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Chapter 8

TOLERANT LOCALLY TESTABLE CODES

In this chapter, we revisit the notion of local testers (as defined in Section 2.3) that was

the focus of Chapter 7.

8.1 Introduction

In the definition of LTCs, there is no requirement on the tester for input strings that are

very close to a codeword (it has to reject “far” away received words). This “asymmetry” in

the way the tester accepts and rejects an input reflects the way Probabilistically Checkable

Proofs (or PCPs) [6, 5] are defined, where we only care about accepting perfectly correct

proofs with high probability. However, the crux of error-correcting codes is to tolerate and

correct a few errors that could occur during transmission of the codeword (and not just

be able to detect errors). In this context, the fact that a tester can reject received words

with few errors is not satisfactory. A more desirable (and stronger) requirement in this

scenario would be the following– we would like the tester to make a quick decision on

whether or not the purported codeword is close to any codeword. If the tester declares that

there is probably a close-by codeword, we then use a decoding algorithm to decode the

received word. If on the other hand, the tester rejects, then we assume with high confidence

that the received word is far away from all codewords and not run our expensive decoding

algorithm.

In this chapter, we introduce the concept of tolerant testers. These are testers which

reject (w.h.p) received words far from every codeword (like the “standard” local testers)

and accept (w.h.p) close-by received words (unlike the “standard” ones which only need to

accept codewords). We will refer to codes that admit a tolerant tester as tolerant LTCs. In

particular we get tolerant testers that (i) make ���`G�� queries and work with codes of near

constant rate codes and (ii) make sub-linear number of queries and work with codes of

constant rate.

8.2 Preliminaries

Recall that for any two vectors Ëä!�ÇÂ+F ¸��¡ � , ÝU�^Ëä!�Ç�� denotes the (relative) Hamming distance

between them. We will abuse the notation a bit and for any ¶º�÷ »��¡æ� , use ÝU�/ËY!ë¶3� to denoteÖ Ó ­�Z Ù Þ Ýc�/Ëä!�ÇC� . We now formally define a tolerant tester.

Definition 8.1. For any linear code â over � ¯ of block length  and distance T , and
; EÜ�ZÐEQÜ���E|G , a �WÜ�Zb!fÜ\�b� -tolerant tester H for â with query complexity Uä�^ Y� (or simply U when
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the argument is clear from the context) is a probabilistic polynomial time oracle Turing

machine such that for every vector Ç.+0�"�¯ :

1. If ÝU�/ÇB!�âä�ÐE × � Ä� , H upon oracle access to Ç accepts with probability at least
�� (toler-

ance),

2. If ÝU�^Ç"!�âä�9� ×�Ø Ä� , H rejects with probability at least
�� (soundness),

3. H makes Uä�/ j� probes into the string (oracle) Ç .

A code is said to be �WÜ�Z�!NÜ\��!<U�� -testable if it admits a ��Ü�Z\!NÜ��b� -tolerant tester of query com-

plexity Uä����� .
A tester has perfect completeness if it accepts any codeword with probability G . As

pointed out earlier, local testers are just � ; !NÜ��b� -tolerant testers with perfect completeness.

We will refer to these as standard testers henceforth. Note that our definition of tolerant

testers is per se not a generalization of standard testers since we do not require perfect

completeness for the case when the input Ç is a codeword. However, all our constructions

will inherit this property from the standard testers we obtain them from.

Recall one of the applications of tolerant testers mentioned earlier: a tolerant tester is

used to decide if the expensive decoding algorithm should be used. In this scenario, one

would like to set the parameters Ü�Z and Ü�� such that the tester is tolerant up to the decoding

radius. For example, if we have an unique decoding algorithm which can correct up to Ä �
errors, a particularly appealing setting of parameters would be ÜeZ�
 Z� and Ü�� as close to

Z�
as possible. However, we would not be able to achieve such large ÜeZ . In general we will

aim for positive constants Ü�Z and Ü�� with
×WØ× � being as small as possible while minimizingUY�/ Y� .

One might hope that the existing standard testers could also be tolerant testers. We give

a simple example to illustrate the fact that this is not the case in general. Consider the tester

for the Reed-Solomon (RS) codes of dimension �"naG : pick �"n�V points uniformly at random

and check if the degree � univariate polynomial obtained by interpolating on the first �-nxG
points agrees with the input on the last point. It is well known that this is a standard tester

[96]. However, this is not a tolerant tester. Assume we have an input which differs from a

degree � polynomial in only one point. Thus, for � � å�Z' � Z � choices of ��n,V points, the tester

would reject, that is, the rejection probability is
� Ù �X�T p � �� ÙT p Ø � 
 ' � �� which is greater than

Z� for

high rate RS codes.

Another pointer towards the inherent difficulty in coming up with a tolerant tester is the

work of Fischer and Fortnow [39] which shows that there are certain boolean properties

which have a standard tester with constant number of queries but for which every tolerant

tester requires at least  ú� � Z � queries.

In this chapter, we examine existing standard testers and convert some standard testers

into tolerant ones. In Section 8.3 we record a few general facts which will be useful in
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performing this conversion. The ultimate goal, if this can be realized at all, would be to

construct tolerant LTCs of constant rate which can be tested using �a��G�� queries (we remark

that such a construction has not been obtained even without the requirement of tolerance).

In this work, we show that we can achieve either constant number of queries with slightly

sub-constant rate (Section 8.4) as well as constant rate with sub-linear number of queries

(Section 8.5.1). That is, something non-trivial is possible in both the domains: (a) constant

rate, and (b) constant number of queries. Specifically, in Section 8.4 we discuss binary

codes which encode � bits into codewords of length  [
5��� ¥ E�[Y��¨ª©<« � ��� for any ��� ; , and

can be tolerant tested using �a��G�6X�e� queries. In Section 8.5.1, following [14], we will study

the simple construction of LTCs using products of codes — this yields asymptotically good

codes which are tolerant testable using a sub-linear number  }
of queries for any desiredYt� ;

. An interesting common feature of the codes in Section 8.4 and 8.5.1 is that they

can be constructed from any code that has good distance properties and which in particular

need not admit a local tester with sub-linear query complexity. In Section 8.6 we discuss

the tolerant testability of Reed-Muller codes, which were considered in Chapter 7.

The overall message from this chapter is that a lot of the work on locally testable code

constructions extends fairly easily to also yield tolerant locally testable codes. However,

there does not seem to be a generic way to “compile” a standard tester to a tolerant tester

for an arbitrary code.

8.3 General Observations

In this section we will spell out some general properties of tolerant testers and subsequently

use them to design tolerant testers for some existing codes. All the testers we refer to are

non-adaptive testers which decide on the locations to query all at once based only on the

random choices. The motivation for the definition below will be clear in Section 8.4.

Definition 8.2. Let
; Rq��EvG . A tester H is �fÆ�Á£Z�!N��Z È !�Æ Á���!f�¥� È !N��� -smooth if there exists a

set VK�÷   "¡ where ·1Vo·>
t�j with the following properties:� H queries at most �XZ points in V , and for every ¬F+>V , the probability that each of

these queries equals location ¬ is at most
Â �¿ \�¿ , and� H queries at most ��� points in    "¡ [ V , and for every ¬0+F   �¡ [ V , the probability that

each of these queries equals location ¬ is at most
Â Ø� å ¿ \Á¿ .

As a special case a �fÆ�G£!N� È !�Æ ; ! ; È !¥G�� -smooth tester makes a total of � queries each of

them distributed uniformly among the  possible probe points. The following lemma fol-

lows easily by an application of the union bound.

Lemma 8.1. For any
; Rv�qR G , a �fÆ�Á£Z\!N��Z È !�Æ�Á���!N�¥� È !N��� -smooth � ; !fÜ\�b� -tolerant tester H

with perfect completeness is a �WÜ�Z\!NÜ��b� -tolerant tester H � , where Ü�Z3
 � N � Z½å N �� Ä E ¡�� Ý ¯ � Â � � Z�å N � � ¯ Ø Â Ø N à .



144

Proof. The soundness follows from the assumption on H . Assume ÝU�/ÇB!�âµ�oE × � Ä� and let�{+_â be the closest codeword to Ç . Suppose that � differs from Ç in a set V � of ;CT places

among locations in V , and a set

ø � of �v�_Iº;���T places among locations in    �¡ [ V , where

we have �vEöÜ�Z and
; E�;tE�� . The probability that any of the at most �<Z (resp. �¥� )

queries of H into V (resp.    �¡ [ V ) falls in V-� (resp.

ø � ) is at most
Â � BhÄN � (resp.

Â Ø � » å Bë�Ð Ä� Z�å N ��� ).

Clearly, whenever H does not query a location in VJ�h½ ø � , it accepts (since H has perfect

completeness). Thus, an easy calculation shows that the probability that H rejects Ç is at

most Ü�Z�T Ö C� EB¢ ÁeZ���Z� ! Á��ë�¥ �G�I�� ¦
which is G�6e� for the choice of Ü�Z stated in the lemma.

The above lemma is not useful for us unless the relative distance and the number of

queries are constants. Next we sketch how to design tolerant testers from existing robust

testers with certain properties. We first recall the definition of robust testers from [14].

A standard tester H has two inputs: an oracle for the received word Ç and a random

string Á . Depending on Á , H generates � query positions ÍëZ� !����¥�ä!�Í ¯ , fixes a circuit 1¹Â and

then accepts if 1¹Â��^Ç Ì � ÁX�N�k
pG where Ç Ì � ÁX �k
õÆ^Ç�Î � !����¥�ä!�ÇX Î ¾ È . The robustness of H on inputsÇ and Á , denoted by @�ðµ�/ÇB!^Áe� , is defined to be the minimum, over all strings ; such that1 Â\�<;��§
 G , of ÝU�/Ç Ì � ÁX �b!�;�� . The expected robustness of H on Ç is the expected value of@ ð �^Ç"!^ÁX � over the random choices of Á and would be denoted by @ ð �/ÇC� .
A standard tester H is said to be Ü -robust for â if for every Ç. +0 â , the tester accepts with

probability G , and for every ÇÂ+]� �¯ , ÝU�/ÇB!�âä �ÐEQÜ8��@>ðµ�/ÇC� .
The tolerant version H( � of the standard Ü -robust tester H is obtained by accepting an

oracle Ç on random input Á , if @�ðä �/Ç"!̂ ÁX ��Ê ] for some threshold ] . (Throughout the chapter] will denote the threshold.) We will sometimes refer to such a tester as one with threshold] . Recall that a standard tester H accepts if @ ð �^Ç"!^ÁX �k
 ; . We next show that H � is sound.

The following lemma follows from the fact that H is Ü -robust:

Lemma 8.2. Let
; E_]_EmG , and let Ü¥�ò
 �a` � � � × �� Ä . For any ÇS+w�B�¯ , if ÝU�^Ç"!�âä �s� ×�Ø Ä� , then

the tolerant tester H( � with threshold ] rejects Ç with probability at least
�� .

Proof. Let ÇÂ+]� �¯ be such that ÝU�^Ç"!�âä �9� ×WØ Ä� . By the definition of robustness, the expected

robustness, @�ðµ�^Ç�� is at least
×WØ Ä� × , and thus at least �b]ÂnLV>�N6e� by the choice of Ü�� . By the

standard averaging argument, we can have @cðä �/Ç"!̂ ÁX �ÐEc] on at most a fraction G�6X� of the of

the random choices of Á for H (and hence H � ). Therefore, @ ð �/ÇB!,ÁX�(�d] with probability at

least V>6e� over the choice of Á and thus H � rejects Ç with probability at least V>6X� . ó
We next mention a property of the query pattern of H which would make Hò� tolerant.

Let ¶ be the set of all possible choices for the random string Á . Further for each Á , let U"ðµ��Áe�
be the set of positions queried by H .

Definition 8.3. A tester H has a partitioned query pattern if there exists a partition Á�Z ½�¥����½]¶ $ of the random choices of H for some � , such that for every Í ,
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� ½NÂ Ù Þ � U ð ��Áe�³
q¢cG£!fVC!������ä!� µ¦ , and�
For all Á>!̂ Á��B+K¶BÎ , U�ðµ� ÁX �´� U�ðµ� Á¥�ª�k
de if ÁaÏ
 Á�� .

Lemma 8.3. Let H have a partitioned query pattern. For any Çx+t� �¯ , if ÝU�^Ç"!�âä �aE × � Ä� ,

where Ü�Z3
 �Q`� Ä , then the tolerant test H � with threshold ] rejects with probability at most
Z� .

Proof. Let ¶äZ\ !¥�¥���ä!f¶ $ be the partition of ¶ , the set of all random choices of the tester H .

For each � , by the properties of ¶ � , � Â Ù Þ S @ ð �/ÇB!^Áe�PEzÝU�/ÇB!�âä � . By an averaging argument

and by the assumption on ÝU�^Ç"!�âä � and the value of ÜX Z , at least
�� fraction of the choices of Á

in ¶ � have @ ð �^Ç"!^ÁX ��Ed] and thus, H � accepts. Recalling that ¶äZ�!����¥�ä!f¶ $ was a partition of¶ , for at least
�� of the choices of Á in ¶ , H � accepts. This completes the proof. ó

8.4 Tolerant Testers for Binary Codes

One of the natural goals in the study of tolerant codes is to design explicit tolerant binary

codes with constant relative distance and as large a rate as possible. In the case of stan-

dard testers, Ben-Sasson et al [11] give binary locally testable codes which map � bits to��� ¥ E�[j��¨ª©£« � ��� bits for any �§� ;
and which are testable with �a��G�6X�<� queries. Their con-

struction uses objects called PCPs of Proximity (PCPP) which they also introduce in [11].

In this section, we show that a simple modification to their construction yields tolerant

testable binary codes which map � bits to ��� ¥ E�[Y ��¨ª©£« � ��� bits for any ��� ; . We note that a

similar modification is used by Ben-Sasson et al to give a relaxed locally decodable codes

[11] but with worse parameters (specifically they gives codes with block length � Z � � ).
8.4.1 PCP of Proximity

We start with the definition1 of of a Probabilistic Checkable proof of Proximity (PCPP).

A pair language is simply a language whose elements are naturally a pair of strings, i.e.,

it is some collection of strings �/¬Y !Z;�� . A notable example is
  ÓPx  gf Ó
hgikjml�
ö ¢CÆW1P!o@ È ·

Boolean circuit 1 evaluates to G on assignment @�¦ .
Definition 8.4. Fix

; E>YSEpG . A probabilistic verifier � is a PCPP for a pair language �
with proximity parameter Y and query complexity �U���� � if the following conditions hold:�

(Completeness) If ��¬j!�;��w+ � then there exists a proof n such that � accepts by

accessing the oracle ; �on with probability G .�
(Soundness) If ; is Y -far from �(�/¬��[
 ¢©;ú· ��¬j!Z;��_+ �9¦ , then for all proofs n , �
accepts by accessing the oracle ; �pn with probability strictly less than

Z� .
1The definition here is a special case of the general PCPP defined in [11] which would be sufficient for

our purposes.
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�
(Query complexity) For any input ¬ and proof n , � makes at most �C�f· ¬�·Ä� queries in; �pn .

Note that a PCPP differs from a standard PCP in that it has a more relaxed soundness

condition but its queries into part of the input ; are also counted in its query complexity.

Ben-Sasson et. al. give constructions of PCPPs with the following guarantees:

Lemma 8.4 ([11]). Let �S� ;
be arbitrary. There exists a PCP of proximity for the pair

language
  ÓPx  pf Ó
hgikjml�
O¢U�W1P!`¬��¥·¸1 is a boolean circuit and 1���¬"��
 Ge¦ whose proof

length, for inputs circuits of size Á , is at most Á}� ¥ E�[j��¨ª©£« � � � ÁX� and for _y
 � ¹»º½¼e¹»º�¼ Â¹»º½¼e¹»º�¼e¹»º½¼ Â the

verifier of proximity has query complexity �a�/Ö C� E"¢ Z} ! Z� ¦<� for any proximity parameter Y
that satisfies Y{� Z 
 . Furthermore, the queries of the verifier are non-adaptive and each of

the queries which lie in the input part ¬ are uniformly distributed among the locations of ¬ .

The fact that the queries to the input part are uniformly distributed follows by an exam-

ination of the verifier construction in [11]. In fact, in the extended version of that paper, the

authors make this fact explicit and use it in their construction of relaxed locally decodable

codes (LDCs). To achieve a tolerant LTC using the PCPP, we will need all queries of the

verifier to be somewhat uniformly or smoothly distributed. We will now proceed to make

the queries of the PCPP verifier that fall into the “proof part” n near-uniform. This will

follow a fairly general method suggested in [11] to smoothen out the query distribution,

which the authors used to obtain relaxed locally decodable codes from the PCPP. We will

obtain tolerant LTCs instead, and in fact will manage to do so without a substantial increase

in the encoding length (i.e., the encoding length will remain �*�XV ¹»º½¼ 3 ' ). On the other hand,

the best encoding length achieved for relaxed LDCs in [11] is � Z � � for constant �y� ; . We

begin with the definition of a mapping that helps smoothen out the query distribution.

Definition 8.5. Given any Ç2+ �B�¯ and qUH
 Æ�U�Î È �Î Û Z with U�ÎS� ;
for all Íw +�    "¡ and� �Î Û Z UCÎ³
2G , we define the mapping rtsvuvs0wJx��� �æ!��� � as follows: ryszuvs0wJx��/ÇB!�qU��J+_��� 
¯ such thatÇ� Î is repeated !^�< kU�ÎH$ times in ryszuvs0wJx��^Ç"!{qUÁ� and  ���
 � �Î Û Z !^�< kU�Î�$ .

We now show why the mapping is useful. A similar fact appears in [11], but for the

sake of completeness we present its proof here.

Lemma 8.5. For any Ç[+w� �¯ let a non-adaptive verifier H (with oracle access to Ç ) make�U�/ j� queries and let U�Î be the probability that each of these queries probes location Í3 +F   �¡ .
Let ÜfÎ³
 Z� � n � �� and qÜP
HÆ�ÜëÎ È �Î Û Z . Consider the map rtsvuvs0wJx��/ÇB!zqÜ¥�J$c�"�¯ ) �B� 
¯ . Then there

exists another tester H( � for strings of length  Á� with the following properties:

1. H�� makes V<�U�/ Y � queries on Çc �8
|rtsvuvs0wJx��^Ç"!}qÜ�� each of which probes location � , for

any �.+�   ���¡ , with probability at most
�� 
 , and

2. for every ÇQ+5�B�¯ , the decision of H � on Ç � is identical to that of H on Ç . Further,�e _R~ ��BE, �£ .
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Proof. We first add � dummy queries to H each of which are uniformly distributed, and

then permute the V<� queries in a random order. Note that each of the Ve� queries is now

identically distributed. Moreover, any position in Ç is probed with probability at least
Z� �

for each of the V<� queries. For the rest of the proof we will assume that H makes Ve� queries

for each of which any Í� +÷   "¡ is probed with probability Ü\Î�
 � �� n Z� � . Let G¥Î�
 !ç�£ úÜfÎH$ .
Note that G¥Î8E��£ úÜfÎ and G¥Î8�L �£ úÜfÎ�ILG . Recalling that  � 
 � �Î Û Z G¥Î and � �Î Û Z ÜëÎ�
2G , we

have �e _R~ � E, �£ .H�� just simulates H in the following manner: if H queries Ç<Î for any ÍÐ+�   �¡ , H�� queries

one of the G¥Î copies of ÇX Î in Ç>� uniformly at random. It is clear that the decision of HJ� onÇ>�µ
~ryszuvs0wJx��/ÇB!zqÜ�� is identical to that of H on Ç . We now look at the query distribution ofH � . H � queries any �a+F   � ¡ , where Ç �� 
QÇ�Î , with probability U �� 
tÜfÎ£� Z� � . Recalling the lower

bound on G�Î , we have U��� E ×8�� � ×v � å�Z which is at most
Z� � since clearly ÜëÎ� � Z� � . We showed

earlier that  ��BE, �£ which implies UD �� E �� 
 as required.

One might wonder if we can use Lemma 8.5 to smoothen out the queries made by the

verifier of an arbitrary LTC to obtain a tolerant LTC. That is, whether the above allows one

to compile the verifier for any LTC in a black-box manner to obtain a tolerant verifier. We

will now argue (informally) that this technique alone will not work. Let 1sZ be an    ³!ë�"!NT£¡ ¯
LTC with a standard tester HäZ that makes � identically distributed queries with distributionU�Î , G�E� Í( Eq , such that U�Î9�vG�6<VX for each Í . Create a new    gn5G£!ë�"!NT£¡ ¯ code 1�� whose�^ ´ n2G�� ’th coordinate is just a copy of the  ’th coordinate, i.e., corresponding to each

codeword �WÜ� Z\!NÜ\�� !�¤¥¤¥¤�!NÜ � ��+S� �¯ of 1-Z , we will have a codeword �WÜ� Z�!NÜ\�� !¥¤¥¤¥¤� !NÜ � !NÜ � ��+S� � � Z¯
of 1Ð� . Consider the following tester Hú� for 1Ð� : Given oracle access to Ç5+|� � � Z¯ , with

probability G�6<V check whether Ç � 
QÇ � � Z , and with probability G�6<V run the tester HäZ on the

first  coordinates of Ç . Clearly, Hú� is a standard tester for 1�� .
Now, consider what happens in the conversion procedure of Lemma 8.5 to get �i1 � !ZH � �

from �W1��¥!�H��\� . Note that by Lemmas 8.5 and 8.3, H-� is tolerant. Let q�y
2�W�XZb!�¤¥¤¥¤�!N� � � ZN� be

the query distribution of HÁ� . Since HÁ� queries �/Ç � !`Ç � � ZN� with probability G�6<V , the combined

number of locations of Çc�3
�ryszuvs0wJx��/ÇB!�q�£� corresponding to Ç � !�Ç � � Z will be about G�6<V of

the total length  � . Now let Ç � be obtained from a codeword of 1 � by corrupting just these

locations. The tester H( � will accept such a Çc� with probability at least G�6eV , which contradicts

the soundness requirement since Ç � is G�6eV -far from 1 � . Therefore, using the behavior of the

original tester HÁ� as just a black-box, we cannot in general argue that the construction of

Lemma 8.5 maintains good soundness.

Applying the transformation of Lemma 8.5 to the proximity verifier and proof of prox-

imity of Lemma 8.4, we conclude the following.

Proposition 8.6. Let �o� ; be arbitrary. There exists a PCP of proximity for the pair lan-

guage
  ÓPx  gf Ó
hpiHj�l_
p¢U�W1P!`¬��¥·¸1 is a boolean circuit and 1� ��¬��3 
÷ Ge¦ with the following

properties:

1. The proof length, for inputs circuits of size Á , is at most Á( � ¥ E� [Y ��¨ª©£« � � � ÁX� , and
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2. for _*
 � ¹»º�¼e¹»º½¼ Â¹»º�¼e¹»º½¼e¹»º�¼ Â the verifier of proximity has query complexity �a�/Ö C� EB¢ Z} ! Z� ¦<� for

any proximity parameter Y that satisfies Y[� Z
 .
Furthermore, the queries of the verifier are non-adaptive with the following properties:

1. Each query made to one of the locations of the input ¬ is uniformly distributed among

the locations of ¬ , and

2. each query to one of the locations in the proof of proximity n probes each location

with probability at most V> 6�· n8 · (and thus is distributed nearly uniformly among the

locations of n ).

8.4.2 The Code

We now outline the construction of the locally testable code from [11]. The idea behind the

construction is to make use of a PCPP to aid in checking if the received word is a codeword

is far away from being one. Details follow.

Suppose we have a binary code 1 ý $- ¢ ; !�GX¦X'K) ¢ ; !¥Ge¦ $ of distance T defined by a

parity check matrix ²M+{ ¢ ; !¥Ge¦ �6$ å ' � Í $ that is sparse, i.e., each of whose rows has only an

absolute constant number of G ’s. Such a code is referred to as a low-density parity check

code (LDPC). For the construction below, we will use any such code which is asymptoti-

cally good (i.e., has rate ��6�� and relative distance Tc6�� both positive as ��) à ). Explicit

constructions of such codes are known using expander graphs [95]. Let � be a verifier of a

PCP of proximity for membership in 1 ý ; more precisely, the proof of proximity of an input

string �p+w ¢ ; !¥Ge¦r$ will be a proof that �1 ý �v �s�3
÷ G where �1 ý is a linear-sized circuit which

performs the parity checks required by ² on � (the circuit will have size ���/�0�P
H�� �Ñ�C�
since ² is sparse and 1 ý has positive rate). Denote by nk��¬"� be the proof of proximity

guaranteed by Proposition 8.6 for the claim that the input 1 ý �/¬�� is a member of 1 ý (i.e.,

satisfies the circuit �1 ý ). By Proposition 8.6 and fact that the size of �1 ý is �� �Ñ��� , the length

of nk��¬"� can be made at most � ¥ E�[Y �/¨ª©£« � � � ��� .
The final code is defined as â�Z���¬"�{ 
 �i1 ý ��¬�� 
 !#nk�/¬��`� where _{ 
 � ¹»º�¼ ' å�Z � ¿ � � � � ¿¿ À Æf� � � ¿ . The

repetition of the code part 1 ý �/¬�� is required in order to ensure good distance, since the

length of the proof part nk��¬"� typically dominates and we have no guarantee on how far

apart nk��¬� ZN� and nk�/¬B�b� for ¬ÁZòÏ
Q¬B� are.

For the rest of this section let



denote the proof length. The tester H�Z for â"Z on an input�5 
÷ �â�òZ\!������ä!��9
N!#nY �9+{ ¢ ; !¥Ge¦ 
 $ � S picks Í8 +�  _½¡ at random and runs the PCPP verifier � on�9Î1 �on . It also performs a few rounds of the following consistency checks: pick Íb Z\!� Í� �J+,  _½¡
and �eZ�! ���s+t  �§¡ at random and check if ��Î � � �<ZN��
 �ÐÎ Ø �����ë� . Ben-Sasson et al in [11] show

that HY Z is a standard tester. However, HäZ need not be a tolerant tester. To see this, note that

the proof part of â�Z forms a
Z¹»º½¼ ' fraction of the total length. Now consider a received word� � û × 
��â� ý !������ä!�� ý !#n��ª� where � ý +x1 ý but n�� is not a correct proof for � ý being a valid
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codeword in Ü ý . Note that � � û × is close to â�Z . However, HY Z is not guaranteed to accept � � û ×with high probability.

The problem with the construction above was that the proof part was too small: a natural

fix is to make the proof part a constant fraction of the codeword. We will show that this is

sufficient to make the code tolerant testable. We also remark that a similar idea was used by

Ben-Sasson et. al. to give efficient constructions for relaxed locally decodable codes [11].

Construction 8.1. Let
; R �|RrG be a parameter, 1 ý $k ¢ ; !�GX¦ ' ) ¢ ; !¥Ge¦r$ be a good 2

binary code and � be a PCP of proximity verifier for membership in 1 ý . Finally let nk�/¬��
be the proof corresponding to the claim that 1 ý ��¬"� is a codeword in 1 ý . The final code is

defined as âD �� ��¬��³
÷ �i1 ý ��¬���� � !#nk��¬"�%� Ø � with G<Zk
 � Z� å » � ¹»º�¼ ' ¿ � � � � ¿$ and G� �Ð
��� ¨ª©£«�� .3

For the rest of the section the proof length · nk�/¬��¥· will be denoted by


. Further the

proximity parameter and the number of queries made by the PCPP verifier � would be

denoted by YX� and �`� respectively. Finally let @ ý denote the relative distance of the code 1 ý .
The tester HÁ� for â�� is also the natural generalization of HäZ . For a parameter � � (to be

instantiated later) and input � 
ö �â�sZ�!����¥�ä!�� � � !#nÁZ\!������ä!#n � Ø ��+�¢ ; !¥Ge¦Y� � $ � � Ø � , HÁ� does the

following:

1. Repeat the next two steps twice.

2. Pick Í3 +F  G<Z�¡ and �a+F  G� �`¡ randomly and run � on ��Î4�pn � .
3. Do � � repetitions of the following: pick ÍfZ\! Í̀½ �*+q  G<Z½¡ and �eZ�! �� �*+q  �§¡ randomly and

check if �ÐÎ � ���eZf�³
��9Î Ø � ���b � .
The following lemma captures the properties of the code â�� and its tester HÁ� .

Lemma 8.7. The code âD � in Construction 8.1 and the tester Hú� (with parameters � and � �
respectively) above have the following properties:

1. The code âD � has block length  w
q¨ª©£«Ð�y� 
 with minimum distance T lower bounded

by �`G�I ���½@ ý  .

2. HÁ� makes a total of �P
LV< �N�Ðn´ �� � � queries.

3. HÁ� is �fÆ�G£!N� È !�ÆW VC!fV<� �̀ È !¥G� I ��� -smooth.

2This means that Í 5�� hHrtn and the encoding can be done by circuits of nearly linear size m M 5��� hHrBn .
3The factor

MþN>P r overhead is overkill, and a suitably large constant will do, but since the proof lengthd +? h��Q n�d will anyway be larger than d �4d by more than a polylogarithmic factor in the constructions we use,

we can afford this additional
MON�P r factor and this eases the presentation somewhat.
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4. H�� is a �WÜ�Z\!NÜ��b � -tolerant tester with Ü�Z�
 � » � Z� å » �
 Ä E ¡�� Ý � � ¯ V � ¯ ý � » ��� � Z½ å » � ¯ ý à and Ü��y
 � Ä �<Y� �òn�¯ V nô�µ� .
Proof. From the definition of âB � , it has block length  Q
ÛG£Z½� n±G�� 
 
 � Z½ å » � S ¹»º�¼ '$ �£� n�� ¨ª©£«Ð�ò� 
 
Q̈ª©£«Ð�s� 
 . Further as 1 ý has relative distance @ ý , â�� has relative distance at least� � � Æ $S ¹»º�¼ ' 
÷ �`G�I ���½@ ý .H�� makes the same number of queries as � which is �ë� in Step 2. In Step 3, HÁ� makesVe� � queries. As HÁ� repeats Steps 2 and 3 twice, we get the desired query complexity.

To show the smoothness of Hú� we need to define the appropriate subset V ��   �¡ such

that ·1Vo·�
 �`G�I �µ�½  . Let V be the set of indices with the code part: i.e. Vù
   G�Z½�u¡ .H�� makes V<� � queries in V in Step 3 each of which is uniformly distributed. Further by

Proposition 8.6, HÁ� in step 2 makes at most �N� queries in V which are uniformly distributed

and at most �N� queries in    �¡ [ V each of which are within a factor V of being queried

uniformly at random. To complete the proof of property � note that HY � repeats step 2 and 3

twice.

The tolerance of Hú� follows from property � and Lemma 8.1. For the soundness part

note that if � 
 �â�òZ�!������ä!�� � � !#n�Z�!������Y !�n � Ø �§+2¢ ; !¥Ge¦Y� � $ � � Ø � is Y -far from â�� then �( �-
�â�òZ\!������ä!�� � � � is at least
} � å � Ø S� 
 } � å » �� 
  Y´IC � far from the repetition code 1s�*
¢e1 ý ��¬�� � � · ¬H+O¢ ; !¥Ge¦ ' ¦ . For Y2
 Ü\ �ëTc6�  with the choice of Ü�� in the lemma, we haveY_I � �@Y� �� nL �U6e� � . The rest of the proof just follows the proof in [11] (also see [68,

Chap. 12]) of the soundness of the tester HµZ for the code â�Z – for the sake of completeness

we complete the poof here. We will show that one invocation of Steps 2 and 3 results inH�� accepting � with probability strictly less than
Z� . The two repetitions of Steps 2 and 3

reduces this error to at most
Z� .

Let ËK+�¢ ; !�GX¦ $ be the string such that Ë 
 is the “repetition sequence” that is closest to� � , that is one that minimizes
Ì �â� � !`Ë 
 �k
 � � �Î Û Z Ì �â�ÐÎ�!�ËÁ� . We now consider two cases:�

Case 1:
Ì �v �-�^ !�Ë 
 �� � G<Z½�[ 6e� � . In this case, a single execution of the test in Step 3

rejects with probabilityã Î � � Î Ø Ù � � � �   Ì �â�ÐÎ � !��ÐÎ Ø �N6��§¡�
 G�w�<GeZf� � ü Î Ø ü Î � Ì �â�ÐÎ � !��9Î Ø �� G�{ �<G<ZN� � ü Î Ø ü Î � Ì �v �9Î � !`Ë��
 G� G<Z � �üÎ � Û Z Ì �v �9Î � !`Ë��
 Ì �â� � !`Ë 
 �N6C�^ � G<Z �̀� G� 6X� � !
where the first inequality follows from the choice of Ë and the second inequality
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follows from the case hypothesis. Thus, after � � repetitions the test will accept with

probability �`G�IQG� 6e� � � ¯ V R�G� 6e?}R�G� 6<V .�
Case 2:

Ì �v � � !�Ë 
 �. RÅ G<ZÑ �[6e� � . In this case we have the following (where for any

subset ¶ of vectors and a vector Ë , we will use
Ì �^ Ëä!f¶3 �k 
QÖ Ó ­{Z Ù Þ Ì �/ Ëä!�ÇC� ):Ì �/ ËY !f1 ý �G<Z 
 Ì �^ Ë 
 !ë 1 � �G<ZÑ � � Ì �â� � !f1 � �ä I Ì �â� � !�Ë 
 �G<Z½� �>YX �Ðnl�U6e� � IQG�6e� � 
=Y���n���6e� � !

(8.1)

where the first inequality follows from the triangle inequality and the last inequality

follows from the case hypothesis (and the fact that � � is Y� �µn0 �U6e� � -far from 1 � ). Now

by the case hypothesis, for an average Í , Ì �v �� Î½ !�ËÁ�_Eù�[6X � � . Thus, by a Markov

argument, at most one thirds of the ��Î ’s are ��6X� � -far from Ë . Since Ë is YX�8 nw�>6e� � -far

from 1 ý (by (8.1)), this implies (along with triangle inequality) that for at least two

thirds of the �ÐÎ ’s are YX � -far from 1 ý . Thus, by the property of the PCPP, for each

such �ÐÎ the test in Step 2 should accept with probability at most G� 6� � . Thus the total

acceptance probability in this case is at most
Z� �>G8 n �� � Z� 
 Z� , as desired.

Thus, in both cases the tester accepts � with probability at most G�6<V , as required.

Fix any
; RAYÊR�G and let �2
 } � , Y���
 } 
 , � � 
 ZW�} . With these settings we getY��sn �¯ V n ��
ÛY and � �̀g 
 �� � Z} � from Proposition 8.6 with the choice �0
 V�Y . Finally,�P
LV< � �̀Ðnl�� � � 
L��� Z} � . Substituting the parameters in Ü¥� and Ü�Z , we get Ü��9
 } �Ä andÜ�Z�T 
 YVX �3 Ö C� E"¢©Yµ��� � nF� �̀X 6<V> �b !Ð�iVòIãYÁ��� �̀£¦ 
5�s�<Y � �3 ¤

Also note that the minimum distance T. �p��GkIò�µ�½ @ ý  [
÷ � G̀k I } � �Ñ @ ý  _� � Æ�  . Thus, we have

the following result for tolerant testable binary codes.

Theorem 8.1. There exists an absolute constant � ý � ; such that for every Y ,
; R±Y{R÷ G ,

there exists an explicit binary linear code â´$C¢ ; !�GX¦ ' ) ¢ ; !¥Ge¦�� where  [
5 ��� ¥ E�[Y ��¨ª©£« } ���
with minimum distance Tl�H� ý  which admits a ��Ü� Z\!NÜ��b � -tolerant tester with Ü��o
��� �<YÁ� ,Ü�Z3
L�P�<Y � � and query complexity �a� Z} � .

The claim about explicitness follows from the fact that the PCPP of Lemma 8.4 and

hence Proposition 8.6 has an explicit construction. The claim about linearity follows from

the fact that the PCPP for CIRCUITVAL is a linear function of the input when the circuit

computes linear functions — this aspect of the construction is discussed in detail in Chapter

9 in [68].
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8.5 Product of Codes

Tensor product of codes (or just product of codes) is simple way to construct new codes

from existing codes such that the constructed codes have testers with sub-linear query com-

plexity even though the original code need not admit a sub-linear complexity tester [14].

We start with the definition of product of codes.

Definition 8.6 (Tensor Product of Codes). Given âÁZ and âD � that are  Ä�c Z�!� äZ\!fTUZ�¡ and Ä�£��!� ú��!NT�� ¡̀ codes, their tensor product, denoted by âúZ��qâ�� , consists of  ú�aîF äZ matri-

ces such that every row of the matrix is a codeword in âúZ and every column is a codeword

in â�� .
It is well known that â�Z(��â�� is an    äZ½  ú��!ë �c ZN�£��!NTUZ̀ T> �N¡ code.

A special case in which we will be interested is when âúZk 
�â��Ð
,â . In such a case, given

an    �!b�B!fT<¡ ¯ code â , the product of â with itself, denoted by â � , is a    � !ë � � !NT � ¡ ¯ code such

that a codeword (viewed as a  yîs matrix) restricted to any row or column is a codeword inâ . It can be shown that this is equivalent to the following [100]. Given the �§îu generator

matrix Ã of â , â � is precisely the set of matrices in the set ¢eÃ5ð. �rO%�X Ã ·� Où+K±P' Í '¯ ¦ .
8.5.1 Tolerant Testers for Tensor Products of Codes

A very natural test for â � is to randomly choose a row or a column and then check if the

restriction of the received word on that row or column is a codeword in â (which can be

done for example by querying all the  points in the row or column). Unfortunately, as we

will see in Section 8.5.2, this test is not robust in general.

Ben-Sasson and Sudan in [14] considered the more general product of codes â 
 for_9�Q� (where â 
 denotes â tensored with itself _�IKG times) along with the following general

tester: Choose at random ;- +w¢c G£!������ä!Z_ë¦ and Í3 +w¢cG£!������ä!� ä ¦ and check if ; á�Ë coordinate of

the received word (which is an element of � � ]¯ ) when restricted4 to Í is a codeword in â 
^å�Z .
It is shown in [14] that this test is robust, in that if a received word is far from â 
 , then many

of the tested substrings will be far from â 
/ å�Z . This tester lends itself to recursion: the test

for â 
^å�Z can be reduced to a test for â 
^åU� and so on till we need to check whether a word in� � Ø¯ is a codeword of â � . This last check can done by querying all the  � points, out of the 
 points in the original received word, thus leading to a sub-linear query complexity. As

shown in [14], the reduction can be done in ¨ª©£«õ_ stages by the standard halving technique.

Thus, even though â might not have a tester with a small query complexity, we can testâ 
 with a polylogarithmic number of queries.

We now give a tolerant version of the test for product of codes given by Ben-Sasson and

Sudan [14]. In what follows _Ð�, � will be a power of two. As mentioned above the tester H
for the tensor product â 
 reduces the test to checking if some restriction of the given string

belong to â � . For the rest of this section, with a slight abuse of notation let Ç Ì +]� � Ø¯ denote

4For the � 5 * case � signifies either row or column and
Ï

denotes the row/column index.
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the final restriction being tested. In what follows we assume that by looking at all points in

any ÇÂ+]�B� Ø¯ one can determine if ÝU�̂ Ç"!� â � �9E�] in time polynomial in  � .
The tolerant version of the test of [14] is a simple modification as mentioned in Section

8.3: reduce the test on â 
 to â � as in [14] and then accept if Ç Ì is ] -close to â � .
First we make the following observation about the test in [14]. The test recurses ¨ª©£«õ_

times to reduce the test to â � . At step � , the test chooses an random coordinate ; � (this will

just be a random bit) and fixes the value of the ; á 
� coordinate of the current â ]Ø � to an indexÍ � (where Í � takes values in the range G�EqÍ � E| 
 � � �
). The key observation here is that for

each fixed choice of ;�Z\!������ä!6; ¹»º�¼ 
 , distinct choices of ÍNZ\!������ä!�Í ¹»º½¼ 
 correspond to querying

disjoint sets  � points in the original Ç0+_�"� ]¯ string, which together form a partition of all

coordinates of Ç . In other words, H has a partitioned query pattern, which will be useful to

argue tolerance. For soundness, we use the results in [14], which show that their tester is1 ¹»º�¼ 
 -robust for 1|
LV ��� .
Applying Lemmas 8.2 and 8.3, therefore, we have the following result:

Theorem 8.2. Let _ò�q� be a power of two and
; R�]_E2G . There exist

; RqÜXZsRqÜ\�}E2G
with

×WØ× � 
51 ¹»º�¼ 
 � G̀8nFV>6} ]D � such that the proposed tolerant tester for â 
 is a ��Ü� Z\!fÜ\ �b� -tolerant

tester with query complexity ~ � � 

where ~ is the block length of â 
 . Further, Ü� Z and Ü�� are

constants (independent of ~ ) if _ is a constant and â has constant relative distance.

Corollary 8.3. For every YF� ;
, there is an explicit family of asymptotically good binary

linear codes which are tolerant testable using  }
queries, where  is the block length of the

concerned code. (The rate, relative distance and thresholds ÜeZ\!fÜ\ � for the tolerant testing

depend on Y .)

8.5.2 Robust Testability of Product of Codes

Recall that a standard tester for a code is robust if for every received word which is far from

being a codeword, the tester not only rejects the codeword with high probability but also

with high probability the tester’s local view of the received word is far from any accepting

view (see Section 8.3 for a more formal definition).

As was mentioned before for the product code âúZ� �Fâ�� , there is a natural tester (which

we call H�� ��� � Ø )– flip a coin; if it is heads check if a random row is a codeword in âúZ ; if

it is tails, check if a random column is a codeword in â"� . This test is indeed robust in a

couple of special cases– for example, when both âúZ and â�� are Reed-Solomon codes (see

Section 8.6.1 for more details) and when both âúZ and â�� are themselves tensor product of a

code [14].

P. Valiant showed that there are linear codes âÁZ and â�� such that â"ZN��â�� is not robustly

testable [103]. Valiant constructs linear codes âúZ , â�� and a matrix Ç such that every row

(and column) of Ç is “close” to some codeword in âúZ (and âD � ) while Ç is “far” from every

codeword in â�ZN�lâ�� (where close and far are in the sense of hamming distance).
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However, Valiant’s construction does not work when âúZ and â�� are the same code. In

this section, we show a reduction from Valiant’s construction to exhibit a code â such thatâ � is not robustly testable.

Preliminaries and Known Resultsâ is said to be robustly testable if it has a �P��G�� -robust tester. For a given code â of block

length  over � ¯ and a vector Ç_+l� ¯ , the (relative) Hamming distance of Ç to the closest

codeword in â is denoted by Ý� �C�/Ç�� .
Asking whether Hy� � � � Ø is a robust tester has the following nice interpretation. The �

queries ÍNZ\!������ä!�Í ¯ are either rows or columns of the received word Ç . Let the row or column

corresponding to the random seed Á be denoted by Ç Â . Then the robustness of Hy� ��� � Ø on

inputs �^ Ç" !^ÁX � , @ ð�� �
� � Ø �^ Ç"!^ÁX � is just Ý� � � �/Ç Â � when Í%Â corresponds to a row and Ý � Ø �/Ç Â � when ÍPÂ
corresponds to a column. Therefore the expected robustness of H�� ��� � Ø on Ç is the average

of the following two quantities: the average relative distance of the rows of Ç from âY Z and

the average relative distance of the columns of Ç from â"� .
In particular, if Hy� � � � Ø is �P��G�� -robust then it implies that for every received word Ç such

that all rows (and columns) of Ç are �C��G�� -close to âÁZ (and â�� ), Ç is �U�̀ G� � -close to â"Z(��â�� . P.

Valiant proved the following result.

Theorem 8.4 ([103]). There exist linear codes    �Z�!ë �c Z�!NTUZ8
Q Y Zf6UG ; ¡ and    ú��
Q � Z !ë �£��!NT> ��
 Á�\ 6cG ; ¡ (call them â"Z and â�� ) and a  ú��î{  Y Z received word Ç such that every row of Ç isG� 6�  äZ -close to â�Z and every column of Ç is a codeword âB � but Ç is G� 6eV ; -far from â�ZÐîg â�� .
Note that in the above construction,  Y �wÏ
� äZ and in particular â�Z and âD � are not the

same code.

Reduction from the Construction of Valiant

In this section, we prove the following result.

Theorem 8.5. Let â�Z� Ï
5 â�� be    ä Z\!ë �c Z�!NTCZ�
|�P�/  Y Zf�Ñ¡ and    ú��!ë �£��!NT� �- 
|�P�/  Á�\ �½¡ codes respec-

tively (with  ú���x  Y Z ) and let Ç be a  ú�k îy ä Z matrix such that every row (and column) of Ç is���^  ä ZN� -close to â"Z ( ���^  ú�\ � -close to âD � ) but Ç is @ -far from â�Z� ��â�� . Then there exists a linear

code â with parameters  ³!ë �"!NT_
 �s�/  Y � and a received word ÇU� such that such that every

row (and column) of Çc � is ���/  Y Zf�N6<V -close (and ���/  ú�\ �N6eV -close) to â but Ç� � is @�6�� -far from â � .
Proof. We will first assume that  µZ divides  ú� and let � 
 � Ø� � . For any ¬z +m&�' � and;Â+_&9' Ø

, let â3 �fÆ/¬Y !Z; È �3 
z ÆN�ç â" Z¥�/¬�� �̀ $ !� â��� �?;�� È
Thus, ��
5�cZjnx�£� and  0 
��u ä Zj nl Á� . Also as TCZk 
L �P�/  Y Zf� and T� �9
L �P�^  ú�b � , Ty
L �P�^  Y � .

We now construct the  gîy  matrix Çc � from Ç . The lower left  j �k îy�u ä Z sub-matrix of Ç� �
contains the matrix Ç $ where Ç $ is the horizontal concatenation of � copies of Ç (which is

a  ú�- î]  Y Z matrix). Every other entry in Çc � is ; . See figure 8.1 for an example with �%
LV .
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�N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N �
�N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N ��N �N �N �N �N �N �
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Figure 8.1: The construction of the new received word §{¨ from § for the case when ©kªR« @ ,©�¬p«®­�@ and ¯°«d ­ . The shaded boxes represent § and the unshaded regions has all ± s.

Let � be the codeword in ²�ªR �d ²7¬ closest to § and construct �B ¨ in the same manner

as §³ ¨ was constructed from § . We first claim that �m¨ is the codeword in5 ² ¬ closest to §³ ¨ .
For the sake of contradiction, assume that there is some other codeword �´¨ ¨ in ² ¬ such thatµ�¶ § ¨¸· � ¨ ¨:¹»º µ�¶ § ¨¸· � ¨:¹ . For any ­} © ¨½¼ ­} © ¨ matrix ¾ let ¾ � A denote the lower left © ¨½¼ © ¨
sub-matrix of ¾ . Note that by definition of ² , � ¨ ¨� A «À¿d$ where ¿ÂÁÂ ²yªÃ�Â²7¬ . Further, as§Ä ¨ (necessarily) has ± everywhere other than §�¨� A and

µ�¶ §³ ¨ · �B ¨ ¨ ¹Åº µ�¶ §³ ¨ · �B ¨ ¹ , it holds thatµ�¶ § · � ¹pÆ µ�¶ § · ¿ ¹ which contradicts the definition of � .

Finally, it is easy to see thatÇ �QÈ ¶ § ¨ ¹ « µ�¶ § ¨ · � ¨ ¹�É © ¬ « µÊ¶ § · � ¹ ¯ É ¶ ¯Ë©HªNÌ- ©(¬ ¹ ¬ « µ�¶ § · � ¹#É ¶bÍ ©� ªÎ ©(¬ ¹ «ÐÏ Í
and if for any row (or column), the relative distance of § restricted to that row (or column)

from ²<ª ( ²7¬ ) is at most Ñ then for every row (or column), the relative distance of §{¨ restricted

to that row (or column) from ² is at most Ñ É ­ .
This completes the proof for the case when ©½ª divides ©(¬ . For the case when ©kª does

not divide ©(¬ a similar construction works if one defines ² in the following manner (for any¿ÒÁÔÓgÕ�Ö and ¿t ¬�Á×ÓpÕ È ) ² ¶�Ø ¿ · ;�Ù ¹ « Ø#¶ ²yª ¶ ¿ ¹�¹ S ��Ú Ö · ¶ ²7¬ ¶ ; ¹#¹ S �
Ú È Ù
where


 « lcm
¶ ©Hª · ©(¬ ¹ . The received word §� ¨ in this case would have its lower left


 ¼ 

matrix as §7Û�S �
Ú ÖÝÜ S �
Ú ÈÝÞ (where §7Û $ ÖÝÜ $ ÈÝÞ is the matrix obtained by vertically concatenating ¯ß¬
copies of §�$ Ö ) and it has ± s everywhere else.

5Note that à ��áBâ³ã as the all zeros vector is a codeword in both â c and â ã and à áBâ c�ä â ã .
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Theorem 8.4 and 8.5 imply the following result.

Corollary 8.6. There exist a linear code ² with linear distance such that the tester H �QÈ is

not å ¶#æ ¹ -robust for ² ¬ .
8.6 Tolerant Testing of Reed-Muller Codes

In this section, we discuss testers for codes based on multivariate polynomials.

8.6.1 Bivariate Polynomial Codes

As we saw in Section 8.5.2, one cannot have a robust standard testers for ² ¬ in general. In

this subsection, we consider a special case when ²®« x{z�ç © ·éè Ì æ ·ëê «ì ©×í è³îUï , that is,

the Reed–Solomon code based on evaluation of degree è polynomials over ð ï at © distinct

points in the field. We show that the tester for ² ¬ considered in Section 8.5.2 is tolerant

for this special case. It is well-known (see, for example, Proposition 2 in [88]) that in this

case ² ¬ is the code with codewords being the evaluations of bivariate polynomials over ð ï
of degree è in each variable. The problem of low-degree testing for bivariate polynomials

is a well-studied one: in particular we use the work of Polishchuk and Spielman [88] who

analyze a tester using axis parallel lines. Call a bivariate polynomial to be one of degree¶ è ª ·éè ¬ ¹ if the maximum degrees of the two variables are è ª and è ¬ respectively. In what

follows, we denote by ö ¨ Áñð Ú Í Úï the received word to be tested (thought of as an © ¼ ©
matrix), and let ö ¶ ¿ · ; ¹ be the degree

¶ èy·éè�¹ polynomial whose encoding is closest to öò¨ .
We now specify the tolerant tester H ¨ . The upper bound of

æ í # æ í ê�É © on ] comes

from the fact that this is largest radius for which decoding an xáz<ç © ·� è Ì æ ·�êóî code is known

to be solvable in polynomial time [63].

1. Fix ] where ±õô�]� ô æ í # æ í ê�É © .

2. With probability
ª¬ choose ;o«d ± or ;o« æ

.ö If ;÷«ø ± , choose a row G randomly and reject if
Ç� ¶ öù¨ ¶ G · úû ¹� ·ëü ¶ úû ¹�¹mÆ ] for every

univariate polynomial ü of degree è and accept otherwise.ö
If ;Ë« æ

, choose a column ý randomly and reject if
Ç�¶ öù¨ ¶ úV· ý ¹� ·éü ¶ úû ¹�¹»Æ ] for

every univariate polynomial ü of degree è and accept otherwise.

The following theorem shows that H ¨ is a tolerant tester.

Theorem 8.7. There exists an absolute constant ý ý Æ ± such that for ]Êô æ í # æ í ê�É © , the

tester H ¨ with threshold ] is a
¶ ýJª · ý� ¬ ·�þ ~ ¹ -tolerant tester for ² ¬ (where ²ß«�xáz<ç © ·� è Ì æ ·�êóî )

where ý0ªR« Ú `ÿ Ä , ý� ¬p« ¬ Ú�� Æ Û ` � ¬ Þÿ Ä and ~ is the block length of ² ¬ .
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Proof. To analyze H ¨ let
� X ¶ G · úû ¹ be the closest degree è univariate polynomial (breaking

ties arbitrarily) for each row G . Similarly construct � X ¶ úV· ý ¹ . We will use the following

refinement of the Bivariate testing lemma of [88]:

Lemma 8.8 ([88, 13]). There exists an universal constant ý ý ô æ ­�i such that the following

holds. If i è ôÂ © then
Ç� ¶ ö´¨ · ² ¬ ¹ « Ç� ¶ ö÷¨ · ö ¹ ôcý ý ú ¶
Ç�¶ � X · ö÷¨ ¹ Ì Ç� ¶ � X · ö÷¨ ¹�¹ .

The following proposition shows that the standard tester version of Hm¨ (that is H� ¨ with],« ±̂ ) is a robust tester–

Proposition 8.9. H� ¨ with ],« ±̂ is a ­vý ý robust tester, where ý ý is the constant from Lemma

8.8.

Proof. By the definition of the row polynomial
�

, for any row index G , the robustness of

the tester with ;Å«ì ± and G , Ï ¶ ö´¨ · Ø ; · GÄÙ ¹ « Ç� ¶ ö÷¨ ¶ G · úû ¹� · � X ¶ G · úû ¹�¹ . Similarly for ;Å« æ
, we

have Ï ¶ ö ¨¸· Ø ; · ý0Ù ¹ « Ç�¶ ö ¨ ¶ úV· ý ¹� · � X ¶ úV· ý ¹#¹ . Now the expected robustness of the test is given

by

Ï ¶ ö ¨ ¹ « I�J ç ;o« ±̂ î Ú� � � ª I�J} ç Gò«�� î7ú Ç�¶ ö ¨ ¶ G · úû ¹� · � X ¶ G · úû ¹#¹ ÌI�J} çÄ;o« æ î Ú� � � ª I�J ç�ý «º� î7ú Ç�¶ ö ¨ ¶ úV· ý ¹� · � X ¶ úV· ý ¹�¹
« æ­ ¶�Ç�¶ ö ¨ · � X ¹ Ì Ç�¶ ö ¨ · � X ¹#¹
	

Using Lemma 8.8, we get
Ç� ¶ öù¨ · ö ¹ ô^­zý ý Ï ¶ ö÷¨ ¹ , as required. ó

From the description of H ¨ , it is clear that it has a partitioned query pattern. There

are two partitions: one for the rows (corresponding to the choice ;»« ± ) and one for the

columns (corresponding to the choice ;o« æ
).

Lemmas 8.2 and 8.3 prove Theorem 8.7 where ý ý is the constant from Lemma 8.8.

8.6.2 General Reed-Muller Codes

We now turn our attention to testing of general Reed-Muller codes. Recall that RM ï ¶ èy· ¯ ¹
the linear code consisting of evaluations of ¯ -variate polynomials over ð ï of total degree at

most è at all points in ðÀ$ ï . 6 To test codewords of RM ï ¶ èy· ¯ ¹ , we need to, given a function�
� ð $ ï�� ð ï as a table of values, test if
�

is close to an ¯ -variate polynomial of total

degree è . We will do this using the following natural and by now well-studied low-degree

test which we call the lines test: pick a random line in ð�$ ï and check if the restriction of�
on the line is a univariate polynomial of degree at most è . In order to achieve tolerance,

6The results of the previous section were for polynomials which had degree in each individual variable

bounded by some value; here we study the total degree case.
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we will modify the above test to accept if the restriction of
�

on the picked line is within

distance ] from some degree è univariate polynomial, for a threshold ] . Using the analysis

of the low-degree test from [42], we can show the following.

Theorem 8.8. For ±Ôôì]Âô æ í # è�É�� and � «°å ¶ è�¹ , RM ï ¶ èt· ¯ ¹ is
¶ ýJª · ý ¬ · U ¹ testable

with ý0ªo« Ú `ÿ Ä , ý� ¬m« ÿ Û ` � ¬ Þ ÚÄ and U «� © ª��7ª � $ where ©Ô« � $ and ê are the block length and

the distance of the code.

Proof. Recall that our goal is to test if a given function
��� ð«$ ï � ð ï is close to an ¯ -variate

polynomial of total degree è . For any ¿ · �ñÁ ð�$ ï , a line passing through ¿ in direction �
is given by the set ��� Ü 
 «�� ¿� Ì�_d��� _�Á� ð ï�� . Further define ü Ì� Ü 
 ¶ úû ¹ to be the univariate

polynomial of degree at most è which is closest (in Hamming distance) from the restriction

of
�

on ��� Ü 
 . We will use the following result.

Theorem 8.9 ([42]). There exists a constant ý such that for all è , if � is a prime power that

is at least ý è , then given a function
��� ð�$ ï � ð ï with

Ï�� 587« �!� Ü 
#" | o $ I�J&% " | $ ç ü Ì� Ü 
 ¶ _ ¹('« � ¶ ¿ Ìî_d� ¹Ýî ô æ� ·
there exists an ¯ -variate polynomial � of total degree at most è such that ê �% Áj_ ¶ � · � ¹ ô^­ Ï .

The above result clearly implies that the line test is robust which we record in the

following corollary.

Corollary 8.10. There exists a constant ý such that the line test for RM ï ¶ èy· ¯ ¹ with �*) ý è
is
�
-robust.

The line test picks a random line by choosing ¿ and � randomly. Consider the case

when � is fixed. It is not hard to check that for there is a partition of ð $ ï «¼ OËª� ½ ú0ú0ú ½ O ï
where each O � has size � $ �7ª such that ½+� "-, � �.� Ü 
 «Âð $ ï . In other words:

Proposition 8.10. The line test has a partitioned query pattern.

The proposed tolerant tester for RM ï ¶ èy· ¯ ¹ is as follows: pick ¿ · � Áßð $ ï uniformly at

random and check if the input restricted to �
� Ü 
 is ] -close to some univariate polynomial of

degree è . If so accept, otherwise reject. When the threshold ] satisfies ]Òô æ í # è�É�� , the

test can be implemented in polynomial time [63]. From Corollary 8.10, Proposition 8.10,

Lemmas 8.2 and 8.3, the above is indeed a tolerant tester for RM ï ¶ èt· ¯ ¹ , and Theorem 8.8

follows.
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8.7 Bibliographic Notes and Open Questions

The results in this chapter (other than those in Section 8.5.2) were presented in [57]. Results

in Section 8.5.2 appear in [26].

In the general context of property testing, the notion of tolerant testing was introduced

by Parnas et al. [83] along with the related notion of distance approximation. Parnas et

al. also give tolerant testers for clustering. We feel that codeword-testing is a particularly

natural instance to study tolerant testing. (In fact, if LTCs were defined solely from a

coding-theoretic viewpoint, without their relevance and applications to PCPs in mind, we

feel that it is likely that the original definition itself would have required tolerant testers.)

The question of whether the natural tester for �mªÄ �/�p¬ is a robust one was first explicitly

asked by Ben-Sasson and Sudan [14]. P. Valiant showed that in general, the answer to the

question is no. Dinur, Sudan and Wigderson [30] further show that the answer is positive

if at least one of �B ª or �p¬ is a smooth code, for a certain notion of smoothness. They also

show that any non-adaptive and bi-regular binary linear LTC is a smooth code. A bi-regular

LTC has a tester that in every query probes the same number of positions and every bit in

the received word is queried by the same number of queries. The latter requirement (in the

terminology of this chapter) is that the tester is
¶�Ø#æ ·0� Ù · Ø ± · ±Ä Ù · æ ¹ -smooth, where the tester

makes � queries. The result of [30] however only works with constant query complexity.

Note that for such an LTC, Lemma 8.1 implies that the code is also tolerant testable.

Obtaining non-trivial lower bounds on the the block length of codes that are locally

testable with very few (even 1 ) queries is an extremely interesting question. This problem

has remained open and resisted even moderate progress despite all the advancements in

constructions of LTCs. The requirement of having a tolerant local tester is a stronger re-

quirement. While we have seen that we can get tolerance with similar parameters to the best

known LTCs, it remains an interesting question whether the added requirement of tolerance

makes the task of proving lower bounds more tractable. In particular,

Open Question 8.1. Does there exists a code with constant rate and linear distance that

has a tolerant tester that makes constant number of queries ?

This seems like a good first step in making progress towards understanding whether

locally testable codes with constant rate and linear distance exist, a question which is ar-

guably one of the grand challenges in this area. For interesting work in this direction which

proves that such codes, if they exist, cannot also be cyclic, see [10].

The standard testers for Reed-Muller codes considered in Section 8.6 (and hence, the

tolerant testers derived from them) work only for the case when the size of the field is larger

than the degree of the polynomial being tested. Results in Chapter 7 and those in [74]

give a standard tester for Reed-Muller codes which works for all fields. These testers do

have a partitioned query pattern– however, it is not clear if the testers are robust. Thus, our

techniques to convert it into a tolerant tester fail. It will be interesting to show the following

result.
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Open Question 8.2. Design tolerant testers for RM codes over any finite field.


