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Abstract

We study the circuit complexity of linear transformations between Galois fields GF(2mn)
and their isomorphic composite fields GF((2m)n). For such a transformation, we show a lower
bound of Ω(mn) on the number of gates required in any circuit consisting of constant-fan-in
XOR gates, except for a class of transformations between representations of such fields which
are nicely characterized. The exceptions show that the polynomials representing the fields
must be of a regular form, which may be of independent interest. We characterize a family
of transformations which can be implemented as crosswires (permutations), without using any
gates, which is very useful in designing hardware implementations – and through bit-slicing,
software implementations – of computations based on Galois Field arithmetic. We also show
that our lower bound is tight, by demonstrating a class of transformations which only require a
linear number of gates.

1 Introduction

Galois Field Arithmetic finds wide use in engineering applications such as error-correcting codes
[4, 14], cryptography [26], switching theory [2] and digital signal processing [3, 15]. However the bulk
of the applications have been in cryptography and coding theory. Galois fields have been extensively
used in public key cryptography. In Diffie-Hellman [7] key exchange protocol, and in ElGamal public
key encryption scheme [8], the cyclic multiplicative group of Galois fields is employed. In elliptic
curve cryptogrpahy [12][17] the elliptic curves are considered over Galois fields. Galois fields have
also been used in symmetric key cryptography, mostly to use different non-compatible groups to
introduce non-linearity. The best example of this is perhaps the recently selected AES algorithm
Rijndael [28]. There has been a growing interest to develop hardware and software methods for
implementing the finite field arithmetic operations particularly for cryptographic application [22,
27, 19, 25]. In search for efficiency, computations are often performed in alternate bases. Two such
conversions have been addressed in the recent past [11, 10].

It is well known [13] that a finite field of qn elements can be represented by polynomials modulo
an irreducible polynomial of degree n, the polynomials being defined over GF (q). Thus, a field
with 2mn elements can be derived either (1) by an irreducible polynomial f over GF(2) of degree
mn, or (2) by an irreducible polynomial g over GF(2n) of degree m. The latter representation is
called a composite field representation. Efficient hardware and software implementations have been
obtained in composite fields [27, 19, 21, 23]. The best hardware and software performance numbers
for Rijndael [28] reported so far are for implementations of Rijndael in composite fields [21, 23]. The
use of composite fields for a software Rijndael encryption in [21] reduced the encryption latency by
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a significant 20%. Satoh et al. [23] achieved a performance increase as high as 6 times the previous
hardware circuits.

The performance of a composite field implementation depends both on the cost of performing
arithmetic in the composite field as well as the cost of transforming elements from the original field
to the composite field and vice-versa. The latter cost is an overhead that varies by the computation
performed, and may be significant, particularly in situations involving large fields. Essentially,
when transforming the GF (2k) operations in an algorithm to operations in some composite field,
the isomorphism (and its inverse) would need to be applied to certain inputs (and outputs) of the
algorithm. Moreover, in some cases we may need to perform the conversion from the original field to
a composite field and vice-versa multiple times in the execution of the algorithm. The latter is done
in the Rijndael implementation in [23], where the isomorphism matrix (and it’s inverse) are placed
at the input and output of the S-box (and thus, the conversion is done in every round of Rijndael).
In this scenario, the actual cost of the transformation becomes more significant. Though there are
some algorithms to compute the transformations[18], no systematic study of the complexity of the
operation has been done so far.

In this paper, we show a lower bound (linear in GF(2)) on the circuit complexity of transforma-
tion between GF(2mn) and the isomorphic composite field GF((2m)n), except for a few classes of
transformations which are nicely characterized. The lower bound is linear in nm. The exceptional
classes are important in themselves, as they can offer advantages to designer of cryptographic algo-
rithms. There are many instances where the cryptographer has a wide choice of field representations
to pick from. In such a case our study of the lower bound and the exceptional classes can help in
both cryptanalysis and efficiency considerations.

When the irreducible polynomial g over GF(2n) is a binomial, i.e. of the form xm + ω, where
ω is in GF(2n), then there exist a family of representations where the transformation between
the two isomorphic fields is just a permutation, and thus the number of gates required in a circuit
implementation is zero. We exactly characterize this infinite family when the order of ω is small (less
than 2n). Because of this family, we do not have a lower bound on the general circuit complexity
of such transformations when g is a binomial.

In addition, we show that when the order of an irreducible polynomial (i.e., the order of its
roots) of degree n is less than 2n, then the polynomial must be of the form (xpr − 1)/(xpr−1 − 1),
where p is a prime. This could be of independent interest, especially to the study of linear feedback
shift registers (LFSRs). It is this fact which allows us to characterize the permutations mentioned
above.

However, when g is not a binomial, we prove a linear lower bound on the gate complexity of such
transformations, where the circuits themselves are linear over GF(2) – that is, they employ only
XOR gates. Even in the case that g is a binomial, except for a very special class of transformations,
we do indeed prove a linear lower bound. We also show a family of transformations which require
only a linear number of gates, showing that our bound is tight. Linear circuits over GF(2) are
studied in [1], where it is proved that Boolean Hadamard Matrix transformations require Ω(n log n)
gates.

The rest of the paper is organized as follows. In section 2 we prove two lemmas which could be
of independent interest to finite field theory. In section 3 we set forth definitions of isomorphisms,
transformations, and circuit complexity. In section 4 we prove the lower bound for the case when
the polynomial g is not a binomial. In section 5 we address the binomial case. In the appendix A
we generalize the result to tower composite fields. In appendix B, we give a brief introduction to
the relevant concepts in Galois Fields.
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2 The Regularity and Shifting Lemmas

In this section we present two lemmas which may be of independent interest to the reader, beyond
their use in the proofs herein.

Lemma 1 (Regularity Lemma) Let f(x) be a degree n irreducible polynomial over GF (q). Let
m be the least number such that f(x) divides xm − 1 (i.e., m is the order of the polynomial). If
m < 2n, then m is a prime power pe, and

f(x) =
xpe − 1
xpe−1 − 1

The following proof of this lemma is due to Coppersmith[5].
Proof : Let α be a root of f(x) in some extension field of GF (q). Then, f(x) is the minimal
polynomial of α over GF (q). Moreover, α has order m, and gcd(m, q) = 1 (since q is a prime
power, and m divides qn − 1).

Let m =
∏

i p
ei
i be the prime factorization of m. Then φ(m) =

∏
i(pi − 1)pei−1

i . Note that
qφ(m) = 1modm as gcd(m, q) = 1. Let λ(m) = lcm{(pi − 1)(pei−1

i )}. Then, qλ(m) = 1modm, as
qλ(m) − 1 is divisible by each prime power in m.

For any γ in an extension field of GF (q) (with order of γ being s), the minimal polynomial
of γ over GF (q) is

∏t−1
i=0(x − γqi

) where t is the smallest integer such that qt = 1(mod s). Thus,
deg(f(x)) = n is the order of q mod m. This implies that λ(m) = nc, where c is an integer ≥ 1.

If m is not a prime power then λ(m) < m/2, a contradiction since n > m/2. Thus, m is a prime
power, say m = pe. Thus, λ(m) = φ(m) = (p− 1)pe−1. As λ(m) = nc and n > m/2, n = λ(m) and
m − n = pe−1. We know xpe−1 − 1 is a divisor of xm − 1, of the right degree, so that is the only
choice for (xm − 1)/f(x).

Let [s) denote the set {0, 1, . . . , s− 1}.
Let q < 2n and gcd(r, q) = 1, where 1 < r < q. Also let W = {0, 1, · · · , q − 1}, W1 =

{0, 1, · · · , n− 1} and W2 =W −W1. Rr = {irmod (q)|i ∈ [n)} and R′
r = {j ∈ Rr|j ∈W2}.

Lemma 2 (Shifting Lemma) ∀r, 1 < r < q, |R′
r| = Ω(q − n).

Proof : We will consider three ranges of values for r:

• Case 1 : n ≤ r < q Define d = q − r.
Also let [n) =

⋃n/� q
d
�

j=0 Sj , where Sj = {j� q
d, j�

q
d + 1, · · · , (j + 1)� q

d − 1}. Further let
sj,i ∈ Sj = (j� q

d+ i) and rj,i = r.sj,i mod (q). Then note the following points–

– rj,(i+1) mod (q) = rj,i mod (q)− d.
– {sj,0, sj,1, · · · , sj,(� q−n

d
�−1)} ⊆W2.

– (q − sj,0) > (q − s(j+1),0).

The above implies that |R′
r| = n

� q
d
� × �

q−n
d  = Ω(q − n).

• Case 2 : q− n < r < n. Note that in this case irmod (q) ∈W2 ⇒ (i+1)rmod (q) ∈W1. To
see this note that min{irmod (q)+ r} > n+(q−n) = q and max{irmod (q)+ r} < q+n.We
further define G = {i ∈ [q)|irmod (q) ∈ W2} and G + 1 = {j ∈ [q)|j − 1 ∈ G}. Note that G
has q − n elements.
Suppose less than q−n

2 values from both G and G+ 1 fall in [n), then
|[n)| < q − |G| − |G+ 1|+ 2. q−n

2 < n, which is contradiction. Hence
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– at least q−n
2 elements from G are taken which implies |R′

r| ≥ q−n
2 ; or

– at least q−n
2 elements from G+ 1 are taken which implies |R′

r| ≥ q−n
2 − 1.

• Case 3 : 1 < r ≤ (q − n). Note that ∀i ∈ [n), irmod (q) = (q − i)(q − r)mod (q) = x(q − r),
where x ∈ {q − n+ 1, · · · , q}. A proof similar to Case 1 works as (q − r) ≥ n.

3 Preliminaries

First, we set for some notation and lemmas which will be used in the later sections of the paper.

Lemma 3 [16] Let r be an odd prime. Suppose that 2 is primitive modulo r and r2 does not divide
2r−1 − 1. Then the polynomial x(r−1)rl

+ x(r−2)rl
+ · · ·+ xrl

+ 1 is irreducible over GF (2) for each
l ≥ 0.

Lemma 4 Let r be a prime. If 2 is primitive modulo r, then the polynomial xr−1+xr−2+· · ·+x+1
is irreducible over GF (2).

Proof : Let α be a primitive rth root of unity in some extension field of GF (2). Since, 2 is primitive
modulo r, then the primitive polynomial of α is a degree r − 1 = φ(r) polynomial. Thus, (xr −
1)/(x− 1) must be this primitive polynomial.

A k× k binary matrix M = [mij ] is called a (k,t)-row matrix if ∃r1, r2, · · · , rt ∈ {1, · · · , k} such
that

k∑
j=1

mlj

{
≥ 2 if l ∈ {r1, r2, · · · , rt}
= 1 otherwise

M is called a (k,t)-column matrix if MT is a (k,t)-row matrix.
Consider a transformation matrix T that performs the isomorphic mapping from GF (2k) to

some composite field. That is, "y = T."x is the element of the composite field corresponding to
"x ∈ GF (2k). Such a matrix T is called a (k,t)-row (column) iso-transform if it is a (k,t)-row
(column) matrix.

For any matrix T , we denote by s(T ) the smallest possible number of fan-in 2, arbitrary fan-out
gates in any linear (over GF (2)) circuit that computes T."x. Note that over GF (2) linear circuit
means that all gates are just exclusive-or gates.

Note that in circuit complexity literature, the complexity is measured by the number of edges
in the directed acyclic graph representing the circuit (with each node being a gate), while we are
counting the number of actual gates in the circuit. These measures are equivalent when the number
of gates is super-linear. However, in our case, as we shall show, we have permutations as well as
transform with linear gates– the edge-count would have the same order in both cases while the gate
count is a more accurate measure.

Lemma 5 For any (k, t)-row iso-transform M , s(M) = Ω(t).
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Proof : The hamming distance between any two rows in M is at least one. Let R be the set of
rows where the number of 1s is greater than 1. Let "y =M · "x. For each ri ∈ R, the corresponding
yi is the output of some circuit gate. Each such yi is the output of a distinct gate, since otherwise
there will be fewer than 2k distinct possible "y values.

Note that the previous lemma holds for any circuit, and not just linear circuits. However, for
the next lemma we do require that the circuit be a linear circuit.

Lemma 6 [1] For any boolean matrix B, s(B) = s(BT ).

Lemma 5 and Lemma 6 together imply

Corollary 1 For any (k, t)-column iso-transform M , s(M) = Ω(t).

LetR(z) be the field polynomial ofGF (2k), and β a root ofR(z). Let B denote {1, β, β2, · · · , βk−1},
the standard basis for representing elements of GF (2k). Let S denote the set {1, β, β2, · · · , βk/2−1}.
Note that if γ ∈ S, then γ2 ∈ B.

We denote by O(f) and D(f) , the order and degree respectively of an irreducible polynomial
f(x). We have the following observation–

Observation 1 For any irreducible polynomial f , O(f) is odd.

Further, f(x) is a good polynomial if O(f) ≥ 2D(f).
Let the underlying field polynomials of GF ((2n)m) be Q(y) and P (x), where Q(y) generates

GF (2n). Let α and ω be a root of P (x) and Q(y) respectively. Any a ∈ GF ((2n)m) can be written
as a = am−1α

m−1 + am−2α
m−2 + ....+ a1α+ a0 for some ai ∈ GF (2n).

Consider a k × k binary matrix T which implements some isomorphism H from GF (2k) to the
composite GF ((2n)m). Suppose T is a (k, t)-column matrix. Let {r1, ..., rt} be the columns of T
with more than one non-zero entries. Let T be the set {βr1 , βr2 , · · · , βrt}. Thus,

H(βl) =
{

Σm−1
i=0 Σn−1

j=0 c
l
ijα

iωj , where alteast two clij = 1, if βl ∈ T
αilωjl , for some unique tuple (i, j) where il < m and jl < n, if βl ∈ B − T .

Let
√
T ⊆ B denote the set {βj | β2j ∈ T }. Let Z = (

√
T ∪T )∩S. Note that |Z| ≤ 2|T | = 2t.

Further, for any set A, let H (A) = {H (x)| x ∈ A}.

Lemma 7 Let {1, γ, γ2, ..., γk−1}be linearly independent over GF (2), where γ ∈ GF ((2n)m). H
is defined in the following manner - H(

∑k−1
i=0 ciβ

i) =
∑k−1

i=0 ciγ
i, for all possible distinct vectors

(c0, · · · , ck−1), where ci ∈ GF (2). If R(γ) = 0 then H is an isomorphism.

Proof : By definition, H satisfies additive homomorphism.
Let δ ∈ GF (2k) be a generator. To show that H satisfies multiplicative homomorphism (and

hence is an isomorphism), it is sufficient to show that ∀i ∈ [0, 2k− 2]H(δi)H(δ) = H(δi+1). To this
end we first show that ∀x ∈ GF (2k), H(x)H(β) = H(xβ). Let βk =

∑k−1
i=0 diβ

i and x =
∑k−1

i=0 c
x
i β

i.
Now xβ =

∑k−1
i=1 (c

x
i−1 + c

x
k−1di)β

i + cxk−1d0. By the definition of H, H(x) =
∑k−1

i=0 c
x
i γ

i and the
fact that R(γ) = 0, γk =

∑k−1
i=0 diγ

i. H(x)H(β) = H(xβ) follows by noting that H(xβ) =∑k−1
i=1 (c

x
i−1 + c

x
k−1di)γ

i + cxk−1d0.
By definition of H and repeated application of H(x)H(β) = H(xβ), we have ∀j ∈ [1, k − 1],

H(δi)H(βj) = H(δiβj). The proof follows from the fact that H satisfies additive homomorphism
and that δ is a linear combination of {1, β, · · · , βk−1}.
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Claim 1 If H(β) �= αuωv for any u ∈ [0 · · · (O(P ) − 1)], v ∈ [0 · · · (O(Q) − 1)];u + v �= 0, then
s(T ) = Ω(k).

Proof : H(β) �= αuωv implies that there does not exist an i such that

• H(βi) = αu′
ωv′

for some u′ ∈ [0 · · · (O(P )− 1)], v′ ∈ [0 · · · (O(Q)− 1)] ; and

• H(βi+1) = αu′′
ωv′′

for some u′′ ∈ [0 · · · (O(P )− 1)], v′′ ∈ [0 · · · (O(Q)− 1)].

This implies that T is a (k, t′)–column transform, where t′ > k/2. The claim follows from
Corollary 1

4 Lower bound proof

Here we present the proof for the linear lower bound when none of the polynomials are binomials.
We proceed in the following manner – first we prove that if H is of a particular type, then we
trivially have the liner lower bound (Claim 1). The proof does case analysis on whether P (x)
and/or Q(y) are good. In all the cases we prove the bound by using contradiction and counting
arguments.

We consider three cases depending on whether P (x) and Q(y) are good.
Case 1 : Both P (x) and Q(y) are good polynomials.

Lemma 8 |H(S − Z)− {1}| ≤ k/4− 1.

Proof : Consider βs ∈ (S − Z). Since (S − Z) ⊂ (B − T ), H (βs) is of the form αisωjs . Since H is
an isomorphism, (H (βs))2 = H (β2s). That is, α2is mod (O(P ))ω2js mod (O(Q)) = αi2sωj2s for some i2s

and j2s.
Note that (2is) ≤ 2(m− 1), which is less than O(P ) for all m > 1. Thus, 2is mod (O(P )) = 2is,

and similarly 2js mod (O(Q)) = 2js.
Next, we argue that 2is < m and 2js < n. Assume that such is not the case, and that 2is ≥ m.

Then α2is = Σm−1
r=0 vrα

r where vr ∈ GF (2n), and there are at least two values of r for which
vr �= 0. Thus, α2isω2js = Σm−1

r=0 α
r(vrω2js), where at least two terms in the summation have non-

zero coefficients. But that is not possible since βs ∈ (S − Z) implies that β2s ∈ (B − T ), which
implies that H (β2s) must be of the form αiωj for some i < m, j < n. It follows that 2is < m. A
similar argument shows that 2js < n.

Thus, is ∈ [0..(m/2 − 1)] and js ∈ [0..(n/2 − 1)], which implies that the number of unique
(is, js) tuples is n/2×m/2 = k/4. Since that is an upper bound on the total number of elements
in H (S − Z)), the lemma follows.

H is a one-to-one mapping, so |S − Z| = |H (S − Z)|. Since, as noted above, |Z| ≤ 2t, Lemma
8 implies that t ≥ k/8. In other words, for case 1, the following holds –

Corollary 2 For any t < k/8 there cannot exist a (k, t)-column iso-transform that performs an
isomorphic mapping from GF (2k) to a composite field GF ((2n)m), provided none of the irreducible
polynomials is a binomial.

Case 2: Exactly one of P (x) and Q(y) is a good polynomial .
Without loss of generality let us assume that Q(y) is not a good polynomial.
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Suppose H(β) = αuωv. Now consider the set H(B) and the powers of α and ω. We denote by U
and V the sequences {u, 2umod (O(P )), · · · , (k−1)umod (O(P ))} and {v, 2vmod (O(Q)), · · · , (k−
1)vmod (O(Q))} respectively. Let η be the minimum value such that ηu = 0mod (O(P )) and let ρ
be the minimum number such that ρv = 0mod (O(Q)).

Also we denote a special case of V as V∗ = {1, 2, · · · ,O(Q)− 1}. Further let AV = {ωv|v ∈ V}.

Lemma 9 If V = V∗ and for each ωj ∈ AV∗ let Xj = {ωjαu0 , αu1ωj , · · · , αux−1ωj} such that each
power of α is different. Then

⋃
ωj∈AV∗ Xj requires Ω(xn) gates to be implemented.

Proof : By Lemma 1 each element of {ωn, ωn+1, · · · , ωO(Q)−1} has n
O(Q)−n entries and each is inde-

pendent of the other, that is ∀i, j < (O(Q)−n);ωn+i +ωn+j has 2n
O(Q)−n entries. As each power of

α is different in Xj , the above observations implies that Xj requires at least (O(Q) − n) n
O(Q)−n −

O(Q)+n = Ω(n) gates1. Also note any Xj will not be able to reuse the gates of another as ωjs are
independent. Hence, the lemma.

Lemma 10 If the condition of Claim 1 does not hold and gcd(v,O(Q)) = 1 then s(T ) = Ω(k).

Proof : As gcd(v,O(Q)) = 1, V = V∗. The proof follows from Lemma 9 and noting that x =
Ω( k

O(Q)) = Ω(m).

Lemma 11 In Case 2, s(T ) = Ω(k).

Proof : If the condition of Claim 1 holds, then we are done. Thus, H(β) = αuωv. There are
min(k − 1, η) distinct values in U . If η ≥ 3m/2, then we are done (as there are at most m distinct
is such that αi is a singleton and hence, T is a (k, k/3)-column iso-transform).

Assume gcd(v,O(Q)) > 1. V has at most ρ distinct values.By Observation 1, ρ ≤ O(Q)/3.
Thus, |H(β)| < ρη ≤ (3m/2) × (O(Q)/3) ≤ k which is a contradiction. Lemma 10 completes the
proof.
Case 3: Both P (x) and Q(y) are not good polynomials .

Here also we have the following lemma –

Lemma 12 In Case 3, s(T ) = Ω(k).

Proof : As in the proof of Lemma 11 assume that the condition of Claim 1 does not hold. Also let
gcd(u,O(P )) > 1 and gcd(v,O(Q)) > 1. Here η ≤ O(P )/3 and ρ ≤ O(Q)/3 and thus H(β) ≤ 4k/9
which is a contradiction. Without loss of generality, gcd(u,O(P )) = 1. Lemma 10 completes the
proof.

5 Binomials

The proof in Section 4 does not work if any of the irreducible polynomials is a binomial. These
classes of transformation matrices are also interesting as they have an infinite family of permutations
(Section 5.2.1).

1Consider any two elements of Xj , say ωjαui1 and ωjαui2 . αui1 differs from αui2 by at least one αl, where l < m.
αlωj will require n

O(Q)−n
− 1 gates.
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5.1 Preliminaries

Here we present some lemmas and observations about some of the irreducible polynomials being a
binomial. First we give a characterization of irreducible binomials due to Serret.

Lemma 13 [13, 16] Let a ∈ GF ∗(2n)2 with order e. The binomial xt+a is irreducible over GF (2n)
if and only if the integer t ≥ 2 satisfies the following conditions–

1. gcd(t, (2n − 1)/e) = 1.

2. each prime factor of t divides e.

3. if 4|t, then 4|(2n − 1).

Note that there cannot be an irreducible binomial over GF (2) (as 1 would be a root of such a
binomial), that is only P (x) can be a binomial. Also the order of an irreducible binomial P (x) =
xm + a, where a ∈ GF (2n) is greater than 2m. To see this note that the O(P ) = m.order(a) and
for ∀n > 2, order(a) ≥ 3, that is P (x) is a good polynomial. This implies that while extending the
proof of Section 4 for binomials we have to consider only Case1 and Case 2 of the proof.

5.2 Family of Transformation Matrices

Here we describe three infinite families of transformation matrices. Matrices in Section 5.2.1 are
permutations (that is 0-gate circuits) and those in Section 5.2.2 will prove our linear lower bounds
to be a tight one.

Let p be an odd prime such that 2 is primitive modulo p and p2 does not divide 2p−1 − 1.3

Consider the following polynomials for l ≥ 1 :

• R(z) = z(p−1)pl
+ z(p−2)pl

+ · · ·+ zpl
+ 1 – which is irreducible by Lemma 3.

• Q(y) = yp−1 + yp−2 + · · ·+ y + 1 – which is irreducible by Lemma 4.

• P (x) = xpl
+ ωr, where Q(ω) = 0 and r will be fixed later. Note that if r = 1 or r = p − 1,

then P (x) is irreducible by Lemma 13.

Note that k = (p− 1)pl, m = pl and n = (p− 1).

5.2.1 Permutations

When r = 1 we get a permutation by letting H(β) = α. Two points to note here are –

• H(β) = α is a valid transform by Lemma 7.

• s(T ) = 0.
2GF ∗(2n) denotes the multiplicative group of GF (2n).
3It is an open question – do infinitely many such primes p exist. A prime r is called a Wieferich prime if

2r−1 = 1mod (r2). The Generalized Riemann Hypothesis implies that there are infinitely many primes q, such that 2
is primitive modulo q. [24] shows that abc-conjecture implies that there are infinitely many primes s, such that s is
not a Wieferich prime. Also the only two known Wieferich primes till < 4.1012 are 1093 and 3511 [6]. Interestingly
2 is not primitive modulo these primes.
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5.2.2 Linear number of gates family

When r = p− 1, we again let H(β) = α. Two points to note here are –

• H(β) = α is a valid transform by Lemma 7.

• s(T ) = k −m.

5.2.3 Other cases

When r is neither 1 nor p − 1, and P (x) is still irreducible (by satisfying the condition in lemma
13).

Note that since Q(ω) = 0, ω has order p. Thus the order of ωr is p/ gcd(r, p). Since ωr �= 1,
order of ωr is p. Hence, gcd(r, p) = 1.

Let u = r−1 mod (p). Then H(β) = αu is an isomorphism by lemma 7. To see this note that
R(β) = 0. Hence the condition in lemma 7 that needs to be checked is that R(αu) = 0. But
R(αu) = Q(αupl

) = Q(ωru) = Q(ω) = 0. Also, that the powers of αu generate a basis of the
composite field is easy to see.

A similar isomorphism can be obtained if (mv+ru) = 1modp, where m = pl, and H(β) = αuωv.
In both these cases it is difficult to give a lower bound, as the transformation matrix obtained

can indeed be anything from almost a permutation to one requiring more than linear number of
gates (see case 2 of next section).

5.3 Lower bound proof

We first prove Lemma 14 and then extend the proof of Section 4.

Lemma 14 If P (x) = xm + z, where ∀i, z �= ωi, then s(T ) = Ω(k).

Proof : Note that if zj = ωl , for some l < O(Q), then ∀s, zj+1 �= ωs (by definition of z), that is,
in the sequence {zi} , every alternate element is a non-singleton (we will refer to such elements as
NSZ) – also for any such element zj , ∀r∀s, zjωr �= ωs [ by definition of NSZ ] . By Claim 1, we have
H(β) = αuωv ⇒ H(βt) = αut mod (m)z�

ut
m

�ωvt. By our observation that every alternate element
of {zi} is NSZ , for any (2m/u) continuous values of t, for at least (m/u) values of t, z�

ut
m

�ωvt is
non-singleton . Hence, s(T ) = Ω(k).

Lemma 14 imples that we need to consider binomials only of the form P (x) = xm+ωr.As noted
in Section 5.1, we need to extend the proof of Section 4 for the following cases (and P (x) is a good
polynomial) –

• Case 1 : Q(y) is good. We do a case analysis on the value of r.

– Case A: n < r < O(Q)− n(1 + 1
d), where d is a constant .

We proceed along the lines of Lemma 8. Here we have to find the number of unique
(is, js) tuples such that α2isω2js is a singleton. Note that is ∈ {0, · · · ,m − 1} and
js ∈ {0, · · · , n− 1}.
∗ If 2is < m, then only for 2js < n, α2isω2js is a singleton; else
∗ m ≤ 2is < 2m− 1. Here α2isω2js = αωr+2js . Now we have to ensure that ωr+2js is
a singleton i.e. i + 2js > O(Q) i.e. the number of possible values of 2js here is at
most n(1− 1

d)− 1.
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Thus, the total number of unique (is, js) tuples such that α2isω2js is a singleton (which is
an upper bound on |H(S−Z)|) is (m/2)(n/2)+(m/4)(n(1− 1

d)−1) = (k/4)(2− 1
d)−m/4.

Now |S −Z| = |H(S −Z)| ⇒ k/2− 2t ≤ (k/4)(2− 1
d)−m/4⇒ t ≥ (k/(8d)) + (m/8) =

(k/8)(1
d + 1

n).

– Case B: 1 < r < n(1− 1
d), where d is a constant and d > 2 . An analysis similar to Case

A, gives a t ≥ (k/8)(1− 2
d).

– Case C : otherwise This case falls under the analysis done in section 5.2.3.

• Case 2 : Q(y) is a bad polynomial.

Let q = O(Q). Note that H(βt) = αut mod (m)ω�
ut
m

�r+vtmodq, for t < k. Since H is an
isomorphism, we can not have two values t1, t2 < k such that H(βt1) = H(βt2). Note that
this is only possible if (1) ut1 = ut2 mod (m), and (2) �ut1

m r + vt1 = (�ut2
m r + vt2)mod (q).

(1) can be satisfied iff t2 = t1 + im/ gcd(m,u), for some i < n gcd(m,u), with t1, t2 < k.
Thus (1) and (2) can be satisfied iff i(ur+ vm) = 0mod (q), and t2 = t1 + im/ gcd(m,u), for
some i < n gcd(m,u), with t1, t2 < k. If gcd(m,u) > 1, then since q < 2n, i = q, t1 = 1 is a
solution, contradicting that H is an isomorphism. Thus, gcd(m,u) = 1. Similarly, (ur+ vm)
and q are relatively prime.

Now, let t1 and t2 be such that ut1 = ut2 mod (m). Also, let t2 = t1 + im, i < n. For these
values of t (i.e. t1, t2), the powers of α are the same. The difference in the powers of ω is
i(ur+ vm)mod (q). Thus, for values of t, such that H(βt) has the same α power, the powers
of ω are multiples of (ur + vm)mod (q) apart.

For each a < m, denote by Sa the sequence of powers of ω, corresponding to the ath power
of α. More precisely, for any a < m, let t = au−1 mod (m), and t < m (since gcd(u,m) = 1).
Then, Sa

i , the ith element in the sequence Sa, for i < n is defined as Sa
i = (�u(t+im)

m r+ v(t+
im))mod (q) = (�ut

mr + vt+ (ur + vm)i)mod (q).

Thus, by shifting lemma (Lemma 2) and regularity lemma (Lemma 1), if (ur+ vm) �= 1mod
(q), then we have a lower bound of Ω(k).

If (ur+ vm) = 1mod (q), and v = 0, we have two cases. If r = 1, then u = 1, and in this case
we indeed have permutations (i.e. zero gate circuits), for instance see the class described in
Section 5.2.1. If r > 1, we have u = r−1 mod (q), as gcd(ur, q) = 1. If we could show that Sa

0

is nicely distributed among integers mod q, the proof would follow by ur = 1mod (q). But,
this seems difficult to prove. Instead we show that for every j < q, there are m/2 different
a such that for each such a, there is an i < n with j = Sa

i . In other words, each ω power
appears in at least m/2 sequences.

Let j′ = jr−1 mod (q). Let t = � j′m
u . Note that t < k, as u > 1. Now, �ut

m =
� j′m−(j′m mod (u))

m  = j′, as u < m. Thus, j = �ut
mrmod (q). Also, note that if t is a so-

lution of j = �ut
mrmod (q), then so are t + s, where s takes m/u contiguous integer values,

such that −m/u < s < m/u. Moreover, if t is a solution, then so is ty = � j′m+yqm
u . The

number of values y can take is u/2 − 1, as we need ty < k. Thus, for each j < q, there are
(u/2)(m/u) = m/2 lists in which j appears. By lemma 9, we have an Ω(k) lower bound.

If v �= 0, and (ur + vm) = 1mod (q) then as mentioned in section 5.2.3 the lower bound is
untenable.
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6 Acknowledgements and Future Work

The bounds in this paper are in terms of 2-input XOR gates. An interesting question to as whether
using arbitrary 2-input logic gates help in general matrix-vector multiplication over GF (2). This
question in turn is equivalent to asking if using AND gates help [9]. The latter is an open question
[20].

The authors would like to thank Don Coppersmith for the proof of the Regularity Lemma.
We would also like to thank Anna Gal for pointing out [1] and [20], and for helpful discussion on
the complexity of matrix-vector multiplication; and Shuhong Gao for very helpful information and
comments about irreducible binomials.
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A General lower bound proof

For the general version of Corollary 2 we use the following notation — let Pj(x) denote the field
polynomial corresponding to dj where k =

∏v
j=1 dj . Also let Pj(αj) = 0.

Consider a (k, t)-column transformation matrix T ′ that maps elements of GF (2k) to the isomor-
phic compositeGF ((...((2d1)d2)...)dv). LetH ′ denote the isomorphism, and T ′ the set {βr′1 , βr′2 , · · · , βr′t}.
Then, ∃r′1, r′2, ..., r′t ∈ {1, .., k} such that

H(βl)




Σd1−1
i1=0Σ

d2−1
i2=0 · · ·Σ

dv−1
iv=0 c

l
i1i2···ivΠ

v−1
p=0(αp)ip , where alteast two cli1i2···iv = 1,

if βl ∈ T ′

Πv−1
p=0(αp)ip,l , for some unique v-tuple (i1,l, i2,l, · · · , iv,l)

where ∀p ∈ [1..v] ip < dp,
if βl ∈ B − T ′.

Let
√
T ′ ⊆ B denote the set {βj | β2j ∈ T ′}. Let Z ′ = (

√
T ′∪T ′)∩S. Note that |Z ′| ≤ 2|T ′| =

2t. Further, for any set A, let H ′(A) = {H ′(x)| x ∈ A}.
It can be seen that Claim 1 can be generalised to the following claim –
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Claim 2 If H(β) �= Πv
j=0α

uj

j for any uj ∈ [0 · · · (O(Pj)− 1)] and Σv
j=0uj �= 0, then s(T ) = Ω(k).

If H(β) = Πv
j=0α

uj

j , then Uj = {uj , 2uj mod (O(Pj)), · · · , (k − 1)mod (O(Pj))} and ρj is the
minimum value such that ρjuj = 0mod (O(Pj)) .

Again we consider three cases.
Case G.1 : All the Pj(x) are good polynomials .

Lemma 15 For any t < (2v−1−1)k/2v+1 there cannot exist a (k, t)-column transform that performs
an isomorphic mapping from GF (2k) to a composite field GF ((...((2d1)d2)...)dv), where k =

∏j=v
j=1 dj.

Proof : Consider βs′ ∈ (S − Z ′), i.e. H ′(βs′) is of the form Πv−1
p=0(αp)ip,s′ . A proof along the same

lines as the proof for Lemma 8 shows that |H(S −Z ′)− {1}| ≤ k/2v − 1 (as the number of unique
(i1,s′ , i2,s′ , ...iv,s′) v-tuples is

∏j=v
j=1(dj/2) − 1 = k/2v − 1). The proof is complete by noting that

H ′ is a one-to-one mapping and that |S − Z ′ − {1}| ≥ k/2− 2t− 1.
Case G.2 : Exactly d out of v Pj(x) are good polynomials .
Without loss of generality assume P1(x), · · · , Pd(x) are good.

Lemma 16 In Case G.2, s(T ) = Ω(k).

Proof : If the condition of Claim 2 holds, then we are done. Thus, H(β) = Πv
j=0α

uj

j . There are
min(k − 1, ρl) distinct values in Ul for l ∈ [1 · · · d]. If ρl ≥ (3/2)v/d−1dl, then we are done (as there
are atmost dl distinct is such that αi

l is a singleton and hence, T is a (k,O(k))-column transform).
For each e ∈ [d + 1 · · · v], assume gcd(ue,O(Pe)) > 1. Ue has atmost ρe distinct values. By

Observation 1, ρe < O(Pe)/3. Thus, |H(β)| < Πv
j=1ρj < k which is a contradiction. Without loss

of generality gcd(uv,O(Pv)) = 1 . Lemma 10 completes the proof4.
Case G.3 All the Pj(x) are not good polynomials .
A simple generalisation of the proof of Lemma 12 gives the following lemma –

Lemma 17 In Case G.3, s(T ) = Ω(k).

B Galois Field Essentials

For a detailed treatment of the material presented here see [13, 18].
A Finite field , F is defined by two parameters- its prime characteristic p and its dimension k

over Zp, where Zp is the set of integer modulo the prime p. The field F has pk elements and is
isomorphic to any other field having pk elements. The field F is often written as GF (pk), where
GF stands for GaloisF ield. The additive identity of F is denoted by 0. The multiplicative group
of F is denoted by F

∗ ( or alternatively as GF ∗(pk)). A primitive element or generator of F
∗ is any

element that generates the multiplicative group. Specifically, if γ ∈ F
∗ is a primitive element then

F
∗ = {1, γ, · · · , γpk−2}.
Let Zp[x] denote the polynomial ring in one unknown. A polynomial r ∈ Zp[x] is said to be

irreducible if r = gh implies that either g or h is a constant that is, g(x) or f(x) ∈ Zp. Further an
irreducible polynomial r of degree k is said to be primitive if some root ( and hence each root), β

4In the proof of Lemma 10 substitute P , U and m by Pv, Uv and dv respectively .
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of r generates GF ∗(pk). Typically GF (pk) is represented as the quotient ring Zp[x]/(r), where r is
an irreducible polynomial of degree k. {1, β, · · · , βk−1} is the standard basis of GF (pk), that any
A ∈ GF (pk) can be represented as

∑k−1
i=0 aiβ

i, where ai ∈ Zp.
Let k = nm and let q ∈ Zp[x] be an irreducible polynomial of degree n. Further let GF (pn) be

represented as the quotient ring Zp[x]/(q). Further let s ∈ GF (pn)[x], where GF (pn)[x] is the ring
of polynomials where the coefficient are in GF (pn), be an irreducible poynomial5 over GF (pn) of
degree m. The quotient ring GF (pn)[x]/(s) is denoted by GF ((pn)m), it is isomorphic to GF (pk)
and is called a composite field. Let α be a root of s, then {1, α, · · · , αm−1} is the standard basis of
GF ((pn)m), that is, for any B ∈ GF ((pn)m), B =

∑m−1
i=0 biα

i where bi ∈ GF (pn).
In our setting, p = 2. For the base field, GF (2) or Z2( note that this field just contains 2

elements 0 and 1), “addition” is the exclusive-or operation while “multiplication” is the boolean
and. Let H be the isomophism from GF (2k) to GF ((2n)m), where k=nm. By the defintion of
isomorphism, H maps identity to identity.

Let R(z) be the irreducible polynomial of degree k for GF (2k) and let R(β) = 0. Let Q(y) be the
irreducible polynomial of degree n for GF (2n) and Q(ω) = 0. Finally P (x) be the irreducible poly-
nomial of degree m for GF ((2n)m) and let P (α) = 0. Thus for any A =

∑k−1
i=0 aiβ

i ∈ GF (2k) there
exists H(A) ∈ GF ((2n)m). Consider the k × k binary matrix, M , such that the ith coloumn is the
additive representation6 of H(βi). It is easy to see that the following matrix-vector multiplication

represents H(A): M




bk−1

bk−2
...
b1
b0




In this paper we give a lower bound on the number of 2-input exclusive-or gates required to
implement the above matrix-vector.

5A polynomial f ∈ GF (pn)[x] is irreducible if f = gh implies g(x) or f(x) ∈ GF (pn).
6Additive representation of of any B ∈ GF ((2n)m) is of the form B =

∑n−1
i=0

∑m−1
j=0 ci,jα

jωi.
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