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Abstract—In this work, we argue that energy management
should be a guiding principle for design and implementation
of algorithms. Traditional complexity models for algorithms are
simple and do not aid in design of energy-efficient algorithms.
In this work, we conducted a large number of experiments
to understand energy consumption for algorithms. We study
the energy consumption for popular vector operations, matrix
operations, sorting, and graph algorithms. We observed that
the energy consumption for any given algorithm depends on
the memory parallelism the algorithm can exhibit for a given
data layout in the RAM with variations up to 100% for many
popular algorithms. Our experiments validate the asymptotic
energy complexity model presented in a companion paper [1]
and brings out many practical insights. We show that reads can
be more expensive in terms of energy than writes, and different
data types can lead to different energy consumption. Our most
important result is a theoretical and experimental quantification
of the impact of parallel data sequences on energy consumption.
We also observe that high memory parallelism can also increase
energy consumption with multiple concurrent access sequences.
We use insights from our experiments to propose algorithmic
engineering techniques for practical energy efficient software.

I. INTRODUCTION

Energy has emerged as a first class computing system
resource that needs to be carefully managed in server class
systems as well as personal devices. Energy management
has traditionally focused on hardware and operating systems
or hypervisors. Energy-aware hardware design focuses on
designing hardware to run existing benchmark with much less
energy consumption. This directly leads to reduced energy
consumption for existing workloads without any change in
the software stack. Research in this area has also led to
providing various knobs that allow hardware to modify its
performance profile (and by extension power consumption)
to adapt to changes in the performance requirement of the
workload. System software like hypervisors and operating
systems use these knobs to save energy. The key idea employed
is to measure the current workload intensity (e.g, CPU idle
percentage) and use it to trigger hardware mechanisms (e.g.,
lower the operating frequency of the cores).

In this work, we argue that energy management should be
a guiding principle for application coding as well as design
of algorithms. Energy-aware hardware and system software
can reduce the energy consumption for legacy application soft-
ware. However, energy-aware algorithmic engineering provides
a complementary technique to reduce energy consumption
beyond what hardware and system software can achieve.
Traditional complexity models for algorithms assume a fairly

simplistic model for the hardware and are designed for min-
imizing compute or memory cost. Understanding the energy
consumed by modern hardware requires a more careful look
at individual compute elements as well as layout of memory
across parallel banks. In [1], we presented a theoretical energy
complexity model and algorithms optimal in the energy model.
However, engineering algorithms for energy efficiency on real-
life systems requires more careful investigation, which is the
focus of this work.

The goals of this work are multi-fold. Firstly, designing
energy efficient algorithm requires additional work and we
study under what circumstances engineering algorithms to
be energy efficient is worth the effort. Secondly, the energy
complexity model in [1] requires individual algorithms to be
modified to support memory parallelism. We investigate if
there are practical generic ways to achieve this effect. Finally,
complexity model like the one in [1] ignores constants and
we investigate if practical algorithmic engineering needs to
consider aspects not covered in the theoretical model.

Our Contributions: Our work makes four key contributions.
First, we present a detailed experimental evaluation of energy
consumption for a large class of algorithms. Our work ex-
perimentally validates the key concepts of the energy model
proposed in [1]. We also present a generic way to achieve
any desired degree of memory parallelism for a given access
pattern, which can be employed by software engineers to
implement energy efficient algorithms. We observe that the
increased parallelism reduces running time along with energy.
Second, we identify many new characteristics of algorithms
that impact energy consumption equally, if not more than the
key aspects identified by the energy complexity model in [1].
We show both experimentally and theoretically that multiple
data sequences can increase energy consumption and anti-
parallel sequences are preferred over parallel sequences. Third,
we identify algorithmic patterns for which energy-efficient
design leads to significant energy savings and algorithmic
patterns for which energy awareness does not materially impact
energy consumption. We show that it is more critical to
parallelize reads than writes. Similarly, optimizing algorithms
with multiple parallel sequences does not lead to significant
energy savings. We observe that there is a tradeoff between
parallelizing access across all banks by a data sequence versus
partitioning disjoint memory banks for different independent
data sequences. Our final contribution is a set of practical
recommendations, derived from our experimental study, for
energy-aware algorithmic engineering.

The rest of the paper is structured in the following manner.



Section II abstracts the key requirement for energy-efficiency
described in [1] and presents a generic technique to achieve
this requirement in practice. We describe our experimental
setup in Section III and present our key experimental results
in Section IV. A careful theoretical and experimental analysis
of our key observation on parallel and anti-parallel sequences
is presented in Section V. We discuss practical algorithmic
engineering approaches for energy-efficiency in Section VI and
related work in Section VII.

II. ENGINEERING ALGORITHMS FOR ENERGY

EFFICIENCY

A. Energy Complexity Model

An asymptotic energy complexity model for algorithms
was proposed in [1]. Inspired by the popular DDR3 archi-
tecture, the model assumes that the memory is divided into
P banks each of which can store multiple blocks of size B.
In particular, P blocks in P different memory banks can be
accessed in parallel. The main contribution of the model in [1]
was to highlight the effect of parallelizability of the memory
accesses in energy consumption. In particular, the energy
consumption of an algorithm was derived as the weighted sum
T + (PB) · I , where T is the total time taken and I is the
number of parallel I/Os made by the algorithm. However, this
model measures the energy consumption asymptotically and
in particular, ignores constants in order to derive the simple
model above.

B. P -way Parallelism for a Vector

Energy optimal algorithms proposed in [1] require data to
be laid out in memory with a controlled degree of parallelism.
We first propose a generic way to ensure desired memory
parallelism for a given input access pattern or vector.

Given any input data (vector), we created a logical mapping
which ensures access to the vector in P -way parallel fashion,
where P ranges from 1 to 8. The memory controller on
our hardware allocates memory in strides across banks. We
ensure P -way parallelism by first creating blocks of contiguous
memory of size B in one bank. We then use a page table,
which ensures that blocks are allocated from banks in the
specified P -way. For the first part, we implement the following
mapping function. Consider an input vector V size of N . Our
mapping function logically converts V into a matrix M of
dimensions N

B
× B, where B is the size of each block. Each

block in M actually consists of B
s

(logical) strides each of size
s. We logically assign strides to P ×B blocks at a time in our
function. Also we make sure, for any block, all its strides lie
in the same bank. We store the mappings in matrix M, where
Mij denotes the jth stride of the ith block.

For the second part, we define a page table vector T of
size N

B
that contains the ordering of the blocks. The ordering

is based on the way we want to access the blocks (P -way
would mean a full parallel access). The page table is populated
by picking blocks with jumps. For a 1-way access, we select
jumps of P ensuring the consecutive blocks are in the same
bank. For a P -way access, we selects jumps of 1 i.e. the blocks
are picked from banks in round robin order. Fig. 1 presents an
example with 4-way and 2-way parallel access.

Figure 1. Memory layout for achieving various degree of parallelism for
P = 4.

Input: Page table vector V, jump amount jump.
factor = 0;

for i = 0 to N
B

− 1 do

if i > 1 and ((i× jump) mod (N
B
)) = 0 then

factor = factor + 1;
end

Vi = (i× jump+ factor) mod (N
B
);

end

Algorithm 1: The function to create an ordering among
the blocks

1) Code Optimization: Our memory layout strategy re-
quires additional data structures as well as mapping of logical
data blocks to physical data blocks. (Let us call this mapping
Map.) This introduces a significant constant overhead, which
may offset any variance in power induced by the memory
layouts. We implemented few optimizations to minimize the
overhead of this remapping.

1) Reduce the number of calls to Map function: The
key overhead in our experiments is that we need to
invoke the Map function, once per memory access. To
minimize this overhead, we made this function inline.
More importantly, we used the fact that the Map

function has spatial locality (consecutive elements in
a logical stride are placed on consecutive memory
locations). Hence, we call the Map function only
once per s elements, significantly minimizing the
overhead.

2) Usage of bit shifts: Since most of our input were in
powers of 2, we used bit shifts in place of operations
like multiplication, division, and mod .

3) Usage of register variables: The variables that were
required to be computed a large number of times were
replaced by register variables. This brought down the
running time in many cases.

The benchmark code was written in C and was compiled using
gcc compiler.

C. Engineering an Algorithm

Given an algorithm A, we use the memory layout scheme
to ensure desired memory parallelism. We consider the input to
the algorithm and identify the most common access sequence.
We ensure the required level of parallelism for the vector



formed by the desired access sequence using the technique
described earlier. For algorithms that iterate over the input with
different access sequences in each iteration, we try to find sub-
sequences of size PB or a multiple of PB that are accessed
in the same order for each iteration. If such sub-sequences can
be identified, we can create a large vector by adding the sub-
sequences in any arbitrary order. If such sub-sequences can
not be found, the vector is created by selecting the most likely
sequence of the input data. For algorithms that use multiple
input vectors, the dominant vector is used for parallelizing the
memory layout.

III. EXPERIMENTAL SETUP AND METHODOLOGY

We conducted a large number of experiments to understand
the implications of various implementation choices for an
algorithm in its overall energy consumption.

A. Benchmarks Studied

We considered a mix of benchmarks, which together form
some of the most frequent computations performed in work-
loads. In order to understand the implications of various data
types, we conduct these experiments with both integer and
double data (except for the graph benchmarks where we only
use integers). Our experiments are also designed to validate
the model proposed in [1]. Hence, we implement variants of
algorithm that allow us to use 1, 2, 4, or 8 memory banks in
parallel on DDR3 memory with 8 memory banks. Below we
list the benchmarks used in this study.

1) Write: Given a vector A, we write a random value in
every element of A. The vector is parallelized using
the method described in Sec. II-B.

2) Copy: Given two vectors A and B, we copy all
elements from A to B. Both vectors A and B are
parallelized.

3) saxpy: SAXPY (Single-precision real αX Plus Y ) is
a Level 1 (vector) operation in the Basic Linear Alge-
bra Subprograms (BLAS) package, and is a common
operation in computations with vector processors.
SAXPY is a combination of scalar multiplication and
vector addition. Both X and Y are parallelized.

4) Sorting: Given a vector A, sort all elements of A
in increasing order. We evaluate selection sort, quick
sort, and merge sort for this study. The input array is
parallelized for these experiments.

5) Matrix Transpose: Given a matrix M , transform the
matrix to M ′ s.t. M ′

i,j = Mi,j for all elements i, j <
n. The matrix in row-major form is parallelized.

6) Graph Traversal: Given a graph G in adjacency list
format, traverse through all connected components of
G. The adjacency list is parallelized. Internal data
structures (e.g., array to keep track of visited nodes)
are not parallelized.

7) Shortest Path: Given an edge-weighted graph G in
adjacency list format and two nodes s and t, compute
the shortest path from s to t in G. The adjacency list
is parallelized. The auxiliary data structures are not
parallelized.

Each experiment has been repeated 10 times and the means
are reported in this work. The variations in the energy readings
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Figure 2. Variation for Read Experiment

that is, deviations from the average values were small (less
than 8%) for all the experiments performed. We present the
variations in the energy readings for the read experiment (of
Fig. 3(a)) in Fig. 2.

B. Hardware Setup

The experiments were run on a Mac note book with 4 Intel
cores, each of which operates at a frequency of 2 GHz. The
laptop has 4GB DDR3 memory with 8 banks and is running
Mac OS X Lion 10.7.3. The sizes of L2 Cache (per Core), and
L3 Cache are respectively 256 KB and 6 MB. The disk size of
the machine is 499.25 GB. During any experimental run, all
non-essential processes were aborted to ensure that the power
measured by us can be attributed primarily to the application
being tested. We measured the (total) power drawn using the
Hardware Monitor tool [2] which include the processor power,
memory (RAM) power, and a background (leakage) power.
The Hardware Monitor tool reads sensor data directly from
Apple’s System Management Controller (SMC), which is an
auxiliary processor independent of the main computer. Hence,
energy consumed by the monitoring infrastructure does not add
to the sensor readings, ensuring that the reported measurements
are fairly accurate.

IV. EXPERIMENTAL RESULTS

A. Vector Operations

In our first set of experiments, we compare three key
operations - reading an integer vector, writing an integer
vector, and copying one integer vector to another. We observe
(Fig. 3(a), (b) and (c)) that memory parallelism has significant
impact on energy consumption. This is in line with energy
model proposed in [1]. However, if we only look at write
operations (Fig. 3(b)), the impact of memory parallelism is
muted. Copy (and read) operations benefit by a factor of 2
with parallelism, whereas writes benefit by less than 10%. The
result may seem surprising at first but is a direct consequence
of the memory hierarchy. DRAM memory is often write
back allowing the memory controller to re-sequence writes to
introduce parallelism in memory access. Hence, even if the
original access sequence uses only 1 bank at a time, memory
controller sequences the buffered writes in a way that allows
all P banks to be used in parallel. On the other hand, reads
can not be delayed by the memory controller and unoptimized
read sequences lead to high energy consumption.

It is also important to note that the copy benchmark uses
2 different arrays. Hence, both arrays can not individually
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Figure 3. Energy consumed by (a) Read (b) Write (c) Copy and (d) Saxpy

achieve isolated 8-way parallel performance (the two arrays
may access the same bank). However, we still see best
performance with 8-way parallel access. This can be again
explained by the fact that write operations can be deferred.
Hence, the read operations are able to achieve full parallelism.
The same observation is reinforced with the saxpy benchmark
in Fig. 3(d), where 8-way parallelism leads to least energy
consumption.

B. Matrix Transpose

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  200  400  600  800  1000  1200

E
n

e
rg

y
 G

e
n

e
ra

te
d

 i
n

 J
o

u
le

s

Matrix Size in MB

1-Way Parallel
2-Way Parallel
4-Way Parallel
8-Way Parallel

(a)

 0

 50

 100

 150

 200

 250

 0  200  400  600  800  1000  1200

E
n

e
rg

y
 G

e
n

e
ra

te
d

 i
n

 J
o

u
le

s

Matrix Size in MB

1-Way Parallel
2-Way Parallel
4-Way Parallel
8-Way Parallel

(b)

Figure 4. Energy consumed by (a) Naive and (b) Blocked Matrix Transpose

We next study the matrix transpose problem. We use two
algorithms for transposing a matrix A. The first algorithm is
naive transpose, where we exchange Aij and Aji for input
matrix A. This algorithm essentially consists of two data
access sequences for the matrix - the first one is a row major
scan and the second one is a column major scan of the matrix.
Since the matrix is P -way parallel only in the row major form,
only one of the two scans is P -way parallelized. In the second
algorithm, we divide the matrix A (of size N ×N ) into sub-
matrices of size of size B×B. We transpose the sub-matrices
in place, and swap each sub-matrix with its swap partner to
get AT . We call this algorithm as blocked transpose.

Fig. 4 captures the energy consumed respectively by naive
transpose and by blocked transpose. We observe that blocked
transpose consumes less energy than naive transpose. For both

algorithms, we observe a moderate impact of using optimal
data access pattern in the algorithm. Overall, our experiments
validate the energy model in [1], while highlighting the fact
that if an algorithm has multiple data access sequences, then
the impact of parallelization is moderated.

C. Sorting

We next consider the sorting problem. Sorting is a data-
dependent problem and the exact data access pattern depends
on the underlying data. Hence, it is not possible to statically
layout the data with a fixed degree of parallelism. We use the
observation that sorting algorithms works in iteration, where
each iteration consists of one or more sequential data se-
quences that are accessed in a data-dependent manner. Hence,
we parallelize the input array with the required degree of
parallelism. We consider selection sort, quick sort, and merge
sort for this study.

Selection sort algorithm with an input size of n performs
n − i reads (comparisons) in its ith round. After i rounds,
we have the first i elements sorted. Executing i rounds of
selection sort (on an input of n integers) therefore is expected
to consume almost equal amount of energy as done by i times
reading the input (of n integers). This is assuming i to be a
constant with i ≪ n.

We performed i = 100 rounds of selection sorting for
inputs ranging from sizes 32MB (n = 8388608) through
512MB (n = 67108864). This according to our conjecture
is energy wise equivalent to performing 100 read operations
on the input arrays each time. The results of Fig. 3(a) and
Fig. 5(a) pretty much validate this. We compare the value of
a particular point, e.g. 1-way parallel for input size 256MB of
Figs. 3(a) with 5(a). Fig. 3(a), the read shows an energy
generation of about 15J , while Fig. 5 shows about 1500J for
the same point. This is pretty much along the expected lines.

We observe that energy consumed by energy optimal layout (8-
way parallel) of selection sort performs much better compared
to non-optimal (e.g., 1-way parallel) as shown in Fig. 5(a).
Quick sort (Figure 5(b)) and Merge Sort (Figure 5(c)) show
moderate savings over changes in parallelization due to energy-
awareness.

In order to understand this better, we take a close look at
the three sorting algorithms. Again, the selection sort algorithm
at each iteration i, finds the ith minimum element of the input
and puts it in its proper place in the array. Hence at step i, the
algorithm executes a linear sequence of length n− i where n
is the input size. Since we have a single linear sequence exe-
cuting during an iteration, the impact of memory parallelism
expresses itself in significant savings in energy. In quick sort,
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Figure 5. Energy consumed by integer (a) selection sort (b) quicksort and (c) mergesort with random input.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  50  100  150  200  250  300  350  400  450  500  550

E
n

e
rg

y
 G

e
n

e
ra

te
d

 i
n

 J
o

u
le

s

Vector Size in MB

1-Way Parallel
2-Way Parallel
4-Way Parallel
8-Way Parallel

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  50  100  150  200  250  300  350  400  450  500  550
E

n
e

rg
y
 G

e
n

e
ra

te
d

 i
n

 J
o

u
le

s

Vector Size in MB

1-Way Parallel
2-Way Parallel
4-Way Parallel
8-Way Parallel

(a) (b)

Figure 6. Energy consumed by quicksort on integers with (a) sorted and (b) reverse sorted input.

Input: Vector A containing integers, end positions low
and high, pivotal element pivot = A[high].

Output: Vector A partitioned w.r.t pivot.
pivot = A[high];
i = (low − 1);
j = 0;
for j = low to high− 1 do

if A[j] ≤ pivot then
i = i+ 1;
if i 6= j then

swap(A[i],A[j]);
end

end
end
swap(A[i+ 1],A[high]);

Algorithm 2: Partition

we partition the input based on a pivotal element chosen for
each (sub)array we sort. In our implementation of quick sort,
we always choose the last element of the (sub)array as the
pivotal element. Both quick sort and merge sort either partition
or merge smaller sequences in each iteration (other than the
last iteration). Further, merge sort merges two sequences in
parallel, which are completely interspersed with each other. So,
the impact of parallelism is extremely subdued. Algorithm 2
shows our partition algorithm. We have 2 linear sequences
(i and j) executing on the array at any point of time. The
point to note is that the two parallel sequences execute in
the same direction. However, while sequence j covers all the
elements one by one, sequence i might have jumps. Hence, the
interference between the two sequences is smaller then merge.
Hence, quick sort is able to extract some benefit of higher
parallelism.

We also experimented quick sort with sorted and reverse

sorted input. For these two scenarios (Fig. 6((a) & (b)), the
optimal energy-aware version of quick sort shows significant
benefit. For the sorted version, the linear sequences i and j
merge into a single sequence (since their locations at any point
of time is the same). So effectively we have a single linear
sequence in case of the sorted input. For the reverse input,
index i does not move at all. Again hence effectively we have
a single linear sequence in case of the reverse input.

Our experiments show that the number of parallel se-
quences used by an algorithm plays a significant role in energy
consumption. Multiple parallel sequences can interfere with
each other and prevent parallel access to memory. Even though
this interference only leads to a constant factor impact on
energy, the increase leads to perceivable performance problems
in practice. We do a careful experimental and theoretical
analysis of this phenomenon in Sec. V.

D. Graph Algorithms

We next consider graph algorithms, which have recently
emerged as a popular framework for solving social media and
big data problems [3]. Many graph algorithms perform some
kind of traversal, which can exhibit very weak locality with an
adjacency list data structure. Hence, it is extremely difficult to
create static data sequences, that can be parallelized across the
banks. We use the following trick to introduce some degree of
parallelism. We store the graphs in a non-standard adjacency
list format. We store the array of linked lists in one “flattened”
array of size 2m called edge list that just lists all the edges
(ordered by one end-point). This ensures parallelizability of the
operation to enumerate all neighbors of a given vertex, which
is possibly the most common operation for the algorithms we
consider. We also store two additional arrays of size n each.
One array lists the degrees of each vertex and the second
captures the index in the edge list the first edge incident on
the vertex starts. When changing the parallelizability of the
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Figure 7. Energy consumed by (a) BFS (b) DFS and (c) Dijkstra’s on various graphs
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Figure 8. Energy consumed by Dijkstra’s algorithm with different covariance in edge weights for (a) Orkut graph and (b) GPlus graph. Average energy
consumed by Dijkstra’s algorithm with different distances between (s, t) pairs for (c) Orkut graph and (d) GPlus graph

Type Nodes Edges Dia Average degree of

top 10% nodes

Complete 8192 33550336 1 8191

Star 16777216 16777215 2 11

Orkut 3072441 117185083 9 318

Gplus 107614 13673453 6 1648

Table I. CHARACTERISTICS OF GRAPHS USED

algorithms, we only changed the layout of the edge list array
(from the usual 1-way to 8-way). For weighted graphs we
also store the edge weights in the edge list. We study the
energy consumed by traversal algorithms (Breadth-first-search
and Depth-first-search) and Dijkstra’s shortest path algorithm.

We experimented on the graphs in Table I. Two of those
graphs are from the SNAP dataset collection [4]: social circles
from Google plus (henceforth Gplus) and Orkut online social
network (henceforth Orkut). All these graphs are unweighted.
For the shortest path problem, we need edges weights, which
we generate from the Gaussian distribution. We vary the ratio
of standard deviation to the mean (which is called covariance)
to obtain different edge weight distributions. We took the
absolute value of the weights (no negative weights). The results
are presented in Figs. 7 and 8.

We ran the three algorithms above (DFS, BFS and Dijk-
stra’s) on the four graphs (complete, star, Gplus and Orkut).
The results are presented in Fig. 7. The gains in going from
1-way to 8-way for the complete graph is in line with our
previous experiments, though the gain are lower by about 20%
because the graph algorithms have a random jump after each
operation to get all neighbors. Similar behavior though with
diminishing gains are seen for the star and Gplus graph (both
of which are much sparser than the complete graph and thus
the energy cost of accessing the auxiliary arrays become more
significant).

The trends in energy savings is the same for Orkut graph
expect for Dijkstra’s algorithm. This is because the number of
nodes n is of the same order as the cache size. The auxiliary
array sizes of the DFS and BFS algorithm however are just
small enough to still fit into the cache. However, for Dijkstra’s
the fact that the auxiliary array sizes are three times larger
makes it spill beyond the cache size, which results in the access

to the auxiliary data being more significant than accesses to the
edge list. In particular, we now have to access more than one
data structure in the main memory and even if each of these
accesses are fully parallelized, they will interfere with each
other. Further, the relatively smaller average node degree of
dense nodes implies that parallelism does not aid the neighbor
list operation significantly. We also experimented with different
distance values and different covariance values for generating
the edge weight distribution. The results (Fig. 8) exhibit the
same overall trend over the entire range of experiments.

Our graph experiments lead to the following recommenda-
tion. If a graph has high average degree and all auxiliary data
structures can fit in cache, then parallelizing the layout leads
to energy savings. However, if either of these conditions are
violated, memory parallelism does not lead to energy savings.

E. Impact of data type
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Figure 9. Energy consumed by (a) Copy (b) Saxpy



Next, we study the impact of various data types by per-
forming all our experiments so far with doubles. We observe
that using a larger data type leads to significantly lower energy
for copy and saxpy operations. Using optimal algorithms for
the data types, we find up to 40% lower energy consumption
for both these algorithms (see Fig. 9). The data presented
in Fig. 9 compares the energy consumed in the experiments
(copy and saxpy) for the 8-way parallel case using int

and double data types. Similar observations hold for quick
sort as well as selection sort (omitted for lack of space).
This savings is comparable to the typical savings we have
observed by using optimal variants of an algorithm against
non-optimal versions. Hence, engineering the data type can
lead to significant differences in energy consumption.

V. ANALYSIS OF RESULTS
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Figure 10. Energy Consumption (mJ/MB) with 2 Sequences on (a) 1GB
input (b) 512MB input

Our experimental study establishes high variation in energy
consumed for algorithms, which are equivalent in classical
complexity models. Overall, these results establish the need for
an energy model based on work and parallel I/O complexity, as
proposed in [1]. However, energy consumption differs between
algorithms that are asymptotically equal even in the energy
model. One of the key aspects highlighted by our experi-
ments is the reduced impact of parallelism, when multiple
data sequences are present. We define two simple operations
that occurred frequently in our experiments and analyze their
performance both experimentally and theoretically.

Definition 1. Circular Sequence: Given P banks, create a
circle of banks from 1 to P in clock wise order. If an algorithm
accesses data in a way that follows the circle clock-wise or
anti clock-wise, the algorithm is defined as a Circular Sequence
algorithm.

We define two common variants of Circular Sequence next.

Definition 2. Parallel Circular Sequence: An algorithm is said
to be a parallel circular sequence (or just parallel sequence)

algorithm if the data access pattern of the algorithm can be
represented as a set of circular sequences, all of them either
clock-wise or anti clockwise.

Definition 3. Anti-Parallel Circular Sequence: An algorithm
is said to be an anti-parallel circular sequence (or just anti-
parallel sequence) algorithm if the data access pattern of the
algorithm can be represented as a set of circular sequences,
with half of them clock-wise and the other half anti clockwise.

We conducted micro experiments with 2 parallel and anti-
parallel sequences. Since we observed in our experiments
that different data sequences may not progress at the same
rate, we defined a probability q to capture the likelihood
that the first sequence would progress at any given time.
The second sequence progresses with probability 1 − q. We
experimentally study the energy consumed by parallel and anti-
parallel sequences in Fig. 10. We observe that at q = 1/2,
the parallel sequence consumes significantly higher energy
than anti-parallel or reverse sequences. Further, as one of the
sequence starts to dominate the other, the energy consumption
decreases and the difference between parallel and anti-parallel
sequences reduce. At q = 0.0625, the difference between
the two sequences is insignificant. Hence, we can conclude
that if there is a choice between parallel and anti-parallel
sequences that are accessed at similar rates, using the anti-
parallel sequence is more energy efficient.
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Figure 11. Energy consumption in joules with partition on two sequences
(on log scale)

We validate the above finding using the partition algorithm.
We implement a variant of partition algorithm, where we
create two anti-parallel sequences. The first sequence, called
forward sequence scans from the start of the array till it the
finds an element larger than the pivot. The reverse sequence
then proceeds from the end of the array and stops when it
finds an element smaller than the pivot. The two elements
are swapped and the forward sequence continues its scan.
Fig. 11 plots the energy consumed by the two variants of
partition algorithm. We observe that anti-parallel partition has
significantly lower energy consumption than parallel partition
validating our conjecture. We next attempt to theoretically
understand the reason behind different energy consumption for
parallel and anti-parallel sequences.

Definition 4. Circular Iteration: A circular iteration for a
circular sequence algorithm captures data accesses that equal
P block I/Os.

Given a sequence of N I/Os performed by an algorithm,
it is easy to see that the algorithm has N/P disjoint circular



iterations and needs to perform at least N/P parallel I/Os.

Definition 5. Circular Loss (L): Given any circular iteration,
the number of blocks that can not be read in one parallel I/O
is defined as the circular loss for that iteration.

It is easy to see that if we allow circular iterations to
be defined at the start of each parallel I/O, then the total
circular loss across all the iterations is the extra number of
I/Os performed by an algorithm. Further, the algorithm needs
to perform at least L/P additional parallel I/Os over and above
the lower bound (of N/P parallel I/Os). We next consider anti-
parallel circular sequences with 2 sequences, one clock-wise
and one anti clock-wise. This e.g. models the behavior of the
partition code, where we go “inwards” from both end of the
array.

We prove the following results.

Theorem 1. The total loss in an anti-parallel sequence with
2 sequences is bounded by P or 1 parallel I/O only.

Proof: We first note that the two sequences cross each
other only once in exactly P steps. Further, in these P time
steps, the two sequences access blocks in different banks.
In other words, all the P access between two consecutive
crossings are to distinct banks and thus, we have only one
parallel I/O. Thus, the only places where we might not have
a parallel access with P I/Os is at the beginning if the two
sequences do not start at the same bank, which leads to the
claimed result.

Next, we will see that the situation can be much worse for
the parallel circular sequence case. Hence, partition has better
constants than merging, which has parallel sequences.

A. The parallel case

We now consider the case of parallel sequence with two
sequences. Unlike the clean result of Theorem 1, the situation
for the parallel case is much different. In particular, it is easy
to come up with a sequence that has no extra parallel I/Os and
at the same time one can show parallel sequence such that
all the parallel I/Os have exactly one I/O (i.e. the effective
parallelizability is 1 instead of the idea P ).

Thus, we need to consider classes of parallel sequence. In
particular, we consider the following natural parallel sequence:

Definition 6. Let 0 < q ≤ 1/2 be a real. At every step, with
probability q the first sequence advances and with probability
1 − q the second sequence advances.1 Let us call this the q-
random parallel sequence.

We will prove the following result:

Theorem 2. Let 0 < q < 1/2 such that logP/q and√
P logP/(1 − 2q) are both o(P ). Then for large enough

P and for any α < 1 − q, the number of extra parallel
I/Os needed by the q-random parallel sequence is at least
(

1− α

1−q

1+⌈ 1−α

1−2q ⌉ − o(1)

)

· N
P

, with probability at least 1−1/PO(1).

1Note that by changing the roles of the first and second sequences, we can
also deal with the case of 1/2 ≤ q < 1.

By picking q = ǫ and say α = 3ǫ, we get the following:

Corollary 1. For small enough constant ǫ, the ǫ-random
parallel sequence has parallelizability at most P ·

(

1
2 +O(ǫ)

)

.

In the rest of the section, we will prove Theorem 2.

To simplify the proof somewhat we will change the setup
a bit: instead of the sequences running in a circular fashion we
will assume that they run on a line with N points– we will use
i and j to denote the location of the first and second sequence
respectively. To convert this to the circular framework we can
just replace i and j by (i mod P + 1) and (j mod P + 1)
respectively. Thus, the state of the system at any point of time
can be represented by (i, j). Note that with probability q, the
state changes to (i+1, j) and with probability 1− q, the state
changes to (i, j + 1).

We start with some simple observations, which follow by
noting that the probability that i does not increment for ℓ
consecutive steps is (1 − q)ℓ and by the (additive) Chernoff
bound respectively.

Lemma 1. Given a state (i, j), with probability at least 1 −
1/PO(1), i will get incremented in O

(

logP
q

)

steps.

Lemma 2. Let the current state be (i, j). Then in ℓ steps with

probability at least 1− 1/PO(1), the values of i and j change
by ℓ·q±O(

√
P logP ) and ℓ(1−q)±O(

√
P logP ) respectively.

Call a state (i, j) to be good if j mod P is behind i
mod P by at most αP (i.e. if we think of both i and j as going
clockwise on the circular banks, then if we keep i stationary
then it will take j at most αP steps to get to i). Otherwise
call the state bad. We now argue the following.

Lemma 3. Let (i, j) be good. Then with probability at least

1− 1/PO(1), within αP
1−q

+O
(

logP
q

+
√
P logP

)

steps both

i and j would have taken the same value mod P (though
not necessarily at the same time).

Proof: By Lemma 1, within O
(

logP
q

)

, the index j would

have gone ahead by one to j′ = j + 1. Then by Lemma 2 in
at most αP

1−P
+O

(√
P logP

)

, i steps, i would attain a value

i′ such that i′ mod P = j′ mod P . Summing up the two
bounds gives the claimed result.

Next, we argue that it does not take long for a bad state to
get converted into a good state.

Lemma 4. Let (i, j) be a bad state. Then with probability at

least 1−1/PO(1), the state will turn good in at most
(1−α)P
1−2q +

O
(√

P logP
1−2q

)

steps.

Proof: Note that if (i, j) is bad, then by definition if i− j
increases by (1 − α)P , then the resulting state will be good.

Lemma 2 implies that with probability 1−1/PO(1), in ℓ steps
i− j increases by at least ℓ(1− 2q)−O(

√
P logP ). Picking

ℓ as claimed completes the proof.

Remark 1. It turns out that in subsequent calculations, we can
ignore o(P ) terms and thus, from now on for both Lemma 3
and 4, we will ignore the o(P ) terms.



Define x =
⌈

1−α
1−2q

⌉

. Now divide the N items into con-

tiguous chunks of size (x+ 1)P . Call a chunk good if either
(1) (i, j) is good and Lemma 3 holds or (2) (i, j) is bad and
first Lemma 4 holds and then Lemma 3 holds. Note that by
the definition of q-random parallel sequence, Lemmas 3 and 4
and the union bound, every chunk is good independently with
probability at least 1 − 1/PO(1). Note that by the Chernoff

bound this implies that with the probability 1 − 1/PO(1), all
but o(N/(xP )) chunks are good.

Now consider a good chunk. In this case the loss in the
chunk is P − αP

1−q
. This is because in the worst case we have

a good state (i, j) within xP steps and then by Lemma 3, we
will have a parallel I/O of size αP

1−q
. Thus, so even if all the

first xP steps are fully parallel, we would still have the loss

as claimed above. Thus, the total loss overall is
(

P − αP
1−q

)

·
(

N
(x+1)P − o(N/P )

)

. Thus even if the total loss were fully

parallelizable, we would have at least as many extra parallel
I/Os as claimed in Theorem 2, as desired.

Remark 2. Theorem 2 needs q < 1/2 and the result also
deteriorates as q approaches 1/2. However, we believe that
this is a shortcoming of our proofs and not due to some
inherent reason. In fact, we conjecture that for every value
of q, the maximum parallelizability that one can get out of
parallel sequences is roughly P/2.

VI. DISCUSSION AND CONCLUSION

In this work, we experimentally validated the energy
complexity model proposed in [1]. We identified scenarios
where the energy model is valid as well as aspects of energy
consumption that are not captured by the model. We now
use insights obtained from our experiments and theoretical
analysis to propose practical algorithmic engineering ideas for
implementation of energy-aware algorithms.

Read Versus Write: We have observed that write buffers
can help memory controllers use all memory banks in par-
allel. Hence, write intensive workloads do not need energy-
awareness as much. We recommend using simple algorithms
with small constants for write-intensive workloads and leave
memory controllers to achieve high parallelism.

Data Sequences: We observed that algorithms that have a
single data sequence active at any given time can achieve
optimal energy using memory parallelism. On the other hand,
algorithms with parallel sequences can lead to high energy
consumption and memory parallelism does not help at all.
Finally, anti-parallel sequences can use memory parallelism
better and reduce energy consumption. Hence, we propose that
given a choice an algorithm that uses a single data sequence
should be preferred. If an algorithm requires two or more
data sequences, preference should be given to anti-parallel
sequences (for example, anti-parallel partition code is preferred
over parallel version, quick sort is preferred over merge sort).
Further, if an algorithm has multiple parallel sequences, then
effort should be made to introduce bias so that one sequence
dominates others. If we implement an algorithm with multiple
balanced parallel sequences, then there is no need to ensure
memory parallelism as its impact is not significant.

Data Dependent Algorithms: For data dependent algorithms,
we should identify a primary sequence that is deterministic and
parallelize it (e.g., input array in selection sort). If a primary
sequence can not be identified, we can identify long sub-
sequences and try to ensure that they can be parallelized (e.g.,
in graphs we optimize the sub-sequence used for neighborhood
operation). If such sub-sequences also can not be identified,
there is no advantage of parallelizing memory layout.

Auxiliary data structures: We observed that auxiliary data
structures introduce noise and reduce the benefit of memory
parallelism. Hence, we should engineer algorithms so that
additional data structures can fit in cache and do not interfere
with memory parallelism. If possible, one can also consider
using a disjoint set of banks for auxiliary data structures and
ensure parallelism across remaining banks for the primary data
structures (e.g., 2 banks can be reserved for auxiliary data
structures and 6 banks can be reserved for primary input).

Choice of Data Type: We observed that double data type
consumes less energy for a fixed number of bytes than integer
data type. This is a direct consequence of using larger data
units. Hence, wherever possible, data should be processed
using larger data types.

VII. RELATED WORK

Research in power modeling can be broadly classified
into (i) Simulator-based [5], [6], (ii) CPU Utilization-based
[7] (iii) Event or performance counters based [8] and (iv)
Coarse-grained [9]. Early power management research used
analytic power models based on voltage and frequency [9],
which are fast, but only provide rough estimates. Coarse-
grained estimates based on the type and state (active, off) of the
processor have been used in [10]. However, with the increase
in the dynamic power range of servers [11], a more accurate
power prediction method is needed. Power models based on
readily available system parameters like CPU utilization [7]
are possibly the simplest to use for algorithm design. A CPU
utilization based model is currently the most popular power
estimation model used in practice [12], [13]. CPU utilization
can possibly be estimated roughly using the computational
complexity of an algorithm. However, different applications
make differing use of various CPU units and other system
resources like memory and a CPU utilization model is not
accurate across wide application categories. Interestingly, the
workload-sensitive nature of CPU-based models has been re-
cently cited as a reason to go back to using detailed event coun-
ters in [14] for predicting processor and memory power usage
under voltage scaling. Application-aware power modeling has
the potential to assist energy aware algorithmic engineering. In
[15], the authors create power profiles for each application and
use it to estimate the power drawn by a consolidated server
hosting the applications. WattApp [16] also uses power profiles
for an application and estimates the power consumed with
changes in workload as well. However, all these techniques are
measurement-based, whereas algorithmic engineering needs
energy models that are based on first principles. A good
comparison of various system-level power models is presented
in [17].

These problems have also garnered a lot of attention in the
theory community: see e.g. the recent survey by Albers [18],



which gives an overview of the various threads of energy
related research in the theory community. These include speed-
scaling [19], [20] and dynamic powering down a machine [21].
Both of these general approaches lead to scheduling problems
in both the online and offline settings. However, all of these
treat algorithms as black boxes while our work deals directly
with the algorithms. We believe that our work complements
this body of existing work.

The first asymptotic energy model for algorithms was
presented in [1]. As is the norm with traditional algorithm
design, the energy model is asymptotic. A couple of simulation
results were presented, where it was shown that algorithms
designed for the “traditional” algorithmic model can be trans-
formed into algorithms whose memory accesses are highly
parallelized and thus, consume much less energy than the
naive implementation. These simulations led to design of
energy optimal (in the asymptotic sense) algorithms for certain
basic problems such as sorting and matrix transpose. However,
due to the fact that the authors were only interested in the
asymptotic behavior, the simulations usually ran the following
trick: they only used P/2 banks for the actual computation
and used the rest of P/2 banks for book keeping in their
simulations (the simulations basically amounted to randomly
changing the memory layout for the original algorithm and
storing these random maps in P/2 banks so that one could
also access the map with high parallelizability). Of course this
implied that they were potentially losing a factor of 2 from
the maximum parallelizability of P , which translates to similar
loss in the energy consumed. However, implementations needs
to be aware of the exact constants used in the complexity model
for practical implementation.

Our model also has similarities with the cache oblivious
model [22]. In this model, the goal is to minimize the number
of cache misses (equivalent to the number of I/Os), while
ensuring that the algorithm is also work optimal. Our model
differs from this work in three ways: (i) The cache model
assumes ‘ideal cache’ with high associativity whereas we have
an associativity of 1 (ii) The tall cache assumption does not
hold in our model due to the fact that only one block can be
transferred from any memory back into its local cache (iii) We
aim to minimize a linear combination of work complexity and
number of parallel I/Os whereas the cache oblivious model
tries to minimize both the work complexity and the number of
sequential I/Os without worrying about parallelism.
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