
Approximation Algorithms for Wavelength Assignment

Vijay Kumar∗ Atri Rudra†

Abstract

Winkler and Zhang introduced the FIBER MINIMIZATION problem in [3]. They showed
that the problem is NP-complete but left the question of approximation algorithms open. We
give a simple 2-approximation algorithm for this problem. We also show how ideas from the
Dynamic Storage Allocation algorithm of Buchsbaum et al [1] can be used to give an approxima-
tion ratio arbitrarily close to 1 provided the problem instance satisfies certain criteria. We also
show that these criteria are necessary to obtain an approximation scheme. Our 2-approximation
algorithm achieves its guarantee unconditionally.

We generalize the problem to a ring network and give a 2 + o(1)-approximation algorithm
for this topology. Our techniques also yield a factor-2 approximation for the related problem of
PACKING INTERVALS IN INTERVALS, also introduced by Winkler and Zhang in [3].

1 Introduction

Winkler and Zhang in [3] introduced the FIBER MINIMIZATION problem on a linesystem, which
relates to the efficient construction of an optical fiber network to meet a specified collection of
demands. Consider n links or edges connected in a line. The set of demands are intervals — each
needs to use some consecutive links. An optical fiber, which is of wavelength µ and spans some
consecutive links, can carry demands such that links required by the demands are contained within
the links the fiber spans, and no two demands which require the same link are assigned the same
wavelength. The goal is to get a set of fiber intervals such that the minimum total fiber length is
used.

In Section 2.1, we give a 2-approximation algorithm for the FIBER MINIMIZATION problem.
This problem is similar to the Dynamic Storage Allocation (DSA) problem in some aspects, and
we employ techniques from the DSA literature, such as those of Gergov [2] and Buchsbaum et al.
[1], to tackle it. Ideas from [1] yield an approximation scheme for this problem in Section 2.2.

We extend these results to obtain other approximations for related problems. In Section 3 give a
factor 2+o(1) approximation algorithm for FIBER MINIMIZATION on a ring. We investigate the
related problem of PACKING INTERVALS IN INTERVALS — also posed in [3] — in Section 4,
and obtain a 2-approximation algorithm.

∗Strategic Planning and Optimization Team, Amazon.com, Seattle, WA. email: vijayk@amazon.com
†Department of Computer Science and Engineering, University of Washington, Seattle, WA. email:

atri@cs.washington.edu

1

2 The FIBER MINIMIZATION problem

Formally, consider a linesystem of n links e1, e2, · · · , en. We represent each demand by dj = [lj , rj]
for lj ≤ rj if it requires the links elj , · · · , erj

; the set of demands is denoted by D. We say demands
dj and dj′ intersect (or overlap) if either lj ≤ lj′ ≤ rj or lj′ ≤ lj ≤ rj′ . A fiber interval f is
represented by f = [lf , rf] for lf ≤ rf if it spans the edges lf , · · · , rf . The goal is to construct a
set F of fiber intervals (each capable of carrying µ different wavelengths) of minimum total length
(
∑

F3f=[lf ,rf](rf − lf + 1)) such that D can be packed in F . A packing of D in F is an assignment
of each demand dj = [lj , rj] to a fiber f = [lf , rf] ∈ F , and a wavelength ω ∈ {1, · · · , µ} within f ,
such that [lj , rj] ⊆ [lf , rf] and no two intersecting demands are assigned the same wavelength in
the same fiber.

2.1 A 2-approximation algorithm

As specified above, the input D to the FIBER MINIMIZATION problem consists of demands dj ,
each of which is an interval of the form [lj , rj], where lj ≤ rj ∈ {1, · · · , n}. For each link ei,
we define LD(i) = |{dj ∈ D : i ∈ [lj , rj]}| (WLOG we assume that LD(i) is a multiple of µ)
and Lmax

D = maxi LD(i). The algorithm uses a Lmax
D × n matrix H to keep track of wavelength

assignments. For each k ∈ {1, · · · , Lmax
D }, the row Hk is referred to as the kth row and finally

would correspond to a wavelength in some fiber interval. We say that link ei is colored ci in row
k if Hk,i = ci. For any row k and color c, we call a interval [l, r] in the kth row a c segment if
Hk,l−1 6= c, Hk,r+1 6= c and ∀i ∈ [l, r], Hk,i = c.

The algorithm, which we refer to as the Simple algorithm, is specified in Figures 1 and 2. In
Phase 1, the algorithm constructs the matrix H and then derives a “packing” PD from H. We
say that demand dj ∈ D is packed in PD if < j, k >∈ PD for some k ∈ {1, · · · , Lmax

D }. PD is not a
feasible solution initially — the assignments of some demands overlap, but only to a limited extent.
In Phase 2, the overlaps are taken care of and a valid packing derived.

In a nutshell, this is how the algorithm works. At the beginning of Phase 1 (Figure 1), each matrix
entry Hk,i is colored either red (which means that no demand can be placed on edge ei in the kth
row), green (which means that atmost one demand can be placed on edge ei in the kth row) or
blue (which means overlapping demands can be placed on edge ei in the kth row). Each edge ei

is “alloted” LD(i) rows, which is why the first Lmax
D − LD(i) rows of ei are colored red in Step 2.

All other intervals are colored green. Initially all green segments are “available”. In Step 3, the
algorithm iterates over all possible rows and in each iteration looks for an “available” green segment
over which some “unpacked” demand can be placed (maybe partially) in the following way: this
demand can possibly intersect blue segments in that row but it must not intersect with any other
green segment. The placement of a demand can fragment an “available” green segment into smaller
“available” green segments (the edges common to the placed demand and the green segment are
no longer available). The iteration is complete when no demand can be placed on any available
green segment. Edges which were colored blue in the current row or did not have any demand
placed on them in the current row are colored blue in the next row. Note that this implies that if
an edge becomes blue in one row then it remains blue for all the subsequent iterations. Phase 1 of
the algorithm is complete when Dmax iterations are complete. We will show in Lemma 4 that after
the first phase, all demands are “packed”.

Further in Lemma 5 we show that a demand may intersect, if at all, with no more than one

2

demand in a blue segment. This suggests Phase 2 (Figure 2) of the algorithm where demands are
finally packed into fiber intervals. Consider µ consecutive rows and consider maximal intervals of
consecutive edges which are not colored red in any of the µ rows. In each such segment, every one
of the µ rows has, by Lemma 5, at most two demands conflicting over any particular link. Thus,
creating two fiber intervals corresponding to such a segment is sufficient to accommodate all the
demands.

Phase 1

1. J ← D, PD ← ∅.

2. for (k ← 1; k ≤ Lmax
D ; k ← k + 1)

for (i← 1; i ≤ n; i← i + 1)
Hk,i ← red if k ≤ Lmax

D − LD(i); otherwise Hk,i ← green.

3. for (k ← 1; k ≤ Lmax
D ; k ← k + 1)

(a) G← {[l, r] : Hk,j is green for all j ∈ [l, r]; [l, r] is maximal} (G is the set of all maximal
green intervals in the kth row)

(b) while ∃ [l, r] ∈ G

i. if ∃ dj = [lj , rj] ∈ J such that (dj is an unpacked demand)

A. [l, r] ∩ [lj , rj] 6= ∅ (dj intersects [l, r]), and

B. ∀w ∈ [lj , rj], either w ∈ [l, r] or Hk,w = blue (dj intersects no other interval in
G)

then

Add < j, k > to PD, delete dj from J , and for all i ∈ [lj, rj] ∩ [l, r] set Hk+1,i =
green.

delete dj from J

delete [l, r] from G

if l < lj add [l, lj] to G

if rj < r add [rj , r] to G

else

for all i ∈ [l, r] set Hk,i = blue.

(c) for (i← 1; i ≤ n; i← i + 1)
if Hk,i = blue then set Hk+1,i ← blue.

Figure 1: Phase 1 of Simple algorithm

The following three Lemmas follow directly from the way the matrix H is manipulated in the
algorithm of Figure 1.

Lemma 1 At the end of Phase 1, if Hk,i = green for any k and i, then for all 1 ≤ k ′ < k, Hk′,i =
green or Hk′,i = red.

Proof : If Hk′,i is colored blue, then Hj,i gets colored blue for all j > k′ due to repeated execution
of Step 3(c); in particular Hk,i gets colored blue, which contradicts the assumption on Hk,i in the
lemma.

3

FD ← ∅.
for (k = 1; k ≤ Lmax

D ; k = k + µ)

1. ∀i ∈ {1, · · · , n}, c[i]← black;

2. ∀i ∈ {1, · · · , n}, if ∃j ∈ [k, k + µ) such that Hj,i = red then c[i]← red.

3. for each maximal interval I = [l, r] ⊆ [1, n] such that i ∈ [l, r]⇒ c[i] = black,

(a) Create two fiber segments f1(I) and f2(I) and add them to FD.

(b) for all j ∈ [k, k + µ),

i. Let Sj ← {di : di ⊆ I,< i, j >∈ PD}. Let sj,1, sj,2, · · · , sj,N be an ordering of Sj

such that for any two demands sj,a = [la, ra] and sj,b = [lb, rb], a < b⇒ ra ≤ rb.

ii. for i = 1, 2, · · · , N ,

• Assign sj,i the wavelength j − k + 1.

• Assign sj,i the fiber segment f2(I) if there exists some demand sj,u assigned
wavelength j−k+1 and fiber segment f1(I), such that sj,i∩sj,u 6= ∅; otherwise,
assign sj,i the fiber segment f1(I).

Figure 2: Phase 2 of Simple algorithm

Lemma 2 At the end of Phase 1, if Hk,i = red for any k and i, then for all 1 ≤ k′ < k, Hk′,i =
red.

Proof : This is ensured by Step 2, where Hk,i is colored red for all k less than a certain value. The
color red is not employed at any other step in the algorithm; nor is it ever replaced by any other
color.

Lemma 3 At the end of Phase 1, LD(i) = |{k : Hk,i 6= red }|.

Proof : This follows from how the coloring decision is made at Step 2, and the fact that the set
{(k, i) : Hk,i is red} is invariant over the later steps of the algorithm.

We now show that all demands in D are “packed” in PD after Phase 1.

Lemma 4 At the end of Phase 1, J is empty.

Proof : Assume that this is not the case, and there is a demand dt = [lt, rt] ∈ J at the end of Phase
1. One of the following three cases must arise:

Case 1 There is one i ∈ [lt, rt] such that HLmax
D

,i = red. By Lemma 2, for all k ∈ [1, Lmax
D], Hk,i =

red. Lemma 3 implies that D(i) = 0, which contradicts the fact that dt uses link i.

Case 2 There exists i ∈ [lt, rt] such that HLmax
D

,i = green. It follows from Lemmas 1 and 2 and the
coloring criterion of Step 2 that for all k ∈ {1, · · · , Lmax

D − LD(i)}, Hk,i = red; and for all
k′ ∈ {Lmax

D − LD(i) + 1, · · · , Lmax
D }, Hk′,i = green.

4

For each such k′, it must be the case that in the k′th iteration of the for loop in Step 3, some
demand dj 3 ei was placed in row k′, since otherwise Hk′,i would have been colored blue at
Step 3(b). In all there would be LD(i) such demands, one for each value of k ′. Including them,
and including dt, there are at least LD(i) + 1 demands that use link ei, which contradicts the
definition of LD(i).

Case 3 For all i ∈ [lt, rt], HLmax
D

,i = blue. We complete the proof by showing that dt would have
been placed by the algorithm in some row. Consider k∗ = min{k : ∀j ∈ [lt, rt],Hk,j = blue}.
By the choice of k∗, there exists an interval [l, r] ⊆ [lt, rt] such that in some iteration of the
while loop of Step 3(b),

– [l, r] ∈ G, and

– for all i ∈ [lt, rt]− [l, r], Hk∗,i =blue, and

– for all j ∈ [l, r], Hk∗,j is colored blue by the else clause of Step 3(b)(i).

This can only happen when there is no demand dj which is suitable for placing over [l, r] in
row k∗: as indicated by conditions A and B in the if statement. However, dt is precisely such
a demand; it is unpacked, it intersects [l, r], and [by the choice of k∗] it does not anymore
intersect any other interval in G. Thus, instead of coloring [l, r] blue, dt should have been
placed over it; and this completes our proof by contradiction.

We now show that the packing PD has a nice property: no link is used by more than two demands
that are placed in the same row. In other words, no three demands conflict simultaneously.

Lemma 5 ∀(i, k), |{j :< j, k >3 ei}| ≤ 2.

Proof : It is easy to see from the way intervals are added to and deleted from G that only one
demand is placed on a green segment, that is, demands do not overlap over green segments. Thus,
it follows that overlaps can only take place over blue segments (as no demands are placed over red
segments).

Consider such a segment [l, r] in row k. Among the demands that are placed over this segment,
there can be at most one demand that contains H[k, l− 1], and at most one demand that contains
H[k, r + 1] — that is because both H[k, l − 1] and H[k, r + 1] are non-blue and thus can not have
overlapping demands placed on them. By placement rules [3(b)i.A.] and [3(b)i.B.], no demand is
contained within a blue segment. Thus, no more than two demands can be placed over [l, r] in row
k.

We next show that Phase 2 outputs a valid solution.

Lemma 6 Phase 2 (Figure 2) produces a valid packing of D in the set of FD.

Proof : Consider a demand di = [li, ri]. Let di be placed in row j where j ∈ [(h− 1)µ, hµ) for some
j and h — that is, < i, j >∈ PD.

First of all, let us verify that di is assigned a fiber interval in Phase 2. Consider the hth iteration
of the for loop (Figure 2) in Phase 2. At Step 3(a), an interval I 3 [li, ri] would indeed be created,

5

except if c[u] = black for some u ∈ [li, ri]. Is that possible? For that to be the case, there must
exist some j ′ ∈ [(h− 1)µ, hµ) such that Hj′,u = red.

Recall how certain elements of H are colored red at Step 2 in Phase 1 (Figure 1). If Hj′,u is red,
then Hv,u is red for all v ≤ Lmax

D −LD(u), and it is not red for any other v. Since Lmax
D −LD(u) is

a multiple of µ (we have assumed the load at any link to be a multiple of µ), it follows that Hv,u is
red either for all v ∈ [(h− 1)µ, hµ), or for none of those values of v. In the latter case, the desired
fiber interval I is indeed created; while the former case is easy to rule out, since it implies that Hj,u

is red as well, which is not possible given that < i, j >∈ PD and u ∈ [li, ri] (no di can be placed
over a red interval in Phase 1).

Note that demand di is assigned wavelength j − (h − 1)µ + 1, and one of the fibers f1(I) and
f2(I). It remains to be verified that no other demand is assigned the same wavelength and the
same fiber. We do this by pointing out that the set of demands that have been assigned wavelength
j− (h−1)µ+1 on f1(I) or f2(I) is exactly the set of demands dk for which < k, j >∈ PD. This set
of demands has been characterized by Lemma 5: any given link is contained in no more than two
of these demands. This set of demand can be thought of as a collection of line intervals. Packing
them into f1(I) and f2(I) without conflict is akin to 2-coloring the corresponding interval graph
(whose clique number is 2). It is well-known and easy to see that a legal 2-coloring can be obtained
simply by scanning the intervals left-to-right, and greedily assigning them one of two colors. Note
that this is precisely what Step 3(b)ii of Phase 2 (Figure 2) attempts to do.

Let L be defined as

∑n

i=1
LD(i)

µ
. For any set F of fiber intervals, let LF be the total length of fiber

used in F .

The following lemma shows that FD is a pretty good solution.

Lemma 7 LFD
= 2L.

Proof : Let us denote a fiber interval f by [lf , rf], and for any link ei, let LFD
(i) = |{f ∈ FD :

i ∈ [lf , rf]}|. We will prove a stronger claim: for all ei, LFD
(i) = 2LD(i)

µ
. The lemma follows by

summing over all links.

Consider Step 3 of Phase 2 (Figure 2), where fiber intervals are created in pairs (f1(I) and f2(I)).
This step is repeated in the Lmax

D /µ iterations of the for loop. A link ei will not be contained

in these fiber intervals for iterations 1, 2, · · · ,
Lmax

D
−LD(i)
µ

, and included in both intervals of a pair
(f1(I), f2(I)) in all subsequent iterations. This is because Hv,i is red for all v ≤ Lmax

D − LD(i),
and not red for any other v, as we saw in the proof of Lemma 6. This implies that during the first
Lmax

D
−LD(i)
µ

iterations, c[i] is red, and thus the fiber intervals created do not include link ei. In other

words, link ei is contained in exactly 2LD(i)
µ

fiber intervals.

Clearly, L is a trivial lower bound on the length of the optimal set of fiber intervals for D. Thus:

Theorem 1 Our algorithm is a 2-approximation algorithm for the FIBER MINIMIZATION prob-
lem.

6

2.2 An Approximation Scheme

In this section we employ the boxing technique of Buchsbaum et al. [1] to the FIBER MINIMIZA-
TION problem. The application of a result of [1] yields an approximation scheme for our problem.
Let us first briefly describe boxing, which is applied in [1] to the Dynamic Storage Allocation prob-
lem. Let Z be a set of jobs, where each job i is a triple of start time li, end time ri and height
hi. To box Z means placing the jobs in a box b starting from time lb = min{lj : j ∈ Z}, ending at
time rb = max{rj : j ∈ Z} and of height hb ≥

∑
j∈Z hj . A boxing of Z into a set B of boxes is a

partition of Z into |B| subsets, each of which is then boxed into a distinct b ∈ B. At any time t,
let LZ(t) denote

∑
j∈Z:lj≤t≤rj

hj , and let LB(t) =
∑

b∈B:lb≤t≤rb
hb.

We will be working with jobs of unit height, for which the algorithm in Section 2.1 of [1] comes
with the following performance guarantee:

Theorem 2 [1] Given a set Z of jobs, each of height 1, an integer box-height parameter H, and a
sufficiently small positive ε, there exists a set B of boxes, each of height H, and a boxing of Z into
B such that for all time t:
LB(t) ≤ (1 + 4ε)LZ(t) + O(H log H

ε2
log 1

ε
).

The key insight here is that each demand in the FIBER MINIMIZATION problem can be viewed
as a job of unit height, and packing of demands into fiber intervals is analogous to the boxing of a
collection of jobs. This leads us to the following bound, where LF (t) denotes as before the number
of fibers in F containing the link et and LD(t) denotes the number of demands in D using link et.

We will use the following lemma:

Lemma 8 Given a set D of demands and a sufficiently small positive ε, there exists a set of fiber
intervals F and a packing of the demands of D into F such that for all links et:
LF (t) ≤ (1 + 4ε)LD(t)

µ
+ O(log µ

ε2
log 1

ε
).

Proof : A straightforward reduction maps an instance D of the FIBER MINIMIZATION problem
to an instance of boxing. Corresponding to every demand [l, r] in D, let there be a job with a start
time of l − 1 and end time of r. Each link ei is mapped to the time interval [i − 1, i], and fiber
intervals of wavelength µ = H map to boxes of height H = µ.

Consider the boxing algorithm in Section 2.1 of [1]. As observed above, a demand [l, r] in D
corresponds to a job (l− 1, r) in the DSA setting. Further note that a box of height µ in the DSA
setting corresponds to a fiber interval. The set of fiber intervals F and set of demands D map
directly to the set B of boxes and set Z of jobs, respectively, in the boxing instance. Observe that
LD(t) = LZ(t) and LF (t) = LB(t)

µ
.

The lemma follows directly from an application of Theorem 2 to the boxing instance Z with H = µ.

Noting that LF =
∑n

i=1 LF (i) is the total length of fiber used by the algorithm, and LD =∑n

i=1
LD(i)

µ
, we have

Theorem 3 LF ≤ (1 + 4ε)LD + O(n) for sufficiently small positive constant ε.

7

Proof : Using Lemma 8 and summing over all links. The last term on the right hand side in Lemma
8 is a constant, which leads to the O(n) upon summation.

As in Section 2.1, we observe that the length of F ∗, the optimal set of fiber intervals, LF ∗ ≥ LD.
Thus, algorithm of [1] has a competitive ratio arbitrarily close to 1 provided LD = Ω(n).

Next, we look at the O(n) term in Theorem 3 more carefully.

2.3 A Lower Bound

It is easy to see that the O(n) additive term in the statement of Theorem 3 cannot be done away
with for any approximation scheme. Consider the set Dbad of demands over 2n + 1 links. Dbad

contains one copy of demand [1, 2n+1], and µ−1 copies each of demands [1, n+1] and [n+1, 2n+1].

Clearly, LDbad
≤ 2n + 2 while LF ∗ , the value of the optimal solution, is 3n + 2. That is, there can

be no positive constant δ < 1
2 such that LF ∗ < (1 + δ)LDbad

+ o(n) for all n.

3 FIBER MINIMIZATION in a Ring

Next, we look at what is perhaps the most natural generalization of the FIBER MINIMIZATION
problem. Ring topologies are very commonly encountered and widely studied in optical routing
literature. Consider a ring of n links where each demand dj in the demand set D is an arc [lj , rj]
which requires links elj , elj+1mod(n), · · · , erj

. Fiber intervals are now arcs each of which can support
µ different wavelengths. The goal is to find the set of fiber arcs with the minimum total length.

The straightforward technique of partitioning an arc coloring problem into two interval coloring
problems and taking the union of the two solutions would seem to directly obtain an approximation
ratio of twice of that of the approximation ratio for the problem on a line system (that is, a ratio
of four in this case). However, a small tweak gives a (2 + ε)-approximation ratio algorithm with
two invocations of the Simple algorithm of Figures 1 and 2. Arbitrarily pick a link ei and consider
the set of demands using link ei, Di = {dj ∈ D : i ∈ {lj , lj + 1mod(n), · · · , rj}}. Now run the
Simple algorithm on both Di and D − Di to get sets of fiber intervals (arcs) FDi and FD−Di .
Define FD = FDi ∪ FD−Di . Due to (possible) rounding1 “errors” we now have for each link ei,
LFD

(i) ≤ 2LD(i) + 1. Thus we have:

Theorem 4 The combined algorithm gives LFD
≤ 2LF ∗

D
+ n, where F ∗

D is the optimal set of fibers
arcs for D.

Theorem 4 implies that if LF ∗
D
≥ 1

ε
n, then the combined algorithm achieves an approximation ratio

of 2 + ε.

The ideas developed in the paper so far can be applied to the related problem of PACKING
INTERVALS IN INTERVALS [3].

1For each arc ei atmost 2 fiber intervals containing ei from the two solutions can be merged in the solution for

the original problem.

8

4 PACKING INTERVALS IN INTERVALS

Winkler and Zhang also introduced the PACKING INTERVALS IN INTERVALS problem in [3].
Here we are given a set of demands D and a set of fiber intervals F , and the goal is to determine
if D can be packed in F . Consider the optimization version of this decision problem. What is the
smallest value of µ such that F can accommodate D? Our techniques imply a 2-approximation
algorithm for this problem in the following sense:

Theorem 5 If D can be packed in F using no more than µ
2 wavelengths in each fiber, then there

exists an algorithm which can pack D in F utilizing no more than µ wavelengths in each fiber.

Proof outline: A small modification to the Simple algorithm is required. Let F be the set of fiber
intervals and for each edge ei define LD(i) = µ

2 |{f : F 3 f = [lf , rf] and i ∈ [lf , rf]}|. As in Section
2.1, Lmax

D is defined as maxi LD(i). Run Step 1 and 2 of Figure 1 with these values of LD(i) and
Lmax

D . Run Step 3 of Figure 1 with the given set of demands D. Execute Phase 2 (Figure 2 using
µ
2 in place of µ, and in the output FD merge each (f1(I),f2(I)) pair.

Using arguments similar to ones used to prove Lemma 4, one can show that if D can be packed in
F using no more than µ

2 wavelengths in each fiber then J is empty after the execution of Phase
1 . Similarly, analogues of Lemmas 5, 6 and 7 can be proved if the assumption of the theorem
statement is valid. The definition of LD(i) and the fact that the constructed FD is actually F
completes the proof. A detailed proof is deferred for lack of space.

5 Conclusions

We presented a clean 2-approximation algorithm for the FIBER MINIMIZATION problem on a
linesystem. We also apply techniques from [1] to give an approximation scheme for this prob-
lem. Based upon our 2-approximation algorithm, we obtain good approximations for the related
problems of FIBER MINIMIZATION on a ring and PACKING INTERVALS IN INTERVALS.

Interesting open problems include investigating the FIBER MINIMIZATION problem on other
network topologies, particularly those common in optical fiber networks, such as trees and meshes.

References

[1] A. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold, and M. Thorup. Opt versus load in dynamic
storage allocation. In Proc. of STOC 03, 2003.

[2] J. Gergov. Algorithms for compile-time memory optimization. In Proc. of 10th SODA, 1999.

[3] P. Winkler and L. Zhang. Wavelength assignment and generalized interval graph coloring. In
Proc. of SODA 03, 2003.

9

