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Abstract

We consider the following simple model for how Priceline sets airline prices. Assume Priceline
wants to sell tickets for a single flight (which are assumed to have unlimited supply) over
(discrete) time. Each bidder submits a triple (s, e, b) where s is the time when the bidder will
arrive, e is the time when the bidder will leave and b is the maximum amount the bidder is
willing to pay for a ticket (every bidder is interested in only one ticket). On each day t, Priceline
sets a price p(t) and every bidder buys a ticket on the first day t (at price p(t)) such that p(t)
is less than or equal to its bid value and t is between its arrival and departure time. The goal
for the Priceline is to set prices so as to maximize its revenue. We also consider a related model
studied by Guruswami et al. [1], where each bidder buys the ticket at the minimum price p(t′)
(provided it is at most b) where t′ is between its arrival and departure time.

We study the above optimization problems in both the offline and online settings. We show
that the offline algorithm can be solved exactly in polynomial time. We also give upper and
lower bounds for online algorithms (both deterministic and randomized) for this problem.

1 Introduction

We consider the following model in this note. There is an unlimited supply of a single item. Every
day t = 1, 2, . . . the auctioneer sets a price p(t). Each bidder i has an input (si, ei, bi) where si and
ei are the arrival and departure days and bi is the maximum amount the buyer is willing to pay for
a copy of the item. We will refer to the tuple (si, ei, bi) as the bid of buyer i and the quantity bi
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Deterministic Randomized
Upper Bound Lower Bound Upper Bound Lower Bound

PL-model O(log h)† Ω(
√

log h) O(log log h) Ω(
√

log log h
log log log h)

EF-model O(h)† Ω(h) O(log h)† Ω(
√

log h
log log h)

Table 1: The upper bounds with † are either well known and/or trivial.

as the bid value. A buyer buys a copy of the item on the first day si ≤ t ≤ ei such that p(t) ≤ bi.
The goal of the auctioneer is to set the prices {p(t)} so as to maximize her revenue. We call this
model PL-model (where PL stands for Priceline).

We also study the model considered by Guruswami et al. [1]. The only place their model differs
from PL-model is that the buyer buys the item at the price mint∈[si,ei]p(t) (provided of course that
this price is less than bi). Thus, the pricing is Envy-Free [1]– we call this model EF-model.

We also consider both the offline and online models of bidder arrival. In the offline model, the
auctioneer receives all the bidders’ inputs on day 1. In the online model, on day t = 1, 2, . . ., the
auctioneer only knows about the bids of the buyers i for whom si ≤ t.

In the offline model we will aim for polynomial time algorithm to compute the prices for each
day such that the optimal revenue is generated. For the online case, we will evaluate algorithms by
the standard notion of competitive ratio.

1.1 Previous Work

Guruswami et al. give a polynomial time algorithm to compute the optimal set of prices for the
offline version of EF-model in [1].

1.2 Notations

We will use h to denote the ratio of the maximum bid value to the minimum bid value. For the
rest of the paper we will assume that the bid values are in the set {1, 2, · · · , h}. The total number
of bidders will be denoted by n. For every bidder i, the quantity ei − si will sometimes be referred
to as the bid length of bid i. We will say that a bid i is alive at time t if t ∈ [si, ei] and it has not
bought a copy of the item by day t − 1.

For any set of bids B, OPT (B) denotes the optimal revenue obtainable from B. OPT will
denote the optimal revenue from the set of all input bids.

1.3 Our Results

In Section 2, we present a polynomial time algorithm to compute the optimal set of prices for the
offline version of the PL-model.

Table 1 tabulates our results and previously knows results for online algorithms.

2 Optimal offline algorithm for PL-model

We have the following result.
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Theorem 1 The optimal set of prices for the offline version of PL-model can be computed in
polynomial time.

Proof : We will give a dynamic program to compute the optimal revenue (the set of prices will be
a by-product). Let the distinct bid values be denoted by b1 ≥ b2 ≥ · · · ≥ bL for some L ≤ n. For
any pair of days s ≤ e, ` ∈ {0, 1, 2, · · · , n} and k ∈ {1, 2, · · · , L} we will use Ak(s, e, `) to denote
the optimal revenue that can be generated from the set of bids i such that bi ≥ pk, si ∈ [s, e],
mint∈[s,e] p(t) ≥ pk and ` bids with bid value at least pk are still alive on day e + 1. We also define
Ck(s, e) to be the optimal revenue obtainable from the set of bids i such that bi ≥ pk, si ∈ [s, e],
mint∈[s,e−1] p(t) > pk and p(e) = pk. That is, Ck(·, ·) is like Ak(·, ·, ·) except that the price pk is
used on the last day.

We will use nk
s,t to denote the number of bids i with si ∈ [s, t], ei ≥ t and bi = pk and we will

use mk
s,t to denote the number of bids i with si ∈ [s, t], ei ≥ t + 1 and bi = pk.

We now spell out the recurrence relation for Ak(s, e, `) (assuming ` > 0).

Ak(s, e, `) = max

(

Ak−1(s, e, ` − mk
s,e), max

t′∈[s,e−1]

(

Ck(s, t
′) + Ak(t

′ + 1, e, `)
)

)

Note that for the optimal revenue Ak(s, e, `) there are two options– either only use prices greater
than or equal to pk−1 or use the price pk somewhere in the time interval [s, e]. The first case is
captured by the term Ak−1(s, e, ` − mk

s,e)– we subtract out mk
s,e from ` because by definition the

last argument in Ak−1(·, ·, ·) is the number of bids with value greater than pk−1 that are still alive
on day e + 1. In the second case when the price pk is used, let t′ be the first time it is used. This
implies that for days in [s, t′−1] the price is at least pk−1. Then by definition, the revenue obtained
on the first t′ days is Ck(s, t

′). Note that any bid with value at least pk that was alive on day t′

cannot be alive on day t′+1. This implies that the optimal revenue obtainable from days [t′+1, e]
such that ` bids with bid value greater than pk are alive on day e + 1 is Ak(t

′ + 1, e, `). Of course,
for the optimal revenue Ak(s, e, `) one has to pick the best possible value of t′. This is obtained by
the expression maxt′∈[s,e−1](Ck(s, t

′) + Ak(t
′ + 1, e, `)).

The reasoning in the above paragraph also explains the following recurrence relation:

Ak(s, e, 0) = max

(

Ak−1(s, e, 0), max
t′∈[s,e−1]

(

Ck(s, t
′) + Ak(t

′ + 1, e, 0)
)

, Ck(s, e)

)

We now give the recurrence relation for Ck(s, e). Note that in this case the minimum price used in
the time range (s, e−1) is at least pk−1. If there are `′ many bids with value greater than pk−1 that
are alive on day e, then the maximum revenue obtainable from the days (s, e− 1), by definition, is
Ak−1(s, e−1, `′). Further, on day e, `′+nk

s,e copies of items are sold at price pk. Finally optimizing
over the choice of `′, we get

Ck(s, e) = max
`′∈{0,1,··· ,n}

(

Ak−1(s, e − 1, `′) + (`′ + nk
s,e)pk

)

The base cases of the recurrences are pretty simple. For any s ≤ e and `

A0(s, e, `) = 0

A1(s, s, `) = 0 if ` 6= 0
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C1(s, e) = n1
s,e · p1

We are interested in the quantity AL(1,maxi=1..n ei, 0). The optimality of the above follows from
considering the prices set and the days in non-increasing order. Further, it is easy to see that the
prices set by the optimal algorithm have to be among the bid values.

We finally need to show that the dynamic program runs in polynomial time. The number of
days considered in the above recurrence relations is maxn

i=1 ei which need not be polynomial in n.
However, one can assume w.l.o.g. that for all i, ei ≤ n. This is because for every t when p(t) < ∞,
at least one buyer buys a copy of the item. Further, for all days t such that t 6∈ (si, ei) for every
i = 1, . . . , n, one can set p(t) = ∞. Thus, the maximum number of days that needs to be considered
by the dynamic program is at most n2. Since there are at most n different price levels that are
considered by the dynamic program, at most n5 entries need to be considered for Ak(·, ·, ·) and at
most n4 entries for Ck(·, ·). Further, for each level k, only entries in the level k − 1 need to be
accessed. Thus, the above dynamic program runs in polynomial time.

3 Online algorithms

For this section, we will assume that all the bid values are powers of 2, that is, they come from
the set {1, 2, 4, · · · , h/2, h}. In particular there are log h + 1 distinct bid values. This changes the
optimal revenue by a factor of 2, which does not affect the results in this section as the competitive
ratios are all super-constant.

3.1 Trivial Algorithms

3.1.1 O(h)-competitive deterministic online algorithm

Consider the following simple pricing scheme: p(t) = 1 for all t. Call this pricing scheme Algo-

Price-At-One. We have the following trivial observation.

Proposition 1 Algo-Price-At-One is an O(h)-competitive algorithm.

Proof : As all bid values lie in [1, h], the revenue obtained from bidder i is at least bi/h. Thus,
the total revenue generated by Algo-Price-At-One is at least 1

h ·∑n
i=1 bi. The proof is complete by

observing that
∑n

i=1 bi is an upper bound on OPT .
Note that the above result holds for both PL-model and EF-model.

3.1.2 O(log h)-competitive randomized online algorithm

Consider the following scheme that we call Algo-Stick-At-One-Level. Uniformly at random pick a
price level from {1, 2, 4, · · · , h} and set p(t) to be that price for every time t. We have the following
observation.

Proposition 2 Algo-Stick-At-One-Level is an O(log h)-competitive algorithm.

Proof : If Algo-Stick-At-One-Level chooses price level 2j then all the bids with bid value at least 2j

buy the item at price 2j. Thus, the revenue generated is at least

log h
∑

j=0

1

log h

∑

i:bi=2j

bi =
1

log h

n
∑

i=1

bi.
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The proof is complete by noting that
∑n

i=1 bi is an upper bound on OPT .
Note that the above result holds for both PL-model and EF-model.

3.1.3 O(log h)-competitive deterministic online algorithm

Consider the following algorithm that we call Algo-Max-Price. For any day t, let Bt denote the set
of bids that are still alive on that day. Algo-Max-Price sets p(t) = arg maxp∈{1,2,4,··· ,h/2,h} p · |{bi|bi ≥
p ∧ i ∈ Bt}|.

We use a standard argument to show the following bound:

Lemma 1 Algo-Max-Price is a O(log h)-competitive algorithm.

Proof : Divide the range of prices into intervals [2i, 2i+1) for i = 0, 1, · · · , log h. Then by the
pigeon-hole principle, there exists a level i∗ such that

∑

i∈Bt∧bi∈[2i∗ ,2i∗+1)

bi ≥
1

log h

∑

i∈Bt

bi.

By the choice of p(t), we have

∑

i∈Bt∧bi≥p(t)

bi ≥
∑

i∈Bt∧bi∈[2i∗ ,2i∗+1)

bi.

The lemma follows from summing the above relation for all days and recalling that
∑n

i=1 bi is an
upper bound on OPT .

We remark that the analysis of the competitive ratio of the algorithm only works for the
PL-model.

3.2 O(log log h)-competitive algorithm for PL-model

In this section we give a randomized O(log log h)-competitive algorithm for PL-model. The following
lemma lies at heart of this result.

Lemma 2 Let k be a fixed integer, and suppose the instance is such that the duration of every bid
lies between 2k and 4k. If k is known in advance, then there is a randomized algorithm (which we
call Alg(k)) that is O(1)-competitive.

Proof : We divide time into intervals of size k. In particular, for i ≥ 1, let Ti denote the interval
[(i− 1)k +1, ik]. Let Vi(j) denote the total value of the bids that have bid value 2j and that arrive
during Ti. Let j1(i), j2(i), . . . , jk(i) be the k price levels with the k highest values of Vj(i). We
assume that they are indexed such that j1(i) > j2(i) > . . . > jk(i). Let V(i) denote the set of these
k indices j1(i), . . . , jk(i). Finally, let R(i) denote the value Vj1(i) + Vj2(i) + . . . + Vjk

(i).
Consider the following algorithm that we call Algeven(k). For i = 2, 4, 6, . . . , during Ti it sets

the prices from the set V(i − 1) in decreasing order of the price levels. That is, on the l th day of
interval Ti (i.e. day (i − 1)k + l), it sets the price 2jl . On the other days during T1, T3, T5, . . .,
the prices are set to infinity. Note that Algeven(k) is a well-defined online algorithm, as V(i − 1) is
known at the start of Ti. Also, as each bid has duration at least 2k, every Ti has length k and as
the prices during Ti−1 are set to infinity, the bids that arrive during Ti−1 are all alive at the start
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of Ti. Finally, as the prices set during Ti are in a decreasing order, it follows that the algorithm
collects a profit of at least R(i − 1) during Ti. Thus the total profit of this algorithm is at least
R(1) + R(3) + . . ..

Analogously, we define the algorithm Algodd(k) that sets infinite prices during T2, T4, . . . and for
odd i, sets prices in V(i− 1) during Ti. It is easy to see that the total profit of Algodd(k) is at least
R(2) + R(4) + . . ..

Our randomized online algorithm simply tosses one coin in the beginning and either executes
Algodd(k) or Algeven(k). We call this algorithm Alg(k). Clearly, the expected profit of this algorithm
is at least 1/2

∑

i≥1 R(i).
We now show that any offline algorithm can get a total profit of at most

∑

i≥1 10R(i). Consider
the period Ti for some i ≥ 1. Since each bid has duration at most 4k, the profit obtained during
Ti can only be due to bids that arrived during Ti−4 or later. Thus it suffices to show that for
q = i − 4, . . . , i, the profit that can be obtained during Ti due to bids that arrive during Tq is at
most 2R(q). Let j ′1 < j′2 < . . . < j′l−1 < j′l , where l ≤ k, denote the distinct price levels that the
offline algorithm sets during Ti. As the prices are powers of 2, the profit obtained by setting price
level j due to bids that arrive during Tq is at most

∑

s≥0 Vj−s(q)/2
s. Thus, the total profit due to

bids that arrive during Tq is at most

l
∑

r=1

∑

s≥0

Vj′r−s(q)

2s
=
∑

s≥0

1

2s
(

l
∑

r=1

Vj′r−s(q)) ≤
∑

s≥0

1

2s
R(q) = 2R(q)

The inequality follows from the fact that R(q), by definition, is the maximum total profit contained
in any k levels in bids that arrive during Tq. �

Additionally, we need the following simple facts:

1. If all bids have duration 1, then Algo-Max-Price is optimal. We rename this algorithm Alg(0).

2. If all bids have duration greater than 2 log h, then the randomized algorithm described in the
proof of Lemma 2 with k = log h obtains in expectation a profit that is least 1/2 of the sum
of the bid values in the instance. As sum of the bid values is an upper bound on the optimal
revenue, the algorithm is 2-competitive. We call this algorithm Alg(log k).

Thus our overall algorithm is the following: Choose k uniformly at random among the set
{0, 1, 2, 4, log h/2, log h} of cardinality log log h + 2. Run the algorithm Alg(k).

By Lemma 2 and the observations above, it is easy to see that the algorithm above is O(log log h)
competitive.

4 Lower bounds for online algorithms

4.1 Lower bounds for deterministic online algorithms

4.1.1 Ω(h) lower bound for EF-model

Theorem 2 Any deterministic online algorithm A for EF-model must have a competitive ratio of
Ω(h).
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Proof : Consider the following game that the adversary will play with A. On day 1, there are h2

bids that announce (1, h2, h) and h2 bids that announce (1, 2, 1). If on any day t ≥ 1, A chooses
p(t) = 1, then the game stops. Otherwise, the adversary introduces h2 new bids that announce
(t + 1, t + 2, 1). If h2 days have elapsed, the game stops.

Let t∗ be the day that the game stops and let B be the set of bids introduced in the game (if
A never chooses price level of 1 then define t∗ = h2 + 1). Note that the optimal offline algorithm
has the choice of either sticking with the price level h or sticking with the price level 1 on all the
t∗ days. Thus,

OPT (B) ≥ max
(

h3,min(t∗h2, h4)
)

On the other hand, if t∗ = h2 + 1 then A gets a revenue of h3; otherwise, it gets a revenue of
h2 + h2 = 2h2. Thus, the competitive ratio of A is at least

min

(

h4

h3
,
max(h3, t∗h2)

2h2

)

=
h

2
.

This completes the proof.

4.1.2 Ω(
√

log h) lower bound for PL-model

In the proof of theorem 2, the adversary provides the algorithm with two choices and the algorithm
always makes the wrong choice in hindsight. The crucial property exploited there is that one has
to keep setting high prices to get the full revenue from bids with long bid lengths. This of course
will not work as it is in PL-model. However, a simple variation does the trick.

Theorem 3 Any deterministic online algorithm A for PL-model must have a competitive ratio of
Ω(

√
log h).

Proof : Consider the following game that the adversary will play with A. On day 1, there are 2i

bids (for every i = 0, 1, 2, 4, · · · , log h − 1) that announce (1, log h, h/2i). There are h
√

log h bids
that announce (1, 2, 1). If on any day t ≥ 1, A chooses p(t) = 1, then the game stops. Otherwise,
the adversary introduces h

√
log h new bids that announce (t+1, t+2, 1). If log h days have elapsed,

the game stops. Note that because of the way the bids with bid value greater than 2 are set up,
picking any of the price levels 2, 4, · · · , h will result in a revenue of at most 2h.

Let t∗ be the day that the game stops and let B be the set of bids introduced in the game (if
A never chooses price level of 1 then define t∗ = log h + 1). Note that the optimal offline algorithm
has the choice of either sticking with the price level 1 or getting all the bids with bid value greater
than 1. Thus,

OPT (B) ≥ max
(

h log h,min
(

ht∗
√

log h, h(log h)3/2
))

Also, the revenue generated by A is at most 2(t∗ − 1)h + h
√

log h. Thus, the competitive ratio of
the algorithm is at least

max(h log h,min(ht∗
√

log h, h(log h)3/2))

2t∗h + h
√

log h
≥

√
log h

2

This completes the proof.
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4.2 Lower bounds for randomized online algorithms

We will use Yao’s min-max theorem ([2]) to show a lower bound on the competitive ratio of any
online algorithm for the models we are considering. To do this, we will need to come up with a
set of bid instances I1, I2, · · · , IN for some N and a probability distribution D on them. By Yao’s
principle the lower bound will be EI←DOPT (I)

EI←DRevA(I) where RevP (I) is the revenue generated by the set

of prices P on instance I and A(·) is the fixed set of prices that has the best expected revenue.

4.2.1 Preliminaries

Geometric distribution will be a key building block in our lower bound constructions. Let G(p)
denote the discrete distribution on m = 1, 2, 3, · · · such that

Pr(m) = (1 − p)m−1p

We need the following well known facts about the distribution.

Fact 1 A random variable X drawn from G(p) has the following properties:

1. The mean is given by E(X) = 1
p

2. Pr[X ≤ m] = 1 − (1 − p)m.

3. E(X|X ≥ m) = m + E(X), that is, the geometric distribution is memoryless.

We will also need the following technical claim.

Claim 1 Let c be some integer. Consider the following recurrence relation for any 1 < k < c:

xi = 1 + xi+1

(

1 − 1

c

) c
xi+1 − (1 + xi+1)

(

1 − 1

c

)c2−c

xk = 1.

Then

x0 >

√
k

4
.

To prove the above claim we will need the following result, which follows from binomial expan-
sion and simple algebraic manipulation.

Proposition 3 For any integers a and b such that a ≥ 2 and ab < 1, the following holds:

(1 − b)a ≥ 1 − ab +
a2b2

4

Proof of Claim 1. We first note that the function y(1− 1
c )

c/y − (y +1)(1− 1
c )

c2−c is an increasing
function. Thus, by induction1 the claim can be proved if one can show that

`(j) = 4 +
√

k − j

(

1 − 1

c

)
4c√
k−j

− 4 +
√

k − j

4

(

1 − 1

c

)c2−c

>
√

k − j + 1.

1In the base case, xk = 1 and the hypothesis xj >
√

k−j

4
for j = k, k − 1, · · · , 0 is trivially true.
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Using Proposition 3, we have

`(j) ≥ 4 +
√

k − j

(

1 − 4√
k − j

+
4

k − j

)

− 4 +
√

k − j

4

(

1 − 1

c

)c2−c

≥
√

k − j +
2√

k − j
.

The last inequality follows from the fact that 2√
k−j

≥ 4+
√

k−j
4

(

1 − 1
c

)c2−c
. Squaring both sides and

dropping some terms on the right hand side gives us:

`(j)2 ≥ k − j + 2 ·
√

k − j · 2√
k − j

= k − j + 4

> k − j + 1.

The proof is complete.

4.2.2 Ω
(√

log h
log log h

)

lower bound for EF-model

We are now ready to present the set of instances for the lower bound. We will not specify the
instances explicitly but will describe a procedure that will implicitly describe both the instances
and the probability distribution over them.

We will have Θ
(

log h
log log h

)

distinct bid values: h, h/ log h, h/(log h)2, · · · , 1. Let L be the number

of distinct bid values. We will say bids with bid value h/(log h)i are at level i. Let c denote the
quantity log h.

For the ease of exposition, we will describe the construction in terms of a tree with L levels
(with the root having level 0) such that each node at level i is a bid with bid length h2/c2i and bid
value h/c. Every node v at level 0 ≤ i < L − 1 has mv many children where mv is chosen from
G(1/c). However, if mv exceeds c2 then it is truncated to c2. If u is the jth child of node v (which

is at level i), then the bid corresponding to node u is (sv + (j − 1) h2

c2i , sv + j h2

c2i − 1, h
ci+1 ), where sv

is the start day of the bid corresponding to v. The root node has the bid (1, h2, h).
We will denote a typical bid set by I and denote the induced distribution on the instances by

D. By definition, every bid instance has exactly L levels.
Note that by construction, for any node v at level i, if w is the mth

v child of v and if ev and ew

are the end times of the bids corresponding to v and w, then ew ≤ ev.
We first estimate the expected revenue of the optimal fixed set of prices.

Lemma 3 The expected revenue generated by the optimal fixed set of prices is O(h) (where fixed
means that the set of prices remains the same for all bid instances).

Proof : We first show that the expected revenue generated by setting p(t) = h/ci for some i =
0, · · · , L − 1 is at most h. This will follow if we can show that the expected number of bids at
level i is at most ci. Let si be the random variable denoting the number of nodes at level i in a
randomly constructed tree. We will show by induction that for all i, E[0,i](si) ≤ ci, where E[a,b](·)
is the expectation over all the randomness used in the levels a, a + 1, · · · , b. The base case is true
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as s0 = 1. Now assume that for all i ≤ j, E[0,i](si) ≤ ci. Let the sj nodes at level j be denoted by
v1, v2, · · · , vsj

. Then

sj+1 =

sj
∑

i=1

mvi

By linearity of expectation we have

E[0,j+1](sj+1) = E[0,j]

( sj
∑

i=1

E[j+1,j+1](mvi
)

)

Since for any node v in the tree, mv is chosen from G(1/c) and then conditionally truncated to c2,
E[j+1,j+1](mv) ≤ c (as the mean of G(1/c) is c by Fact 1). Thus, we have

E[0,j+1](sj+1) ≤ E[0,j]

( sj
∑

i=1

c

)

= cE[0,j](sj) ≤ cj+1

The equality follows from linearity of expectation and the last inequality follows from the induction
hypothesis. Similarly, one can show that the revenue generated by setting p(t) = h/ci is at least
h/2 (it is an easy calculation to show that for any node v at level j, E[j,j](mv) ≥ c/2).

Now to complete the proof, we will show that setting p(t) = h/ci will generate a revenue which
is within a factor of 2 of the optimal fixed set of prices. If the optimal indeed chooses the same price
throughout then by the discussion in the last paragraph we are done. So there must exist a time t
such that p(t) 6= p(t + 1). First assume that p(t) < p(t + 1). This implies that the price “moves”
from one node v (such that the associated bid has value p(t)) to another node u (such that the
associated bid has value p(t+1)) in the tree. We first note that u cannot be an ancestor of v as that
will mean that the bid corresponding to u was alive at time t and thus, the buyer at u will not pay
more than p(t) for a copy of the item (recall that any two price levels in the construction differ by
a factor of at least c). If it were the case that p(t) > p(t + 1) then again the same arguments show
that the node associated with p(t) is not an ancestor of the node associated with p(t+1). A similar
argument shows that any time t′ when the price changes, has to be after the end day of some bid.
Further, the arguments in the previous paragraph also show that if we consider any subtree rooted
at a level j node, then the revenue generated from the bids in that subtree by setting p(t) = h/ci

for any i ≥ j is Θ(h/cj). Thus, for all time t′ ≥ t + 1 such that p(t′) = p(t + 1) 6= p(t), setting
p(t′) = p(t) will change the revenue by a factor of at most 2.

Applying the argument in the last paragraph for all time t′ such that p(t′ + 1) 6= p(t), we can
come up with a new price function p′(t) = h/ci for some i that generates an expected revenue within
a factor of 2 of the expected revenue of the optimal fixed set of prices. The proof is complete.

We now bound the expected value of OPT (I) where I is chosen according to D.

Lemma 4

EI←D[OPT (I)] = Ω

(

h

√

log h

log log h

)

Proof : Given an instance I, OPT (I) can be computed recursively starting from the leaves. In
particular, if in the recursion one is considering node v at level i then one can either set the prices
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that give the optimal revenue for each of its children or it can set the price to be h/ci throughout
the time when the bid at v is alive.

Let Rev(v) denote the optimal revenue obtainable from the subtree rooted at v. Note that as
the tree is constructed from a random process, Rev(v) is a random variable. By the discussion in
the previous paragraph, if v is at level i (let its mv children be denoted by u1, u2, · · · , umv ), then

Rev(v) ≥ max





h

ci
,

mv
∑

j=1

Rev(uj)



 . (1)

Note that EI←D[OPT (I)] = E(Rev(r)) where r is the root. By definition of expectation,

E(Rev(v)) = E

(

Rev(v) | mv ≤ c

E(Rev(u1))

)

Pr

[

mv ≤ c

E(Rev(u1))

]

+ E

(

Rev(v) | mv >
c

E(Rev(u1))

)

Pr

[

mv >
c

E(Rev(u1))

]

From (1),

E(Rev(v)) ≥ (h/ci)Pr

[

mv ≤ c

E(Rev(u1))

]

+





mv
∑

j=1

E(Rev(uj))



Pr

[

mv >
c

E(Rev(u1))

]

Further, note that since the random coin tosses in subtrees rooted at the children u1, · · · , umv are
independent, E(Rev(u1)) = E(Rev(u2)) = · · · = E(Rev(umv )).

E(Rev(v)) ≥ (h/ci)Pr

[

mv ≤ c

E(Rev(u1))

]

+ E(Rev(u1)) · E
(

mv | mv >
c

E(Rev(u1))

)

· Pr

[

mv >
c

E(Rev(u1))

]

To simplify notation, we will xi to denote the expected optimal revenue generated from any node
at level i when the bid values are normalized such that the bid value at level i is 1. That is, for
any node v at level i

xi =
ciRev(v)

h

Note that by the above definition, E(Rev(u1)) = xi+1h/ci+1. Define q to be (1−1/c). Now, by Fact
1, we know that Pr[mv ≤ c/xi+1] = 1 − qc/xi+1 . Similarly, Pr[mv > c/E(xi+1)] ≥ Pr[c/E(xi+1) <
mv ≤ c2 − c] = qc/xi+1 − qc2−c and in this case by the memoryless property, E(mv|mv > c/xi+1) =
c/xi+1 + c. Thus,

xi ≥ (1 − qc/xi+1) · 1 + (qc/xi+1 − qc2−c)

(

c

xi+1
+ c

)

xi+1

c

= 1 + xi+1q
c/xi+1 − (xi+1 + 1)qc2−c

= 1 + xi+1

(

1 − 1

c

)c/xi+1

− (xi+1 + 1)

(

1 − 1

c

)c2−c

The above recursion is the same as the one in Claim 1. Thus, we have x0 >
√

L
4 or E(Rev(r)) >

h ·
√

L/4 (where r is the root), which proves the lemma.
Thus, by Lemma 3 and 4 we have the following result.
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Theorem 4 Any randomized online algorithm for EF-model has competitive ratio of Ω
(√

log h
log log h

)

4.2.3 Ω
(√

log log h
log log log h

)

lower bound for PL-model

We have the following result.

Theorem 5 Any randomized online algorithm for PL-model has competitive ratio of Ω
(√

log log h
log log log h

)

We will show how to modify the construction of Section 4.2.2. The analysis to show that the
construction proves Theorem 5 is similar to the proof of Theorem 4 and the details are omitted.

The idea is similar to the way the construction for deterministic online algorithms for EF-model in
Theorem 2 was modified for construction for deterministic online algorithms for PL-model in The-
orem 3. In the construction of Section 4.2.2, each node in the tree corresponded to one bid. We
will now modify the construction such that now each node (except the leaves) have multiple bids
at different bid values (all having the same start and end days) such that setting the price at any
of the bid values gives the same revenue (within a factor of 2).

We will now make the construction more precise. Define d = log log h and let k be such that

2(d2k+2−1)/(d2−1) = h. Note that k = Ω
(√

log log h
log h log h log h

)

. As in the construction of EF-model we

will consider the bid instances as a tree. There will be k +1 levels with the root being at level 0. A
node v at level i consists of bids at d2(k−i) distinct bid values. In particular for ` = 0, · · · , d2(k−i)−1,

there are (2
Pi−1

j=0 d2(k−j)+`)·di many bids that announce (su, su+d2(k−i)−1, h/(2
Pi−1

j=0 d2(k−j)+`)) where
su is the start time of parent u of v. Further, each v at level i has mv children where mv is chosen
from G(1/d). However, if mv exceeds d2, then it is truncated to d2. Finally the level 0 node has d2k

distinct price levels. For every ` = 0, · · · , d2k − 1, there are 2` bids that announce (1, l2k − 1, h/2`).
Using arguments similar to the ones used in Section 4.2.2, it can be shown that if one stays at

the same level (now instead of having a single price per node, we will have l2(k−i) different prices at
level i node to get revenue of hd2k−i from all bids in that node) then the expected revenue obtained
is O(hd2k). Further, one can show that this is within a constant factor of the expected revenue of
the optimal set of fixed prices. Finally, one can show that expected value of the optimal revenue

from each bid instance is Ω
(

hd2k
√

log log h
log log log h

)

which proves Theorem 5.
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