
Floodlight Illumination of Infinite Wedges

Matthew Cary† Atri Rudra† Ashish Sabharwal† Erik Vee§

†Computer Science and Engr, Box 352350, University of Washington, Seattle, WA 98195-2350
§IBM Almaden Research Center, Department K53/B2, 650 Harry Road, San Jose, CA 95120

{cary,atri,ashish}@cs.washington.edu vee@almaden.ibm.com

October 6, 2005

Abstract

The floodlight illumination problem asks whether there exists a one-to-one placement of n floodlights illuminating
infinite wedges of angles α1, . . . , αn at n sites p1, . . . , pn in a plane such that a given infinite wedge W of angle
θ located at point q is completely illuminated by the floodlights. We prove that this problem is NP-hard, closing an
open problem from 2001 [6]. In fact, we show that the problem is NP-complete even when αi = α for all 1 ≤ i ≤ n
(the uniform case) and θ =

Pn
i=1 αi (the tight case). On the positive side, we describe sufficient conditions on the

sites of floodlights for which there are efficient algorithms to find an illumination. We discuss various approximate
solutions and show that computing any finite approximation is NP-hard while ε-angle approximations can be obtained
efficiently.

1 Introduction
Illumination problems generalize the well-known art gallery problem (see, e.g., [12, 13]). The task is to mount lights
at various sites so that a given region, typically a non-convex polygon, is completely illuminated. The sites can be
fixed in advance or not. The region may need to be illuminated from outside (like a soccer field) or from inside
(like an indoor gallery). The lights may behave like ideal light bulbs, illuminating all directions equally, or like
floodlights, illuminating a certain angle in a certain direction. We use the latter model of floodlights in this paper.
This model is quite natural and captures scenarios involving guards or security cameras with restricted angle of vision.
Illumination algorithms using floodlights have focused in the past on illuminating the interior of orthogonal polygons
[7, 1] and general polygons with restrictions on the floodlights used [2, 8, 9, 16]. There has also been work on the
stage illumination problem where one tries to illuminate lines rather than polygons [5].

The problem of illumination of infinite wedges by floodlights was introduced by Bose et al. [3]. Refer to Figure 1
for the basic setup and definitions. Given n sites and n floodlights, the task is to mount these floodlights, one at each
site, and orient them so that a given generalized wedge is completely illuminated. Here a generalized wedge refers to
an infinite wedge with a continuous finite region adjacent to its apex removed. Formally,

Definition 1. FLOODLIGHT ILLUMINATION Problem
Instance: Sites p1, . . . , pn in R2, angles α1, . . . , αn > 0, and a generalized wedge W of angle θ.
Question: Viewing the angles as spans of floodlights, is there an assignment of angles to sites along with angle
orientations, that completely illuminates W ?

Let [n] denote the set {1, 2, . . . , n}. A couple of natural restrictions of the floodlight illumination problem are the
uniform case where αi = α for all i ∈ [n], and the tight case where

∑n
i=1 αi = θ. There is clearly no solution to the

problem when
∑n

i=1 αi < θ. In general, a solution can be described by a mapping of floodlights to sites along with
an angle of orientation for each floodlight. In the tight case, however, every solution can alternatively be described by
two permutations σ and τ of [n] [14]. Here σ is an ordering of the floodlights and pτ(i) is the site at which floodlight
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Figure 1: Basic definitions. W.l.o.g. the axis of W always points along the negative x-axis in R2.

of angle ασ(i) is mounted. Floodlight orientations in this solution are inferred from σ and τ as follows. First ασ(1)

is mounted at position pτ(1) and oriented so that its upper ray is parallel to the upper boundary wu of W , and for
2 ≤ i ≤ n, ασ(i) is mounted at position pτ(i) and oriented so that its upper ray is parallel to the lower ray of ασ(i−1).
The variant of the tight floodlight illumination problem where σ is fixed in advance will be called the restricted case.
When talking about the restricted case, we will think of σ as the identity permutation. Observe that a tight and uniform
problem is also effectively restricted because all choices of σ are equivalent. Our results show that in general, for every
choice of σ, computing τ is NP-complete.

Because of hardness of verification issues surrounding non-algebraic numbers, it is not clear whether the general
problem is in the class NP. In fact, it is not obvious that it even has an exponential time solution. Nonetheless, Steiger
and Streinu [14] proved that it can indeed be solved in exponential time by formulating it as a bounded quantifier
expression in Tarski’s algebra [15] and using the result of Grigor’ev [11] on the complexity of deciding the truth
value of such expressions. They also proved that the restricted floodlight illumination problem is the dual of a certain
monotone matching problem with lines and slabs.

The problem in the tight case does not have complications with non-algebraic numbers because the solution, as
observed earlier, can be expressed as two permutations on [n]. The tight case of the problem is obviously in NP.
However, the exact complexity of this problem has been unknown [6]. We resolve this open question by showing the
following.

Theorem 1. FLOODLIGHT ILLUMINATION is NP-hard. The tight, restricted, and uniform versions of the problem are
NP-complete.

This is an immediate consequence of the discussion of duality in Section 2.2 and our NP-completeness result for a
uniform version of monotone matching (Theorem 6). We will show NP-hardness by a reduction from the propositional
satisfiability problem 3SAT to the monotone matching problem.

Although the general floodlight illumination problem is NP-hard, many special cases can be solved efficiently. We
outline sufficient conditions and list several common site configuration classes for which an efficient greedy algorithm
based on duality [14] works correctly in the tight case. There are several natural notions of approximation for the
floodlight illumination problem. We consider two of these, a finite-approximation where one illuminates all but a
finite region of W and an ε angle-approximation where one illuminates all but an infinite wedge of small angle ε
within W . We prove the following as an immediate consequence of Lemmas 14 and 15.

Theorem 2. For the tight floodlight illumination problem, computing a finite-approximation is NP-hard, where as for
any ε > 0, an ε angle-approximation can be constructed in polynomial time.

The rest of the paper is organized as follows. In Section 2 we define the dual monotone matching problem. In
Section 3 we prove the NP-completeness of the floodlight illumination problem by reducing 3SAT to the dual problem
of monotone matching. In Section 4 we investigate classes of instances of the tight floodlight illumination problem for
which a simple polynomial time algorithm works. Finally, we discuss some notions of approximation for the problem.
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2 Preliminaries
We begin by defining the monotone matching problem and recapitulating its duality with respect to the restricted
floodlight illumination problem.

2.1 Monotone Matching
Suppose we are given n non-vertical lines in the plane R2, n+1 vertical lines defining n finite width vertical slabs, and
two points, one on the leftmost vertical line and one on the rightmost. Call this an n-arrangement of lines, slabs, and
points and denote it by (L, S, λ, ρ) where L ≡ {(m1, c1), . . . , (mn, cn)} is the set of lines y = mix + ci for i ∈ [n],
S ≡ {s1, . . . , sn+1} is the set of vertical lines x = sj for j ∈ [n] forming slabs, and λ and ρ are the two special
points on the vertical lines x = s1 and x = sn+1, respectively. The intersection of any non-vertical line ` with a slab
s will be referred to as the segment of ` spanning s. A monotone matching in (L, S, λ, ρ) is a set of n line segments,
each a portion of a unique line and spanning a unique slab, such that the following holds: (1) the left endpoint of the
first segment is at or above λ, (2) the left endpoint of each subsequent segment is at or above the right endpoint of the
segment in the previous slab, and (3) ρ is at or above the right endpoint of the last segment.

Definition 2. MONOTONE MATCHING Problem [14]:
Instance: An n-arrangement (L, S, λ, ρ) of lines, slabs, and points in R2.
Question: Does this arrangement contain a monotone matching?

Analogous to the floodlight illumination case, define the specialized uniform version UNIFORM MONOTONE
MATCHING to be the problem where all slabs have the same width. The key technical contribution of this paper is a
proof that this variant is NP-complete (see Section 3). By the duality argument we discuss shortly, this implies the
hardness of the floodlight illumination problem as well, which is our main focus.

2.2 Duality Between Floodlight Illumination and Monotone Matching
The restricted floodlight problem can be related to the monotone matching problem through duality [14]. The dual of
a point p with coordinates (a, b) is the line Tp with equation y = ax+ b; the dual of a line ` with equation y = mx+ c
is the point T` with coordinates (−m, c). It is well known that this dual transformation preserves incidence and height
ordering; i.e. if a point p intersects a line ` then their duals Tp and T` also intersect, and if p is above ` (w.r.t. the
y-coordinate) then Tp is above T`.

We now describe how any restricted floodlight illumination problem can be converted to its dual monotone match-
ing problem (L, S, λ, ρ). We will use the notation of Figure 1. The duals of the wedge boundaries wl and wu are the
points λ and ρ; as wl has larger slope in the orientation of the figure, its dual λ has smaller x coordinate. The points
that form the vertical line containing λ are the duals of the lines that are parallel to wl. The vertical strip between λ
and ρ corresponds to the wedge angle; the larger the wedge angle, the wider the strip. The line q that connects λ and ρ
is the dual of the point at which wl and wu intersect, forming the apex of the wedge. The segment of q between λ and
ρ corresponds to the lines with slope less than wl and greater than wu that have common intersection with wl and wu;
this is exactly the set of lines that lie within W ∪W r.

Each site pi for i ∈ [n] corresponds to a line hi which together make up the set of lines L. As we are in the
restricted version of the problem, the angle of the first floodlight can be assumed w.l.o.g. to be α1. From our discussion
in Section 1, the tightness of the problem implies that the first floodlight must be oriented so that its upper ray is parallel
to wu. This floodlight corresponds in the dual to a vertical slab S1 beginning at ρ and extending to the left a width
proportional to α1 (if S1 extends from x = s1 to x = s2, then α = tan−1 s2 − tan−1 s1). The next floodlight
corresponds to a slab vertical S2 extending to the left of S1, continuing to the final floodlight which is a vertical slab
Sn ending at λ.

A solution to the restricted problem is an assignment of sites to floodlights. In the dual this is a 1-1 assignment of
lines hi to slabs Sj for i, j ∈ [n]. The illumination wedge of the first floodlight must overlap wu, which corresponds
to the right endpoint of the segment of the line h1

i assigned to s1 being at or above ρ. Continuing, the right endpoint of
the segment associated with S2 must start at or above the left endpoint of the segment of S1, and so on, until the left
endpoint of the segment at Sn is below λ.
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If we flip the dual problem from left to right, in deference to those of us who read from left to right, we see we
have reduced the restricted floodlight illumination problem from the monotone matching problem with lines. In the
rest of the paper, we will restrict our attention to proving that the monotone matching problem is difficult to solve.

Note that the unrestricted tight illumination problem corresponds to an extended matching problem where the
widths of slabs are given and must be arranged in a partition of the slab between λ and ρ before a matching of
segments to slabs is found. The uniform illumination problem corresponds to the uniform matching problem, where
the slabs are all of the same width, making, in particular, their order immaterial.

3 NP-Completeness of Monotone Matching
In this section we reduce 3SAT from UNIFORM MONOTONE MATCHING. 3SAT is well-known to be NP-complete
[10, 4]. For concreteness we define it as follows.

Definition 3. 3SAT:
Instance: m clauses, each of which is a set of three distinct elements chosen from n variables. Each member of each
clause is associated with a sign, positive or negative.
Question: Is there a Boolean assignment to the variables such that each clause contains at least one positive true
variable or one negative false variable?

3.1 Notation and Overview
In the following we will refer to clauses by their index j and will denote the variables by z1, . . . , zn. If the ith variable
appears in the jth clause positively, we write that zi occurs in clause j. If the variable appears negatively, we write that
zi occurs in clause j.

The Lines. The reduction uses many lines which we group into four categories.

(a) Lines labeled posij correspond to a positive occurrence of the variable zi in clause j. (For regularity, we
include posij even if zi does not appear in clause j.) For convenience, we will use posi∗ to denote the set of
lines posij for j ∈ [m].

(b) Lines labeled negij correspond to the occurrence of zi in clause j. (Again, we include negij even if zi does
not appear in clause j.) For convenience, we will use negi∗ to denote the set of lines negij for j ∈ [m].

(c) Lines labeled auxik are used as auxiliary lines in one of the gadgets (which we refer to as the variable gadget).
They will help ensure that within the ith variable gadget, either all lines posi∗ or all lines negi∗ will be used.

(d) Lines labeled upi and downi are used to ensure that on certain slabs, the monotone matching exits at or below
a certain point or enters at or above a certain point. For example, we could ensure that the left endpoint of the
segment taken during the tenth slab is at or above y = 0. (We will see more on this later.)

The Slabs. We use several unit width slabs grouped into four categories.

(a) We call the first 2mn+5n slabs the variable phase. The variable phase actually consists of n variable gadgets,
one for each variable. During the ith variable gadget, we will ensure that either all posi∗ will be used or all
negi∗ will be used. Intuitively, this corresponds to setting xi to false or to true, respectively.

(b) The next 50m3n2 slabs will be referred to as the buffer phase. Although nothing interesting happens during
the buffer phase, we need it to ensure that the slopes of the posij and negij are not too large.

(c) The next 3m slabs are called the clause phase. The clause phase consists of m gadgets, which we call clause
gadgets. As an example, suppose that the jth clause is z1 ∨ z2 ∨ z3. Then the jth clause gadget will ensure
that the only way to cross one of the slabs is by using a segment from pos1j ,neg2j , or pos3j . Notice that if z1

and z3 are set to false and z2 is set to true, then the lines pos1j , pos3j , and neg2j will have been used already
during the variable phase. Otherwise, at least one the those segments will be available.
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(d) The final phase is the cleanup phase which consists of m(n − 1) slabs. Since the monotone matching may
have a choice of what segment to use during the clause phase, we need to ensure that all segments are taken at
some time. The cleanup phase allows this.

3.2 Description of the Gadgets
We utilize three kinds of gadgets: variable gadgets, clause gadgets, and forcing gadgets. As we described briefly in
the previous section, the ith variable gadget is used to enforce the condition that either all of the posi∗ are used in the
variable phase (corresponding to zi being set to false), or all of the negi∗ are used in the variable phase (corresponding
to zi being set to true). During the jth clause gadget, the monotone matching will be able to cross a particular slab only
if at least one of the lines corresponding to the literals in the jth clause has not previously been used in the variable
phase. (This happens only if the literal corresponding to that line is true.)

Finally, as part of the problem input, we specify that the monotone matching must enter at or above some point on
the first slab, and we specify that the monotone matching must leave at or below some point on the final slab. It will be
useful for us to make similar specifications for particular slabs in the matching. For instance, we may wish to specify
that the monotone matching enter at or above y = 0 on the mth slab. The forcing gadget allows us to do this.

In each of the following gadget descriptions, we will avoid specifying the exact coordinates for the lines and slabs,
instead describing only the necessary conditions. The exact coordinates will be specified in Section 3.3.

The Variable Gadget. Throughout our description, fix i ∈ [n]. As we stated before, the ith variable gadget is used
to ensure that either all posi∗ are used or all negi∗ are used. We construct auxik for k = 0, . . . ,m + 2 so that this is
guaranteed in any valid matching. It may be helpful to refer to Figure 2 during the discussion.

For now, let xi be a nonnegative integer, and let yi be a real number. (We will specify the values of xi, yi in the
next section.) The ith variable gadget uses 2m+3 slabs, each of width 1, stretching from x = xi to x = xi +2m+3.
We will use a forcing gadget (described shortly) to ensure that any valid monotone matching for the xth

i slab starts at
or above y = yi + 1 and ends at or below y = yi.

The lines auxik for k = 0, 1, . . . ,m + 2, and posi∗ and negi∗ satisfy the following conditions. See Figure 2 for a
diagram.

1. The lines posi∗ do not intersect each other during the ith variable gadget (that is, between x = xi and x =
xi + 2m + 3). Further, they all lie between y = yi and y = yi + 1 during the ith variable gadget.

2. The lines negi∗ do not intersect each other during the ith variable gadget (that is, between x = xi and x =
xi + 2m + 3). Further, they all lie between y = yi + 4m2 and y = yi + 4m2 + 1 during the ith variable gadget.

3. At x = xi, the line auxi0 lies at or above y = yi + 1. From x = xi + 1 to x = xi + 2m + 3, the line auxi0 lies
at or below y = yi.

4. From x = xi to x = xi + m + 1, the line auxi1 lies at or above y = yi + 1 and above the line auxi0. At
x = xi + m + 2, the line auxi1 lies below auxi0 (and remains below auxi0 throughout the rest of the slabs).

5. The lines auxik are parallel for all k = 2, 3, . . . ,m + 2 and auxik is below auxik′ for k < k′. Throughout the
ith variable gadget, the line auxi1 lies below auxik for k > 1. From x = xi to x = xi +m+1, the lines auxik

for k > 1 lie at or above y = yi + 4m2 + 1. From x = xi + m + 2 to x = xi + 2m + 1, the lines auxik for
k > 1 lie between y = yi + 1 and y = yi + 4m2. At x = xi + 2m + 2, the lines auxik for k > 1 lie below
auxi0.

Given these conditions, we have the following lemma. Let yi
max denote the y-coordinate of auxi,m+2 at x = xi

and yi
min denote the y-coordinate of auxi1 at x = xi + 2m + 3.

Lemma 3. Suppose that posi∗,negi∗, and auxik for k = 0, . . . ,m + 2 satisfy the previous conditions. Further,
suppose that all other lines in the construction either lie above y = yi

max or below y = yi
min throughout the ith

variable gadget. For any valid monotone matching that begins at or above y = yi + 1 at x = xi and ends at or below
y = yi at x = xi + 2m + 3,

5



auxi0

auxi1

auxik, k > 1

posij

negij

x
i
+

2m
+

2

x
i
+

2m
+

3

x
i
+

1

x
i
+

m
+

1

x
i
+

m
+

2

x
i
+

2m
+

1

yi

yi + 1

yi + 4m2 + 1
x

i

yi + 4m2

Start at

End at
or below

or above

Figure 2: The variable gadget for zi. Note the figure is not to scale; in particular, the aux lines have been deformed
due to non-uniform shrinking along the y-axis.

(a) all of the lines auxik for k = 0, 1, . . . ,m + 2 are used during the ith variable gadget, and

(b) either all of the lines posi∗ or all of the lines negi∗ are used during the ith variable gadget (but not both).

Proof. First of all, we cannot take any line other than posi∗,negi∗, or auxik for k = 0, . . . ,m + 2 during the ith

variable gadget, since we cannot reach any line lying below y = yi
min for the entire gadget and taking any line that lies

above y = yi
max makes it impossible to finish below y = yi in the last slab of the gadget. So throughout this proof,

we only need to consider posi∗,negi∗, and auxik.
We have 2m + 3 slabs and 3m + 3 active lines in the gadget. Out of these, there are only 3 slabs during which the

monotone matching may start above y = yi and end below y = yi: the slab from x = xi to x = xi + 1, the slab from
x = xi + m + 1 to x = xi + m + 2, and the slab from x = xi + 2m + 1 to x = xi + 2m + 2.

Case i. Suppose that the monotone matching does not go from above y = yi to below y = yi during the slab from
x = xi to x = xi + 1. Then from x = xi to x = xi + m + 1, the monotone matching cannot use any of the
posij . So the matching cannot use the line auxi1 during the slab from x = xi + m + 1 to x = xi + m + 2
since that line is too low. Hence, the first time it passes below y = yi is at the slab from x = xi + 2m + 1 to
x = xi + 2m + 2. At this point, it is too late to use any posij , since they all end too high at x = xi + 2m + 3.
Hence, the monotone matching cannot use any of the posij . (Note that the line auxi0 may instead be used.)
Since there are precisely 2m + 3 slabs and precisely 2m + 3 available lines, each of these must be used. That
is, each of the negi∗ must be used.

Case ii. Suppose instead that the monotone matching does go from above y = yi to below y = yi during the slab
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Figure 3: The clause gadget for clause j, (z1 ∨ z2 ∨ z3). For clarity, the lines are shown to be much steeper than they
will be in the final construction. pos and neg lines from other clauses would appear above or below this figure.

from x = xi to x = xi +1. Specifically, the monotone matching must use auxi0 during this slab. We will prove
by contradiction that the monotone matching never uses any negij during the ith variable gadget. To this end,
suppose that the monotone matching does use some negij .

First of all, note that the monotone matching cannot use any negij for x ≥ xi +m+1; the reason for this is that
from this point on, there is no way to get lower than y = yi + 4m2 if we do use some negij . So the monotone
matching must have used negij before x = xi + m + 1. This implies that at x = xi + m + 1, the monotone
matching must use auxik for some k > 1. Furthermore, since the auxik for k > 1 lie above auxi0,auxi1, and
posij from x = xi + m + 1 to x = xi + 2m + 2, the monotone matching must use only the auxik for k > 1
from x = xi + m + 1 to x = xi + 2m + 2. But now the monotone matching is out of options. Since there are
precisely m+1 such lines auxik for k = 2, . . . ,m+2 and the matching traversed precisely m+1 slabs, it must
have used every such auxik. So the only available lines on the slab from x = xi + 2m + 2 to x = xi + 2m + 3
are auxi0, posi∗, and negi∗. The lines posi∗,negi∗ all end too high and, unlike case (i), auxi0 has already been
used. Hence, we have a contradiction.

So, if the monotone matching uses auxi0 during the slab from x = xi to x = xi + 1, then it never uses negij

for any j = 1, . . . ,m. Since the matching traverses precisely 2m+3 slabs, and there are precisely 2m+3 lines
available, it must use each of these lines precisely once. In particular, it must use all of posi∗.

The Clause Gadget. The clause gadget is rather simple. Fix j ∈ [m]. Let x′j , y
′
j be positive integers, whose precise

values will be specified in the next section.
If the jth clause is zi1 ∨zi2 ∨zi3 , then we construct our lines so that posi1j , posi2j , and posi3j all lie above y = y′j

and at or below y = y′j + 1 from x = x′j to x = x′j + 1, and no other lines lie between these y values in that slab.
Similarly, if the jth clause is zi1 ∨ zi2 ∨ zi3 , then we construct our lines so that negi1j , posi2j , and posi3j all lie above
y = y′j and at or below y = y′j + 1 from x = x′j to x = x′j + 1, and no other lines lie between these y values in
that slab. We define the clause gadget analogously for the remaining 6 cases. See Figure 3 for an example with clause
z1 ∨ z2 ∨ z3.

Using a forcing gadget, we ensure that any valid monotone matching starts at or above y = y′j at x = x′j , and ends
at or below y = y′j + 1 at x = x′j + 1. From this, the following result follows immediately.
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Lemma 4. Let `1, `2, `3 be the lines corresponding to the literals in the jth clause, as specified above. Then there can
be a valid monotone matching only if at least one of `1, `2, `3 has not already been used in the variable phase.

The Forcing Gadget. Let s = (2m + 5)n + 50m3n2 + 3m + m(n − 1) denote the total number of slabs. Let
h > 0 be such that the lines posi∗,negi∗, and auxik all remain strictly between y = −h and y = h throughout the s
slabs. Such an h exists as there are no vertical lines in the construction; with the choice of parameters used in the next
section, h = 240m4n2 is sufficient.

Let e1, . . . , e` and s1, . . . , s` be sequences of numbers so that −h < ei < h and −h < si < h for all i ∈ [`].
Further, let x′′1 , x′′2 , . . . , x′′` be a sequence of positive integers such that x′′i+1 ≥ x′′i + 2 for all i ∈ [`− 1].

We can force any valid matching to end at or below y = ei at x = x′′i and start at or above y = si at x = x′′i + 2,
in the following way.

For each i ∈ [`], construct downi so that it passes through the point (x′′i , ei) and has slope −6h, and construct
upi so that it passes through the point (x′′i + 2, si) and has slope 4h. The pairs (downi, upi) will be referred to as the
forcing gadgets.

Lemma 5. For all i ∈ [`], let lines downi and upi be constructed as described above. Then any valid monotone
matching will use downi on the slab from x′′i to x′′i + 1, and will use upi on the slab from x′′i + 1 to x′′i + 2.

Proof. By the construction of the up and down lines, it is enough to show that no such line is used in a slab where it
is either completely below −h, or has any point above h.

We first show that no line is used completely below −h. Suppose for contradiction this occurs in a slab s. Let
t be the slab previous to s. The line used in t must be a down line as it does not lie completely below −h in t.
Moreover, if y1 is the y-coordinate of its intersection with the right side of t, y1 > −h − 6h = −7h. Suppose the
line used in s were an up line. Let y2 < −h be the y-coordinate of the up line used in s with the right side of s,
and let y3 be the y-coordinate of that same line with the right side of the slab following s. Then y1 > −7h implies
y2 > −7h + 4h = −3h. Hence y3 > −3h + 4h > h. However, by construction, no up line begins below −h and
ends above h across a single slab.

Now suppose the line used in s were a down line, say downi. Let downj be the down line used in t, so that
j < i. As downj straddles −h in t, then downi straddles −h in a slab at or after s, contradicting our assumption that
downi lies completely below −h in s.

We now show no up or down line is used in a slab where it has any point above h. Suppose for contradiction this
occurs in slab s. If the line used in s is ends above h, then the line used in the following slab must start above h as
well, which cannot happen as only up or down lines reach that high and we have assumed s is the last slab where an
up or down line is used above h. Therefore the line used in s is a down line, say downi, which straddles h. Then s
must be the slab preceding x′′i . Consider upi. By previous arguments, upi must be used in its correct slab r, two slabs
from s. But by construction, upi starts below −h in r, and there are no down lines available in the correct place in
the slab between s and r.

3.3 Putting it Together
Theorem 6. UNIFORM MONOTONE MATCHING is NP-complete

Proof. Membership in NP follows from the fact that a potential matching can be validated in polynomial time. We
now specify the exact coordinates of the construction of Section 3.2 and show that the construction in Section 3.2 has
a monotone matching if and only if the corresponding formula has a satisfying assignment. Refer to Figure 4 for an
overview.

Following the notation of the previous section, set xi = (i−1)(2m+5) and yi = −10m2n+10m2(i−1). The ith

variable gadget will operate from x = xi to x = xi + 2m + 3, and will lie between y = yi and y = yi + 10m2. After
each variable gadget, we add a forcing gadget, taking 2 slabs, to ensure that any valid monotone matching ends at or
below y = yi at x = xi + 2m + 3 and starts at or above y = yi + 10m2 + 1 = yi+1 + 1 at x = xi + 2m + 5 = xi+1.

Following again the notation of the previous section, set x′j = 50m3n2 +(2m+5)n+3(j−1) and y′j = 2m−2j.
The jth clause gadget will operate from x = x′j to x = x′j + 1. After each clause gadget, we add a forcing gadget,
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Figure 4: The overall picture, not to scale. The smaller boxes in the variable and clause phases depict the arrangement
of the variable and clause gadgets, respectively.

taking 2 slabs, to ensure that any valid monotone matching ends at or below y = y′j + 1 at x = x′j + 1 and starts at or
above y = y′j − 2 = y′j+1 at x = x′j + 3 = x′j+1.

Assume that m ≥ 5. We specify the lines as follows:

• Let i ∈ [n] and j ∈ [m]. If zi appears in the jth clause as a positive literal, define posij as the unique line
that goes through the points (−1, yi) and (x′j + 1, y′j + 1). If zi does not appear in the jth clause as a positive
literal, define posij as the unique line that goes through the points (−1, yi) and (x′j + 1, y′j + 2). Notice that in
either case, the size 50m3n2 of the buffer phase is large enough so that for m ≥ 5 the slope of posij is less than
1/(3mn). This implies that at the end of the variable phase, posij is below yi + 1. Hence, posij satisfies the
first condition for the ith variable gadget. Furthermore, posij lies between y = y′j and y = y′j + 1 for x = x′j
to x = x′j + 1 if and only if zi appears in the jth clause as a positive literal.

• Let i ∈ [n] and j ∈ [m]. If zi appears in the jth clause as a negative literal, define negij as the unique line that
goes through the points (−1, yi +4m2) and (x′j +1, y′j +1). If zi does not appear in the jth clause as a negative
literal, define negij as the unique line that goes through the points (−1, yi + 4m2) and (x′j + 1, y′j + 2). Notice
again that in either case, the slope of negij is less than 1/(3mn) which implies that at the end of the variable
phase, negij lies below yi + 4m2 + 1. Hence, negij satisfies the second condition for the ith variable gadget.
Furthermore, negij lies between y = y′j and y = y′j + 1 for x = x′j to x = x′j + 1 if and only if zi appears in
the jth clause as a negative literal.

• For each i ∈ [n], define auxi0 to be the unique line of slope −1 passing through the points (xi, yi + 1),
(xi + 1, yi), (xi + m + 2, yi −m− 1), and (xi + 2m + 2, yi − 2m− 1). Notice that auxi0 satisfies the third
condition for the ith variable gadget.

• For each i ∈ [n], define auxi1 to be the unique line of slope −2m passing through the points (xi, yi + 2m2 +
2m + 1), (xi + m + 1, yi + 1), (xi + m + 2, yi − 2m + 1), and (xi + 2m + 3, yi − 2m2 − 4m + 1). Notice
that for m ≥ 3, auxi1 satisfies the fourth condition for the ith variable gadget. This choice of parameters has
yi

min = yi − 2m2 − 4m + 1.

• For each i ∈ [n] and k = 2, . . . ,m + 2, define auxik to be the unique line of slope −4m passing through the
points (xi, yi + 8m2 + 4m + k− 1), (xi + m + 1, yi + 4m2 + k− 1), (xi + m + 2, yi + 4m2 − 4m + k− 1),
(xi+2m+1, yi+k−1), and (xi+2m+2, yi−4m+k−1). It is not hard to verify that for m ≥ 5, the auxik for
k > 1 satisfy the fifth condition for the ith variable gadget. With these parameters, yi

max = yi +8m2 +5m+1.

• Let h = 240m4n2 and s = (2m + 5)n + 50m3n2 + 3m + m(n− 1) as defined earlier be the total number of
slabs in the construction. We now describe the parameters for the forcing gadgets. First, in the variable phase,
for i ∈ [n], let downi be the unique line with slope −6h that passes through the point (xi + 2m + 3, yi),
and let upi be the unique line with slope 4h that passes through the point (xi + 2m + 5, yi + 10m2 + 1). In
the notation of the previous section, x′′i = xi + 2m + 3, ei = yi, and si = yi + 10m2 + 1. In the buffer
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phase, for i = n + 1, . . . , n + 25m3n2, let downi be the unique line with slope −6h that passes through the
point (xn + 2m − 2n + 2i + 3, 0), and let upi be the unique line with slope 4h that passes through the point
(xn + 2m − 2n + 2i + 5, y′1). That is, in the notation of the previous section, x′′i = xn + 2m − 2n + 2i + 3,
ei = 0, and si = y′1. Finally, in the clause phase, for j = 1, . . . ,m, let downn+25m3n2+j be the unique line
with slope −6h that passes through the point (x′j + 1, y′j + 1), and let upn+25m3n2+j be the unique line with
slope 4h that passes through the point (x′j + 3, y′j − 2). That is, x′′n+25m3n2+j = x′j + 1, ei = y′j + 1, and
si = y′j − 2.

To finish the description of the monotone matching problem, We set the starting point START to be y = y1 + 1
and the ending point END to be y = 240m4n2.

We see from the descriptions of the lines that each of them operates within the appropriate gadgets in the appro-
priate ways. However, we also need to check that lines interact only with the correct gadgets.

First, notice that both posij and negij have positive slopes less than 1/(3mn). Hence, throughout the entire
variable phase, each of these lines rises less than 1. Hence, each posij remains between y = yi and y = yi + 1
throughout the variable phase, and likewise, each negij remains between y = y1 + 4m2 and y = yi + 4m2 +
1 throughout the variable phase. So the posij and negij only interact with their corresponding variable gadget.
Furthermore, by our construction, if ĵ < j then posiĵ and negiĵ are both strictly above y = y′j + 2 from x = x′j to
x′j + 1. Likewise, if ĵ > j, then posiĵ and negiĵ are both strictly below y = y′j from x = x′j to x′j + 1. Hence, the
posij and negij do not violate the conditions of the clause gadget.

Second, notice that each of the auxik for k = 0, 1, . . . ,m + 2 have negative slopes. Thus as at xi+1, auxi0

lies below yi < yi+1
min = yi+1 − 2m2 − 4m + 1 = yi + 8m2 − 4m + 1. Since all other auxiliary lines for the ith

gadget are below auxi0, the auxiliary lines at variable gadget i do not interact with variable gadget i′ for i′ > i.
Similarly, assuming m ≥ 5, for x < xi, auxi0 (and hence all auxiliary lines for the ith gadget) are above yi > yi−1

max =
yi−1 + 8m2 + 5m + 1 = yi − 2m2 − 5m− 1. Hence, auxik only interacts with the ith variable gadget.

Third, notice that the lines posij ,negij , and auxik all lie between y = −240m4n2 and y = 240m4n2 for all slabs,
since (a) they all pass through the region between y = yi and y = yi + 4n2 + 1 (which is relatively close to y = 0)
during their respective variable gadgets, (b) the maximum positive slope for all of these is less than 1, (c) the most
negative slope for all of these lines is −4m, and (d) the total number of slabs s is less than 60m3n2 for m ≥ 5. Hence
our choice of h = 240m4n2 suffices.

Hence, the conditions for Lemmas 3, 4, and 5 hold for our construction. We now prove that there is a valid
monotone matching in this construction iff the original formula is satisfiable.

Part i. Suppose that there is a valid monotone matching. For each i ∈ [n], set zi to false if all of the posij are
used in the ith variable gadget, and set zi to true if all of the negij are used in the ith variable gadget. By Lemma 3,
exactly one of the two conditions must occur. Let `1, `2, `3 be the lines corresponding to the literals appearing in the
jth clause. By Lemma 4, at least one of `1, `2, `3 was not used during the variable phase. But this means that the
corresponding literal is true. Hence, each clause is satisfied. That is, there is a satisfying assignment.

Part ii. Suppose that there is a satisfying assignment. We will argue that there is a valid monotone matching. If zi

is false in the satisfying assignment, then for the ith variable gadget, take auxi0, followed by posij for j = 1, . . . ,m
in order. (By construction, we see that the posij do not intersect during the ith variable gadget, and in fact posij lies
below posiĵ for j < ĵ.) Then take the line auxi1, followed by auxik for k > 1 in order. We thus arrive below y = yi

when x = xi + 2m + 3.
If zi is true in the satisfying assignment, then for the ith variable gadget, take auxi1, followed by negij for

j = 1, . . . ,m in order. (We use the fact that negij lies below negiĵ for j < ĵ during the ith variable gadget.) Then
take the lines auxik for k > 1 in order. We thus arrive below the line auxi0 when x = xi + 2n + 2. So in the final
slab of the gadget, we may take line auxi0, arriving below y = yi.

For each i = 1, . . . , n + 25m3n2 + m, for the slab from x = x′′i to x = x′′i + 1, take downi, and for the slab from
x = x′′i + 1 to x = x′′ + 2, take upi.

For each j ∈ [m], at least one literal in clause j is set to true in the satisfying assignment. Hence, if `1, `2, `3 are
the lines corresponding to the literals in the jth clause, at least one of `1, `2, `3 will not have been used during the
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variable phase. Take such a line during the slab from x = x′j to x = x′j + 1; if there is more than one line available,
take the one that is first lexicographically.

Finally, the cleanup phase lasts for m(n − 1) slabs, and there are exactly m(n − 1) unused lines. Further, at the
start of the cleanup phase, we are forced to start at or above y = y′m − 2 < 0, and all the unused lines (which consist
of lines from posij and negij) lie strictly above y = 0. We can greedily traverse the entire cleanup phase starting with
the unused line that ends the lowest at the end of the current slab, and continuing until we reach the end of the last
slab. Since all of the posij ,negij lie below y = 240m4n2 and the END is at y = 240m4n2, we have a valid monotone
matching.

Hence we have reduced 3SAT to UNIFORM MONOTONE MATCHING, proving our theorem.

This in turn implies the following as there is a trivial reduction to MONOTONE MATCHING from UNIFORM
MONOTONE MATCHING.

Corollary 7. MONOTONE MATCHING is NP-complete.

4 Illumination Algorithms for the Tight Case
In this section we look at algorithms to solve the floodlight illumination problem in the tight case. We characterize
several special cases that can be solved in polynomial time. We also give approximation algorithms for the problem.
For this section, we will use the notations and definitions from Section 1. We begin with some properties of floodlight
illuminations which will be used later in this section but may also be of independent interest.

4.1 Properties of Floodlight Illumination
The first lemma shows how the position of certain floodlights are fixed by the problem instance. Next we prove a
necessary condition for the existence of a solution. We then state a lemma which will be used in proving hardness of
certain kind of approximations to the floodlight illumination problem. We end with a brief mention of a variant of the
problem that is easy to solve.

Lemma 8. In the tight case, any floodlight illuminating all but a finite portion of the upper boundary wu of a gener-
alized wedge W must be parallel to and located on or above wu.

Proof. Let the floodlight f illuminating wu be mounted at site pu. As we are considering the tight case, the upper
boundary fu of the region illuminated by f must be parallel to wu (see discussion in Section 1. If pu is below wu, f
will not illuminate an infinite slice S of W including the boundary wu.

Lemma 9. A tight floodlight illumination problem on generalized wedges has a solution only if there is at least one
site in the reverse wedge.

Proof. Suppose there are no sites in the reverse wedge. We will derive a contradiction by arguing about the dual of the
problem as defined in Section 2.2. The lines in the dual corresponding to sites fall into three categories: those above ρ
and λ (the duals of wu and w`), corresponding to sites above the wedges; those below the duals ρ and λ, corresponding
to sites below the wedges; and those that run between ρ and λ, corresponding to sites in the forward wedge (recall
that we have assumed that there are no sites in the reverse wedge). As we are in the tight case, if there are sites in
the forward wedge, we cannot possibly have a solution. Hence all points are either above or below both of the dual
starting and end points. In particular, no line above both the dual points intersects a line below both the dual points in
the problem slab defined by the dual points. This means that we cannot use any of the lines below the starting point
and hence, we cannot have a matching as there are not enough lines that can be used.

Lemma 10. Suppose the sum of the angles of n floodlights is α. If they illuminate a wedge W of angle α, then the
overall illuminated region is of the form W ′ ∪ S, where W ′ ⊇ W is a wedge of angle α aligned with W and S is a
finite region.
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Figure 5: Two cases for the shape of overall illuminated region in the tight case

Proof. We prove by induction on n the weaker statement that ignores the requirement W ′ ⊇ W above. This will,
however, suffice for the proof because if W ′ did not include all of W , W ′ ∪ S would also not include all of W since
S is finite. This will contradict the precondition.

For the base case of n = 1, W ′ = W and S = φ. For n > 1, note that the floodlight angles are tight relative to W .
Hence, the first n− 1 floodlights must together cover some wedge of angle α− αn, where αn is the angle of the nth

floodlight (see Figure 5). By induction, the region illuminated by the first n − 1 floodlights is of the form W ′′ ∪ S′,
where W ′′ is a wedge of angle α − αn and S′ is finite. Again, since the angles are tight, the only way to extend this
region to cover W of angle α is to mount the nth floodlight f at a site p that is on or above the lower boundary wl

of the already illuminated region and have its upper boundary fu aligned with wl. Let W ′ be the wedge of angle α
defined by the upper boundary wu of the already illuminated region and the lower boundary fl of f . As seen from the
two cases in Figure 5, the overall illuminated region is W ′ ∪ S, where S is finite.

Finally, we mention a relaxation of the problem which makes it easy. Two movable sites can always solve any tight
problem instance: assign two arbitrarily chosen first and last floodlights (the ones parallel to the wedge boundaries) to
the movable sites, and move these sites back and inside the reverse wedge far enough so that every other site is within
the reverse of the residual wedge. Now use Fact 11.

4.2 A Greedy Algorithm
We briefly describe a duality-based greedy algorithm Agreedy given by Steiger and Streinu [14] for the floodlight
illumination problem which takes an additional input: the order in which the floodlight angles are chosen, that is,
permutation σ from Section 1. Note that for the uniform case, where each floodlight angle is the same, the permutation
σ does not come into play and Agreedy is applicable. At each step, Agreedy assigns the current floodlight angle in σ
to the position p which would leave the maximum number of positions inside the reverse wedge of the residual wedge
obtained by placing the current floodlight angle on p. There is also a natural interpretation of Agreedy in the dual
monotone matching problem, where one chooses a line for a slab that maximizes the number of choices for the next
slab. We will refer to this corresponding dual monotone matching algorithm as AMM

greedy. We complete the description
of Agreedy by stating a simple property of it.

Fact 11. If all sites are contained inside the reverse wedge W r, then Agreedy successfully illuminates W after any
assignment of floodlights to positions. Equivalently, if the first special point in a monotone matching problem is below
all lines and the second is above all, then AMM

greedy successfully finds a matching.

4.3 Special Site Configurations
In this section we consider special illumination problems where the sites are restricted to obey certain properties.
This allows us to characterize cases where AMM

greedy produces the right answer for the corresponding tight floodlight
illumination problem.

Definition 4. Sites p1, p2, . . . , pn are angle-separated with respect to wedge W of angle α if pi 6∈ Wj for every
1 ≤ i 6= j ≤ n, where Wj is the wedge of angle α located at pj and aligned with W (see Figure 6). Sites in
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a floodlight illumination problem are angle-separated if they are angle-separated with respect to the wedge to be
illuminated.

We note that an equivalent way of defining angle-separation with respect to a wedge W with boundary slopes
mu and ml is to require that for all site pairs (p, p′), the line joining p and p′ has slope not in [ml,mu]. While the
former definition is natural for the proof of the following lemma, this latter definition might be more convenient for
algorithmic implementations.
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Figure 6: Angle separation implies all sites must be in W r for a solution to exist.

Lemma 12. If the sites in a tight floodlight illumination problem on generalized wedges are angle-separated, there is
no solution unless all sites are contained in the reverse wedge.

Proof. Consider the dual (refer to Section 2.2). The wedge Wj for site pj corresponds in the dual to the segment of
the line `pj between the starting and ending points, that is, the problem slab. If there is a site that is not in the reverse
wedge then there exists a line above the endpoint or a line below the starting point. This implies that one cannot use at
least one line in the matching and thus, a matching cannot exist.

Proposition 13 (Sufficient Condition forAgreedy). If the sites in a tight floodlight illumination problem on generalized
wedges are angle-separated, then Agreedy always produces the right answer.

Proof. If all sites are contained inside the reverse wedge, by Fact 11, a solution is always found by Agreedy for any
assignment of floodlights to sites. On the other hand, if at least one site is outside the reverse wedge, by Fact 12, there
is no solution and Agreedy, of course, doesn’t find one.

zig-zagcircular arcsline

slope mu

slope ml

generalized wedge W

α

Figure 7: A few natural site configurations for which the problem is easy.

It follows that the floodlight illumination problem for generalized wedge W of angle α and with boundaries of
slopes mu and ml is easy to solve when, for instance, all sites are on a straight line whose slope is not in [ml,mu], or
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on a circular arc whose endpoint tangents have slope not in [ml,mu], or in a vertical zig-zag pattern with angle greater
than α, etc. (see Figure 7).

4.4 Approximate Illuminations
Theorem 1 motivates the study of approximation algorithms for the floodlight illumination problem. There are several
natural ways to approximate wedge illumination. After giving precise definitions of some of these, we prove a negative
result that illuminating all but a finite portion of a wedge is, in the tight case, not any easier than illuminating the whole
wedge. This motivates other reasonable notions of approximation that leave unlit relatively small but infinite regions
of the wedge.

Definition 5. Let F be an illumination of a wedge W .

1. F is a finite-approximation if it illuminates W \ S, where S is a finite region.

2. F is an ε angle-approximation if it illuminates W \ Sε, where Sε is a union of wedges whose total angle is at
most ε.

Lemma 14. There is a solution to a tight floodlight illumination problem on a wedge W if and only if there is a
finite-approximation to it.

Proof. We prove the sufficient condition. Suppose there is a finite-approximate illumination F for W . Let W be of
angle α. By definition, F must illuminate a wedge W ∗ of angle α that is aligned with W but is possibly contained
strictly within W . Since the floodlight angles are tight relative to W ∗, by Lemma 10, the overall region illuminated
by F is of the form W ′ ∪ S, where W ′ is a wedge of angle α aligned with W ∗ (and hence with W ) and S is finite.
If W 6⊆ W ′, then W ′ \ W is an infinite region R. As S is finite, W ′ ∪ S will not cover an infinite portion of this
infinite region R of W , contradicting the fact that F illuminates all but a finite region of W . It follows that W ⊆ W ′,
implying that W is completely illuminated by F and providing an exact solution. The other direction of the proof is
trivial.

This Lemma implies that computing a finite-approximation is NP-hard because computing the exact solution is. It
also implies that there is a solution to the tight floodlight problem on a generalized wedge W iff there is a solution to
the tight floodlight problem on the underlying normal wedge W ′. In this sense, generalized wedges don’t make the
problem any harder. However, they provide a convenient tool for analysis, allowing, for instance, stronger inductive
claims.

Note that ε angle-approximate illumination only requires all but ε of the wedge is illuminated “at infinity”. It
would be interesting to find an algorithm for the stronger approximation where the resulting illuminated area is a
smaller wedge but located at the same apex as W .

Lemma 15. For any ε > 0, an ε angle-approximation to the tight floodlight problem can be found efficiently.

Proof. An ε angle-approximation can be achieved by adding two movable sites pa and pb, adding two floodlights fa

and fb of angle ε/2 each, reducing any one original floodlight angle by ε, and proceeding as follows. Mount floodlight
fa at site pa, orient it so that its upper boundary is parallel to and illuminates the upper boundary wu of W , and move
it far and low enough in W r so that all other sites are above its lower boundary. Perform a similar operation on fb

and pb starting with the lower boundary wl of W . The region W ′ of W not illuminated by these two floodlights is a
generalized wedge of angle α− ε, where α is the wedge angle of W . Further, all remaining sites live within W ′r. By
Lemma 11, we can illuminate W ′r exactly using the remaining floodlights. Now remove fa and fb, and add angle ε
back to the floodlight whose angle was reduced. This completes the ε angle-approximation.
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