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ABSTRACT
Energy consumption has emerged as first class computing
resource for both server systems and personal computing de-
vices. The growing importance of energy has led to rethink
in hardware design, hypervisors, operating systems and com-
pilers. Algorithm design is still relatively untouched by the
importance of energy and algorithmic complexity models do
not capture the energy consumed by an algorithm.

In this paper, we propose a new complexity model to ac-
count for the energy used by an algorithm. Based on an
abstract memory model (which was inspired by the popu-
lar DDR3 memory model and is similar to the parallel disk
I/O model of Vitter and Shriver), we present a simple energy
model that is a (weighted) sum of the time complexity of the
algorithm and the number of “parallel” I/O accesses made
by the algorithm. We derive this simple model from a more
complicated model that better models the ground truth and
present some experimental justification for our model. We
believe that the simplicity (and applicability) of this energy
model is the main contribution of the paper.

We present some sufficient conditions on algorithm behav-
ior that allows us to bound the energy complexity of the al-
gorithm in terms of its time complexity (in the RAM model)
and its I/O complexity (in the I/O model). As corollaries,
we obtain energy optimal algorithms for sorting (and its spe-
cial cases like permutation), matrix transpose and (sparse)
matrix vector multiplication.
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1. INTRODUCTION

Figure 1: Overview of energy management across
the computing stack. Layers in green incorporate
energy-aware design.

Energy has emerged as a first class computing resource
in modern systems [37, 30]. Two trends have primarily led
to the strong focus on reducing energy consumption. The
first trend has been the ever-increasing energy consumption
of data centers, which doubled between the years 2000 and
2006 [2]. Coupled with the growing awareness of the ad-
verse impact on the environment due to data centers has
led to a strong focus on energy management for server class
systems. The second trend has been the explosive growth
of personal computing devices like smartphones, handhelds,
and notebooks, which run on batteries. Personal computing
devices today perform a lot of computations and data trans-
fer and energy conservation is a driving factor in the design
of personal computing devices.



The focus on energy management has been cross-cutting
across various computing disciplines including computer ar-
chitecture (hardware design) [28], hypervisors [31], operat-
ing systems [27] and system software [11, 15]. Fig. 1 cap-
tures the various techniques developed to reduce energy con-
sumption across the computing stack. One may note that
energy management has not impacted application design,
which includes the design of algorithms. Hardware and sys-
tem engineers have treated the application as a black box
and designed techniques to minimize energy without any
modifications to this black box. This is not surprising since
application or algorithmic design is not their area of ex-
pertise. Interestingly, the focus of the algorithmic commu-
nity has been on designing energy management algorithms in
support of the energy management techniques developed by
other computing disciplines [36, 7, 16]. We believe that the
algorithmic community can make a more significant contri-
bution by introducing energy-awareness in algorithm design.
The central question explored in this paper is the following:

Should we redesign software applications using energy-optimal
algorithms?

Traditional algorithm design has mostly focused on mini-
mizing time complexity (in the RAM model) and used poly-
nomial time as a benchmark for efficient computation. With
advances in computing technology, the algorithms commu-
nity has refined the polynomial time model to better model
these advances. The Input-Output (henceforth, I/O) model
of Aggarwal and Vitter [5] was proposed to model the fact
that problems of large size may not fit in main memory. This
model has been refined over the years e.g., to include more
realistic memory hierarchy in the form of cache oblivious al-
gorithms [12] and parallel disks [34, 35]. Another popular
recent model is that of data stream algorithms [26], which
tries to model the fact that sequential access to disk memory
is cheaper than random access to disk memory.

However, the energy consumed by a computational task is
not covered by traditional algorithm design (nor by models
mentioned above). There is a technological reason behind
the relative lack of attention from algorithm community to-
wards energy-aware algorithm design. Server models, devel-
oped as recently as 2004 (e.g., IBM Power5), were designed
without energy awareness in mind and their power consump-
tion was work-oblivious, i.e. they consumed the same power
irrespective of the workload running on the server! It is only
in the last decade that hardware architects have introduced
techniques to ensure that circuitry not performing any op-
erations at a given point in time consume minimal or no
power.

In line with these change, ideal work-proportional energy
models have been used recently for parallel algorithms, where
a linear relationship is assumed between computational com-
plexity and energy usage of an algorithm on a server running
at a fixed frequency [21, 22]. This is diagonally opposite to
work-oblivious energy models and do not model the com-
plex memory circuitry. The second term in (1) represents
this model.

We performed a number of experiments and observed that
energy consumption is neither work-proportional nor work-
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Figure 2: Impact of algorithm on energy. Each dot
in the figure signifies the energy cost incurred by a
given algorithm (among write, copy, and transpose)
for a given input and access pattern.

oblivious. Fig. 2 shows the energy consumed by algorithms
with exactly identical work and memory complexity (i.e.
they are same even up to constants) on commodity desk-
tops. The algorithms have been modified by changing their
memory allocation on banks and the average power is mea-
sured to estimate the total energy consumed in completing
a task. (See Appendix 6 for more details.) Energy esti-
mated by work-proportional or work-oblivious models would
be same for a given problem, i.e., max=min (represented by
the flat line in the figure). We observe up to 225% higher
energy usage for the same algorithm, highlighting a gap in
existing complexity models. The platforms we used for our
experiments had only 8 memory banks and do not support
advanced fine-grained energy management techniques like
per-core DVFS or per-bank refresh states [18]. We expect
the difference between variants of algorithms to increase on
larger memory systems or emerging platforms.

A simple complexity model that captures the energy con-
sumed by an algorithm can help design energy-efficient ap-
plications that can perform the same task, while consuming
much less energy. An energy-aware design of applications
will ensure that the entire computing stack from application
to the hardware is energy efficient and has the potential to
significantly reduce energy consumption of enterprise as well
as personal computing devices. Designing such a model is
tricky: it has to be simple enough so that it hides as much of
the low level system detail to the algorithm design (so that
the designed algorithms can be applied to various platforms)
while on the other hand it should be a realistic enough to
capture a lot of the ground truth.

System researchers have designed various models to esti-
mate the power drawn by server systems. At high-level, they
generalize the ideal work-proportional energy model of Kor-
thikanti et al. [21, 22] by capturing memory activity as well
as idle or leakage power. However, these models are typi-
cally based on system level parameters like CPU utilization,
number of instructions dispatched, memory bandwidth etc.
[9]. A recent study presented an application-aware model for



estimating power drawn by server systems [20]. Even though
the authors point out the requirement of capturing applica-
tion behavior to accurately estimate power, the techniques
treat an application as a black box and estimate the power
based on empirical measurements. We believe that the lack
of a simple yet realistic model of energy consumption at de-
sign time is one of the stumbling blocks for energy-aware
algorithm design.

1.1 Our Results
Our main contribution is a simple energy complexity model

for algorithms. Our model is based on the design of modern
processors and memory elements. In particular, it turns out
that a simple variation of the parallel disk I/O model [34,
35] (where the fast memory is not fully associative) mod-
els modern memory elements pretty well. Using this mem-
ory model, our final energy model for an algorithm A is a
weighted linear combination of the work complexity of A
(i.e. its time complexity in the traditional RAM model) and
the number of “parallel” accesses to the memory. (We note
that our memory model has some subtle differences from ex-
isting models such as the parallel disk I/O model and cache
oblivious models: see the end of the section for a compar-
ison.) To obtain our final energy model, we start with a
fairly complex energy model and then use some simple re-
ductions to reduce our energy complexity model to the two
parameters above. We also present some simulation results
to justify our energy model.

To the best of our knowledge, ours is the first work that
naturally combines the work complexity and parallel I/O
complexities into one. We also believe that the fact that our
energy model is a simple combination of two well-studied
models is a strength of our model as one can leverage exist-
ing techniques that have been developed for designing algo-
rithms in these two models. Existing work in cache oblivious
algorithms has focused on both of these parameters but ex-
isting literature in that model tries to optimize both these
parameter simultaneously. By contrast, our model since it
combines these two parameters, provides some flexibility.
Indeed in our results, we use this freedom. For example,
the problem of sorting N numbers has an optimal work
complexity of W (N) = Θ(N logN) (assuming a compari-
son model) and a parallel I/O complexity (where one has P
parallel disks, each block has B items and the fast memory
can hold P blocks ) of I(N) = Ω( N

BP
logP N). Our en-

ergy model requires the algorithm to minimize the quantity
W (N) +BP · I(N). We briefly describe two examples that
illustrate the two ends of the spectrum: one where W (N) is
the dominant term and the other where I(N) is the domi-
nant term. First consider the sorting problem. Under the
comparison model, for sorting we haveW (N) = Θ(N logN).
On the other hand, (assuming the “k-way” mergesort algo-
rithm can be fully parallelized), it is known that I(N) is
O(N/(PB) logk N). For optimal I/O complexity, one needs
to pick k = P . However, in our case since W (N) is the dom-
inating term, even k = 2 (the “usual” mergesort algorithm)
is also energy optimal. Second, consider the problem of per-
muting an array of elements under an implicitly specified

permutation. This is a special case of the sorting problem
and it is well known that for this problem W (N) = Θ(N).
On the other hand, it is known that the I/O lower bound is
the same as that of sorting. Thus, for the permuting prob-
lem, we have I(N) ≥ Ω(N/(PB) logP N). Thus, in this case
to be energy optimal, we use the P -way mergesort algorithm
(that is fully parallelized) to obtain the energy optimal algo-
rithm for permuting. We are hopeful that this flexibility will
enable the design of more algorithms that have the optimal
energy complexity.

We also believe that our model is complementary to the
existing work on energy efficient algorithms [6]. In particu-
lar, one could potentially use our model to design the algo-
rithmic tasks and then using the existing work to schedule
each of these tasks so as to leverage the benefits of speed
scaling and power-down mechanisms.

Our second key contribution is simulations of broad classes
of algorithms. In particular, we present three simulations
that convert algorithm designed for RAM and/or I/O model
into ones that are suitable for our model. Our simulations
do not change the work complexities but mildly blowup the
parallel I/O complexity parameter. The first simulation re-
sult is a trivial one where the original algorithm already has
a nice parallelizable memory access pattern and one gets the
same work and I/O complexity as the original algorithm.
The next two classes of algorithms are based on their mem-
ory access patterns. Informally, the first subclass, which we
call striped algorithms run in phases where in each phase,
the algorithm accesses a fixed number of “runs” of memory
locations sequentially (e.g. the merge sort algorithm). We
use the power of two choices [25] to simulate this class of al-
gorithms. We also consider a much more general class of al-
gorithms we call bounded, which has the minimal restriction
of knowing which the memory locations it needs to allocate
upfront and one that accesses at least a constant fraction of
these allocated locations during its execution. The parame-
ters for bounded algorithms are weaker than those of striped
algorithm. We then apply these simulation results to obtain
energy efficient algorithms for sorting, matrix transpose, ma-
trix multiplication and matrix vector multiplication.

1.2 Proof Techniques
Finally, we present an overview of some of the proof tech-

niques used to prove the simulation results. The idea for
the simulation is fairly simple: we randomly permute (twice
in the case of striped algorithms) the memory locations so
that we can “batch” memory accesses into few parallel I/O
accesses. This involves bounding the maximum load in a
balls and bins game. For bounded algorithms, the resulting
balls and bins problem is the traditional setup. For striped
algorithms, the setup is the so called “parallel” balls and
bins with two choices [25]. In this setup it is know that if
the two choices for each ball can be coordinated than the
maximum load is O(1). In our case we have to be a bit care-
ful to make sure that these choices can be made (centrally)
in linear time. (This latter result is probably folklore– we
present a proof in Appendix D.)

The main issue is how one stores this random permutation



(since the corresponding map needs to be computed every
time a memory location is accessed). We present two solu-
tions. The first solution uses a lot of randomness and affects
the work and I/O complexity negligibly. The second solu-
tion uses little randomness but has a mild effect on the work
complexity. The first solution just divides up the memory
locations into appropriate chunks and applies independent
random permutations on each such chunk. These permu-
tations are themselves stored in memory. This potentially
could lead to the problem of ensuring that the accesses to
the table entries themselves are sufficiently parallelizable.
We overcome this by exploiting a fact that has been used
before: the size of the table is much smaller than the input.
This allows us to repeat each entry multiple times, which in
turn allows for sufficient parallelizability.

For the second solution, a natural option is to reduce the
randomness in the first solution by using a standard deran-
domization tool. An inspection of the proof implies that one
only needs (roughly) P -wise independent random sources to
make the balls and bins argument go through. A natural
step would then be to use P -wise independent random per-
mutations. Unfortunately, good construction of such pseu-
dorandom objects are not known: in particular, we need ef-
ficient algorithms that given the pure random bits can com-
pute the resulting map. (In fact, the mere existence of such
objects has only been proven recently [23].) To get around
this predicament, we use the well-known P -wise indepen-
dent random strings based on Reed-Solomon codes (which
in turns are evaluations of low degree polynomials). Further,
to make things easier, we first only map the locations to a
random disk. To determine the location within a disk, we
simply maintain a count of how many locations have already
been mapped to the disk under consideration. (As before all
this information is stored in a table.) To get a better work
complexity, instead of using the naive polynomial evalua-
tion algorithm, we use a recent efficient data structure for
polynomial evaluation designed by Kedlaya and Umans [17].

1.3 Related Work
A lot of research has been carried out in the systems com-

munity to reduce energy consumption in diverse aspects of
computing including design of server systems, voltage and
frequency scaling, server consolidation, and storage energy
management [11, 15, 27, 28, 31, 32]. These problems have
also garnered a lot of attention in the theory community:
see e.g. the recent survey by Albers [6], which gives an
overview of the various threads of energy related research in
the theory community. One of these techniques called speed
scaling (which allows changing the speed of the processor
in order to save energy) was defined about a decade and a
half ago in the seminal paper of Yao et al. [36]. The last
few years has seen a lot of activity in this area: see e.g. the
paper by Bansal et al. [7]. Another approach is to dynami-
cally power down a machine (or choose among multiple low
power states) [16]. Both of these general approaches lead to
scheduling problems in both the online and offline settings.
However, in our opinion, the models proposed above for en-
ergy management though very nice, stop short of making

energy minimization a primary goal of algorithm design like
the I/O model made minimizing number of disk accesses a
primary objective for algorithm design. The main impedi-
ment for pursuing this direction is a realistic model of energy
consumption at the algorithm design. We believe that our
model will complement this body of existing work.

Memory models with a small fast memory and a large slow
memory have been studied for a long time. The I/O model
[5] presents an external memory model, where accesses are
made in blocks of size B to a fast memory of sizeM . Further,
up to P parallel I/Os can be made simultaneously. Vitter
and Shriver [34] extend this model with the restriction that
the parallel I/Os can be made to P parallel disks only. This
additional constraint introduces the aspect of data layout in
the algorithm design, which ensures that blocks needed in
parallel are written out to different disks. However, there is
no associativity restriction and any block in slow memory
can be mapped to any arbitrary block in the fast memory.
Similar models have been proposed to model the number of
cache misses in a 2-level cache-memory model with limited
associativity [24]. A fundamental difference between our
energy model and existing models is that in our model, we
have a small value of M/B (equal to P ) and an associativity
of only 1 (every bank has exactly one sense amplifier and
hence all blocks in slow memory have exactly one slot in
fast memory that they can be mapped to).

Our model also has similarities with the cache oblivious
model [12]. In this model, the goal is to minimize the num-
ber of cache misses (equivalent to the number of I/Os), while
ensuring that the algorithm is also work optimal. Our model
differs from this work in three ways: (i) The cache model as-
sumes ‘ideal cache’ with high associativity whereas we have
an associativity of 1 (ii) The tall cache assumption does
not hold in our model due to small M/B and (iii) We aim
to minimize a linear combination of work complexity and
number of parallel I/Os whereas the cache oblivious model
tries to minimize both the work complexity and the number
of sequential I/Os without worrying about parallelism.

Parallel I/O algorithms naturally require a lookahead to
read P blocks in parallel. Data oblivious algorithms are use-
ful in this regard as they do not require a lookahead. We
consider one data dependent problems in our work: sort-
ing. For sorting, Goodrich recently presented an I/O opti-
mal data oblivious algorithm [13]. However, it is non-trivial
to ensure parallel access for the algorithm. Hence, in this
work, we use prediction sequences [8] for ensuring lookahead
as opposed to using data oblivious algorithms, which may
be an alternate approach.

1.4 Extensions to our model
There are two obvious extensions to our energy model

proposed in this work. First, since we wanted to follow the
DDR3 memory architecture, each of the P disks has a cache
that can only hold one block. A natural extension of this
is to allow for the caches to be larger (this will mimic the
“tall cache” assumption in the cache oblivious algorithms
model). Our results easily extend to this more powerful
model. We would like to point out that since our simulation



results works for the much smaller caches (and the simula-
tion only changes the disk memory accesses), they are more
powerful and apply easily to the case when the cache sizes
are larger. Another natural extension is to augment our en-
ergy model for multi-core machines. We leave this extremely
interesting extension as future work.

2. DERIVATION OF AN ENERGY COMPLEX-
ITY MODEL

The goal of our work is to define a model to capture the
energy consumed by a modern server for executing an al-
gorithm. In traditional data centers, servers perform the
computation and I/O is handled separately by network at-
tached storage. In this work, we focus only on server power,
which includes the power drawn by processors and the server
memory. Storage power is beyond the scope of this work.

2.1 Processor Power
The processor power drawn by a server can broadly be

classified into the leakage power drawn by the processor
clock and the power drawn by the processing elements. The
processing power is determined by the number of operations
performed by the processor. Hence, the computational en-
ergy consumed by a server for an algorithm A can broadly
be captured as

ECPU (A) = PCLKT (A) + PWW (A) (1)

where PCLK is the leakage power drawn by the processor
clock, T (A) is the total time taken by the algorithm, and
W (A) is the total time taken by the non-I/O operations
performed by the algorithm. (See (4) for the exact relation.)
PW is used to capture the power consumption per operation
for the server.

2.2 Memory Elements
Modern memory is based on the DDR architecture [1].

Memory in this architecture is organized into a set of parallel
banks. Each bank is arranged into a set of rows. Further,
each bank has a sense amplifier in which exactly one row
from the bank can be brought in. When a memory word
needs to be read (or written), the row containing the word
receives an ACT command. The ACT command activates
the row and brings it into the sense amplifier. A column
decoder is then used to identify the appropriate column of
the row and a RD (or WR) command reads (or writes) the
corresponding word from the sense amplifier. When the data
is no longer needed, a PRE command writes back the sense
amplifier into the row in the bank that the data belongs to.
A memory clock is used to synchronize commands when the
memory is activated.

A DDR memory may either be executing a command
(e.g., ACT , PRE, RD, WR), be in power down mode, in a
standby mode, or in an activated mode. A power down mode
implies that no bank in the memory is being used and is not
useful for algorithm design as it represents an input size of
0. When the memory is in the standby mode, each bank can
individually be in an activated state (the sense amplifier has

a row) or in a standby (precharged) state (the sense ampli-
fier is empty). The time taken to activate a row in a bank
is two orders of magnitude higher than the time taken to
read a word. All banks can individually receive commands
and execute these commands in parallel. Hence, memory
access exhibits a parallel behavior (data in different banks
can be parallely accessed) with a serial dependency (data in
two rows of the bank can only be accessed in sequence).

We model the memory power as a sum of three compo-
nents: (i) the first component PCKE captures the leakage
power drawn when the memory is in standby mode, but none
of the banks are activated, (ii) the second component PSTBY

captures the incremental cost over and above the leakage
power for banks to be activated and waiting for commands,
and (iii) the third component captures the incremental cost
of various commands. The standby power needs to be com-
puted for the duration that a bank is active and hence needs
to be multiplied with the product of number of activations
and the average activation time. Since ACT and PRE com-
mands are always paired, we capture the energy cost of an
ACT and a PRE command as EACT . Similarly, the cost
of a RD or WR command is captured as PRDWRTRDWR.
Hence, we model the memory power as

EMEM (A) =PCKET (A) + PSTBY TACT (A)ACT (A)+
EACTACT (A) + (RD(A) +WR(A))TRDWRPRDWR.

(2)

where ACT (A), RD(A), WR(A) denotes the number of
activation cycles (ACT and PRE pair), the number of reads
and writes respectively executed by an algorithmA. TACT (A)
is the average time taken by one activation by A.

2.3 Energy Complexity Model
We now present the energy complexity model, which is one

of the key contributions of our work. (In what follows we
will sometimes use equality instead of Θ(·) to reduce clutter
in some of the expressions.) We first combine the processor
and memory power ((1) and (2) resp.) into a single model

E(A) =PCLK(f)T (A) + PWW (A) + PCKET (A)+
PSTBY TACT (A)ACT (A) +EACTACT (A)+
(RD(A) +WR(A))PRDWRTRDWR. (3)

We can represent the time element in the energy equation
as

T (A) = W (A)+ACT (A)TACT (A)+(RD(A)+WR(A))TRDWR

(4)
where TRDWR is the number of processor cycles needed to
execute a RD or WR command. TRDWR has decreased over
the years and is now a small constant (between 2 and 10)
and can be taken out. Further, since every read and write
corresponds to some work done, we can “charge” this work
to the corresponding computational operations and thus, we
can subsume this term in the work term. Hence, the overall



time taken can be represented as

T (A) = Θ(W (A) + ACT (A)TACT (A)). (5)

Using the above value of T (A) in (3) and using TRDWR =
Θ(1), we get

E(A) =(PCLK + PCKE)(W (A) + ACT (A)TACT (A))
+ PWW (A) + PSTBY TACT (A)ACT (A)
+ EACTACT (A) + (RD(A) +WR(A))PRDWR.

(6)

Since number of reads and writes are less than W (A) and
PRDWR < PCLK (Fig. 4 provides a summary of typical val-
ues for these parameters), we subsume the last term in the
first term.

E(A) =(ACT (A)TACT (A))PC1

+W (A)PC2
+EACTACT (A) (7)

where PC1
is PCLK +PCKE +PSTBY and PC2

= PCLK +
PCKE + PW . The average time taken for each activation
TACT (A) depends on the I/O parallelism of the algorithm.
The activation cycle can be captured as a latency parameter
(L) (e.g., in DDR3 typical value is 200 cycles) and can be
amortized across all banks activated in parallel. For fully
parallel access, the expected time to read turns out to be
L/P . In modern processors with memory clocks approach-
ing processor clock speeds, the best access to read PB blocks
would be O(PB) computations. Hence, L = Θ(PB) and
TACT (A) = PB/k, where k is the “average” I/O parallelism
of the algorithm (or ACT (A)/k is the number of parallel ac-
cesses made by the algorithm). Since EACT < B ·PC1

(Fig. 4
and B is typically 4096), we subsume the third term in the
second term. Finally, for modern processors, PW < PCLK ,
which implies that PC1

= Θ(PC2
), which in turn gives us

our final model:

E(A) = W (A) + ACT (A)PB

k
(8)

Our energy model introduces a new term k or the average
I/O parallelism for an algorithm. The other terms are ei-
ther algorithm independent (P , B) or complexities that can
be derived from known complexity models (W (A) is work
complexity and ACT (A) can be derived from I/O complex-
ity). The parameter k prevents direct application of known
algorithms in other models and it is important to ascertain
if the parameter is even needed in practice.

We conducted experiments with varying memory bank
parallelism for some benchmarks, which are anecdotally known
to be very frequent in applications. These include writing
to a large vector, copying from one vector to another and
matrix transpose. We also increase the work and I/O com-
plexity by increasing the problem size for these operations
and measured the energy. Each experiment is repeated 10
times and the means are reported in Fig. 3. More details
of our experimental methodology as well as deviations from
the average values is described in the appendix.
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Figure 3: Energy consumed by (a) Write (b) Copy
and (c) Matrix Transpose Workloads



As expected from (8), we observe that energy increases
linearly with increase in the work and I/O complexity for
all three benchmarks (for fixed k). We observe that a 1-
parallel layout (i.e. k = 1) consumes more than 2X energy,
as compared to a 4-parallel layout (i.e. k = 4) for both
copy and write benchmarks. We would also like to note
that our benchmark code had overheads to ensure that our
memory allocation provided the parallelism we wanted. This
book-keeping of memory allocation was more significant for
matrices as opposed to vectors and as a consequence, the
difference is moderate for matrix transpose. Finally, for the
benchmarks we evaluated, work complexity started to dom-
inate beyond 4-parallel layout. Hence, the performance im-
provement of using 8 banks in parallel is not significant as
compared to using 4 banks in parallel. In fact, as we show
later, the tradeoff between work complexity and I/O paral-
lelism is a salient attribute of our model. Since our goal is
to minimize a function of these two parameters, we can af-
ford to not optimize any parameter that does not impact the
overall objective function for a specific algorithm. We next
align our energy model with existing parallel I/O models.

3. OUR ENERGY MODEL
In this section, we present our abstract energy model. In

our model, the energy consumption is very closely tied with
the memory layout, so we begin with our model of memory.

We will have two levels of memory. The second level of
memory (which we will call main memory) is divided into
P banks: we will denote the banks by M1, . . . ,MP . The
unit of memory access will be a block. The locations of a
block in a bank will be called a bank row. The collection of
all the banks rows with the same (relative) position in each
bank will be called a row. Each block will contain B items.
Each of the P banks has its own cache. In particular, we
will denote Mi’s cache by Ci. Ci can only hold one block.
Further, for any i ∈ [P ], only a block formMi can be read
into Ci and only the block in Ci can be written back intoMi.
With these constraints, an algorithm can manipulate the
items in the caches C1, . . . , CP however it wants. (In other
words, as long as it does not need to either read from the
main memory or write to the main memory, the algorithm
can consider C1, . . . , CP as one big cache with PB items in
it.) The algorithm is allowed a constant number of extra
registers as scratch space.

We emphasize that in our model

P < B. (9)

In particular, P can be a few orders smaller than B. This
for example is different from the tall cache assumption in
the cache oblivious model, where we would have P ≥ B.

Given the memory model, we are now ready to start defin-
ing our abstract energy model. To begin with, let A be the
algorithm under consideration and let x be an arbitrary in-
put. We define W (A, x) to be the work that algorithm A
performs on input x (i.e. the run time of A on x without ac-
counting for the time to transfer blocks from/to main mem-
ory with each basic computational step taking Θ(1) work).

Next we account for the memory accesses. Let I(A, x) be
the sequence of indices of the banks corresponding to the
actual memory access for A in input x.1 Starting from the
beginning of I(A, x) we partition the sequence into maximal
batches. We call a sequence of bank indices b1, . . . , bm to be a
batch if (i) All the bi’s are distinct; and (ii) When A accesses
the item corresponding to b1, it also knows the location of
the items corresponding to b2, . . . , bm. The number m will
be called the lookahead of A when it is accessing the item
corresponding to b1. Note that a batch can have size at
most P . Let the resulting sequence of batches be defined as
T (A, x).

We would like to elaborate a bit on the second property: in
general we allow A to have different lookahead for different
item it accesses. We will also work with the following sub-
class of algorithms

Definition 1. Let ℓ ≥ 1 be an integer. An algorithm A
is said to have a lookahead of ℓ, if for every memory location
it accesses, it knows the location of the next ℓ − 1 memory
locations.

As an example, consider the case for P = 4: I(A, x) =
1, 2, 2, 2, 3,
4, 1, 3, 1, 2, 4, then if the algorithm has a look ahead of 4,
then we have T (A, x) = (1, 2), (2), (2, 3, 4, 1), (3, 1, 2, 4), and
if the algorithm has a lookahead of 2, then we have T (A, x) =
(1, 2), (2), (2, 3),
(4, 1), (3, 1), (2, 4).

Finally, the batch complexity ofA on x is defined as T (A, x) =
|T (A, x)|.

We are now ready to define the energy consumed by A on
x as E(A, x) = W (A, x) + L · T (A, x), where L is a latency
parameter with

L = Θ(PB). (10)

Given the size of the input N , we define the energy com-
plexity of A as EA(N) = maxx:|x|=N E(A, x), where we will
drop A from the subscript if it is clear from the context.
For a randomized algorithm, we consider its expected en-
ergy complexity.

4. SUFFICIENT CONDITIONS FOR EFFI-
CIENT SIMULATION

In this section, we look at certain sub-class of algorithms
for which we can do an efficient simulation in our model. To
this end, we start with few definitions.

Definition 2 (Runs). A sequence of memory locations
is called a run if the locations can be partitioned into stripes,
where each stripe consists of all the blocks in the same row
in all the P memory banks.

1Each memory access is defined by a bit that signifies
whether it was a read or a write; the index of the bank that
was accessed; and the bank row that was accessed. How-
ever, for this part of the model, we only need to consider
the second component.



As an example, consider the case for P = 4 let I(A, x) be the
sequence of indices of the banks corresponding to the actual
memory access for algorithm A in input x. Then I(A, x) =
1, 2, 3, 4, 9, 10, 11, 12, 5, 6, 7, 8, 13, 14, 15, 16 is a run with the
stripes I(A, x) = (1, 2, 3, 4), (9, 10, 11, 12), (5, 6, 7, 8), (13, 14,
15, 16).

Definition 3 (k-striped algorithm). Let k ≥ 1 be
an integer. Call an algorithm k-striped if (1) One can divide
the execution of the algorithm into phases, (2) In each phase
the algorithm reads from at most k runs in memory and
writes to one run2 (and the runs are defined at the beginning
of a phase); and (3) In each run it accesses the blocks in a
sequential manner (i.e. row by row and within each row from
the first bank to the last).

As an example, consider the very simple algorithm of copy-
ing the contents of a vector v1 into another vector v2. Let v1
be allocated the sequence of indexes 1, 2, 3, 4, 9, 10, 11, 12 and
v2 be allocated the sequence of indexes 5, 6, 7, 8, 13, 14, 15, 16
and P = 4. In this case we can have two phases in the al-
gorithm. In the first phase we read the contents of run
(1, 2, 3, 4) and write it into run (5, 6, 7, 8). In the second
phase the contents of run (9, 10, 11, 12) is written into run
(13, 14, 15, 16). Each run here consists of a single stripe and
we read from exactly one run at each phase. Hence this
algorithm in this case k-striped with k = 1.

Definition 4 (Bounded algorithm). Call an algorithm
bounded if (1) The algorithm only accesses blocks only within
a run (and the run is defined/known at the beginning of the
algorithm); and (2) The ratio of the size of the run to the
number of memory access is upper bounded by a constant.

Definition 5. Let ℓ ≥ 1 be an integer. Then given an
algorithm A and an input x, we call the sequence I(A, x)
to be (ℓ, τ )-parallelizable for some integer 1 ≤ k ≤ ℓ, if for
every ℓ consecutive blocks in I(A, x) has at most τ batches
in it.

We note that pretty much any reasonable algorithm will
be a bounded algorithm. E.g. if an algorithm can earmark
all its required space in one contiguous run and it does not
“over-budget” by more than a constant factor, then it will
be a bounded algorithm.

We first begin with a simple observation that any algo-
rithm in the (parallel disk) I/O model can be easily modified
to work in our model with a similar degree of parallelism and
without incurring a penalty in the lookahead.

Theorem 4.1. Let A be an algorithm with lookahead ℓ
in the parallel disk I/O model with P − 1 disks and M =
(P − 1)B. Then there exists an algorithm A′ with the same
functional behavior as A such that for every x, we have

|I(A′, x)| ≤ O (|I(A, x)|)
2Our results can handle writing to a fixed constant many
runs. However, it is easy to see that we can simulate such
an algorithm with another one that just has one run with
constant overhead in the parameters. Hence, we only explic-
itly consider the case have a single “write run.”

and

W (A′, x) ≤W (A, x) +O(|I(A, x)| ·B).

Further, A′ is bounded (k-striped respectively) if A is a bounded
(k-striped resp.) algorithm. Finally, if A has a lookahead of
ℓ, then so does A′.

Proof. Recall that the only way that the parallel disk
I/O model differs from our memory model is that our P
caches are associated with the P banks while the memory
in the parallel I/O disk model is not associative. In our
simulation, we will show that this is not a big restriction if
we have one extra bank: the main idea is to use the cache
of the extra bank as a temporary space. More precisely, we
fix a map from the (P − 1)B blocks in memory used by A′

to the first P − 1 caches. (We also do the obvious map from
the P − 1 disks to the P − 1 banks.) The only constraint
on this map is that given any block’s location for A we can
immediately compute its location in the P − 1 caches. For
the rest of the proof, we will assume that this mapping has
already been done. Next we define A′. We will show how
an arbitrary I/O in A can be simulated by a memory access
in our model and O(B) extra work per I/O, which prove the
desired result. Assume that A needs to transfer a block b
from bank i to the cache j. If i = j, then this can be done
easily. If not, we first move the contents of the ith cache to
the last cache, bring in the block b to the ith cache, move b
from the ith cache to the jth cache and finally move back
the contents of the last cache to cache i. Similarly one can
simulate a write from one of the caches to one of the banks.

Finally, since A′ has the same access pattern in the banks
as A does (in the corresponding disks), it preserves the
lookahead as well as the property of being striped/bounded
as A.

We start with the following simple observation:

Lemma 4.2. If a sequence I(A, x) is (ℓ, τ ) parallelizable,

then T (A, x)) ≤ |I(A,x)|
ℓ
· τ .

Proof. The sequence can be divided into |I(A,x)|
ℓ

blocks
with ℓ bank indices in them. Further, as I(A, x) is (ℓ, τ )-
parallelizable, each of these blocks have at most τ batches
in them, which proves the claim.

The above implies the following simple observation:

Lemma 4.3. Let A be an algorithm with lookahead ℓ =
Θ(P ) such that for any input x, I(A, x) is (ℓ,O(1))-parallelizable.
If A is worst-case work-optimal and I/O optimal, then A is
also energy optimal.

Proof. The main observation is simple: since there are
P banks for any algorithm A′ and input x, we have

T (A′, x) ≥ |I(A
′, x)|
P

.

Thus, Lemma 4.2 implies that for any given sequence, the
number of batches is within a constant factor of the optimal.
This implies that for any (large enough N), since the algo-
rithm has worst-case optimal I/O complexity, maxx:|x|=N T (A, x)



is worst-case optimal. Further, it is given that the algorithm
is worst-case work optimal. Thus, the claim follows by the
definition of EA(N) (and the fact that the delay parameter
L is independent of N).

We are now ready to state and prove our first non-trivial
sufficient condition:

Theorem 4.4. Let 1 ≤ k, ℓ ≤ P be integers. Let A be a k-
striped algorithm with lookahead ℓ. Then there exists a (ran-
domized) algorithm A′ with the same functional behavior as
A (and uses up at most three times as much space as A does)
such that for every x, we have |I(A′, x)| ≤ O (|I(A, x)|) ,
and I(A′, x) is (ℓ, τ )-parallelizable, where

E[τ ] ≤ O(1). (11)

In particular, we have

E
[

T (A′, x)
]

≤ O

( |I(A, x)|
ℓ

)

. (12)

Finally,

W (A′, x) ≤ O(W (A, x)). (13)

Proof. We first argue that the number of batches in A′

is bounded. (12) follows from (11), Lemma 4.2 and the
linearity of expectation. Thus, for the rest of the proof, we
focus on proving (11).

We will designA′ fromA by using the power of two choices
in the balls and bins framework. The main idea is the fol-
lowing: at the start of each phase we make two copies of the
run. We divide each of the two copies into disjoint groups
and (independently) reorder each group with a random per-
mutation. When we need to read a block, we choose one that
minimizes the “load.” In particular, since A has a lookahead
of ℓ the idea is to divide each group of ℓ memory locations
into small number of batches. It turns out that this number
of batches (which will determine τ ) is exactly the maximum
load in a balls and bins problem induced by the above pro-
cess (which corresponds to a balls and bins problem with
two choices). We now present the details.

We will show how A′ simulates any arbitrary phase of A
with the required properties. The claimed result then just
follows by applying the same procedure to all the phases.
For the rest of the proof, we will assume that A only uses
the first P/2 banks and does not access any block in the last
P/2 banks. (In general, this assumption might not be true
but since A′ does a step by step simulation of A, one can
always modify A′ so that A effectively only uses the first
P/2 banks.)

Fix any phase of A and consider the time when A is about
to start the phase. The simulation proceeds in three steps:

Pre-Processing.
At the beginning of the current phase, A knows the run.

Let m be the size of the run. For now, let us assume that

m ≤ 22B/P (14)

A′ will copy the run into fresh space (which is not used by
A). At the same time, for every block it stores the map

between the old location and the new location. We now
present the details.

Since A knows the run in the current phase, we’ll assume
w.l.o.g. that given the index of any block in the run, one can
compute its actual location. Note that there are m/B blocks
in the run (we’ll assume that B divides m– this does not
affect any of the asymptotic bounds later on). In particular,
one can fit g = ⌊B/ log(m/B)⌋ such indices into one bank
row. (Note that (14) implies that g ≥ P/2.) To compute
the random map, we proceed as follows:

Iterate the following 2(m/B)/(gP ) times. In the
0 ≤ i < 2(m/B)/(gP ) iteration, do the follow-
ing twice (with independent randomness). Write
the memory locations of the blocks indexed3 by
i · gP/2, . . . , (i + 1) · gP/2 − 1 into the last P/2
caches. Then using Knuth’s Algorithm P (also
known as the Fisher-Yates shuffle) [19] randomly
permute the g contiguous groups of P/2 indices
each in-place. (For different groups and itera-
tions we use independent randomness. Note that
we are permuting the gP/2 indices where rela-
tive positions of groups of sizes P/2 remains the
same.) After the permutation, write all the P/2
cyclic shifts of the contents of the P/2 caches into
P/2 rows in fresh memory in the last P/2 banks
(allocated for storing the random map).

(Note that each block gets permuted randomly twice. We
will refer to these two random maps as the first and second
random map. We’ll see later why the P/2 cyclic shifts will
be useful.)

Next we copy the actual contents of the run: we access
the run row by row and then using the random map that we
stored above we copy P/2 blocks at a time. In particular,
we load the random maps for the m/B blocks in chunks of
size gP/2 in the last P/2 caches (each of the gP/2 locations
have P/2 copies: pick any arbitrary one). We then divide
the gP/2 into chunks of size P/2 (i.e. we consider the maps
for the first P/2 of the m/B blocks and so on). For each
chunk we copy the corresponding blocks in the first P/2
banks into their corresponding locations in a fresh memory
space (that is not used by A). We do this for both the first
and the second random maps.

We now argue about the contribution of the pre-processing
step to I(A′, x). We first upper bound the number of new
accesses. During the creation of the random map, in each of
the 2m/(gBP ) iterations, we add 2·P 2/4 accesses, leading to
a total of mP/(gB) ≤ 2m/B extra accesses. Further, each
of the P/2 blocks that are written to one row form a sin-
gle batch (for a total of m/(BP ) batches). For the copying
part, for loading the random maps into the last P/2 caches,
the number of extra accesses and batches can again be upper
bounded bym/B andm/(PB) respectively. Finally, we con-
sider the copying part: we copy over m/B blocks in chunks
of size P/2, so the number of extra accesses is again at most

3Since everything in part of a run w.l.o.g., we will assume
that these memory locations are also contiguous.



m/B. Further, while copying one chunk of P/2, note that
by the assumption that these form a contiguous part of the
run, when we randomly permute these P/2 elements, each
such chunk forms exactly one batch.

Thus, overall, the preprocessing step adds O(m/B) to ac-
cesses in I(A′, x). Further, these accesses are (P/2, τ ) par-
allelizable, where τ satisfies (11). Recall that so far we have
assumed that m satisfies (14). However, if this is not the
case, we can just divide the run into consecutive chunks
of size 22B/P and then apply the above procedure on each
of these chunks. Note that doing so still preserves all the
claimed bound (in terms of general value of m).

Since A is striped, it implies that m/B is O(|I(A, x)|).
Thus, overall this phase adds O(|I(A, x)|) accesses with the
required parallelizability property.

Simulation.
We now state how we simulate the actual computation

steps of A in A′: we will run the exact same steps as in A
except when it does a memory read we access the “lighter
loaded” of its two copies (according to the first and second
random maps that we have stored). For memory writes since
we have assumed that the algorithm writes to a single run in
a sequential manner, we can easily simulate this step within
the required resource parameters. Hence, for the rest of the
description, we will focus on the simulation of the reads.

In particular, since A has a look-up of ℓ, A′ will process
the memory accesses ofA in chunks of size ℓ← min(ℓ, P/512)
and perform the following two tasks:

• Load the two new locations of the ℓ blocks from the
stored first and second random maps into the last P/2
caches.

• Think of the ℓ blocks as balls and the p banks as bins
in the balls and bins framework in Section D. Then for
each block pick the copy from either the first or second
random map as dictated by the allocation algorithm in
Section D.

• Using the location of the corresponding block from the
previous step, one does the corresponding accesses into
the ℓ blocks.

It is easy to see that each of the step above lead to at most
ℓ memory accesses and thus, overall this step contributes
O(|I(A, x)|) number of accesses to I(A′, x). We now argue
about the parallelizability of the accesses in this step. For
the first step above, note that given the ℓ locations one can
easily compute the corresponding indices into the random
map. Given that each entry in random map is repeated P/2
times in all the last P/2 banks, implies that when we want
to look up the new locations for the ℓ blocks, we pick the
copies in such a way that all the ℓ accesses form a single
block. For the second step above, Theorem D.2, implies
that each of the chunk of ℓ accesses has O(1) batches (in
expectation). Thus, overall all the accesses in this step are
(ℓ, τ )-parallelizable with τ as in (11), as desired.

Post-Processing.
In this step, we copy back blocks from the fresh memory

to their original locations. To do this, we go over the old
locations row by row, load the corresponding entries from
(say the first) random map and then copy back the contents
of the block in the new location to the original location.4

It is easy to see that using the same arguments as in the
pre-processing step, we add O(|I(A, x)|) accesses with the
required parallelizability property.

Finally, we argue (13). The inequality follows from the
fact that the only ways A′ differs from A are (i) Comput-
ing the random map– one needs O(1) amount of work per
entry in the random map (this includes the time taken to
compute the random permutation– the Fischer-Yates shuf-
fle can be implemented with O(1) work per element); (ii)
the copying of elements from the runs that are “active” in a
phase to another portion in the memory using the random
map– this just needs O(1) work per elements in the run;
(iii) while doing a memory access, one can has to compute
its location from the random map, which again takes O(1)
work per element (here we use the fact that when computing
the best of two choices we can compute the choices for the
Θ(P ) locations in time O(P ) due to Lemma D.1); and (iv)
Undoing the random map for each block in the run, which
again takes O(1) work per element. The proof is complete
by noting that the algorithm accesses each active element in
each of the phases at least once.

We now ready to state and prove our second non-trivial
sufficient condition:

Theorem 4.5. Let 1 ≤ ℓ ≤ P/2 be an integer. Let A
be a bounded algorithm with lookahead ℓ that uses space
S(x) for input x. Then there exists a (randomized) algo-
rithm A′ with the same functional behavior as A (and uses
three times as much space as A does) such that for every
x we have |I(A′, x)| ≤ O (|I(A, x)|) , and I(A′, x) is (ℓ, τ )-
parallelizable, where

E[τ ] ≤ O

(

logP

log logP

)

. (15)

In particular, we have

E
[

T (A′, x)
]

≤ O

( |I(A, x)| · logP
ℓ · log logP

)

. (16)

Finally,

W (A′, x) ≤ O(W (A, x)). (17)

Proof. The proof is similar to that of Theorem 4.4 ex-
cept that we randomize the blocks used by A differently: we
just randomly permute each group of size P/2 once and then
apply the balls and bins result from Section C. For the sake
of completeness, next we present the details.

4Since we can do both reads and writes in a phase, we first
copy back the runs that were read and then copy back the
run that was written to– this way we ensure that the original
locations after the phase is done has the correct value.



Using a similar argument as in the proof of Theorem 4.4,
w.l.o.g., we can assume that

|S(x)| ≤ 22B/P . (18)

Unlike before, A′ does the random permuting before sim-
ulating any steps of A. Thus, we will only need a pre-
processing step (but no post-processing step). For the rest
of the proof, we will assume that A only uses the first P/2
banks and does not access any block in the last P/2 banks.
(In general, this assumption might not be true but since A′

does a step by step simulation of A, one can always modify
A′ so that A effectively only uses the first P/2 banks.)

Pre-Processing.
Note that since A is bounded, it knows the entire space

that is going to use. For notational convenience, define m =
S(x). A′ will copy this space into fresh space (which is not
used by A). At the same time, for every block it stores the
map between the old location and the new location. We now
present the details.

Since A knows the run it is going to use when executing
itself on x, we’ll assume w.l.o.g. that given the index of any
block in the run, one can compute its actual location. Note
that there are m/B blocks in the run (we’ll assume that B
divides m– this does not affect any of the asymptotic bounds
later on). In particular, one can fit g = ⌊B/ log(m/B)⌋ such
indices into one bank row. (Note that (18) implies that
g ≥ P/2.) To compute the random map, we proceed as
follows:

Iterate the following 2(m/B)/(gP ) times. In the
0 ≤ i < 2(m/B)/(gP ) iteration, write the indices
i · gP/2, . . . , (i + 1) · gP/2 − 1 into the last P/2
caches. Then using Knuth’s Algorithm P (also
known as the Fisher-Yates shuffle) [19] randomly
permute the gP/2 indices in-place. (For differ-
ent iterations we use independent randomness.)
After the permutation, write all the P/2 cyclic
shifts of the contents of the P/2 caches into P/2
rows in fresh memory in the last P/2 banks (al-
located for storing the random map).

(We’ll see later why the P/2 cyclic shifts will be useful.)
Next we copy the actual contents of the run: we access

the run row by row and then using the random map that we
stored above we copy P/2 blocks at a time. In particular,
we load the random maps for the m/B blocks in chunks of
size gP/2 in the last P/2 caches (each of the gP/2 locations
have P/2 copies: pick any arbitrary one). We then divide
the gP/2 into chunks of size P/2 (i.e. we consider the maps
for the first P/2 of the m/B blocks and so on). For each
chunk we copy the corresponding blocks in the first P/2
banks into their corresponding locations in a fresh memory
space (that is not used by A).

We now argue about the contribution of the pre-processing
step to I(A′, x). We first upper bound the number of new
accesses. During the creation of the random map, in each of
the 2m/(gBP ) iterations, we add P 2/4 accesses, leading to
a total of mP/(2gB) ≤ m/B extra accesses. Further, each

of the P/2 blocks that are written to one row form a sin-
gle batch (for a total of m/(BP ) batches). For the copying
part, for loading the random maps into the last P/2 caches,
the number of extra accesses and batches can again be up-
per bounded by m/B and m/(PB) respectively. Finally,
we consider the copying part: we copy over m/B blocks in
chunks of size P/2, so the number of extra accesses is again
at most m/B. Further, while copying one chunk of P/2, we
note that we’re in the situation of the balls and bins prob-
lem considered in Section C and thus, Theorem C.1, implies
that each such chunk will have at most O(logP/ log logP )
batches in expectation.

Thus, overall, the preprocessing step adds O(m/B) ac-
cesses in I(A′, x). Further, these accesses are (P/2, τ ) par-
allelizable, where τ satisfies (16). Since A is bounded, it
implies that m/B is O(|I(A, x)|). Thus, overall this phase
adds O(|I(A, x)|) accesses with the required parallelizability
property.

Simulation.
We now state how we simulate the actual computation

steps of A in A′: the idea is as before– we’ll run the exact
same steps as in A except when it does a memory access we
access its corresponding copy (according to the random map
that we have stored). In particular, since A has a look-up
of ℓ, A′ will process the memory accesses of A in chunks of
size ℓ and perform the following two tasks:

• Load the new locations of the ℓ blocks from the stored
random map into the last P/2 caches.

• Using the location of the corresponding block in the
fresh space (stored within the last P/2 caches), one
does the corresponding access into the ℓ blocks.

It is easy to see that each of the step above lead to at most
ℓ memory accesses and thus, overall this step contributes
O(|I(A, x)|) number of accesses to I(A′, x). We now argue
about the parallelizability of the accesses in this step. For
the first step above, note that given the ℓ locations one can
easily compute the corresponding indices into the random
map. Given that each entry in random map is repeated P/2
times in all the last P/2 banks, implies that when we want to
look up the new locations for the ℓ blocks, we pick the copies
in such a way that all the ℓ accesses form a single block. For
the second step above, Theorem C.1, implies that each of
the chunk of ℓ accesses has O(logP/ log logP ) batches (in
expectation). Thus, overall all the accesses in this step are
(ℓ, τ )-parallelizable with τ as in (16), as desired.

Finally, we argue (17). The inequality follows from the
fact that the only ways A′ differs from A are (i) Comput-
ing the random map– one needs O(1) amount of work per
entry in the random map (this includes the time taken to
compute the random permutation– the Fischer-Yates shuffle
can be implemented with O(1) work per element); (ii) the
copying of elements from the run to another portion in the
memory using the random map– this just needs O(1) work
per elements in the run; (iii) while doing a memory access,
one can has to compute its location from the random map,
which again takes O(1) work per element.



Reducing the Amount of Randomness.
An inspection of the proofs of Theorems 4.4 and 4.5 re-

veals that A′ needs a lot of random bits. In particular, if
the algorithm uses S amounts of “active” space in a given
run, then one needs Ω(S) space. In Appendix B, we show
how using limited-wise independent sources based on Reed-
Solomon codes, one can reduce the randomness toO(P log S)
bits while pretty much maintaining the rest of the parame-
ters.

5. COROLLARIES FOR SPECIFIC PROB-
LEMS

5.1 Inner Product.
We start the simple problem of computing the inner prod-

uct of two vectors of length N . Assuming both the vectors
are stored in the same order in memory, the naive algorithm
of getting PB/2 consecutive entries from each of the vec-
tors from memory to the P caches (and keeping track of the
current partial value of the inner product in a register) has
the optimal work complexity of O(N) as well as the opti-
mal I/O complexity of O(N/B). Further, it is easy to see
that the above algorithm is (P/2, 1)-parallelizable. Thus by
Lemma 4.3, we have the following result:

Proposition 5.1. The inner product problem can be solved
with energy optimal complexity of Θ(N).

We note that for this problem, having the tall cache as-
sumption does not have any impact.

5.2 Sorting.
It is easy to see that the k-way merge sort is a k-striped

algorithm. However, since the algorithm is data dependent,
the “traditional” merge sort algorithm does not good looka-
head. Barve et al. [8] showed how to use a prediction se-
quence to get around this predicament and achieve a looka-
head of Θ(P ) (while not asymptotically changing the work
or I/O complexity). For the sake of completeness the details
are in Appendix F. The (modified) P -way merge sort has a
work complexity of O(N logN) and an I/O complexity of
O
(

N
B
logP (N/B)

)

. Thus, Theorem 4.4 implies the follow-
ing:

Corollary 5.2. Sorting of N numbers can be done with
the optimal Θ(N logN) energy complexity.

We would like to point out that we do not need The-
orem 4.4 to prove the above corollary. We note that 2-
way merge sort trivially is (P/2, 1)-parallelizable. Further,
it is known that 2-way mergesort has I/O complexity of
O
(

N
B
log(N/B)

)

. Thus, Lemma 4.2 then also proves the
above corollary. Further, note that in this case having a
larger cache can only make the I/O complexity smaller,
which makes the time complexity component of the energy
complexity dominate even more.

Using the optimal algorithm for sparse matrix-dense vec-
tor multiplication from [10] and the result above, we can
also obtain energy optimal result for the sparse matrix-dense
vector multiplication problem. (The algorithm in [10] uses
sorting as a routine and the rest of the algorithm can be
performed with linear scans, which are both work and I/O
optimal as well as (P, 1)-parallelizable.) Indeed sorting is
a basic primitive that is used in many I/O algorithms (see
e.g. the book by Vitter [33]) and thus Corollary 5.2 would
be applicable in many other problems.

5.3 Permuting.
We now consider the problem of permuting a given vec-

tor of N items according to (an implicitly specified) per-
mutation. Since this is a special case of sorting, we can
use any sorting algorithm to solve this problem. However,
one crucial way in which this problem differs from sorting
is that the permuting problem has a work complexity of
Θ(N). Further, it is known that the permuting problem has
an I/O complexity of Ω

(

min
(

N, N
B
logM (N/B)

))

[5]. This
implies that the energy complexity of the permuting problem
is Ω (N +min (NB,N logM (N/B))). Note that this implies
that for this problem, the work complexity is the negligi-
ble part of the energy complexity (under the assumption
that N ≥MB, which is reasonable even with the tall cache
assumption). In other words, unlike the sorting problem,
where even 2-way mergesort gave the optimal energy com-
plexity algorithm, for the permuting problem, we need to use
the (modified) P -way mergesort algorithm from Appendix F
along with Theorem 4.4, to prove the following result:

Corollary 5.3. Permuting of N numbers can be done
with the optimal Θ(N logP (N/B)) energy complexity.

We remark that with larger cache size the logarithm term
can be made smaller.

5.4 Matrix Transpose.
The naive

√
N ×

√
N matrix transpose algorithm has lin-

ear O(N) work complexity but is not I/O-efficient and may
require up to N I/Os. Even if the I/O sequence is (P, 1)
parallelizable, the batch complexity of the algorithm would
be N/P , which is a factor of B times the optimal complex-
ity. Under the assumption of tall cache, the algorithm in [5]
that transposes sub-matrices can achieve a batch complex-
ity of N/(PB). In the absence of tall cache, [5] present an

algorithm that has a tight I/O bound of Ω
(

N
B

log(M)
log(1+M/B)

)

.

The recursive matrix transpose algorithm alluded to above
is a bounded algorithm and thus, one can apply Theorem 4.5
to it. However, the simulation in Theorem 4.5 suffers an
overhead of O(logP/ log logP ) in its parallelizability, which
does not give us the optimal result. Instead we notice that
given the special structure of the algorithm we can make
the algorithm (P/2, 1)-parallelizable (and without using any
randomness). This makes sure we still have the optimal par-
allelized I/O complexity, which leads to the following opti-
mal energy result (even though its work complexity is not
optimal):



Theorem 5.4. The recursive Matrix Transpose algorithm
is (P/2, 1) parallelizable. Thus, the matrix transpose prob-
lem has an optimal energy complexity of Θ(N log(1+P )(B/P )).

We note that for larger cache size, we can get rid of the
log factor. The proof is in Appendix E. The above result
also implies the that matrix multiplication can be done with
energy complexity O(N3). (The algorithm to compute A×B
would be to first transpose B and then perform the natural
N2 inner products using the energy optimal algorithm from
earlier in this section.)

6. EXPERIMENTAL SETUP AND ADDITIONAL
RESULTS

6.1 Energy Parameters

Parameter Value
PRDWR 57mW
PCLK 500mW
PCKE 102mW
EACT 2.5nJ
PSTBY 16mW

Figure 4: Energy Parameters for DDR3 RAM [1]
and 1 Intel XScale CPU

Fig. 4 captures the values of various energy components
for DDR3 memory. We use these values to derive the simple
energy model used in this work.

6.2 Hardware Setup
We conducted our experiments on two different platforms.

The first platform is a desktop server 2 Intel Xeon cores, each
operating at a frequency of 2GHz. The desktop has 2GB
DDR2 memory with 8 banks and is running Windows 7. For
running our experiments, we boot the desktop in safe mode
and run only a minimum set of basic OS services. This
ensures that the power measured by us can be attributed
primarily to the application being tested. We measured the
power drawn by an application using the Joulemeter tool
[4].

Our second platform is a Mac note book with 4 Intel cores,
each operating at a frequency of 2 GHz. The desktop has
4GB DDR3 memory with 8 banks and is running Mac OS
X Lion 10.7.3. We repeated the copy and transpose exper-
iments on this platform. We aborted most of the processes
other than our programs while we executed it to ensure that
the power measured by us can be attributed primarily to
the application being tested. We measured the (total) power
drawn using the Hardware Monitor tool [3].

6.3 Benchmark Algorithms
Our energy modeling experiment were driven using three

benchmarks. Our first benchmark is Algorithm 1, which
writes data into an integer vector along a specific access
pattern. Our second benchmark (Algorithm 2) is inspired

from the dcopy benchmark and copies a large integer vec-
tor into another. The third algorithm is a modified matrix
transpose algorithm on an integer matrix.

Our goal in these experiments was to define an operating
point with a fixed work compelxity and a fixed number of
memory accesses. For this operating point, we would vary
the allocation of data across the banks in such a way that the
algorithm would have varying degrees of bank-parallelism
(from 1 to 8). Since work complexity does not change due to
data layout, the work complexity is preserved in our exper-
iments by ensuring that we use identical code for all experi-
ments. Having constant number of memory accesses across
various data layouts is tricky. Further, memory controllers
interleave memory across banks in a round robin fashion us-
ing a chunk size smaller than B called rs, complicating the
problem further. In order to preserve memory complexity,
we use a simple locality aware access pattern.

We elaborate with the example of vector copy. It is easy
to see that the minimum number of I/Os needed to read a
vector of size N is N/B. Ensuring that a 1-parallel access
also uses N/B is trivial. We read one bank and ensure that
we read one bank row (B bytes from the same row) before
moving to another row in the bank. For a p-parallel access,
we read data from the p banks in parallel in chunks of size
r, where r < B and is set to rs. To ensure that we do not
need to make multiple memory accesses for multiple chunks
in the same bank row, we maintain locality of access within
one bank. All elements from an open row are read before
any data is read from any other other row in the given bank.
Elements across different banks do not preserve locality and
can be interleaved by the algorithm. It is easy to note that
this property ensures that the number of memory accesses
are still N/B. The same idea easily extends to the write
experiment. The matrix transpose algorithm is performed
using multiple runs of the matrix. We again ensure this
property for each run individually.

We next describe details of the individual algorithms.

Input: A large vector V of integers of length N ,
integers G, C, and I

count = 0;
while count < G× C do

i = 0, j = 0, k = 0;

for i = 0→ N
G×C

− 1 do

j = count;
for k = 0→ C − 1 do

V [j + k] = I ;
end
j+ = G ×C;

end
count+ = C;

end

Algorithm 1: Writing into a large vector of integers

In Algorithm 1 and 2 we assume C divides N , and G
divides C. In Algorithm 1, we group the input vector V
into N

G
groups each of size G. The access is then done in



Input: Two large vectors V1 and V2 of integers each
of length N , integers G and C

count = 0;
while count < G× C do

i = 0, j = 0, k = 0;

for i = 0→ N
G×C

− 1 do

j = count;
for k = 0→ C − 1 do

V2[j + k] = V1[j + k];
end
j+ = G× C;

end
count+ = C;

end

Algorithm 2: Copying a large vector of integers into
another

the following way: At step i, we access the ith chunk of size
C of each group sequentially. The elements of the current
chunk are accessed sequentially and set to the integer I .
The idea behind the algorithm is to ensure that the access
defines various degrees of parallelism over the banks of the
memory. As an example, we have a 1-way parallel access
if we set G to be the number of banks in the memory, and
C to be the round robin chunk size rs, which is allocated
per bank row at each allocation by the memory controller.
In case the allocation is bank row wise across the banks,
then C set to the bank row size (block size B), and G to
the number of banks (P ) gives us a 1-way parallel access.
On the other hand setting C = B and G = 1 leads to P -
way parallel access. The work and I/O complexity of the
algorithm does not change as we vary G, and C since we
preserve the locality of access within each bank (elements
within a bank are accessed sequentially ensuring that one
row is written completely before we touch any other element
on the same bank).

Algorithm 2 accesses two vectors defined in exactly the
same way as in Algorithm 1. The difference here is we have
two vectors on which this access pattern is defined, and data
from the ith element of V1 is copied into the ith element of
V2.

Algorithm 3 transposes an N ×N matrix of integers. For
this algorithm, we need to define a related map φr,P that

maps anN×N matrixM into another matrixA
def
= φr,P (M)

as follows. (The map φ depends on parameters P and r such
that P divides r, and Pr divides N .) From M, construct an
N ×N/r matrix X such that every r consecutive elements
in any row in M constitute a single “mega”-element in the
same row in X. Now divide up X into P × P submatrices
and transpose them in place to obtain the matrix Y. (Note
that by our choices of r, P and N , Y is also an N × N/r
matrix.) The final matrix A is obtained from Y by sim-
ply “unpacking” each mega element in Y into r consecutive
elements in the corresponding row in A.

The central unit in this algorithm is a submatrix with P
rows. The map vector ensures that this sub-matrix is hosted

Input: An N ×N matrix M of integers, integers P , r,
and s

Output: Transposed matrix (φr,P (M))T

Let A = φr,P (M)

Divide A into N2

P2 submatrices of size P × P

foreach P × P submatrix do
Transpose the submatrix naively in place;

end
\∗ At this time all the submatrices are

transposed ∗\
foreach P × P submatrix do

Swap it with its corresponding submatrix within A
row-by-row;

end

Algorithm 3: Matrix transpose algorithm

on p banks, where p can be varied from 1 to 8. The value
of p dictates the degree of parallelism for the algorithm. We
also process the sub-matrices in a row major fashion for the
transpose step, which ensures the per-bank locality prop-
erty required to preserve the number of memory accesses.
For the swap step, the sub-matrices are picked in a row ma-
jor fashion. This ensures locality property for the picked
sub-matrices. The swap partners of the sub-matrices do not
satisfy locality (only P elements out of B are read sequen-
tially). However, P elements out of B are read across all the
variants, leading to the same number of memory accesses for
all the experiments.

6.4 Additional Results

6.4.1 Additional data for experiments on Windows
We present the variations in the energy readings for all

the experiments of Figure 3 in Tables 1, 2, and 3.



Algorithm Vector or Matrix size Degree of Parallelism Max Min Avg
Write 256MB 1-Way 69.0374 68.4705 68.6285
Write 256MB 2-Way 45.7844 44.3620 45.0138
Write 256MB 4-Way 37.2824 34.7816 36.6009
Write 256MB 8-Way 34.1156 33.1847 33.4776
Write 128MB 1-Way 34.8290 33.6623 34.0199
Write 128MB 2-Way 23.2194 22.2575 22.4373
Write 128MB 4-Way 19.1495 18.0503 18.2758
Write 128MB 8-Way 17.4870 16.0016 16.7338
Write 64MB 1-Way 17.3420 16.8986 17.0549
Write 64MB 2-Way 11.4637 11.1825 11.1737
Write 64MB 4-Way 9.6474 9.0376 9.1379
Write 64MB 8-Way 8.9030 7.9290 8.3259
Write 32MB 1-Way 8.5935 8.4816 8.5057
Write 32MB 2-Way 5.8870 5.5657 5.6086
Write 32MB 4-Way 4.8235 4.3250 4.5704
Write 32MB 8-Way 4.5240 4.0340 4.1615

Table 1: Maximum, minimum, and average energy consumption in Joules for the write algorithm on various
input sizes, and various degree of parallelism on Windows.

6.4.2 Results on Macintosh
The copying and transpose experiments have been re-

peated on the Macintosh platform mentioned earlier in this
section. We present the results in Figure 5.
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Figure 5: Energy consumed by (a) Copy and (b)
Matrix Transpose Workloads on Macintosh
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Algorithm Vector or Matrix size Degree of Parallelism Max Min Avg
Integer copy 128MB 1-Way 58.9665 57.0488 57.5476
Integer copy 128MB 2-Way 41.3250 39.2921 40.2636
Integer copy 128MB 4-Way 36.8010 34.6318 35.7396
Integer copy 128MB 8-Way 34.5390 32.4379 33.5704
Integer copy 64MB 1-Way 29.2514 28.3649 28.681
Integer copy 64MB 2-Way 20.6575 19.6112 20.0854
Integer copy 64MB 4-Way 18.3955 17.3043 17.9162
Integer copy 64MB 8-Way 17.3420 16.2414 16.7388
Integer copy 32MB 1-Way 14.6255 14.2056 14.3898
Integer copy 32MB 2-Way 10.5264 9.8397 10.1326
Integer copy 32MB 4-Way 9.2025 8.6637 8.9552
Integer copy 32MB 8-Way 8.5935 8.0982 8.3288
Integer copy 16MB 1-Way 7.5400 7.1021 7.2384
Integer copy 16MB 2-Way 5.1234 4.9082 4.9764
Integer copy 16MB 4-Way 4.6785 4.4109 4.437
Integer copy 16MB 8-Way 4.3694 4.0716 4.2514

Table 2: Maximum, minimum, and average energy consumption in Joules for the copy algorithm on various
input sizes, and various degree of parallelism on Windows

Algorithm Vector or Matrix size Degree of Parallelism Max Min Avg
Transpose 256MB 1-Way 242.7729 235.7240 241.0828
Transpose 256MB 2-Way 222.9773 217.7890 222.8969
Transpose 256MB 4-Way 214.0016 209.0030 213.6227
Transpose 256MB 8-Way 203.2162 200.8830 202.0894
Transpose 64MB 1-Way 59.2514 58.3649 56.2803
Transpose 64MB 2-Way 53.3890 52.1630 53.0207
Transpose 64MB 4-Way 51.5910 51.5173 51.5272
Transpose 64MB 8-Way 48.8650 48.4010 48.8157
Transpose 16MB 1-Way 13.5400 13.1021 13.0929
Transpose 16MB 2-Way 12.9630 12.6730 12.8394
Transpose 16MB 4-Way 12.818 12.6730 12.6759
Transpose 16MB 8-Way 12.2380 11.7740 12.0524

Table 3: Maximum, minimum, and average energy consumption in Joules for the Transpose algorithm on
various input sizes, and various degree of parallelism on Windows
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APPENDIX

A. MORE ON THE ENERGY EQUATION
To recap, the equation for the energy consumed by any al-

gorithm (Equation 8) is E(A) = W (A)+ACT (A)PB
k

where
W (A) and ACT (A) are respectively the work and I/O com-
plexities of algorithm A, PB is the size of the cache, and
k is the parallelization factor. Assuming k to be maximum
(or constant) for A, the following bounds for W (A) and
ACT (A) hold:

W (A) ≤ 2O(PB) ·ACT (A) (19)

ACT (A) ≤ W (A) (20)

Each of the bounds given in Equations 19, and 20 are
tight. Now for any given problem P , let A1 and A2 be
two algorithms. Further A1 and A2 are respectively work
and I/O optimal algorithms for P . One natural question is
whether simulating both A1 and A2 in parallel gives us a
constant factor approximation algorithm over the optimal
energy consumed for P . In other words if W1 and W2 and



ACT1 and ACT2 respectively be the work and I/O complex-
ities of A1 and A2, is the following true? min(W1,W2) +
PB ·min(ACT1, ACT2) = γ ·EP where γ is a constant, and
EP is the energy consumed by an energy-optimal algorithm
for P .

We prove this to be in fact false. We show a problem for
which we have two algorithms, one is work optimal, and the
other I/O optimal. But simulating both in parallel does not
give us a constant factor approximation algorithm for the
total energy.

Problem (P).
We have L+1 vectors and y1 = c+e where c is a code. The

goal is to decode y1 to c; y2, · · · , yL+1 such that
∑

i yi = c.
Also length of each vector n = O(PB).

Algorithm 1 (A1).
Use only y1 and is an exponential time algorithm. So

W1(P) = 2O(PB), and ACT1(P) = 1.

Algorithm 1 (A2).
Read all L + 1 vectors, and compute

∑

i yi = c. So
W2(P) == O(Ln), and ACT2(P) = O(L).

Hence simulating A1 and A2 in parallel will not gives us
a constant factor energy optimal algorithm since parameter
L is not a constant.

B. REDUCING RANDOMNESS

Theorem B.1. Let 1 ≤ ℓ ≤ P/2 be an integer and let
0 < δ < 1 be a constant. Let A be a striped (bounded
resp.) algorithm with lookahead ℓ and uses space S(x) in
input x. Then there exists a (randomized) algorithm A′ that
uses O(P log S(x)) bits of randomness with the same func-
tional behavior as A (and uses three times as much space as
A does) such that for every x, we can attain the same pa-
rameters for A′ in Theorem 4.4 (Theorem 4.5 resp.) except

W (A′, x) ≤ O(W (A, x))+poly logP log1+δ S(x)·|I(A, x)|+O((P log S(x))1+δ).
(21)

The proof of the theorem above is the same as that of
Theorem 4.4 (Theorem 4.5 resp.) except the part where
we compute the table that stores the random map of the
memory location to their “fresh location.”Thus, we will only
concentrate on this aspect of the simulation– the rest of the
simulation remains the same.

We first start with the observation that the the property
required from the random map is the following: for any ℓ
memory accesses we want that they are thrown randomly
into the P banks. In other words, all we need is a map f :
[S(x)]→ [P ] such that the map is P -wise independent. This
ensures that the balls and bins analyses in both Sections C
and D go through and one can prove that the resulting access
pattern the required bound on τ . However, there are two
issues that need to be resolved.

First, using the same arguments as in proofs of Theo-
rem 4.4, we can assume an upper bound on m. In particular,

here we will assume that

m ≤ 2O(B1−δ/P ). (22)

First issue is that since we are only mapping the memory
locations to banks, we need to decide on the bank row within
the bank. For this purpose we do the obvious thing: for each
of the P banks, we keep a counter of how many memory
locations have already been assigned to that bank, which
can then be used to easily determine the bank row for a
given memory location. Since we will need this information
later on during the simulation, for any memory location b,
we save both f(b) as well as the bank row“counter.”Because
of condition (22), this implies that all the P counters can be
stored in one cache.

Second, we need to figure out how to compute the func-
tion f . The most well-known construction of P -wise in-
dependent bits is one based on BCH codes. However, for
our purpose since we need P -wise independent vectors over
[P ], we use the other common construction based on Reed-
Solomon codes. In what follows, for simplicity, let us assume
that P is a power of 2. We pick q to be the smallest power
of 2 larger than m and do an arbitrary assignment of [m]
to elements of the field Fq. Define R to be a random uni-
variate polynomial over Fq of degree at most P − 1 (this
is the only place we will need random bits and we need
P log q = O(P logm) many such bits as desired). Then f(b)
is defined to be the least logP significant bits of R(b) (where
we think of b ∈ Fq). It is well-known that this map has the
required P -wise independence. Finally, to compute the map
for every memory location b, we compute R(b). If we do
this naively, we will need O(P log q) time to evaluate the
polynomial R at each memory location b. It turns out we
can do better. Kedlaya and Umans [17] recently presented
a data structure that given the coefficients of R build a data
structure in time (and hence space) O((P log q)1+δ) (for any
constant δ) such that given this data structure, R(b) can be
evaluated at any b in time poly logP (log q)1+δ. The bound
in (22) implies that computing the data structure from the
coefficients of R(X) can be done within one cache itself. The
bounds on the construction and query time for the polyno-
mial evaluation data structure then implies (21).

C. THE FIRST BALLS AND BINS PROB-
LEM

In this section, we will consider the following balls and
bins framework:

n balls are thrown into P bins (numbered from
0, . . . , P − 1) as follows. For a parameter g ≥ 1,
divide up the n balls into n/(gP ) groups of gP
balls each. For each group, randomly permute the
gP balls in place. Then for a ball in location 0 ≤
i ≤ n− 1, place it in bin i mod p.

Bounding the Maximum Load..
We will prove the following bound on the maximum load

on a bin (where we consider any arbitrary P balls):



Theorem C.1. Consider the random process above with
g ≥ 2. Now consider any arbitrary subset S ⊆ [n] with
|S| = P . Then with probability at least 1 − 1/P , every bin
has at most O(log P/ log logP ) balls from S in it.

Proof. Let ℓ be a parameter that we will fix later (to be
O(log P/ log logP )). Fix an arbitrary bin B. We will show
that

Pr[B has at least ℓ balls from S] ≤ 1

P 2
. (23)

Note that (23) along with the union bound proves the claimed
bound.

Fix an arbitrary subset of ℓ balls from S. Further, let b
be one of these ℓ balls. We claim that

Pr[b lands in B|S \ {b}] ≤ g

gP − P
=

1

P
· 1

1− 1/g
≤ 2

P
,

(24)
where we use S \ {b} as shorthand for where the balls in S \
{b} land and the last inequality follows from the assumption
that g ≥ 2.

First, we use the argument for the standard balls and bins
problem to use (24) to prove (23). Indeed, (24) along with
the union bound over all

(

P
ℓ

)

choices for the ℓ balls implies
that

Pr[B has at least ℓ balls from S] ≤
(

P

ℓ

)

·
(

2

P

)ℓ

≤
(

2e

ℓ

)ℓ

≤ 1

P 2
,

where in the above the second inequality follows by the
bound

(

P
ℓ

)

≤ (eP/ℓ)ℓ and the last inequality follows by
choosing ℓ ≤ O(logP/ log logP ).

To complete the proof, we argue the first inequality in
(24). Since the randomness used in different groups are in-
dependent, we can replace the conditional event by S′ \ {b},
where S′ ⊆ S are the balls that lie in the same group as b.
Note that in the random process, if b permuted to a location
that is B mod P , then it lands in B. In other words, within
the random permutation of the group of b, this happens if it
happens to land in one of the g locations that correspond to
B mod P . As a mental exercise, think of the random per-
mutation being done as follows: each of the at most P − 1
balls in S′ \{b} are thrown one after the other into (distinct)
random bins. Let g − g′ of the special bins be occupied by
some ball in S′ \ {b}. Now when b is about to be thrown,
there are at least gP − P + 1 bins to choose randomly from
and we’re interested in the event that it lands in one of the g′

special bins that are vacant. Thus, this probability is upper
bounded by

g′

gP − P + 1
≤ g

gP − P
,

as desired.

D. THE SECOND BALLS AND BINS PROB-
LEM

In this section, we will consider the following balls and
bins framework:

n balls are thrown into P bins (numbered from
0, . . . , P − 1) as follows. For a parameter g > 0,
divide up the n balls into n/(gP ) groups of gP
balls each. For each group, randomly permute the
gP balls twice. (The randomness is independent
across groups and across the two permutations in
each group.) For each ball i ∈ [n], denote its two
positions in the two permutations as i1 and i2.

Let S ⊆ [n] be of size |S| = P
512

. Consider a graph
G = ([P ], E) as follows. For each ball i ∈ S, add
the edge (i1 mod P+1, i2 mod P+1) to E. Now
we assign each ball in S to a bin in [P ] as follows.
Let K ≥ 3 be a parameter. Consider the following
iterative algorithm:

1. G′ ← G.

2. While |V (G′)| > K do

(a) Let T ⊆ V (G′) be the set of all vertices
with degree at most 5 in G′.

(b) Assign to bins in T , all its incident edges
(or balls). If an edge is completely con-
tained inside S, then assign it one of its
end point arbitrarily.

(c) V ← V (G′) \ T .
(d) G′ is the induced sub-graph on V .

3. Assign edges in G′ arbitrarily to the bins in
V (G′).

Before we proceed, we record a lemma on the time com-
plexity of the algorithm above that will be useful later. The
most obvious way to implement the above algorithm will be
to use a priority queue to keep track of the degrees of the de-
gree of vertices in G′. Using the best known implementation
of priority queues (e.g. [29]) the above can be implemented
in O(P log logP ) time. However, for our application we need
O(P ) time and space. We are able to do so below by noting
that we only care about vertices with degree at most 5 and
not vertices with the minimum degree. Also the fact that
the degrees are at most P − 1 also helps.

Lemma D.1. The algorithm above can be implemented in
O(P ) time and O(P ) space.

Proof. We will assume that the original graph G is given
to us in adjacency list format. In particular, given a vertex
v ∈ [P ], we can iterate over all its neighbors in O(dv) time,
where dv is the degree of v. We will have an array of doubly
linked list called DEG, where for any 0 ≤ d ≤ P − 1, DEG[d]
contains the list of all vertices with degree exactly d in G′.5

Finally, we have an array of pointers PTR, such that for
every vertex v ∈ [P ], PTR[v] points to actual location of v
in the corresponding linked list in DEG (as well as keeping
track of its current degree dv). We will use the convention
that PTR[v] is null if v 6∈ V (G′). It is easy to check that all
these data structures use O(P ) space and can be initialized
in O(P ) time. (Recall that G has O(P ) edges.) Next we

5It turns out that we only need one entry for all degrees
between 0 and 5 but we ignore this improvement as it only
changes the constants.



show we can implement the above algorithm in O(P ) time
using these three data structures.

We will maintain a counter for |V (G′)| so the check in
Step 2 can be computed in O(1) time. Step 2(a) can be im-
plemented in O(|T |) time by just returning the linked lists
DEG[j] for 0 ≤ j ≤ 5. For Step 2(b), we do the following.
For each v ∈ T , we go through all its neighbors u ∈ [P ]. We
can check if u ∈ V (G′) by checking if PTR[u] is null or not.
If not, we assign the ball (v, u) to the bin v. Then using
PTR[u], we remove u from its current linked list, decrement
du by one, add u to the head to the linked list for (the up-
dated value of) du and change PTR[u] to this new location.
Since the linked lists are doubly linked, note that all this
can be implemented in O(1) time. To implement Step 2(c),
for every v ∈ T , we set PTR[v] to null.

It can be checked that the above implementation is correct
and does O(1) work per edge and vertex, which leads to the
claimed O(P ) overall run time, as desired.

Bounding the Maximum Load..
We will prove the following bound on the maximum load

on a bin.

Theorem D.2. Consider the random process above with
g ≥ 1/4, K ≥ 3 and any arbitrary subset S ⊆ [n] with |S| =
P
512

. Then with probability at least 1− 1/P , every bin has at
most 3 ·max(K, 5) balls from S in it.

It is not a priori clear that the algorithm in the random
process above even terminates. We first state a lemma that
will help us guarantee that and also help us prove Theo-
rem D.2.

The following lemma has been proven in the case when
n = P , g = 1 and the balls are assigned two bins at random
(instead of using a random permutation.) See e.g. [14]. Here
we present a straightforward generalization of that proof to
our problem.

Lemma D.3. Consider the graph G generated by S in the
random process above. Then with probability at least 1− 1

P4 ,
the following holds for every U ⊆ V (G) with |U | ≥ K. The
average degree of the induced subgraph G[U ] is at most 5.

We defer the proof of the above lemma for a bit and first
prove Theorem D.2. Before that we prove two helpful lem-
mas.

Lemma D.4. Consider a fixed pair (b1, b2) ∈ [P ]2 with
b1 6= b2 and an arbitrary ball i ∈ S. The probability that the
edge corresponding to i ends up at (b1, b2) is upper bounded
by 20

P2 even when conditioned on where the remaining balls
in S \ {i} end up.

Proof. Assume that the choices for all balls in S \ {i}
have been made. Consider an arbitrary j ∈ S \ {i}. If j
is in a different group than i (recall that [n] is divided into
groups of size gP ), then the choice of edges for i and j are
independent, which in turn implies that the location of such
a j does not affect the probability that we want to bound.

For the rest of the argument, we will only consider balls j
that are in the same group as i.

For notational convenience define, ḡ = max(1, ⌈g⌉). Now
consider the case when g1 ≤ ḡ (and g2 ≤ ḡ resp.) balls
j from the same group as i have j1 = b1 (j2 = b2 resp.).
We consider the probability that i1 = b1 conditioned on
the event above. Note that i1 = b1 can happen only if i
happens to be one of the ḡ − g1 locations in [gP ] that will
lead to i1 = b1. Further, since everything in S \ {i} has
been assigned, there are gP − |S| − 1 locations in [gP ] that
the first choice for i can land in. Thus, the probability that
i1 = b1 (even conditioned on what happened with the balls
in S \ {i} is

ḡ − g1

gP − P
512
− 1
≤ ḡ

gP − 2P
512

≤ 1
1
4
− 1

256

· 1
P
≤ 5

P
.

One can make a similar argument to get the same bound
as above for i2 = b2. Since the first and second choices for i
are independent, we have that

Pr[(i1, i2) = (b1, b2)|S \ {i}] ≤ 10

P 2
.

Note that we also have to take into account the case that
(i1, i2) = (b2, b1), which again happens with probability at
most 10/P 2. The union bound completes the proof.

Lemma D.5. With probability at least 1 − 1
2P

, the graph
G has at most 3 parallel edges for any vertex pair (b1, b2).

Proof. We will show that the probability that more than
3 balls i ∈ S are assigned to a fixed bin pair (b1, b2 is at
most 1

2P3 . Taking union bound over the at most P 2 pairs
completes the proof.

Now consider a fixed pair (b1, b2) ∈ [P ]2. Consider a fixed
subset T ⊆ S of size |T | = 3. By Lemma D.4, the probability
that all balls in T are assigned (b1, b2) is at most (20/P 2)3.
Then taking the union bound over all possible choices of T ,
we get that the probability bound that we are after is upper
bounded by

(

P
512

3

)

· 20
3

P 6
≤
(

P

512
· 20
P 2

)3

<
1

2P 3
,

as desired.

Proof Proof of Theorem D.2. Note that except for
probability at most 1

P4 + 1
2P

< 1
P

(for P ≥ 2), both Lem-
mas D.3 and D.5 are true. For the rest of proof, we will
assume that this is indeed the case.

We will assume that each vertex pair in G has at most
one edge. (By Lemma D.5, then whatever bound we prove
can be safely multiplied by 3 to arrive at our final bound.)

W.l.o.g., we can assume that G has only one connected
component. (If not, we can apply the subsequent argument
to each component individually.)

Let U ⊆ V (G) be the set of vertices (or bins) which form
the connected component of G. If |U | ≤ K, then by Step
3 of the assignment algorithm, we have that the maximum
load in any bin in U is at most K (recall that because of
Lemma D.5, we have assumed that each vertex pair has at



most one edge between it). If |U | > K, then Lemma D.3
(and a Markov argument) implies that there is a bin i ∈ [P ]
that has degree at most 5. Thus, Step 2(b) assigns a load
of at most 5 to all such bins. We can argue the case for
G′ inductively. (Note since we remove assigned bins in Step
2(c), in all future iteration, this bin will not affect any of the
future loads.) In this whole process we achieve a maximum
load of max(K, 5). Lemma D.5 completes the proof.

We finish by proving Lemma D.3.

Proof Proof of Lemma D.3. For notational convenience
define m = P

512
. Note that the proof is complete if we show

that G[U ] has at most 5|U |/2 edges.
Fix k ≥ K and let U be an arbitrary subset of size k.

Then Lemma D.4 and the union bound (over the at most
k2 pairs in U ×U) shows that a fixed ball i lands in G[U ] is

upper bounded by 20k2

P2 (even conditioned on what happens
with the rest of the balls). Then Lemma D.4 implies that
the probability that any fixed subset T of 5k/2 balls land in

G[U ] is upper bounded by
(

20k2

P2

)5k/2

. Then a union bound

over all choices of T , implies that

Pr[G[U ] has > 5k/2 edges] ≤
(

m
5k
2

)

·
(

5k

P

)5k

.

The rest of the argument is the same as in [14] (with some
minor changes in the values of the constants).

E. MATRIX TRANSPOSE
We first present the standard I/O model algorithm for

computing the transpose of a matrix, which has I/O com-
plexity of O(N/B · logP (B/P )) (and work complexity of
O(N logP (B/P )). Then we will show how to modify this
algorithm to also make it (P/2, 1)-parallelizable in a deter-
ministic way.

The algorithm has three phases (where A is the
√
N ×√

N matrix, which is assumed to be stored in row major
form in consecutive rows in the main memory). At the end
of the first phase, all the P × P submatrices are correctly
transposed. At the end of the second phase all the B × B
submatrices are correctly transposed. The whole matrix is
transposed after the end of the third phase. In particular,

• (Phase 1) Divide up A in N/P 2 submatrices of size
P × P , bring them into the cache and transpose them
in place.

• (Phase 2) There are logP (B/P ) − 1 many iterations.
In the 2 ≤ i ≤ logP (B/P )th such iteration, we cor-
rectly transpose the P i × P i submatrices within the
B ×B submatrices by swapping the P i−1 × P i−1 sub-
matrices (within the same P i×P i submatrix) that are
counterparts. Two P i−1 × P i−1 submatrices D and E
are counterparts if they should be swapped to make the
resulting P i × P i submatrix correctly transposed.

• (Phase 3) Swap theB×B submatrices with their coun-
terparts (which are defined analogously to the counter-
parts from Phase 2).

It is not too hard to verify that the algorithm above is
correct. We now quickly argue the claimed I/O and work
complexities of the algorithm above. In particular, we will
argue that Phase 1, Phase 3 and each iteration in Phase
2 takes O(N/B) I/Os and O(N) work, which immediately
results in the claimed I/O and work complexity bounds.

• (Phase 1) Load the P × B submatrices of A into the
P caches and transpose the B/P submatrices of size
P × P in place and write them back. It is easy to see
that overall this phase takes O(N/B) I/Os and has a
work complexity of O(N).

• (ith iteration in Phase 2) Consider an arbitrary B×B
submatrix of A. Now consider an arbitrary P i × B
submatrix (call it D) of this sub-matrix. Note that
this has B/P i many P i×P i submatrices within it. We
arbitrarily fix such a P i × P i matrix (let us call it E)
and state our operations. (One can easily verify that
one can perform the same operations in parallel on the
rest of the P i × P i submatrices of D.) Recall that we
have to swap all the P i−1×P i−1 submatrices in E with
their counterparts. Divide up E into P submatrices
(call them F1, . . . , Fp) of size P i−1 × P i. Note that
when we swap the counterparts of size P i−1 × P i−1,
we can swap them row by row. Further, for any fixed
j ∈ [P i−1], note that all the jth rows of the P i−1×P i−1

submatrices are themselves exactly contained in the jth
rows of F1, . . . , Fp. Thus, we can implement this step,
if we at the same time load the jth rows of f1, . . . , Fp

for every j ∈ [P i−1].

It can be verified that the above can be implemented
by reading and writing all the N/B blocks in A once
and doing linear amount of work on them. Thus, this
step needs O(N/B) many I/Os and O(N) work.

• (Phase 3) Consider all the pairs of B×B submatrices
of A that are counterparts. Note that these pairs can
be swapped by swapping the corresponding rows. Thus,
this step can also be done with O(N/B) many I/Os and
O(N) work.

We note that the algorithm as stated above does not
have the required (P/2, 1)-parallelizability but we will show
shortly that a few modification suffice. In particular, we
will argue that for each iterations/phases a simple deter-
ministic cyclic shift of each row in the main memory will
allow for the above algorithm to have the required paral-
lelizability. For simplicity, we state the permutation for each
of Phase 1, Phase 3 and each iteration in Phase 2 sepa-
rately. In the actual implementation of the algorithm, before
each phase/iteration we perform the cyclic shifts and when-
ever we need to access a block we access the block from its
new shifted position and once the iteration/phase has termi-
nated, we undo the cyclic shift. These shifts are data inde-
pendent and thus, do not need to be stored anywhere (and
can be just computed from N,B, P and i). Thus this extra
step for each phase/iteration will take O(N/B) many I/Os
and O(N) work so asymptotically the claimed bounds on
I/O and work complexity still hold (but now with a guaran-
teed (P/2, 1)-parallelizability). Next, we spell out the shifts:



• (Phase 1) Consider any of the P × B submatrix that
we consider. Note that if all the rows of this matrix
are in different banks then the whole access will be
(P, 1)-parallelizable. Thus, for this phase all we need
to do is to make sure that this happens. Note that this
can be easily computed given the location of the P ×B
submatrix within A and the different parameter values.
(Further, these shifts for all the P ×B submatrices can
be applied in a consistent manner.)

• (ith iteration in Phase 2) It can be verified that in this
iteration, we need to swap corresponding rows between
two P i−1 ×B submatrices (let us call them X and Y ).
We note that if we can make sure that P/2 × B sub-
matrices have all the P/2 rows in distinct banks, then
all the P i−1 row swaps can be performed in a (P/2, 1)-
parallelizable way. Again note that the shifts for X
are completely determined by the location of X within
A and other parameters. (Further, these shifts for the
different P i−1×B submatrices can be applied in a con-
sistent manner.)

• (Phase 3) This step is similar to that of Phase 2.
We must perform the shifts so that we can ensure that
the rows of the P/2 × B submatrices are in distinct
banks. Further, as before the shifts can be consistently
applied and can be computed from the location of such
submatrices in A and the parameters.

F. MERGE SORT
It is easy to see that the k-way merge sort is a k-striped

algorithm. However, since the algorithm is data dependent,
the “traditional” merge sort algorithm does not good looka-
head. Next we see how to remedy this.

Achieving a Θ(P ) lookahead..
We will define a prediction sequence [8] that will allow

the k-way merge sort to have lookahead of k. In particular,
note that as long as we can show to successfully define a
prediction sequence for the operation of merging k runs, then
we would be done. We do so next.

We begin with a few definitions. We start with a defi-
nition to handle the case when in the middle of the merge
algorithm, we have only have the partial “unmerged”part of
the first block in the run.

Definition 6. A merge run is a usual run except the first
block might have fewer than B items. Further, we call such
a merge run sorted if all the elements when written down in
the order of appearance in the run are in sorted order.

For the rest of the section, we will establish the convention
that if two items have the same value, then we break ties
in the favor of the merged run with the smaller index. If
both items are in the same merged run, then we break ties
in favor of the item appearing earlier in the run. With this
convention, w.l.o.g., we will assume that all the items in the
runs have distinct values.

Next, we define a compressed representation of a block
that will be crucial in our result.

Definition 7. Let block B in a sorted merge run be pre-
ceded by the block (i1, . . . , im) (for some m ≤ B). Then we
define the label of B to be im

The following lemma is the crucial observation (and is
well-known [8]):

Lemma F.1. Consider k sorted merge runs. Let T be
blocks in the k merged runs where we drop the first block
in each run. Let be the blocks in T with the 3k smallest
labels. Then the smallest kB elements in T are contained
within the blocks in . Further, all the blocks in that belong
to the same run form a prefix of the run.

Proof. For national convenience let S denote the kB
smallest elements in T . We first observe that S contained in
at most 2k blocks. Note that there can be at most k blocks
such that all of its B elements are in S. Further, since each
of the merged runs are sorted, in each run only the last block
can contribute less than B elements to S. Since there are k
merged runs, this can contribute k more blocks, which leads
to a total of at most 2k blocks that contain S.

Next we argue that if for any block B such that B∩S 6= ∅,
then B ∈ . For the sake of contradiction, assume that B 6∈ .
Note that for this to happen B has to be “displaced” by
another block B′ ∈ such that B′∩S = ∅. (Note that this has
to happen as S is contained within 2k blocks and |e| = 3k.)
Now note that any block B′′ that comes after B′ in the same
run as B′ cannot be in . Indeed, all elements in the block
just before B are in S while none of the elements in B′ are in
S, which implies that the label of B has to be smaller than
B′′. Thus, since B′ 6∈ , B′′ 6∈ . In particular, each merged
run can have at most one block that can potentially displace
some block B (such that B∩S 6= ∅). Thus, the total number
of blocks that can potentially displace a legitimate block is
at most k − 1. However, || = 3k, which implies that the
remaining 2k+1 blocks have to be filled in by blocks B such
that B∩S 6= ∅ (recall we have argued that there are at most
2k such blocks).

The claim on all block in for one run forming a prefix,
note that a “gap” implies that a block with a larger label
was included in at the “expense” of a block with a smaller
label, which is not possible. The proof is complete.

Lemma F.2. Let 2 ≤ k ≤ P/6. Given k runs each of
which contain numbers in sorted order such that there are
a total of N numbers among all the runs. Then there is an
algorithm A that merges the k runs into one sorted run such
that for any input k sorted runs (denoted by x):

• A is a k-striped algorithm with a lookahead of k.

• For any input x, |I(A, x)| ≤ O(N/B).

• For any input x, W (A, x) ≤ O(N).

Proof. The algorithm A is the well known algorithm
to merge k sorted lists (which is easy to see is k-striped)
dovetailed with another algorithm that builds a prediction
sequence (using Lemma F.1) that gives the final algorithm
a lookahead of k. (It is not too hard to see that the “tradi-
tional” merge algorithm, which is data dependent, does not
have any non-trivial lookahead in-built into it.)



We first assume that the input is present in the first P/2
banks: if not one can perform a scan of the input and trans-
fer it to the first P/2 banks. It is easy to see that this
transfer can be done in O(N) time with O(N/B) memory
accesses and that this part has a lookahead of P/2 and is a
1-striped algorithm. We now present the algorithm in two
steps. The first step will store the labels of all the blocks in
the input, which would be used in the second step to do the
actual merging.

We will use the last P/6 banks for enabling lookahead for
A. The remaining P/3 banks in the “middle” will be used
to write out the merged output.

Pre-processing..
In this step, the algorithm makes a scan on the input

(which recall is now in the first P/2 banks) and except for
the first block in each of the k runs, stores the labels of all
the blocks (in the same order as they appear in the input)
in the last P/6 banks. It is easy to see that this phase needs
O(N/B) memory accesses. Further, this step is a k-striped
algorithm with lookahead of P/2 ≥ k.

Merging the runs..
At the beginning of this step we copy the head block of

each run to k blocks in the middle P/3 caches.
Throughout this step, we will maintain the following in-

variants:

1. The first P/2 caches will contain 3k blocks from the
input.

2. The last P/6 caches will maintain a table of size k×6k
of labels that will have enough information to predict
the next 3k blocks that will be transferred to the first
P/2 caches.

3. The middle P/3 caches will keep the “unused” part of
the first block from each of the k runs as well function
as a buffer for the next k blocks that need to be written
to the output.

As mentioned above, we will maintain a table with one
row for each of the k runs. Each row will always have at
least 3k labels for the blocks from the corresponding run.
(We initialize this table with the labels of the first 6k blocks
in each run.)

This part of the algorithm will be divided into repetitions
of a“reading”phase followed by“writing”phase. The writing
phase is simple: once the buffer in the middle P/3 caches
has accumulated the next k blocks in the sorted order, we
write back those k blocks to the output.

The reading phase starts once a writing phase is over. Us-
ing the table stored in the last P/6 caches, we compute in
O(k) time, the top 3k blocks according to their labels. We
then bring those 3k blocks from the first P/2 banks to the
corresponding caches. Then we run the “traditional” merge
algorithm on the k runs formed by the partial blocks stored
in the middle P/3 caches followed by the k runs formed by
these top 3k blocks (note that by Lemma F.1 these blocks
form k sorted runs among themselves). We run the tradi-
tional merge algorithm till we have filled up the buffer for

the next k blocks to be written to the output. Next, update
the “head” blocks in each run in the middle P/3 caches if
necessary. In the table in the last P/6 caches, for each run,
we throw away the labels for the blocks that have been used
up and been written to the output. If need be, we replen-
ish the rows that have fewer than 3k entries and make sure
we have 6k entries for the rows that we replenish.6 At this
point, the writing phase is triggered.

We first note that by Lemma F.1 that the above algorithm
works: i.e., all the blocks that are needed to form the merged
k output blocks for the writing phase are indeed accessed in
the reading phase. Second, for every writing phase (which
writes back k blocks), we access 3k blocks from the first P/2
banks. Further, we can in worst case access 6k2 labels for
replenishing the table. Since each label is just one item,
these are contained within

6k2

B
≤ 6k2

P
≤ k

blocks (where the first inequality follows from (9) while the
second inequality follows from the assumption that k ≤
P/6). All of this implies that over all we access a total
of O(N/B) accesses for this step of the algorithm. By de-
sign, this step of A has a lookahead of k. Finally, it is easy
to verify that this step is also k-striped.

Since both steps of A are k-striped and have lookahead of
k, then so does A, which proves the first two claimed prop-
erties. The final property follows by observing that both the
steps have linear time complexity.

6We note that the above is wasteful in the sense that some
blocks in the first P/2 banks might be accessed more than
once but we keep the above description as it makes stating
the algorithm slightly simpler.
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