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ABSTRACT
Motivated by the capabilities of modern storage architec-
tures, we consider the following generalization of the data
stream model where the algorithm has sequential access to
multiple streams. Unlike the data stream model, where the
stream is read only, in this new model (introduced in [8,
9]) the algorithms can also write onto streams. There is no
limit on the size of the streams but the number of passes
made on the streams is restricted. On the other hand, the
amount of internal memory used by the algorithm is scarce,
similar to data stream model.

We resolve the main open problem in [7] of proving lower
bounds in this model for algorithms that are allowed to have
2-sided error. Previously, such lower bounds were shown
only for deterministic and 1-sided error randomized algo-
rithms [9, 7]. We consider the classical set disjointness
problem that has proved to be invaluable for deriving lower
bounds for many other problems involving data streams and
other randomized models of computation. For this problem,
we show a near-linear lower bound on the size of the internal
memory used by a randomized algorithm with 2-sided error
that is allowed to have o(log N/ log log N) passes over the
streams. This bound is almost optimal since there is a sim-
ple algorithm that can solve this problem using logarithmic
memory if the number of passes over the streams is allowed
to be O(log N).

Applications include near-linear lower bounds on the in-
ternal memory for well-known problems in the literature:
(1) approximately counting the number of distinct elements
in the input (F0); (2) approximating the frequency of the
mode of an input sequence (F ∗

∞); (3) computing the join
of two relations; and (4) deciding if some node of an XML
document matches an XQuery (or XPath) query.
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Our techniques involve a novel direct-sum type of argu-
ment that yields lower bounds for many other problems. Our
results asymptotically improve previously known bounds for
any problem even in deterministic and 1-sided error models
of computation.
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F.2.3 [Analysis of Algorithms and Problem Complex-
ity]: Tradeoffs between Complexity Measures
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1. INTRODUCTION
The use of massive data in many application areas has

led to an interest in computational models that adequately
capture the notion of efficient computation over such data
sets. Perhaps the most important of these is the data stream
model in which access to the input is restricted to be sequen-
tial. The literature on data stream algorithms for massive
data sets is vast. We refer the reader to two overview papers:
one by Muthukrishnan [11] which contains many applica-
tions and algorithmic techniques, and another by Babcock
et al. [3] for a database perspective on the applications.

Despite these successes, the data stream model is still a
very limited model of computation. This model is most
relevant when the data is truly streaming, i.e. there is no
access to a read/write storage media. However, in many
applications such as the web, the data resides on disks that
can be accessed in a read-write manner using modern hard-
ware architectures. Classically, memory is arranged in a
hierarchical fashion where the most significant gap in per-
formance is between the main memory and the next lower
level in the hierarchy that uses magnetic disks. Modern stor-
age architectures use sophisticated prefetching and caching
techniques to reduce the effective seek time on disks. Conse-
quently, the I/O rates for sequential access to data on disks
are as good as, if not better than, the I/O rates for random
access to internal memory (cf. [13, Chapter 6]).

A computational model that incorporates these features
was proposed recently by Grohe and Schweikardt [9]. Infor-
mally, it has both internal memory and external memory in



the form of a constant number of read/write streams, and
it has the property that random access to internal memory
and sequential access to the streams are equally efficient.
The resources of interest are the required amount of internal
memory, and the number of scans of the external streams.
The model in [9] is essentially a variant of the traditional
multi-tape Turing machine. The machine has t tapes, rep-
resenting the read-write external memory, and one of these
tapes contains the input. The contents of these tapes can
be read/written only in a sequential manner. (Each tape
has its own head that can move left/right independent of
the heads on other tapes.) The machine also has access to
some internal memory that can be accessed arbitrarily1. As
with standard data streams, the space, the required amount
of internal memory, is a key resource for this model. To
deal with sequential access to external memory, Grohe and
Schweikardt considered the number of reversals made by the
machine. This measure counts the total number of times
that the heads on the tapes reverse direction during the
course of computation2. We call this the read/write stream
computational model.

The three resource parameters that are important to an
read/write stream algorithm A are: (1) the number of exter-
nal read/write tapes t that A uses, (2) the maximum space
s used by A, and (3) the maximum number of reversals r
made by A on all the external tapes. In this case we call A
an (r, s, t)-read/write stream algorithm. In general r and s
will depend on the input size, though we typically consider
the number of tapes to be constant.

The read/write stream model generalizes the data stream
model, which corresponds to the case that t = 1 and the r
passes over the input are read-only. As pointed out in [9], the
read/write stream model is strictly more powerful than the
ordinary data stream model: the read/write stream model
can sort lists of size N with O(log N) reversals and con-
stant space using 3 tapes, but by standard hardness results
on the communication complexity of set disjointness [12],
even deciding the simpler element distinctness problem in a
randomized data stream model satisfies r · s = Ω(N).

Compared to the data stream model, proving lower bounds
in the read/write stream model is much harder. Lower
bounds for data stream and related models for massive data
sets are proved essentially via communication complexity.
For a data stream algorithm that uses s space and r passes
one can, for example, divide the input into two parts and
associate each part with a player. In each pass of the data
stream algorithm, the number of bits communicated be-
tween the players is at most s for a total communication
of r · s bits which must be at least the communication com-
plexity of the problem in the two player game. However, in
the more powerful read/write stream model, this argument
fails. As Grohe and Schweikardt [9] point out, the ability to
copy the contents of one external tape to another allows the

1In [9] the definition assumed that internal memory was also
represented using tapes but their results apply equally to the
model defined here, which motivates us to use somewhat
different terminology from [9].
2Observe that this model allows for the input to be accessed
in reverse; moreover, it allows the heads to reverse direction
in the middle of a tape. In modern disks, these incur sig-
nificant performance costs and the assumption of efficient
sequential access is violated. However, for the purposes of
proving lower bounds, which was the goal of their paper and
ours as well, this only makes the results stronger.

parties to share information without communicating via the
internal memory.

One might hope that randomized time-space tradeoff
lower bounds (e.g. [4]) could be used to obtain tradeoffs
between reversals and space in the read/write stream model
by bounding the time used as a function of the number of re-
versals. However, those lower bounds only apply with read-
only inputs and sub-linear space bounds; with the ability
of read/write stream algorithms to write to linear (or even
significantly super-linear) numbers of memory locations on
the external tapes, neither the time nor the space bounds
are small enough for the time-space tradeoffs to apply.

Grohe and Schweikardt [9] circumvent these issues by
proving lower bounds directly for the read/write stream
model using combinatorial arguments. They showed that
the O(log N) upper bound on reversals for sorting is nec-
essary: any read/write stream algorithm for sorting that

uses o(log N) reversals requires eΩ(N1/5) space. A followup
work by Grohe, Hernich and Schweikardt [7] extends these
techniques to decision problems; one of their main results
shows that checking whether two sets are equal requires

space eΩ(N1/4) when the number of reversals is o(log N). In
fact, they show that the lower bound also holds for one-sided
error randomized read/write stream algorithms.

However, much of our current understanding in the data
stream model involves proving lower bounds for decision
problems in which the computation can have two-sided er-
ror. This is because in problems where a numerical output
(e.g. number of distinct elements in the input) needs to be
approximated, the lower bounds are proven using suitable
reductions from “hard” decision problems. The approxima-
tion guarantees on the original problem then translate to
allowing 2-sided error for the corresponding decision prob-
lem. To obtain a comparable understanding, we need similar
lower bounds to be proven in the read/write stream model
as well.

Finding such a lower bound was posed as the main open
problem in [7]. It is easy to see that the main decision
problem shown to be hard in [7], set equality, has a simple
randomized 1-pass read-only data stream algorithm based
on random fingerprints of O(log N) bits and thus is triv-
ial for randomized (1, O(log N), 1)-read/write stream algo-
rithms. Grohe et al. [7] also ask if set disjointness is hard for
read/write stream algorithms. Set disjointness is a partic-
ularly important problem because, via suitable reductions,
lower bounds for set disjointness have proved invaluable for
deriving lower bounds for many other problems involving
data streams and other randomized models of computation.

Our Results.
We resolve the open problems posed by Grohe et al. [7].

We develop the first lower bounds for randomized read/write
stream algorithms with two-sided error that apply to a va-
riety of decision problems, including set disjointness. We
do this by developing general techniques that yield lower
bounds for 2-sided error randomized read/write stream al-
gorithms computing direct sums of functions with small dis-
crepancy or large “corruption”, combined using either ⊕ or
∨ connectives. (These are the first such generic lower bound
results even for the deterministic read/write stream model.)
In addition to generalizing the class of algorithms to which
our bounds apply, we also obtain bounds that are quantita-
tively better than those in [9, 7].



For example, we show that any randomized
read/write stream algorithm with two-sided error for
the Intersection-Mod-2 problem (given two sets A, B,
is |A ∩ B| even?) using o(log N) reversals requires space
Ω(N1−δ), for any δ > 0 where N is the inputs size.

The main result of this paper, and also technically the
most involved, concerns the Set Disjointness problem.
We show that any randomized read/write stream algo-
rithm with two sided error for Set Disjointness using
o(log N/ log log N) reversals requires space Ω(N1−δ), for any
δ > 0, where N is the input size.

Our lower bound for Set Disjointness implies similar
lower bounds for other problems in the read/write stream
model, given suitable sub-logarithmic bounds on the num-
ber of reversals. This includes a lower bound of essentially
Ω(1/ε1−δ) for any δ > 0 on the space required to compute
a (1 + ε)-approximation of the frequency moment F0, the
number of distinct inputs in the stream, on any random-
ized read/write stream algorithm with two sided error. (Un-
til [10, 15], which proved a tight bound of Ω(1/ε2) space, this
was nearly the best result known even in the weaker data
stream model.) We also derive a lower bound of Ω(N1−δ)
on the space for computing a 2-approximation of F ∗

∞ which
denotes the largest frequency of any element in the stream.
Also, following [8], we obtain a lower bound of Ω(N1−δ) on
the size of the internal memory for randomized read/write
stream algorithms for the following problems: (1) Given two
input relations, decide if their join is empty. (2) Given an
XQuery (or XPath) query and an XML document, decide if
the query filters the document, that is, check if the result of
evaluating the query on the document is non-empty.

Techniques.
Note that the set disjointness problem in the read/write

stream model is trivial if the elements of the set are always
presented in increasing order. On the other hand if the com-
mon elements of the two sets are located arbitrarily within
each set, then a significant price needs to be paid in terms
of the number of reversals. Grohe and Schweikardt [9] show
how to exploit this observation in a clever manner by con-
sidering an appropriate fixed permutation of the locations
of elements of the second set with respect to the first set.
The key result of their paper is that for any deterministic
read/write stream algorithm, there exists a partition of the
inputs into a small number of skeletons such that the in-
puts that map to the same skeleton satisfy a “rectangle”
property. This is similar in spirit to the rectangle property
of transcripts of a deterministic protocol in communication
complexity. However, the proofs in [9, 7] only use the fact
that there exists a rectangle that contains at least four el-
ements. Our proofs require larger rectangles. Further, the
rectangles need to satisfy some extra properties.

Our methodology for proving lower bounds is a general
template that converts any problem P that is essentially
hard for randomized communication protocols to a new
direct-sum type problem consisting of many copies of P
that is hard in the read/write stream model. We consider
two types of problems that are known to be hard for
randomized communication complexity (a) functions that
have low discrepancy, e.g. inner product [6, 2], and (b)
functions that have high corruption, e.g. set disjoint-
ness [12]. We consider two kinds of direct-sum problems.
First, we consider the case of taking the parity of many

instances of P in which each instance of P either has a
low discrepancy or high corruption for sufficiently large
rectangles. In this case our proof by contradiction uses a
careful counting argument to reduce the parity of many
instances of P to a single instance where the violation
of discrepancy or corruption occurs. Next, we consider
the case where the direct sum involves taking the OR of
many instances of P . In this case notice that since we are
taking independent copies, our hard distribution for OR
of many copies of P should have negligible mass on the
1-inputs of each individual instance of P . Thus the previous
argument of reducing to a single instance fails completely.
On the other hand, the results of [9, 7] guarantees a set
of coordinates where the rectangular property applies to
each instance, but not if the instances are all considered
together. We overcome this technical obstacle via a more
subtle argument that assigns inputs in a weighted manner
to suitable chosen combinatorial rectangles, and then
appealing to the corruption bound for each rectangle.

Other related work.
There are a few other models that have some similarity

to the read/write stream model. In “external memory algo-
rithms” [14], the data is partitioned into blocks that can be
accessed in a non-sequential manner by incurring a signifi-
cant cost. Once a block is retrieved into main memory, the
items within the block can be accessed arbitrarily (random-
access). This model does not however address sequential
access to external memory, which is an important aspect of
the read/write stream model. The StrSort model in [1] al-
lows streams to be sorted on-the-fly; simulating this in our
model will incur a Ω(log N) blow-up in the number of rever-
sals. Moreover, their model allows a logarithmic number of
streams. Another related model is the bounded reversal Tur-
ing machine [5] which is a weaker read/write stream model
with no internal memory. There, the known results apply
only when r is ω(N) whereas the focus of this paper is when
the number of reversals is at most logarithmic.

2. PRELIMINARIES
Let X denote a base domain of cardinality n. All the prob-

lems that we will consider in this paper will have 2m values
from the base domain as its input. For notational brevity,
let [`] denote the set of integers {1, . . . , `}. A crucial notion
that we will need is the sortedness of a permutation φ on m
elements, denoted by sortedness(φ), which is defined to be
the length of the largest monotone (increasing or decreasing)
subsequence in φ.

Definition 1. Let r, s : N → N and t ≥ 1 be an integer. An
(r, s, t)-read/write stream algorithm A is a family {AN}N∈N
of t-tape automata over a fixed tape alphabet Σ, with the
property that AN has at most 2s(N) states, each tape of AN

is unbounded with one read/write head that moves inde-
pendently of the heads on other tapes and, on every N -bit
input, AN halts after having made at most r(N) reversals.

Our definition of read/write stream algorithms is a non-
uniform extension of the definition of Grohe and Schweikardt.
The proofs in [7, 9] go via an intermediate machine model
called list machines and uses the concept of the skeleton of
an input to a list machine. We will not define these con-
cepts explicitly but will abstract out the main results that
are needed for our work. In fact, we will not talk about list



machines at all. Further, we will only use the property of
skeletons that they partition the input space into disjoint
sets such that the inputs within each skeleton satisfy cer-
tain special properties. The following notions will be used
to describe these properties.

Definition 2. For v ∈ X2m and I ⊆ [2m], define vI ∈ XI

to be the projection of v on the coordinates I. For S ⊆ X2m

define SI = {vI | v ∈ S}.

Definition 3. A set R ⊆ X×X is called a rectangle if and
only if R = A×B for some A, B ⊆ X.

The fundamental theorem of communication complexity
states that in a deterministic communication protocol the
inputs that are produce any fixed transcript form a rectan-
gle. Such a strong property does not hold for the inputs that
produce a fixed skeleton of a read/write stream algorithm.
A weaker property was shown in [9, 7] for read/write stream
algorithms based on the following notion.

Definition 4. A set of inputs S ⊆ X2m is an (i, j)-
rectangle for some i 6= j ∈ [2m] if and only if:
(a) For all u,v ∈ S, the projections u[2m]\{i,j} = v[2m]\{i,j};
i.e., the inputs in S agree on all coordinates outside of i and
j.
(b) The projection S{i,j} is a rectangle on X ×X.

The following captures the results from [9, 7] that we will
use. A sketch of its proof is given in the appendix.

Proposition 1 ([7, 9]). Let A be an (r, s, t)-
deterministic read/write stream algorithm on 2m in-
puts, each of which belongs to a base domain X with
n = dlog2 |X|e. Then A induces a function σ on X2m

(mapping each input to its associated skeleton) such that:

(a) log2 |σ(X2m)| ≤ dm2(r · s + log2(mn)), for some con-
stant d depending only on t;

(b) For all u,v ∈ X2m, if σ(u) = σ(v) then A(u) = A(v);

(c) For any skeleton ξ ∈ σ(X2m) and permutation φ on
[m], there exists a set I ⊂ [m] with

|I| = m− t2rsortedness(φ)

satisfying the following property:

Let J = [2m]\{i, m+φ(i)}. Then, for every i ∈ I and
every a ∈ XJ the set

{v ∈ X2m | σ(v) = ξ and vJ = a}

is an (i, m + φ(i))-rectangle.

Following Grohe et. al. we will apply this lemma using
a permutation φ∗ on [m], which satisfies sortedness(φ∗) ≤
2
√

m. One such permutation sorts the indices into
√

m
blocks of

√
m inputs that are increasing within a block but

decreasing between blocks.

2.1 Hardness Measures
The lower bounds for the read/write stream model rely

on 2 measures of hardness of Boolean functions, namely dis-
crepancy and corruption. These measures have been clas-
sically used for proving randomized communication com-
plexity lower bounds with 2-sided error. We define these
measures formally below:

Definition 5. Given an boolean function f : X × X →
{0, 1}, a rectangle R ⊆ X × X, and a distribution µ on
X ×X, we define the discrepancy of f on R under µ as

Discµ(R, f) =
˛̨
µ(R ∩ f−1(1))− µ(R ∩ f−1(0))

˛̨
and the discrepancy of f under µ, denoted by Discµ(f), as
the maximum over all rectangles R ⊆ X×X of Discµ(R, f).

Intuitively, a function f that has low discrepancy does
not have any large rectangle that is nearly-monochromatic.
Therefore any randomized protocol for f must necessarily
“use” small rectangles resulting in large randomized com-
munication complexity. Discrepancy is a two-sided mea-
sure since it implies that neither f−1(0) nor f−1(1) approx-
imately contains any large rectangles. A one-sided analogue
of discrepancy is corruption which only rules out large rect-
angles in one of f−1(0) or f−1(1). (For simplicity of notation
we only state the version that rules out large rectangles in
f−1(0).)

Definition 6. Given an boolean function f : X × X →
{0, 1} and a distribution µ on X × X, we say that f has
corruption (C, ∆) under µ if and only if for every rectangle
R ⊆ X ×X with µ(R) ≥ 2−C ,

µ(R ∩ f−1(1)) ≥ ∆ · µ(R).

Corruption bounds are useful for proving lower bounds
for functions such as set intersection that have low non-
deterministic communication complexity. For such a func-
tion f , there exist large monochromatic rectangles in f−1(1)
of f which implies that the discrepancy of f is large. On
the other hand, a good corruption bound implies that the
number of rectangles that are nearly monochromatic with
the zeros of f must be large.

3. PARITY OF FUNCTIONS
In this section, we prove lower bounds for functions in the

read/write stream model that are obtained by taking the
parity of many suitable copies of a primitive function.

Definition 7. Given a function f : X ×X → {0, 1} and a
permutation φ on [m], define f⊕φ on X2m by

f⊕φ (v1, . . . , vm, v′1, . . . , v
′
m) =

mM
i=1

f(vi, v
′
φ(i)).

We have the following general result.

Theorem 2. Let δ < 1/2. Let f : X × X → {0, 1} for
some set X with n = dlog2 |X|e and let µ be a probability
distribution on X ×X such that either

(a) Discµ(f) ≤ 2−γn for some γ > 0 or

(b) f has corruption (γn, ρ) under µ and µ(f−1(0)) ≥ η,
for some γ > 0 and constants ρ, η > 0.

For any integer t ≥ 1, ε > 0 and c ≥ 4/ε such that m =

n1/c is a sufficiently large integer, there is constant a > 0
depending only on c and t with the following property:

Let N = 2mn, r ≤ a log2 N and s ≤ N1−ε. Then there
is no randomized (r, s, t)-read/write stream algorithm with
2-sided error at most δ that can solve f⊕φ∗ on X2m.



Proof. For each of the 2 cases above, we prove the lower
bound by an argument that prunes the inputs belonging to
a skeleton in a careful manner so as to create a rectangle
that contradicts the corresponding hardness measure of f .

Part (a). We first consider the case where f has low dis-

crepancy. Suppose that c ≥ 4/ε and m = n1/c is integer
and that we have an (r, s, t)-read/write stream algorithm as
above. We can assume without loss of generality that the
error δ of the randomized (r, s, t)-read/write stream algo-
rithm in computing f⊕φ∗ is at most 1/12 by repeating it a
constant number of times and taking the majority of the
answers. This only increases the number of reversals by a
constant factor and adds a constant to the space used.

Define a probability distribution ν = µm
φ∗ on X2m by

choosing (vi, v
′
φ∗(i)) from X × X according to µ indepen-

dently for each i ∈ [m] and interleaving them to produce
(v1, . . . , vm, v′1, . . . , v

′
m) ∈ X2m. We use Yao’s principle to

derive a deterministic (r, s, t)-read/write stream algorithm
A that computes f⊕φ∗ on X2m with error probability at most

δ ≤ 1/12 under distribution ν.
As in Proposition 1, let σ be the function that maps each

input v ∈ X2m to its skeleton and define κ = |σ(X2m)|. Let
L be the set of ξ ∈ σ(X2m) on which A has relative error at
most 2δ on σ−1(ξ); i.e., ν({v ∈ σ−1(ξ) | A(v) 6= f⊕φ∗(v)}) ≤
2δ · ν(σ−1(ξ)). By Markov’s inequality,X

ξ∈L

ν(σ−1(ξ)) ≥ ν(
[
ξ∈L

σ−1(ξ)) ≥ 1/2.

Thus, there exists a ξ ∈ L ⊆ σ(X2m) such that ν(σ−1(ξ)) ≥
1/(2|L|) ≥ 1/(2κ) and A has relative error at most 2δ on
σ−1(ξ). Fix such a ξ.

Since N = 2nm = 2mc+1, we have log2 N ≤ 2c log2 m.
Therefore for sufficiently small a > 0 depending only on c
and t, we have t2r ≤ t2a log2 N ≤ t4ac log2 m ≤

√
m/100 and

so t2r · sortedness(φ∗) ≤ m/50. From Proposition 1(c), there
exists a set I depending on ξ, with

|I| = m− t2r · sortedness(φ∗) ≥ 49m/50 > 1

such that for every i ∈ I, for any a ∈ XJ where J = [2m] \
{i, m + φ∗(i)}, the set Si

a defined below is an (i, m + φ∗(i))-
rectangle:

Si
a = {v ∈ X2m | σ(v) = ξ and vJ = a}

Fix any i ∈ I and for brevity let i′ = m + φ∗(i). By
definition, the sets Si

a for a ∈ XJ partition σ−1(ξ) and each
Si

a = {a}×Ra where Ra = (Si
a){i,i′} is the projection of Si

a

on {i, i′}. For each a, by definition Ra is a rectangle on X×
X. Moreover ν(Si

a) = pa ·µ(Ra) where pa = µm−1({a}) andP
a pa = 1 since ν is a product distribution over coordinates.

Now X
a

pa · µ(Ra) =
X
a

ν(Si
a) = ν(σ−1(ξ)) ≥ 1/(2κ).

Therefore by Markov’s inequality there is an a such that
µ(Ra) ≥ 1/(4κ) and the relative error of A on Si

a = {a} ×
Ra is at most 4δ ≤ 1/3. (The total ν measure of Si

a with
µ(Ra) ≤ 1/(4κ) is at most 1/(4κ) ≤ ν(σ−1(ξ))/2. Discard
these. Since the average error on σ−1(ξ) is at most 2δ, the
average error under ν on the remaining half is at most twice
that or 4δ and choosing any remaining a with at most the
average error suffices.)

Now by Proposition 1(b), A outputs the same answer,
call it b ∈ {0, 1}, on all inputs v in Si

a = {a} × Ra. Since
all coordinates of v outside of {i, i′} are fixed to a, their
contribution to f⊕φ∗(v) is some constant b′ ∈ {0, 1}. Since A

has relative error at most 1/3 under ν on Si
a, we must have

that f(vi, vi′) = b⊕ b′ for at least 2/3 of (vi, vi′) ∈ Ra under
distribution µ. Therefore

Discµ(f) ≥ Discµ(f, Ra) ≥ µ(Ra)/3 ≥ 1/(12κ),

and thus κ ≥ 2γn/12 by the assumption on Discµ(f). There-
fore log2 κ ≥ γmc − 4.

Now by Proposition 1(a), there is a constant d depending
on t such that log2 κ ≤ dm2(r · s + log2 nm). Recalling that
N = 2nm = 2mc+1, we have r ≤ a log2 N ≤ 2ac log2 m and

s ≤ N1−ε ≤ (2mc+1)(1−ε), so we have

log2 κ ≤ dm2(4ac m(c+1)(1−ε) log2 m + (c + 1) log2 m).

Combining the upper and lower bounds on log2 κ, it follows
that

mc ≤ c′m(c+1)(1−ε)+2 log2 m (1)

for some constant c′ > 0 depending on c, d, γ, and a. Since
c ≥ 4/ε, (c + 1)(1− ε) + 2 = c + 3− (c + 1)ε ≤ c− 1− ε < c
which contradicts (1) for m sufficiently large. This concludes
the proof for part (a).

Part (b). We now turn to the case where f has high
corruption. The proof for this case follows the same out-
line as before but the manner in which we account for in-
puts is slightly more involved. As in the previous case, we
will use Yao’s principle to derive a lower bound for a de-
terministic read/write stream algorithm A with error δ =
min{ηρ/32, 1/8}.

Call an input v ∈ X2m rich if the fraction of coordinates
where f evaluates to 0 is at least η/2. Since µ(f−1(0)) =
η and the distribution ν = µm on X2m is a product-wise
distribution, the set of poor inputs has negligible measure
under ν. In fact, it can be shown using the Chernoff bound
that this is exponentially small in m. Thus, we can assume
wlog that A gives the right answer only on rich inputs and
that the error of A is at most 2δ. Let Bad denote the set of
inputs on which A makes an error.

Since µ(f−1(0)) ≥ η, a simple calculation shows that the
measure under ν of the 0’s of f⊕ is biased away from 1/2 by
only an exponentially small quantity. Now consider the set
of skeletons on which A outputs a 1. The 0’s of f⊕ which
get mapped to these skeletons can have measure at most 2δ
under ν. Therefore, the set of skeletons in which A outputs
a 0 must account for the 0’s of f⊕ whose measure is at least
1/2−exp(−Θ(m))−2δ ≥ 1/4. Now, using the same proof as
above, we obtain a skeleton ξ on which A outputs a 0 such
that ν(σ−1(ξ)) ≥ 1/(8κ) and A has relative error at most
4δ on σ−1(ξ). Similarly, for this skeleton ξ, there exists a
set I with |I| ≥ m(1 − η/4) such that for every i ∈ I, for
any a ∈ XJ where J = [2m] \ {i, m + φ∗(i)}, the set Si

a as
defined above is an (i, m + φ∗(i))-rectangle. As before, for
every i ∈ I, the sets Si

a partition the set of inputs σ−1(ξ)
as we vary a. Unlike the previous proof, however, we will
only be interested in those a’s that contribute a 0 to f⊕φ∗

i.e.
L

j∈[m]\i f(aj , am+φ∗(j)) = 0, and furthermore, we will

not fix an i ∈ I. For any i ∈ I and such an a, we call Si
a a

fragment of ξ.



Now, every rich input v such that f⊕(v) = 0 and σ(v) = ξ
has at least mη/2 coordinate pairs where f evaluates to
0. Therefore, v belongs to at least m(η/2 − η/4) = mη/4
fragments Si

a, where i ∈ I, and a is the projection of v
onto [2m] \ {i, m + φ∗(i)}. Write Si

a = {a} × Ra, where

Ra is a rectangle, so that ν(Si
a) = µ(m−1)(a) · µ(Ra). Since

we assumed that every input on which A gives the correct
output is rich, we sum over all fragments to obtainX

ν(Si
a) ≥

mη

4
· ν(σ−1(ξ) ∩ Bad)

≥ mη

4
· (1− 4δ) · ν(σ−1(ξ))

≥ mη

8
· ν(σ−1(ξ)) ≥ mη

64κ
(2)

On the other hand, each input on which A errs can be in
no more than m fragments. Therefore,

P
ν(Si

a ∩ Bad) ≤
2δm · ν(σ−1(ξ)). Combining this with (2), we obtainX

ν(Si
a ∩ Bad) ≤ 16δ

η
·
X

ν(Si
a) ≤

ρ

2
·
X

ν(Si
a).

Hence, there exists a fragment Si
a with relative error at most

ρ and µ(Ra) ≥ η/(128κ).
Now A outputs the same answer 0 on all inputs v in

Si
a = {a} × Ra. Since a contributes a 0 to f⊕φ∗ , and A has

relative error at most ρ under ν on Si
a, we must have that

f(vi, vm+φ∗(i)) = 0 for at least 2/3 of (vi, vm+φ∗(i)) ∈ Ra

under distribution µ. Thus, this rectangle is not highly cor-
rupt, so 2−γn ≥ µ(Ra) ≥ η/(128κ). The rest of the argu-
ment is similar to that of part (a).

By taking the inner product function IP on n bits
(IP (x, y) =

Pn
i=1 xi · yi mod 2) to be the primitive func-

tion, and using the well-known discrepancy bound for IP [6,
2], Theorem 2 implies:

Corollary 3. For any constants ε > 0, δ < 1/2, there is
no randomized (o(log N), o(N1−ε), O(1))-read/write stream
algorithm with 2-sided error at most δ solving IP⊕

φ∗ on N
bit inputs.

4. DISJUNCTION OF FUNCTIONS
In this section, we prove lower bounds for functions in the

read/write stream model that are obtained by taking the
disjunction of many suitable copies of a primitive function.

Definition 8. Given a function f : X ×X → {0, 1} and a
permutation φ on [m], define f∨φ on X2m by

f∨φ (v1, v2, . . . , vm, v′1, v
′
2, . . . , v

′
m) =

m_
i=1

f(vi, v
′
φ(i)).

Theorem 4. Let δ < 1/2. Let f : X × X → {0, 1} for
some set X with n = dlog2 |X|e and let µ be a probability
distribution on X × X such that µ(f−1(1)) ≤ 1/m. For
any integer t ≥ 1, ε > 0, 0 < γ ≤ 1, and c ≥ 4/ε such that

m = n1/c is a sufficiently large integer, and f has corruption
(nγ , ∆) under µ for ∆ > 0, there is constant a > 0 depending
only on c, δ and t with the following property:
Let N = 2mn, r ≤ a log2 N

log2(1/(m∆))
and s ≤ Nγ−ε. Then there

is no randomized (r, s, t)-read/write stream algorithm with
2-sided error at most δ that can solve f∨φ∗ on X2m.

Proof. Suppose that c ≥ 4/ε and m = n1/c is integer
and that we have a randomized (r, s, t)-read/write stream
algorithm as above. Note that by the definition of cor-
ruption, ∆ ≤ 1/m since µ(f−1(1)) ≤ 1/m. By repeating
the algorithm Oδ(log(1/(m∆))) times and taking the ma-
jority of the answers we can reduce the error to at most
m∆/16. Thus we obtain a randomized (r′, s′, t)-read/write
stream algorithm with r′ ≤ c′r log2(1/(m∆)) ≤ c′a log2 N
and s′ ≤ c′s for some constant c′ depending only on δ and
2-sided error at most m∆/16.

Define a probability distribution ν = µm
φ∗ on X2m by

choosing (vi, v
′
φ∗(i)) from X × X according to µ indepen-

dently for each i ∈ [m] and interleaving them to produce
(v1, . . . , vm, v′1, . . . , v

′
m) ∈ X2m. We use Yao’s principle to

derive a deterministic (r′, s′, t)-read/write stream algorithm
A that computes f⊕φ∗ on X2m with error probability at most

δ′ ≤ m∆/16 under distribution ν.
Since µ(f−1(1)) ≤ 1/m, µ(f−1(0)) ≥ 1 − 1/m and by

the independence of the coordinates, the probability under
ν that f∨φ∗(v) = 0 is at least (1 − 1/m)m ≥ 1/4. It follows
that since A has error at most m∆/16 ≤ 1/16, we must have
ν(A−1(0)) ≥ 1/6.

As in Proposition 1, let σ be the function that maps each
input v ∈ X2m to its skeleton and define κ = |σ(X2m)|.
By Proposition 1(b), for any v ∈ X2m, A(v) = 0 if and
only if σ(v) ∈ σ(A−1(0)). By Markov’s inequality, there
exists a ξ ∈ σ(A−1(0)) such that ν(σ−1(ξ)) ≥ 1/(12κ) and
A has relative error at most 2δ′ on σ−1(ξ) under ν. Fix
such an ξ and let S = σ−1(ξ) ⊆ A−1(0). Then we have
ν(S) ≥ 1/(12κ), σ(v) = ξ and A(v) = 0 for all v ∈ S, and
ν(S ∩ f−1(1)) ≤ 2δ′ · ν(S).

Since N = 2nm = 2mc+1, we have log2 N ≤ 2c log2 m.
Therefore for sufficiently small a > 0 depending on c, c′

and t, we have t2r′ ≤ t2ac′ log2 N ≤ t4ac′c log2 m ≤
√

m/100

and so t2r′ · sortedness(φ∗) ≤ (
√

m/100) · 2
√

m ≤ m/50.
By Proposition 1(c), there exists a set I with |I| = m −
t2r · sortedness(φ∗) ≥ 49m/50 such that for every i ∈ I,
for any a ∈ XJ where J = [2m] \ {i, m + φ∗(i)}, the set
{v ∈ X2m | σ(v) = ξ and vJ = a} is an (i, m + φ∗(i))-
rectangle. Let m′ = |I| ≥ 49m/50.

Let K = [2m]\(I∪{m+φ∗(i) | i ∈ I}). For each b ∈ XK ,
define

SI
b = {v ∈ X2m | σ(v) = ξ and vK = b}.

The sets SI
b for various b ∈ XK partition S. Moreover, we

can write each SI
b = {b} × Tb for some set Tb ⊆ X [2m]\K .

Let νI be the induced probability distribution on the coor-
dinates [2m] \ K = I ∪ {m + φ∗(i) | i ∈ I}. By Markov’s
inequality there is a b such that νI(Tb) ≥ 1/(24κ) and the
relative error of A on SI

b = {b} × Tb is at most 4δ′.
We say that v = (v1, . . . , vm, v′1, . . . , v

′
m) is one in position

i if f(vi, v
′
φ∗(i)) = 1 (and is zero in position i otherwise).

Since SI
b has relative error at most 4δ′ ≤ 1/4 < 1, every

v ∈ SI
b is zero in every position in [2m] \ I (the positions of

b). SI
b may contain inputs that are one in multiple positions.

Let T ⊆ T I
b ⊆ XI be such that {b}×T consists of all inputs

in SI
b that are one in at most one position. Since A outputs

0 on all inputs in SI
b and has relative error at most 4δ′ ≤ 1/4

on SI
b it follows that νI(T ) ≥ 3

4
νI(T

I
b) ≥ 1/(32κ) and the

relative error of A on {b} × T is still at most 4δ′.
Let T0 ⊂ T be chosen so that {b} × T is the set of zero

inputs in {b}×T and T1 = T \T0. Write V 0 = {b}×T0 and
V 1 = {b}×T1 and V = V 0∪V 1. Then νI(V

1
I ) ≤ 4δ′ νI(VI)



and νI(VI) ≥ 1/(32κ). We now define an undirected graph
G with vertex set V and edges with labels from I. For
distinct u,v ∈ V , there is an edge between u and v labeled
i if and only if uJ = vJ for J = [2m] \ {i, m + φ∗(i)} and
every j ∈ I \ {i} is a zero position for both inputs. Observe
that for each i ∈ I, the edge relation given by the edges
labelled i is an equivalence relation; that is, for each i ∈ I
the edges labelled i partition V into cliques.

By Proposition 1(c), the vertices of each a clique of i-edges
in G form an (i, m+φ∗(i))-rectangle. By definition, because
each v ∈ V 1 is one in precisely one position, if that position
is i, the only possible edges incident to v have label i. On
the other hand, vertices v ∈ V 0 may have incident edges
with as many as m′ different labels. For each i ∈ I, let V 1,i

denote the set of vertices in V 1 that are one in position i.
Since

P
i∈I νI(V

1,i
I ) = νI(V

1
I ) ≤ 4δ′ νI(VI), there is some i

such that νI(V
1,i

I ) ≤ 4δ′ νI(VI)/m′.
Fix this i and let U = V 0∪V 1,i. By construction, all edges

of G with label i have endpoints in U and the cliques of these
edges partition U . Moreover, νI(UI) ≥ νI(V

0
I ) ≥ 1/(48κ)

and

νI((V
1 ∩ U)I) ≤ 4δ′ νI(VI)/m′

≤ 16

3
δ′ νI(UI)/m′ ≤ 6δ′ νI(UI)/m

so A’s output of 0 has relative error at most 6δ′/m on
U under νI . Observe that each clique of edges labelled i
corresponds to a unique assignment c ∈ XL where L =
[2m]\(K∪{i, i+φ∗(m)}) (since the assignment b ∈ XK has
already been fixed). Thus the relative distribution within
each such clique given by νI is the same as µ on coordi-
nates {i, m + φ∗(i)}. By Markov’s inequality, there is a
c ∈ XL such that the clique corresponding to c has µ mea-
sure at least νI(UI)/2 ≥ 1/(96κ) and A’s output of 0 has
relative error at most 12δ′/m under µ. Since this clique is
an (i, m + φ∗(i))-rectangle, it consists of {b} × {c} × R for

some rectangle R ∈ X{i,m+φ∗(i)} with µ(R) ≥ 1/(96κ) and
µ(R ∩ f−1(1)) ≤ 12δ′µ(R)/m ≤ 3∆µ(R)/4.

Since f has corruption (nγ , ∆) under µ, it must be the

case that 1/(96κ) < 2−nγ

and thus log2 κ ≥ nγ − 7.
Now by Proposition 1(a), there is a constant d depending

on t such that log2 κ ≤ dm2(r · s + log2 nm). Recalling that
N = 2nm = 2mc+1, we have r′ ≤ ac′ log2 N ≤ 2ac′c log2 m

and s′ ≤ c′Nγ−ε ≤ c′(2mc+1)(γ−ε), so we have log2 κ ≤
dm2(4a(c′)2c m(c+1)(γ−ε) log2 m + (c + 1) log2 m). Combin-
ing the upper and lower bounds on log2 κ, it follows that

mcγ ≤ c′′m(c+1)(γ−ε)+2 log2 m (3)

for some constant c′′ > 0 depending on c, c′, d, and a. Since
c ≥ 4/ε, (c + 1)(γ − ε) + 2 ≤ cγ − cε + 2 + γ ≤ cγ − 1 < cγ
which contradicts (3) for m sufficiently large.

5. LOWER BOUNDS FOR SET DISJOINT-
NESS AND OTHER PROBLEMS

In this section, we prove lower bounds for the set dis-
jointness problem using the lower bounds proved in Section
4. We then prove similar lower bounds for other problems
(mostly via reductions from the set disjointness problem).

First let us consider the set disjointness problem. Given
sets A and B, Disj(A, B) = 0 if and only if A ∩B = ∅.

Theorem 5. Let ε > 0 and δ < 1/2 be any constant
real numbers. If r is o(log N/ log log N) and s is o(N1−ε)
for some large enough N , then for every t ≥ 1, there is no
randomized (r, s, t) read/write stream algorithm with 2-sided
error at most δ that can decide Disj on inputs of size N .

The proof of the above result follows by a reduction from
a related problem SD∨

φ∗ where the primitive function

SD(u, v) =

(
1 if u ∩ v = ∅
0 otherwise,

where u, v ∈ X = {0, 1}n.
Let D denote the strings in {0, 1}n that have weight ex-

actly
p

n
m

. We will need the following corruption result for
SD in order to apply Theorem 4.

Lemma 6. Under the uniform distribution µ on D × D
SD has corruption

“
1
16

p
n
m

, 1
96m log2 m

”
.

Proof. The following is a generalization of an argument
of Babai, Frankl, and Simon [2]. Its appears in a somewhat

different form in [4]. Let k =
p

n/m. Let R = A×B ⊆ D×D
be a rectangle with |R| ≥ 2−k/16|D|2. Set ε = Prµ[S ∩ T 6=
∅ | (S, T ) ∈ R]. Assume for the purposes of contradiction
that ε ≤ 1/(96m log2 m). Since |D| =

`
n
k

´
,

|A| ≥ 2−k/16

 
n

k

!
≥ 4(8/9)k/2

 
n

k

!
.

For S ∈ A, define εS to be the fraction of elements T of
B such that S ∩ T 6= ∅. Let A′ ⊆ A be the set of S ∈ A
such that εS ≤ 2ε. By Markov’s inequality, |A′| ≥ |A|/2 ≥
2(8/9)k/2

`
n
k

´
.

Proposition 7. Let d ≥ 3 and let A′ be a collection of
k-subsets of [n]. If

|A′| > 2(4(d− 1)/d2)k/2|D| = 2(4(d− 1)/d2)k/2

 
n

k

!
then A′ contains a sequence of p = dn/(dk)e sets S1, . . . , Sp

such that |Sj∩(
S

i<j Si)| ≤ k/2 for j = 1, . . . , p, i.e. at least
half the elements of Sj do not occur in earlier sets.

Proof of Proposition 7. We construct S1, . . . , Sp in-
ductively. Select S1 ∈ A′ arbitrarily. For j > 1, having
chosen S1, . . . , Sj−1, we show that for j ≤ p, the number of
sets that have more than half their elements in earlier sets is
less than |A′| and so we can select Sj ∈ A′ as required. Let
Uj =

S
i<j Si. Since j ≤ dn/(dk)e, |Uj | ≤ n/d, the number

of k-subsets of [n] having more than half their elements in
Uj is at mostX

h≥k/2

 
|Uj |
h

! 
n− |Uj |
k − h

!
≤
X

h≥k/2

 
n/d

h

! 
(1− 1/d)n

k − h

!
. It is easy to check that since d ≥ 3 as h increases, each
successive term is at most half the previous so the sum is at
most 2

`
n/d
dk/2e

´`
(1−1/d)n
bk/2c

´
. Using the easily verifiable inequal-

ities that for b ≥ a ≥ c ≥ d, 
a

c

! 
b

d

!
< (

4ab

a + b
)c

 
(a + b)/2

c

! 
(a + b)/2

d

!
and  

n/2

c

! 
n/2

d

!
≤

 
n

c + d

!



we upper bound this strictly by 2(4(d− 1)/d2)k/2
`

n
k

´
which

is less than |A′|.

We continue the proof of the lemma. Apply Proposition 7
with d = 3 to the set A′ to find p = dn/(3k)e sets S1, . . . , Sp

in A′ each of which contains at least k/2 elements not occur-
ring in earlier sets. For each T ∈ B, let wT be the number of
Sj that intersect it. Since each Sj ∈ A′, 1

|B|
P

T wT ≤ 2εp,

so at most half of the T ∈ B have wT > 4εp. Let B′ be the
set of T ∈ B with wT ≤ 4εp. Thus |B′| ≥ |B|/2.

We now upper bound the number of elements in B′ and
thus B using ε. An element T of B′ can be described by
giving a subset J ⊆ [p] of (1−4ε)p indices such that T ∩Sj =
∅ for all j ∈ J and then specifying T as a t-subset of the
elements outside these subsets. By the claim, any collection
of (1−4ε)p of the sets has a total of t(1−4ε)p ≥ n/9 elements
since ε ≤ 1

12
. Therefore

|B| ≤ 2|B′| ≤ 2

 
p

4εp

! 
8n/9

k

!
< 21+H2(4ε)( n

3k
)(8/9)k

 
n

k

!

≤ 21+H2(4ε)( n
3k

)− k
6

 
n

k

!
(4)

We have k = d
p

n/me so n
3k

≤ mk
3

. Now H2(δ) ≤
2δ log2(

1
δ
) for δ ≤ 1/2, so if ε ≤ 1/(96m log2 m) then

H2(4ε) ≤ 2 log2(24m log2 m)

24m log2 m
≤ 1

6m

for m ≥ 200. Putting the above two inequalities along with
(4),

|B| ≤ 21+ k
12−

k
6

 
n

k

!
≤ 2−

k
16

 
n

k

!
= 2−

k
16 |D|

Thus |R| = |A| · |B| < |D| · 2−k/16|D| = 2−k/16|D|2, contra-
dicting the size lower bound on R.

Thus, Lemma 6 and Theorem 4 imply the following result.

Corollary 8. The following holds for the SD∨
φ∗ prob-

lem on ({0, 1}n)2m. For every constants ε > 0 and δ < 1/2,
there exists a constant a such that if r ≤ a log N/ log log N

and s ≤ N1/2−ε, where N = 2nm, then no randomized
(r, s, t) read/write stream algorithm with 2-sided error at
most δ that can solve SD∨

φ∗ .

Proof of Theorem 5. We will reduce the SD∨
φ∗ prob-

lem to the Disj problem. Recall that the input to the SD∨
φ∗

problem is a vector v = (v1, . . . , vm, v′1, . . . , v
′
m), where for

every 1 ≤ i ≤ m, vi, v
′
i ∈ {0, 1}n. The reduction will pro-

duce sets A and B that have elements from the set [m]× [n].
The reduction is pretty simple. The vectors v1, . . . , vm will
contribute to the set A, while v′1, . . . , v

′
m will contribute to

the set B as follows. For every 1 ≤ i ≤ m and 1 ≤ j ≤ n,
add the element (φ∗(i), j) to A if and only if the jth bit of
vi is 1. Further, for every 1 ≤ i ≤ m and 1 ≤ j ≤ m, add
the element (i, j) to B if and only if the jth bit of v′i is 1.

One can easily check that SD∨
φ∗(v) = 0 if and only if

Disj(A, B) = 0. Further, one can implement the above
reduction using a (2, O(log(mn)), 2)-restricted determinis-
tic read/write stream algorithm. Recall that in the hard
instances for the SD∨

φ∗ problem (Corollary 8), for every

1 ≤ i ≤ m, vi and v′i were n-bit strings of weight
p

n/m.

Thus, the number of bits required to represent the sets A and
B is N = 2m ·

p
n/m · (log m + log n) = O (

√
nm log(nm)).

Recall that N ′ = nm was the number of bits required to rep-
resent the inputs to SD∨

φ∗ problem. Note that this implies

that log N = Θ(log N ′) and N1−ε = o(N ′1/2−ε/2). Thus,
applying Corollary 8 completes the proof.

The reduction used in the proof above can be used to re-
duce the IP⊕

φ∗ problem to the Intersection-Mod-2 prob-

lem (recall that for sets A and B, Intersection-Mod-
2(A, B) = |A∩B| mod 2). Corollary 3 implies the following
result.

Theorem 9. Let ε > 0 and δ < 1/2 be any constant
real number. If r is o(log N) and s is o(N1−ε) for some
large enough N , then for every t ≥ 1, there is no random-
ized (r, s, t)-read/write stream algorithm with 2-sided error
at most δ that can decide Intersection-mod-2 on inputs
of size N .

We now use the lower bound of Theorem 5 to get similar
lower bounds for other problems. In the ε-Num-Distinct-
Elements problem, the goal is to approximate the the num-
ber of distinct elements within a factor (1 + ε). In the ε-
Mode problem, the goal is to approximate the frequency of
the most frequently occurring element in the input within a
(1 + ε) factor.

Corollary 10. Let ε, γ > 0 and 0 < δ <
1/2 be arbitrary constants. Then for every r in
o(log(1/ε)/ log log(1/ε)), s in o(1/ε1−γ) and t ≥ 1, there
are no randomized (r, s, t)-read/write stream algorithms with
2-sided error at most δ that can solve the ε-Num-Distinct-
Elements problem.

Proof. Let A and B be inputs to the Disj problem. Let
C be the multi-set union of A and B. C is then the in-
put to the ε-Num-Distinct-Elements problem. Note that
if Disj(A, B) = 0 then Num-Distinct-Elements(C) =
|A| + |B| while if Disj(A, B) = 1 then Num-Distinct-
Elements(C) ≤ |A| + |B| − 1. Recall that in the hard
instance of the Disj problem, |A| = |B| = N and the
space lower bound is o(N1−γ) for every γ > 0. Set ε =

1
2N−1

. Now if A and B are disjoint then Num-Distinct-

Elements(C) = 2N and if A and B are not disjoint then
Num-Distinct-Elements(C) ≤ 2N

1+ε
. Thus, there exists

a ε such that ε-Num-Distinct-Elements cannot be com-
puted by a randomized read/write stream algorithm that
uses space o(N1−γ) = o(1/ε1−γ).

Corollary 11. Let ε, γ > 0 and 0 < δ < 1/2 be arbi-
trary constant real numbers. For large N and for every r
in o(log N/ log log N), s in o(N1−γ) and t ≥ 1, there are
no randomized (r, s, t)-read/write stream algorithms with 2-
sided error at most δ that can solve (1− ε)-Mode on N bit
inputs

Proof. We again start with sets A and B that are in-
puts to the Disj problem. Let C be the multi-set union
of A and B. The simple observation in this case is that if
Disj(A, B) = 0 then Mode(C) = 1 and if Disj(A, B) = 1
then Mode(C) ≥ 2. Thus, a randomized read/write stream
algorithm that can solve the (1−ε)-Mode problem can also
decide the Disj problem with the same number of reversal
and space requirement. Thus, for any γ > 0, no random-
ized read/write stream algorithm can solve the (1−ε)-Mode
problem with o(N1−γ) space for every γ > 0.



Following Grohe, Koch and Schweikardt ([8]), who gave
reductions from set disjointness to derive lower bounds in
the deterministic read/write stream model with only 1 tape,
we give lower bounds on arbitrary randomized read/write
stream algorithms for the following problems related to
databases: Empty-Join, XQuery-Filtering and XPath-
Filtering.

We first look at the Empty-Join problem. Consider two
relations A, B ⊆ X2, where X is some base domain. We
will use the predicate A(x, y) (and B(x, y)) to decide if the
tuple (x, y) is in the relation A (and B). Further, A 11 B
will denote the join of the relations A and B on their first
component. In other words

A 11 B = {(x, y) | ∃z A(z, x) ∧B(z, y)}.

Definition 9. The Empty-Join decision problem takes as
input relations A, B ⊆ X2, where X is some base domain
and outputs 0 if and only if A 11 B = ∅.

We now sketch the reduction from Disj to Empty-Join.
Given the input sets A′, B′ ⊆ X ′ for the Disj problem,
define the input relations for Empty-Join as follows. Define
X = X ′ × {1, 2} and relations A and B as

A = {(a, 1) | a ∈ A′} and B = {(b, 2) | b ∈ B′}.

It is easy to check that Empty-Join(A, B) = 0 if and only if
Disj(A′, B′) = 0. Further, the relations A and B can be gen-
erated by one scan of the inputs A′ and B′ (and thus, can be
implemented by a deterministic (1, O(log N), 1)-read/write
stream algorithm, where N = (|A|+ |B|)dlog2 |X|e).

For the remaining problems, we assume that the reader is
familiar with XQuery and XPath. Given an XML document
T and an XQuery query Q, let E(T, Q) denote the result of
evaluating the query Q on the input document T .

Definition 10. The XQuery-Filtering decision problem
takes as input an XQuery Q and a XML document T and
outputs 0 if and only if E(T, Q) = ∅.

The reduction for XQuery-Filtering, uses the same re-
duction as the one from Disj to Empty-Join. The only
difference is that the reduction needs to encode the input
sets A′ and B′ for Disj in an XML document T . Further,
one needs to define an XQuery Q that outputs a “tuple” for
every tuple in A 11 B. The problem of XPath-Filtering
is the same as XQuery-Filtering except that the query
Q is an XPath query. Again the crux of the reduction is to
encode the inputs sets A′ and B′ for Disj in a suitable XML
document and to design an XPath query Q that returns all
nodes that correspond to elements in A′ ∩B′. We refer the
reader to [8] for the details of these reductions.

For both XPath-Filtering and XQuery-Filtering, we
will use N to denote the number of bits needed to represent
the query Q and the XML document T . For the Empty-
Join problem, we will use N to denote the number of bits
required to represent the input relations A and B.

Corollary 12. Let ε > 0 and 0 < δ < 1/2 be arbitrary
constant real numbers. For sufficiently large N and for every
r in o(log N/ log log N), s in o(N1−ε) and t ≥ 1, there are
no randomized (r, s, t)-read/write stream stream algorithms
with 2-sided error at most δ that can solve any of the fol-
lowing problems on N bit inputs: Empty-Join, XQuery-
Filtering, XPath-Filtering.
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APPENDIX
Proof sketch for Proposition 1. [7, 9] We give a

brief overview of the main ideas that Grohe, Hernich, and
Schweikardt in [7, 9] used to derive Proposition 1. (Although
their original argument applied to a uniform model it applies
at least as easily to the non-uniform model we consider.)
The main idea is to capture the “information flow” among
the tapes in various stages of the computation. For the
ease of exposition, we only consider deterministic read/write
stream algorithms.

Information flow in a read/write stream algorithm’s exe-
cution is captured via an object called a skeleton, which is a
condensation of the computation on a given input string at
various stages. Assume that the input of N bits is the se-
quence of strings v = v1, v2, . . . , v2m ∈ X2m which is written
on the first tape. Also assume that the read/write stream
algorithm A (more precisely AN ) makes a total of r reversals
on input v. The skeleton corresponding to v, denoted by
σ(v), allows one to reconstruct the t tapes of the read/write
stream algorithm just after each of the r reversals. There
are r+2 levels in σ(v) – level 0 corresponds to the beginning
of the computation and level r+1 corresponds the end of the
computation. Level k for 1 ≤ k ≤ r encodes the contents
of each of the t tapes just after the k-th reversal in the fol-
lowing manner. The contents of the tapes are divided into
“blocks”. However, instead of explicitly specifying the con-
tents of each cell, the skeleton will maintain a list of blocks it
“depends” on (along with some state information). Assume
without loss of generality that at any step only one of the t
heads move.

The crucial observation about read/write stream algo-
rithms is the following: When a symbol is written in a par-
ticular cell by the read/write stream algorithm between its
k-th and (k + 1)-st reversal, what is being written on that
cell can only depend on the current state and the t sym-
bols currently being scanned. However, the values of these t
symbols were determined before the k-th reversal. In terms
of blocks, this implies that any cell in a block at level k + 1
depends on at most t blocks in level k. The blocks at level
k + 1 are then defined in such a manner that every cell in
such a block depends on the same set of level k blocks.

We now describe the blocks and their dependencies more
precisely. There are 2m + t blocks at level 0. The first 2m
blocks correspond to the 2m input values v1, . . . , v2m while
the last t values correspond to the infinite sequence of blanks
at the end of each tape. As the computation proceeds, an
existing block at level k can be divided into smaller blocks at
level k+1. Such a process happens only under two scenarios:
when one of the tape heads does a reversal, or when some
tape head crosses the boundary between level k blocks on
the same tape. We sketch the latter case since it can split
blocks more often.

When some head crosses between level k blocks on the
same tape, all the blocks on other tapes containing tape
heads are split at the tape head position (more precisely,
just behind each tape head in the direction from which it
made its last move) into a new level k + 1 block (in the
direction from which the head has come) and the remainder
of the level k block which may be further split. Moreover,
the remaining portion of the level k block just exited by
the tape head that moved across a boundary also becomes
a level k + 1 block. Each new level k + 1 block created is
said to depend on the level k blocks containing each of other

tape heads just prior to the move.
The skeleton consists of a layered directed graph of blocks

of in-degree t representing the block dependencies, with each
block labelled by the internal state of the read/write stream
algorithm immediately prior its creation as well as its left
and right boundary positions and the position and direc-
tion of movement of each of the t heads (at the time it was
created) within each of the blocks on which it depends.

Thus, one can think of the skeleton σ(v) as a layered
“circuit”, where each gate (block) has t inputs as outputs
from t gates in the previous layer as well as extra input
from the auxiliary information labelling the block/gate. It
can be verified that given σ(v), the whole computation of
the read/write stream algorithm on v can be recovered. In
particular, the state information associated with the last
block created at level r + 1 determine whether or not the
input v was accepted. This in turn implies that if for two
vectors u and v, σ(u) = σ(v), then either both are accepted
by AN or both are rejected from which Proposition 1(b)
follows.

We sketch the arguments for parts (a) and (c). To upper
bound the number of possible skeletons, let B upper bound
the number of blocks at any level and let q upper bound
the number of possible labellings of any block. Since each
block depends on t predecessors, there are at most (Btq)B

distinct ways of creating the (k + 1)-st layer of the skeleton
from the k-th layer. Therefore, over all the layers there are
at most (Btq)B(r+1) skeletons. Since each level k + 1 block
is attributable to a reversal or the movement of a head out
of some level k block one can show that B is O(t2rm). For
suitable parameters, q is dominated by the bound on the
number of states and t2r is at most m and thus (Btq)B(r+1)

is approximately 2O(m2·r·s). A more careful analysis gives
the bound of part (a).

In part (c), the essential idea is to show that for a large
number of pairs of the form {i, m + φ(i)}, no block in the
skeleton σ(v) depends on both vi and vm+φ(i) and that, via
a cut-and-paste argument, inputs that have the same skele-
ton and only differ on such positions must be in a common
rectangle of inputs having the same skeleton. For the latter
argument, let u and v be such that σ(u) = σ(v) and that
u and v agree on all positions except {i, m + φ(i)}. Now
consider an input w, which agrees with u on all positions,
except that wi = vi. Essentially, w will “behave” either as
u or v while the blocks (and their dependencies) in σ(w) are
being created, depending on whether the block depends on
i or m + φ(i) (it cannot depend on both). As σ(u) = σ(v)
and they agree outside of {i, m + φ(i)}, one can verify that
indeed σ(w) = σ(u) = σ(v). The argument for the exis-
tence of many such pairs {i, m+φ(i)} crucially relies on the
fact that the last m inputs in v are not sorted relative to the
first m indices. The key property to show is that if one con-
siders a sequence of input indices from {1, . . . , 2m} derived
by ordering the set of input dependencies within each block
arbitrarily and concatenating the sequences for the blocks
at level k in an order that respects their relative order on
the tapes, then such a sequence can be written as the in-
terleaving of at most tk increasing or decreasing sequences.
Further, [7, 9] show that if sortedness(φ) is small, this prop-
erty severely limits the number of input pairs {i, m + φ(i)}
that can be in the dependency sets of blocks in the skele-
ton.


