|G field elements, which means that they must be equal to each other. Thus the

polynomial �� � � � belongs to Ø and the proof is complete.
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6.4 Explicit Hamming Balls with Several Reed-Solomon Codewords

Throughout this section, we will be concerned with an  » �U!ë�0 nH G�¡ Reed-Solomon codex{z� ¸ �c !ë�y nqG�¡ over � ¯ . We will be interested in a received word d5 +�� ¯¯ such that a super-

polynomial number of codewords of x{zÁ » �U!ë�} ntG�¡ agree with d on _ or more positions, and

the aim would be to prove such a result for _ non-trivially larger than � . We start with the

existential result.

6.4.1 Existence of Bad List Decoding Configurations

It is easy to prove the existence of a received word d with at least � ¯ 
�� 6e� 
/ å ' codewords with

agreement at least _ with d . One way to see this is that this quantity is the expected number

of such codewords for a received word that is the evaluation of a random polynomial of

degree _ [70].5

We have the following lower bound on � ¯ 
Q� 6e� 
/ å ' :� ¯ 
��� 
^ å ' � � 
_ 
 � 
^ å '  �X'_ 
 L V ' ¹»º½¼ ¯ å> 
 ¹»º�¼ 
 ¤
Now when �xO� � for some Ý�� ;

and _. ¯ �� � , then �Ð¨ª©<«9�*I=_Üª©£«õ_ is �P�W� � ¨ª©£«8�£� ,
which implies that the number of RS codewords with agreement _ with the received wordÅ is ��� � ¯ � � .

On the other hand, if �� �s�W�<� let _Â �. n Ì , where
Ì  '� ¹»º�¼ ¯ (we also assume_9EQ�£6eV ). Now, �9̈ª©<«9��I _U¨ª©£« _9�L �Ð¨ª©<«9��I,�Ñ �Jn Ì �\ ��̈ª©£«8�� Ix G� �k 5 �Jn Ì I Ì ¨ª©£«8���5 ��6eV .

Thus, we get V<� � ¯ � RS codewords with agreement _3 5 �ÐnS� . ¯¹»º½¼ ¯� 2 with the received wordÅ .
In the remainder of the chapter, we will try to match these parameters with explicit

received words. We will refer to Reed-Solomon codes with constant rate as high rate Reed-

Solomon codes and to Reed-Solomon codes with inverse polynomial rate as low rate Reed-

Solomon codes.

6.4.2 Low Rate Reed-Solomon Codes

Another argument for the existence of a bad list-decoding configuration (from the previous

subsection), as suggested in [25], is based on an element � in � ¯ � ù� ¯ �W��� , for some

positive integer � , that can be written as a product x 9 Ù ð �W�un�@U� for at least � ¯ 
Q� 6e�  subsetsH �M� ¯ with · Hy·( _ — the existence of such a � again follows by a trivial counting

argument. Here we use the result due to Cheng and Wan [25] that for certain settings of

parameters and fields such a � can be explicitly specified with only a slight loss in the

number of subsets H , and thereby get an explicit received word d with several close-by

codewords from xázÁ » �c !b �PnQG�¡ .
5The bound can be improved slightly to Û � ÜlÝ q ~ Ü C c C F by using a random monic polynomial.
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Theorem 6.6 ([25]). Let �� � ; be arbitrary. Let � be a prime power, � be a positive integer

and � be such that � ¯ �����k �� ¯ � . For any �´+]� X́¯ � , let ~s
`�v �µ� denote the number of _ -tuplesÆ8@CZ�!o@c ��!¥¤¥¤¥¤�!o@<
 È of distinct @£Îs+,� ¯ such that �5  x 
Î Û Z ���_n�@<Îi� . If _o�O � � � nL V> �\�E�a npG�� ,��R _µIFV and ����Ö C�EÁ�< _ � !��E�oI�G�� � Ø p 3 � ]] � � Ø p 3 � � , then for all �´+]�	 X¯ � , ~s
N�v �µ�9�q�< _ä IQG� ��� 
/ å  å�Z
.

Proof. From the proof of Theorem 3 in [25], we obtain ~} 
N�â���o�H#JZ9It#�� , where #JZ*¯ ] å � ]Ø � ¯ ] �e�¯ � å�Z and #( �9z ��GÁn> � 
�% � �����( I_G� � 
 � ]Ø . Observe that from the choice of � , � 
�P�  
 Ø� I 
� E¯ å> 
� .

We first give a lower bound on #sZ . Indeed, using � 
�P� E ¯ å> 
� and �  ItG�Rt�  , we have#JZÐ� � ¯ ] å � ¯ å> 
 � ¯ ] �X�� ¯ �  ¯ ] � �� n 
� � 
/ å  å�Z .
Note that from our choice of _ , we have _9�q� � � nFV> ��� , that is, _ä IÞ�u�q� � � �� � � � �� _ . Further,

from our choice of � , �E�KIvG�� 
 E � ]Ø p 3 å�Z . We now bound #( � from above. From our

bounds on � 
�P� and �E�[Iõ G� � 
 , we have #( �{E �`Gsn ¯ å> 
� ��� � � p 3� p Ø 3 � 
^ å�Z R �`GPn ¯ å> 
� ��� 
/ å  å�Z ¯ ] � �� It� 
� IQG� ��� 
^ å  å�Z , where the second inequality comes from our bound on _µIÞ� .
Combining the bounds on #sZ and #( � proves the theorem.

We now state the main result of this section concerning Reed-Solomon codes:

Theorem 6.7. Let �w � ;
be arbitrary real, � a prime power, and � any positive integer.

If _{� � �� npV> �\ �E�] nvG� � and �5�hÖ C�EÁ�< _ � !����_Iõ G� � � Ø p 3 � ]] � � Ø p 3 � � then for every � in the range_"Iß�] EL �ÂE>_"IlG , there exists an explicit received word d´+]� ¯¯ such that there are at least¯ T
 G � T p �] � codewords of x{zÁ » �U!ë�} nQG�¡ that agree with d in at least _ positions.

We will prove the above theorem at the end of this section. As �}) ;
, and �c !ë�"!
 �§) à

in the above, we can get super-polynomially many codewords with agreement ��Gk n´Ý<�N� for

some Ý} tÝU�/�<�Ð� ; for a Reed-Solomon code of dimension tending to � Z � � . As �P) à , we

can get super-polynomially many codewords with agreement tending to V> � with dimension

still being �� � � Z � . We record these as two corollaries below (for the sake of completeness, we

sketch the proofs). We note that the non-explicit bound � ¯ 
Q� 6e� 
/ å ' gives a super-polynomial

number of codewords for agreement _y� �C6eÝ for dimension about �w H� � å̀�� � Z � , where as

our explicit construction can give agreement at most V> � (or dimension at most � � ).
Corollary 6.8. For all

; R�YzRh G , and primes U , there exists Ý~ � ;
such that for any

power of U (call it � ) that is large enough, there exists an explicit dv+�� ¯¯ such that the

Reed-Solomon code x{zÁ » �U!ë�*nqG� v� � nqG�¡ contains a super-polynomial (in � ) number of

codewords with agreement at least �iVJI8Yú�̀ � with d .

Proof. For any integer � , choose � , _ and � such that _k ÷ � � � n_V£���E�- n�G�� , ��±_"Iá�-n�G and_k z �WVòI8 YÁ�N� . These relations imply that�P �� � å̀�}Z½ å�} ���  å�Z! � Z �äIFV ¤
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Note that in the limit as � goes to infinity, �{ � � Z� å�} �} . Further, choose � to be a prime

power such that UB� ý � �{� � ý , where � ý  ���uIpG�� Ø p 3�/� � Ø p 3 �;Ó ] . Finally note that as _ goes

to infinity, � ý  ���0IzG�� Ø � Ø ������ . For the rest of the proof we will assume that � is large

enough so that �ãâ � � Z� å�} �} , � ý â �E�aILG�� Ø � Ø ������ and �E�aILG�� Ø � Ø ������ �K_ � . Note that now Ý� ¨ª©<«> ¯��E�9I] G� �> I� ¨ª©£«£�̄�`G"I YÁ�9� � � � å̀�} �} I� ¨ª©£«> ¯�U�Ia ¨ª©<«> ¯��`G"I YÁ�9� ; . As all conditions of Theorem

6.7 are satisfied, we have that the relevant number of codewords is at least äx ¯ T� 
 � Z �HG . Now

as _åâ . �Nå�}Z� å�} 2 �E�onqG� � and � is large enough, we can assume that _} E . � å̀�}Z½ å�} 2 �iV��D� . Thus,_ 
 Em�iVG�B� � Ø �������� �^� �  � ��� �Nå�}Z� å�} � � Ø ����/��� �^� �  � . To finish the proof we will show that äp� ¯/æ �� v � where Ü
and T are constants which depend on Y . Indeed as �? _jnt G� �!"�E>_ 
 , and �§�� � , we have� '�< _j nQG� �& " � � �iV��D� � Ø ����/��� �^� �  � �� � � å̀�}Z½ å�} � � Ø ����/��� �^� �  � ¤
Since � is large enough, �K�O���D 6<V> � Ø � Ø ������ , which along with the above inequality implies

that ä�� �  � Ø � Ø ������ �� � Ø �������� �^� �  � � GV Ø � Ø ����� �� V � Ø �������� �^� �  � � �Nå�}Z� å�} � � Ø ����/��� �^� �  � � �  �
Ø � Ø ������ ��� Z� å ��/��� �V Ä  !

where T is chosen such that V�Ä  �pV Ø � Ø ����� �� V � Ø ����/��� �^� �  � � �Nå�}Z� å�} � � Ø ����/��� �^� �  � . Note that such T exists

and it only depends on Y . Finally, if Y_R|G� 6<V , then there exists a value Ü that depends only

on Y such that �  � Ø � Ø ������ �\ � Z� å ������ � �Q� ×  . Thus, we have proved the theorem for
; RòY[R� G� 6<V .

Since having an agreement of V*IòY implies an agreement of V*I>Y�� for any YB �Ð�FY , the

proof of the theorem for
; R Y[RqG follows.

Corollary 6.9. For all
; R YSR Z� and primes U , there exists Ý�� ; , such that for any power

of U (call it � ) that is large enough, there is an explicit dl+[� ¯¯ such that the Reed-Solomon

code x{zÁ ¸ �c !ë�y n5 GyÊ� Z � � å̀�} n�G�¡ contains a super-polynomial (in � ) number of codewords

with agreement at least �`G8nFÝ<�`� with d .

Proof. The proof is similar to the proof of Corollary 6.8 and hence, most details are

skipped. Choose _ and � such that _Â � � � n5 �>���E�] I÷ G� � and ���_�Iç�§nõ G . Note that

for �{�éè� n : , _P�2� � � n�V> �\ �E�on�G�� . Also let � be a prime power such that � ý Ez �§E±UB� ý ,

where � ý ö ���§IqG� � Ø p 3��� � Ø p 3 �êÓ ] . As in Corollary 6.8, we consider � to be very large and we

have � ý âõ�E�*IxG�� Ø�/� Ø � , _ë â Z � }} �E��IxG�� and �ãâ  å�Z} . Recalling that _3 ÷ �`G³ń Ý<�N� , we haveÝ"âüY . Again using arguments as in the proof of Corollary 6.8, we have a lower bound of�s� ¯ �� v � � where T is a constant which depends on Y .

(Proof of Theorem 6.7). In what follows, we fix #.�/¬�� to be a polynomial of degree � that

is irreducible over � ¯ . For the rest of this proof we will denote � ¯   ¬�¡^ 6C�i#a ��¬"�N� by � ¯ � . Also

note that for any root � of # , � ¯ �W���k ,� ¯ � .



105

Pick any



where
; E 
 Eì�.I5G and note that � and _ satisfy the conditions of Theo-

rem 6.6. For any

ø H�>; ý !6;¥Z�!������Y!¤; S � , where ;fÎ3 +{� ¯ with at least one non zero ; � ; define� �3��¬"� Þ65v7 � S Î ÛCý ; Î̀^ ¬ Î . Fix G���¬"� to be an arbitrary non-zero polynomial of degree at most�oI�G . By their definitions, G������ and ���8�W��� are elements of �	 X¯ � .
We will set the received word d to be Æ � �y9f�í �y9f� È 9 Ù | ¾ . Note that since #.�/¬�� is an irreducible

polynomial, #a�>@U�òÏ ; for all @. +]� ¯ , and d is a well-defined element of � ¯¯ .
We now proceed to bound from below the number of polynomials of degree � Þ6587A _�n
 Iî � that agree with d on _ positions. For each non-zero tuple

ø +0�TS � Z¯ , define ö �8�/ ¬��3I � � � ��ï � � � . Clearly, ö �3 �W���[+z � X́¯ � . For notational convenience we will use ~I� to denote~ò
N� ö �3 �W��� �̀ . Then, for �ypG£!������ä! ~̂ � there exist ¢ � �Á� � � where ¢ � �Á� � � �x� ¯ and · ¢ � ��� � � ·£±_
such that � � � �� ����� Þo587 x 9 Ùið � ï!ñ S � �W�Sn @U�s ö �8����� . By Theorem 6.6, we have ~I�t� �< _3IG���� 
^ å  å�Z for every

ø
— let us denote by ~ this latter quantity. Recalling the definition ofö � , we have that for any � ø ! �U� , � � N ��ï � N � |Iò� � � �� ����� , or equivalently G������fnP� � � �� �W���`� �8�W ���k ;

. Since # is the irreducible polynomial of � over � ¯ , this implies that #a��¬�� divides� � � �� ��¬���� �8�/¬��ÁnîG���¬"� in � ¯  » ¬�¡ .
Finally we define H � � �� ��¬�� to be a polynomial of degree �a±_j n 
 IÞ� such that

H � � �� �/¬���#. ��¬"�kL � � � �� �/¬���� �8�/¬��ÁnîG��/ ¬��\ ¤ (6.6)

Clearly H � � �� ��I�@C� equals GC��I�@U�N6<#a ��I�@U� for each @_+ñ ¢ � �Á� � � and thus the polynomial H � � ��
agrees with d on at least _ positions. To complete the proof we will give a lower bound

on the number of distinct polynomials in the collection ¢©H � � �� ¦ . For a fixed

ø
, out of the~ � choices for � � � �� , _& " choices of � would lead to the same6 polynomial of degree _ . Since~ �%� ~ , there are at least � ¯ ç p � å�Z �j�
 G choices of pairs � ø ! �U� . Clearly for �£ZFÏ@ �� � the

polynomials � � � � �� ��¬"� and � � � Ø �� ��¬"� are distinct, however we could have � � � � �� � ��¬���� � � �/¬��(� � � Ø �� Ø ��¬"�`� � Ø ��¬"� (both are equal to say ¶� ��¬"� ) leading to H � � � �� � ��¬"�- üH � � Ø �� Ø ��¬"� . However the

degree of ¶ is at most _en 
 5 �µn � , and hence ¶ can have at most �µn�� roots, and therefore

at most � ' �ò
D � factors of the form x 9 Ù ð ��¬8n @C� with · H*·> ±_ . It follows that no single degree� polynomial is counted more than � ' �ò
 � times in the collection ¢©H � � �� ¦ , and hence there

must be at least ���rS � Z IQG� �Z~_& " � ' �ò
 � � �e'_& " � ' �ò
 �
distinct polynomials among them, where we used ~%z�< _�I�G���� 
/ å  å�Z and �W� S � Z IaG����< _�IaG��8��jS � Z L �X' å> 
 �ò,� Z since �� =_ún 
 Iî � . ó

6If ôöõ c Ãz÷z÷�÷� Ã õ Ülø is a solution of the equation ù 5�ú Üa�b�c6h)ÀIk7õ a n then so is ôöõ�û w�cv{ Ãz÷�÷z÷! Ã õ�û w Ü { ø for any

permutation ü on
Á t Ãz÷z÷�÷� Ã � Ì .
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6.4.3 High Rate Reed-Solomon Codes

We now consider the case of constant rate Reed-Solomon codes. We start with the main

result of this subsection.

Theorem 6.10. Let �÷�mV be an integer. Let UF'@U�w n|G be a prime and define _P ;\�
for any G*RC;} R @*ItG . Let the received word Å be the evaluation of 4o�<O_�Ð O 
 over � X� .
Then there are � 9 A � many codewords in 4s¶-    [8UY!ë �� ÷ ��;³I�G� �`�] n�G�¡�|�ý that agree with Å in

at least _ places.

To get some interesting numbers, let’s instantiate the parameters in the above theorem.

First we need the following result (we will prove this later in the subsection):

Lemma 6.6. For every
; Rx�� E|G� 6C�WÜ  I~G�� , where GPR,Ü  R±q , there exists infinitely many� with prime Uu @c �SntG such that @ is �o�W� � � .

Corollary 6.11. Let U be a prime that satisfies Lemma 6.6 for some � . Then there exists

at least Ve� � � 3 Ó���� p 3 �æ� codewords in 4P¶(    �=Uj !b �0 õ �P�/  j �\ !NT] p 0 I��*n� G\ ¡�| ý with agreement_k 5 �} nñ�y�/ Z � � Z � �Ñ �i� .
Proof. Set ;y !`��GòI�Ý<�� @Q $ònqG for some Ý[� ;

. Thus, �_ö �>;( IqG� ���÷ � !`��GòI,Ý<��@c � $u�y�8@U�3 �(  �y�/  j� . Further, _( ;\ ��õ �*n,�QÊ��n��o�^  Z � � Z � �Ñ �W� . The last part follows from

the fact that  [ï �o�W� Z � �f� . Finally, the number of codewords is at least � 9A å�ZÚ� A å�Z L V � �y9f�jVX� � � 3 Ó���� p 3 �®� .
If one is satisfied with super polynomially many codewords, say V 9"� ��� for some �*�/  j�k 4( ��̈ª©£«k  Y � , then choosing �g  × ¹»º½¼ 9"� ���¹»º½¼ � å × ¹»º�¼ 9"� ��� (for some suitable constant Ü ), gives an agree-

ment _3 5 �Pn¥� . ��þ9"� ���®� æ 2 .

Proof of Theorem 6.10. The basic idea is to find a “lot” of _ -tuples �?;�Z\ !Z;£�� !¥¤¥¤¥¤�!Z;X 
i�ò+w � 
� ,
(where for every Í- Ï � , ;eÎ9Ï±; � ) such that the polynomial � �6B � � �O � � � B ] � �? O{ �³ x 
Î Û Z �<O I¥;X Î�� is

actually of the form O 
 n 
^ å ü � Û Z Ü � O �
where Üf
/ å  can be

;
.7 The above is equivalent to showing that �< ;CZ�!¥¤¥¤¥¤� !Z;X 
i� satisfy the

following equations ; ÂZ n8; Â� nQ���¥� ;̂ Â
  ; Áò÷ G<!ë VU!�¤¥¤¥¤ë�_I�G (6.7)

We give an “explicit” description of at least � 9 A � distinct �?;UZ\ !¥¤�¤¥¤�!Z;X 
Ñ � such tuples.

7Then v höÿI nku�� w�� Ë�� ��� ��� �
	�{ höÿ n is of degree �au I 5 r u t as needed.
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Let � X́� be generated by Y and set �ö Y�9 . Note that the order of � is exactly � .

Now consider the “orbits” in �( X� under the action of � . It is not too hard to see that for; Ez Í}R @ , the Í á�Ë orbit is the set Y Î ¢ , where ¢M ¢cG£!N�8!N� � !�¤¥¤¥¤�!f�  å�Z ¦ . We will call Y Î
the “representative” of the Í á�Ë orbit. Consider all subsets ¢� Í ý !�¤¥¤¥¤�!̀ Í A å�Zë ¦ �� ¢ ; !¥G£!¥¤¥¤�¤¥!6@-IlGe¦
of size ; . Each such subset corresponds to a tuple �?;�Z�!¥¤¥¤¥¤� !Z;X 
i� in the following manner

(recall that _8 C;\ � ). For subset ¢� Í ý !¥¤�¤¥¤�!�Í A å�Zë ¦ , define ; Ä �� � =Y Î v � � , where
; EtT. R ; and; E G§Rq� . Note that each such subset ¢� Í ý !�¤¥¤¥¤�!�Í A å�Zb ¦ implies a distinct tuple �?;UZ\ !¥¤�¤¥¤�!Z;X 
Ñ � .

Thus, there are � 9 A � such distinct tuples.

To complete the proof, we will now verify that (6.7) holds for every such tuple �< ;�Z�!¥¤¥¤¥¤� !Z;X 
Ñ � .
Indeed by construction, for Áò÷ G£!¥¤¥¤¥¤�!f�_IQG :
ü � Û Z ; Â�  A å�Zü

Ä ÛCý Y Î v Â �  å�Zü � ÛCý � Â � �  A å�Zü
Ä ÛCý Y Î v Â þ �  Â I�G� Â I�G}ÿ  ; !

where the last inequality follows from the the fact that the order of � is � . ó
We now turn to the proof of Lemma 6.6. First we need the following result, which is a

special case of Linnik’s theorem:

Theorem 6.12 ([78]). There exists a constant Ü  , G�RtÜ  R�q , such that for all sufficiently

large T , there exists a prime U such that U0R,T ×�� and Uuôz GõÖo© Ò T .
Proof of Lemma 6.6. Fix any

; R �tE Z× � å�Z . The basic idea of the proof is to “re-

distribute” the product ;bT as @c� , where @oï �y�i�³�ë� .
Let TyL V � be sufficiently large so that it satisfies the condition of Theorem 6.12. Thus,

by Theorem 6.12, U{  ;ëT� n� G is prime for some GaEó;�RpV�� � ×� å�Z � . Let V Î Eó;*RpV Î � Z for

some Í8 +�  ; !ZG���Ü  IyG� �\IyG�¡ . Now we consider two cases depending on whether Í3 E,Í ý "!� Ge�t $
or not.

First consider the case when ÍÐEtÍ ý . Here define ¬�Îä,! � � å> ÎZ � � $ . Finally, let @. ;\V � � and�lL V � å�� � . First note that
; E� ¬�Îä E>G and thus, @ and � are well defined. Also note that@� �  ;\ V � �V ��� � å�� � � ï ;\ V � Z � �Ñ � � � å � � �tV Î V � Z � �Ñ �^� V 3 � �� p 3 � å � � å�Z  GV !

where the inequality follows from the fact that for all positive reals !� ;�$� �±;� I{G and ;( �L V Î .
Similarly, one can show that @C6e� � R~ � and thus, @oï �o�W� � � as required.

Now we consider the case when Í9��Í ý . In this case define ¬�ÎY ,! � å ��� Î � Z �Z � � $ . Finally, let@oL VB � å�� � and �l ;\ V � � . Note that ¬�Îä E>G . Also note that as Í�ntGsRò G���Ü  IQG�� , ¬�ÎY � ; and

thus, @ and � are well defined. As before, we first lower bound@� �  VB � å�� �; � V � � � � VB � å�� �V ��� Î � Z � � � � � L V � å � Z � �Ñ � � � å ��� Î � Z � �|G£!
where the first inequality follows from ;xR V Î � Z and the second follows from the fact

that for all positive ; , !?;�$0 E ; . Similarly one can show that 9 3 Ev� , which implies that@oï �y�i� � � as required. ó
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Smooth Variation of the Agreement

In this section, we will see how to get rid of the “restriction” that _ has to be a multiple of� in Theorem 6.10.

Theorem 6.13. Let �~ �tV and
; Et?}R�� be integers. Let Uu @c �Jn§G be a prime and define_k  ;\ �� n0 ? for any GPR�;- R @�I{G . Let the received word Å be the evaluation of 4o�? O{ �³±O 


over � X� . Then there are � 9 å�ZA � many codewords in 4P¶(    [8UY!ë �� z �>;k I�G����0 nQG3 n�?¥¡�| ý that

agree with Å in at least _ places.

Since the proof is very similar to that of Theorem 6.10, we will just sketch the main

ideas here. The basic argument used earlier was that every _ -tuple �< ;�Z�!Z;£�� !¥¤¥¤�¤¥!�;X 
Ñ � was cho-

sen such that the polynomials � �6B � � �O � � � B ] � �<O{ � and 4o�<O_� agreed on the first _�I[� co-efficients

and the RS codewords were simply the polynomials 4o�? O{ �c Iu� �6B � � �O � � � B ] � �<O{ � . Now the simple

observation is that for any fixed polynomial 70 �<O{ � of degree ? we can get RS codewords of

dimension ������Jnw ? by considering the polynomials 70 �<O{ � � 4y�<O{ �Y IF� �6B � � �O � � � B ] � �<O_� � . The

new agreement _� � is with the new received word 4ò�/�<O_�( õ4o�? O{ �`70 �<O_� . Now _½ ��Iº_ is the

number of roots of 7[�? O{ � that are not in the set ¢© ;�Z\ !¥¤¥¤�¤¥!�;X 
� ¦ .
Thus, we can now vary the values of � by picking the polynomial 70 �<O{ � of differ-

ent degrees. However, the difference _� �"I5��� might go down (as an arbitrary polynomial70 �? O{ � of degree ? might not have ? roots and even then, some of them might be in the set¢© ;c Zb!�¤¥¤¥¤�!�;X 
� ¦ ). To get around this, while choosing the tuples �?;�Z�!¥¤¥¤¥¤� !Z;X 
Ñ � , we will not pick

any elements from one of the @ cosets (recall that the tuples �< ;�Z\ !¥¤¥¤�¤�!Z;X 
Ñ � are just a collection

of ; out of the @ cosets formed by the orbits of �_=Y 9 , where Y generates � X� ). This reduces

the number of tuples from � 9 A � to � 9 å�ZA � . Now we pick an arbitrary subset of that coset of

size
; EQ?�R�� – say the subset is ¢ � Z\ !¥¤¥¤¥¤� ! � û ¦ . Finally, pick 70 �<O_�k çx ûÎ Û Z �<O I � Î�� . Note

that this implies that _ � ± _j n�? as desired.

6.5 Bibliographic Notes and Open Questions

Results in Section 6.3 and Section 6.4.2 appeared in [59] while those in Section 6.4.3 are

from [62].

Our work, specifically the part that deals with precisely describing the collection of

polynomials that take values only in � ¯ , bears some similarity to [51] which also exhibited

limits to list recoverability of codes. One of the simple yet powerful ideas used in [51],

and also in the work on extractor codes [101], is that polynomials which are G ’th powers

of a lower degree polynomial take only values in a multiplicative subgroup consisting of

the G ’th powers in the field. Specifically, the construction in [101, 51] yields roughly  ç TÙ
codewords for list recovery where



is the size of the ¶ÁÎ ’s in Definition 6.1. Note that this

gives super-polynomially many codewords only when the input lists are asymptotically

bigger than  Y 6£� .

In our work, we also use G ’th powers, but the value of G is such that the G ’th powers

form a subfield of the field. Therefore, one can also freely add polynomials which are G ’th
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powers and the sum still takes on values in the subfield. This lets us demonstrate a much

larger collection of polynomials which take on only a small possible number of values at

every point in the field. Proving bounds on the size of this collection of polynomials used

techniques that were new to this line of study.

The technique behind our results in Section 6.4.2 is closely related to that of the result of

Cheng and Wan [25] on connections between Reed-Solomon list decoding and the discrete

logarithm problem over finite fields. However, our aim is slightly different compared to

theirs in that we want to get a large collection of codewords close by to a received word. In

particular in Theorem 6.6, we get an estimate on ~� 
`�v �µ� while Cheng and Wan only require~ò
N�v ���8 � ; . Also Cheng and Wan consider equation (6.6) only with the choice �¦ �8��¬"�kpG .
Ben-Sasson, Kopparty and Radhakrishnan in [12], exploiting the sparsity of linearized

polynomials, have shown the following. For every Ýl+m� ; !¥G�� there exits Reed-Solomon

code of block length  and dimension  � nSG , which contains super-polynomial many code-

words that agree with a received word in at least  � �
positions. Also they show for constant

rate Reed-Solomon codes (where the rate is 4H � ; ), there exists a received word that has

agreement 4J�� ~ (where 4J�µ�z4 ) with roughly ~] � � ¹»º½¼ � Z � � � codewords. The received word

in the above constructions, however, is not explicit. Ben-Sasson et al. also construct an ex-

plicit received word that agrees with super-polynomially many Reed-Solomon codewords

in 4( �Ñ ��� many places, where �� � � n{ G is the dimension of the code. However, their results

do not give an explicit bad list decoding configurations for constant rate Reed-Solomon

codes. The results in [12] do not work for prime fields while the results on explicit received

words in this chapter do work for prime fields.

We conclude with some open questions.

Open Question 6.1. We have shown that RS codes of rate G�6 
 cannot be list recovered with

input lists of size



in polynomial time when



is a prime power. Can one show a similar

result for other values of


?

Using the density of primes and our work, we can bound the rate by �a��G� 6 
 � , but if it is

true it will be nice to show it is at most G�6 
 for every


.

We have shown that the � ��  � bound for polynomial reconstruction is the best possible

given  � general pairs �â��Î� !ZY£Îi�´+ � � as input. It remains a big challenge to determine

whether this is the case also when the �D Î ’s are all distinct, or equivalently

Open Question 6.2. Is the Johnson bound is the true list decoding radius of RS codes?

We conjecture this to be the case in the following sense: there exists a field � and a

subset of evaluations points ¶ such that for the Reed-Solomon code defined over � and ¶ ,

the answer to the question above is yes. One approach that might give at least partial results

would be to use some of our ideas (in particular those using the norm function, possibly

extended to other symmetric functions of the automorphisms of � ¯ o over � ¯ ) together with

ideas in the work of Justesen and Hoholdt [70] who used the Trace function to demonstrate

that a linear number of codewords could occur at the Johnson bound. Further, the work of
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Ben-Sasson et al. [12] gives evidence for this for x{z codes of rate  å � for constant � close

to
;
.

Open Question 6.3. Can one show an analog of Theorem 6.6 on products of linear factors

for the case when _ is linear in the field size � (the currently known results work only for _
up to � Z � � )?

This is an interesting field theory question in itself, and furthermore might help to-

wards showing the existence of super-polynomial number of Reed-Solomon codewords

with agreement _Ð�p��GÁn] �e�N� for some ��� ; for constant rate (i.e. when � is linear in  )? It

is important for the latter, however, that we show that ~} 
N�â��� is very large for some special

field element � in an extension field, since by a trivial counting argument it follows that

there exist �w +0�«X¯ � for which ~s
`�v ���9EÛ� ¯ 
Q� 6C���  IQG�� .


